51
|
Dewitte H, Van Lint S, Heirman C, Thielemans K, De Smedt SC, Breckpot K, Lentacker I. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J Control Release 2014; 194:28-36. [PMID: 25151979 DOI: 10.1016/j.jconrel.2014.08.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC)-based cancer vaccines, where the patient's own immune system is harnessed to target and destroy tumor tissue, have emerged as a potent therapeutic strategy. In the development of such DC vaccines, it is crucial to load the DCs with tumor antigens, and to simultaneously activate them to become more potent antigen-presenting cells. For this, we report on microbubbles, loaded with both antigen mRNA as well as immunomodulating TriMix mRNA, which can be used for the ultrasound-triggered transfection of DCs. In vivo experiments with in vitro sonoporated DCs show the effective induction of antigen-specific T cells, resulting in specific lysis of antigen-expressing cells. Especially in a therapeutic setting, sonoporation with TriMix has an important added value, resulting in a significant reduction of tumor outgrowth and a marked increase in overall survival. What is more, complete tumor regression was observed in 30% of the antigen+TriMix DC vaccinated animals, which also displayed long-term antigen-specific immunological memory. As a result, DC sonoporation using microbubbles loaded with a combination of antigen and TriMix mRNA can elicit powerful immune responses in vivo, and might serve as a potential tool for further in vivo DC vaccination applications.
Collapse
Affiliation(s)
- Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sandra Van Lint
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium.
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium.
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium.
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium.
| | - Ine Lentacker
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
52
|
Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS NANO 2014; 8:3636-45. [PMID: 24580381 PMCID: PMC4004320 DOI: 10.1021/nn500216y] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/01/2014] [Indexed: 05/19/2023]
Abstract
Achievement of potent immunoresponses against self/tumor antigens and effective therapeutic outcome against advanced tumors remain major challenges in cancer immunotherapy. The specificity and efficiency of two nanoparticle-based delivery systems, lipid-calcium-phosphate (LCP) nanoparticle (NP) and liposome-protamine-hyaluronic acid (LPH) NP, provide us an opportunity to address both challenges. A mannose-modified LCP NP delivered both tumor antigen (Trp 2 peptide) and adjuvant (CpG oligonucleotide) to the dendritic cells and elicited a potent, systemic immune response regardless of the existence or the stage of tumors in the host. This vaccine was less effective, however, against later stage B16F10 melanoma in a subcutaneous syngeneic model. Mechanistic follow-up studies suggest that elevated levels of immune-suppressive cytokines within the tumor microenvironment, such as TGF-β, might be responsible. We strategically augment the efficacy of LCP vaccine on an advanced tumor by silencing TGF-β in tumor cells. The delivery of siRNA using LPH NP resulted in about 50% knockdown of TGF-β in the late stage tumor microenvironment. TGF-β down-regulation boosted the vaccine efficacy and inhibited tumor growth by 52% compared with vaccine treatment alone, as a result of increased levels of tumor infiltrating CD8+ T cells and decreased level of regulatory T cells. Combination of systemic induction of antigen-specific immune response with LCP vaccine and targeted modification of tumor microenvironment with LPH NP offers a flexible and powerful platform for both mechanism study and immunotherapeutic strategy development.
Collapse
|
53
|
Functionalised Nanoliposomes for Construction of Recombinant Vaccines: Lyme Disease as an Example. MOLECULAR VACCINES 2014. [PMCID: PMC7120364 DOI: 10.1007/978-3-319-00978-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liposomes (phospholipid bilayer vesicles) represent an almost ideal carrier system for the preparation of synthetic vaccines due to their biodegradability and capacity to protect and transport molecules of different physicochemical properties (including size, hydrophilicity, hydrophobicity, and charge). Liposomal carriers can be applied by invasive (e.g. i.m., s.c., i.d.) as well as non-invasive (transdermal and mucosal) routes. In the last 15 years, liposome vaccine technology has matured and several vaccines containing liposome-based adjuvants have been approved for human and veterinary use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and how they stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert strong effects on the resulting immune response. In this chapter we will discuss some aspects of liposomal vaccines including the effect of novel and emerging immunomodulator incorporation. The application of metallochelating nanoliposomes for development of recombinant vaccine against Lyme disease will be presented as a suitable example.
Collapse
|
54
|
Xu Z, Ramishetti S, Tseng YC, Guo S, Wang Y, Huang L. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J Control Release 2013; 172:259-265. [PMID: 24004885 DOI: 10.1016/j.jconrel.2013.08.021] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Immunotherapy has shown the potential to become an essential component of the successful treatment of various malignancies. In many cases, such as in melanoma, however, induction of a potent and specific T-cell response against the endogenous antigen or self-antigen still remains a major challenge. To induce a potent MHC I-restricted cytotoxic T-lymphocyte (CTL) response, cytosol delivery of an exogenous antigen into dendritic cells is preferred, if not required. Lipid-calcium-phosphate (LCP) nanoparticles represent a new class of intracellular delivery systems for impermeable drugs. We are interested in exploring the potential of LCP NPs for use as a peptide vaccine delivery system for cancer therapy. To increase the encapsulation of Trp2 peptide into the calcium phosphate precipitate core of LCP, two phosphor-serine residues were added to the N-terminal of the peptide (p-Trp2). CpG ODN was also co-encapsulated with p-Trp2 as an adjuvant. The NPs were further modified with mannose to enhance and prolong the cargo deposit into the lymph nodes (LNs), which ensured persistent antigen loading and stimulation. Compared with free Trp2 peptide/CpG, vaccination with LCP encapsulating p-Trp2 and CpG resulted in superior inhibition of tumor growth in both B16F10 subcutaneous and lung metastasis models. An IFN-γ production assay and in vivo CTL response study revealed that the improved efficacy was a result of a Trp2-specific immune response. Thus, encapsulation of phospho-peptide antigens into LCP may be a promising strategy for enhancing the immunogenicity of poorly immunogenic self-antigens for cancer therapy.
Collapse
Affiliation(s)
- Zhenghong Xu
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Srinivas Ramishetti
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu-Cheng Tseng
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shutao Guo
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuhua Wang
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
55
|
Efficient Biodistribution and Gene Silencing in the Lung epithelium via Intravenous Liposomal Delivery of siRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e96. [PMID: 23736774 PMCID: PMC3696903 DOI: 10.1038/mtna.2013.22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA interference (RNAi) may provide a therapeutic solution to many pulmonary epithelium diseases. However, the main barrier to the clinical use of RNAi remains the lack of efficient delivery vectors. Research has mainly concentrated on the intranasal route of delivery of short interfering RNA (siRNA) effector molecules for the treatment of respiratory diseases. However, this may be complicated in a diseased state due to the increased fluid production and tissue remodeling. Therefore, we investigated our hydration of a freeze-dried matrix (HFDM) formulated liposomes for systemic delivery to the lung epithelium. Here, we show that 45 ± 2% of epithelial murine lung cells receive siRNA delivery upon intravenous (IV) liposomal administration. Furthermore, we demonstrate that liposomal siRNA delivery resulted in targeted gene and protein knockdown throughout the lung, including lung epithelium. Taken together, this is the first description of lung epithelial delivery via cationic liposomes, and provides a proof of concept for the use of IV liposomal RNAi delivery to specifically knockdown targeted genes in the respiratory system. This approach may provide an attractive alternate therapeutic delivery strategy for the treatment of lung epithelium diseases.
Collapse
|
56
|
Korsholm KS, Andersen PL, Christensen D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev Vaccines 2012; 11:561-77. [PMID: 22827242 DOI: 10.1586/erv.12.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic liposome formulations can function as efficient vaccine adjuvants. However, due to the highly diverse nature of lipids, cationic liposomes have different physical-chemical characteristics that influence their adjuvant mechanisms and their relevance for use in different vaccines. These characteristics can be further manipulated by incorporation of additional lipids or stabilizers, and inclusion of carefully selected immunostimulators is a feasible strategy when tailoring cationic liposomal adjuvants for specific disease targets. Thus, cationic liposomes present a plasticity, which makes them promising adjuvants for future vaccines. This versatility has also led to a vast amount of literature on different experimental liposomal formulations in combination with a wide range of immunostimulators. Here, we have compiled information about the animal challenge models and administration routes that have been used to study vaccine adjuvants based on cationic liposomes and provide an overview of the applicability, progress and clinical status of cationic liposomal vaccine adjuvants.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, DK-2300 Copenhagen, Denmark.
| | | | | |
Collapse
|
57
|
Terp MC, Bauer F, Sugimoto Y, Yu B, Brueggemeier RW, Lee LJ, Lee RJ. Differential efficacy of DOTAP enantiomers for siRNA delivery in vitro. Int J Pharm 2012; 430:328-34. [PMID: 22525086 DOI: 10.1016/j.ijpharm.2012.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 03/27/2012] [Accepted: 04/03/2012] [Indexed: 01/13/2023]
Abstract
DOTAP, as a racemic mixture, is a cationic lipid and a widely used transfection reagent. In this study, the effect of DOTAP's stereochemical structure on transfection efficiency was evaluated in vitro. Racemic and enantiomerically pure DOTAP were used in lipoplex formulations to deliver siRNA to MCF-7 cells, targeting the aromatase enzyme. At the 50 nM siRNA concentration and lipid-to-RNA charge ratios of 4 and 5, the R enantiomer of DOTAP was found to perform better than either the S- or the racemic agent. In addition, at 10 nM siRNA concentration and a charge ratio of 3, the R- lipoplex formulation silenced aromatase by ∼50% whereas the S and racemic formulations caused no significant target downregulation. Differences in lipid packing were modeled using membrane simulations. The results showed that, when combined with cholesterol, pure R-DOTAP and S-DOTAP enantiomers had 105% and 115% of lipid density relative to racemic DOTAP, respectively. These findings suggest an important role of lipid chirality in future development of lipid based siRNA delivery systems.
Collapse
Affiliation(s)
- Megan Cavanaugh Terp
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012; 30:2256-72. [PMID: 22306376 DOI: 10.1016/j.vaccine.2012.01.070] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 02/06/2023]
Abstract
Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines - method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties - exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study.
Collapse
Affiliation(s)
- Douglas S Watson
- Biosciences Division, SRI International, 140 Research Drive, Harrisonburg, VA 22802, United States. [corrected]
| | | | | |
Collapse
|
59
|
Vasievich EA, Ramishetti S, Zhang Y, Huang L. Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model. Mol Pharm 2011; 9:261-8. [PMID: 22142394 DOI: 10.1021/mp200350n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previously we have shown cationic lipid (R)-DOTAP as the immunologically active enantiomer of the DOTAP racemic mixture, initiating complete tumor regression in an exogenous antigen model (murine cervical cancer model). Here, we investigate the use of (R)-DOTAP as an efficacious adjuvant delivering an endogenous antigen in an aggressive murine solid tumor melanoma model. (R)-DOTAP/Trp2 peptide complexes showed decreasing size and charge with increasing peptide concentration, taking a rod shape at highest concentrations. The particles were stable for 2 weeks at 4 °C. A dose of 75 nmol of Trp2 (formulated in (R)-DOTAP) was able to show statistically significant tumor growth delay compared to lower doses of 5 and 25 nmol, which were no different than untreated tumors. (R)-DOTAP/Trp2 (75 nmol) treated mice also showed increased T cell IFN-γ secretion after restimulation with Trp2, as well as CTL activity in vivo. This vaccination group also showed the highest population of functionally active tumor-infiltrating lymphocytes, indicated by IFN-γ secretion after restimulation with Trp2. Thus, (R)-DOTAP has shown the ability to break tolerance as an adjuvant. Its activity to enhance immunogenicity of other tumor associated antigens should be studied further.
Collapse
Affiliation(s)
- Elizabeth A Vasievich
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|