51
|
Khaldoyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune Biology of Acute Myeloid Leukemia: Implications for Immunotherapy. J Clin Oncol 2021; 39:419-432. [PMID: 33434043 PMCID: PMC8078464 DOI: 10.1200/jco.20.00475] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Anthony Stein
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Gerrit Ossenkoppele
- Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
52
|
Yin K, Xia X, Rui K, Wang T, Wang S. Myeloid-Derived Suppressor Cells: A New and Pivotal Player in Colorectal Cancer Progression. Front Oncol 2020; 10:610104. [PMID: 33384962 PMCID: PMC7770157 DOI: 10.3389/fonc.2020.610104] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) remains a devastating human malignancy with poor prognosis. Of the various factors, immune evasion mechanisms play pivotal roles in CRC progression and impede the effects of cancer therapy. Myeloid-derived suppressor cells (MDSCs) constitute an immature population of myeloid cells that are typical during tumor progression. These cells have the ability to induce strong immunosuppressive effects within the tumor microenvironment (TME) and promote CRC development. Indeed, MDSCs have been shown to accumulate in both tumor-bearing mice and CRC patients, and may therefore become an obstacle for cancer immunotherapy. Consequently, numerous studies have focused on the characterization of MDSCs and their immunosuppressive capacity, as well as developing novel approaches to suppress MDSCs function with different approaches. Current therapeutic strategies that target MDSCs in CRC include inhibition of their recruitment and alteration of their function, alone or in combination with other therapies including chemotherapy, radiotherapy and immunotherapy. Herein, we summarize the recent roles and mechanisms of MDSCs in CRC progression. In addition, a brief review of MDSC-targeting approaches for potential CRC therapy is presented.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
53
|
Cornwell AC, Feigin ME. Unintended Effects of GPCR-Targeted Drugs on the Cancer Phenotype. Trends Pharmacol Sci 2020; 41:1006-1022. [PMID: 33198923 PMCID: PMC7672258 DOI: 10.1016/j.tips.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most common class of therapeutic targets, accounting for ~35% of all FDA-approved drugs. Cancer patients receive numerous medications not only to combat cancer but also to alleviate pain, nausea, and anxiety, many of which target GPCRs. Emerging evidence has implicated GPCRs as drivers of cancer progression, therapeutic resistance, and metastasis. Therefore, the effects of commonly prescribed GPCR-targeted drugs must be reevaluated in the context of cancer. Epidemiological and experimental evidence indicate that widely used GPCR-targeted drugs may promote or inhibit cancer progression. It is crucial that we more fully understand the indirect effects of GPCR-targeted drugs on the cancer phenotype. This review summarizes recent advances in characterizing these interactions and highlights future research opportunities.
Collapse
Affiliation(s)
- Abigail C Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
54
|
NOX2-Derived Reactive Oxygen Species in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095902. [PMID: 33312338 PMCID: PMC7721506 DOI: 10.1155/2020/7095902] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.
Collapse
|
55
|
Wang L, Kuang Z, Zhang D, Gao Y, Ying M, Wang T. Reactive oxygen species in immune cells: A new antitumor target. Biomed Pharmacother 2020; 133:110978. [PMID: 33176269 DOI: 10.1016/j.biopha.2020.110978] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Immune cells have the potential to control the growth of tumor. However, this effect could be offset by immunosuppression associated with an increased production of reactive oxygen species. Multiple studies indicate that the antitumor effect of immune cells is correlated with their antioxidant capacity. This review discusses the role of reactive oxygen species in the tumor microenvironment by describing their distinct effects on different immune cells, including myeloid-derived suppressor cells, regulatory T cells, tumor-associated macrophages, cytotoxic T lymphocytes, natural killer cells, and dendritic cells. In the end, we conclude with the prospect of treatment for cancer by targeting antioxidant defense in immune cells.
Collapse
Affiliation(s)
- Ling Wang
- Department of Stem Cells and Regenerative Medicine, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Zheng Kuang
- School of Basic Medical Sciences, Naval Medical University, Shanghai 200433, PR China
| | - Duo Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yifan Gao
- Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China.
| | - Tengjiao Wang
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
56
|
Schirmer B, Rother T, Bruesch I, Bleich A, Werlein C, Jonigk D, Seifert R, Neumann D. Genetic Deficiency of the Histamine H 4-Receptor Reduces Experimental Colorectal Carcinogenesis in Mice. Cancers (Basel) 2020; 12:cancers12040912. [PMID: 32276475 PMCID: PMC7226035 DOI: 10.3390/cancers12040912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC), a severe complication of inflammatory bowel diseases, is a common type of cancer and accounts for high mortality. CRC can be modeled in mice by application of the tumor promoter, azoxymethane (AOM), in combination with dextran sodium sulfate (DSS), which are able to induce colitis-like manifestations. Active colitis correlates with high mucosal concentrations of histamine, which, together with the histamine receptor subtype 4 (H4R), provide a pro-inflammatory function in a mouse colitis model. Here, we analyzed whether H4R is involved in the pathogenesis of AOM/DSS-induced CRC in mice. As compared to wild type (WT) mice, AOM/DSS-treated mice lacking H4R expression (TM) demonstrate ameliorated signs of CRC, i.e., significantly reduced loss of body weight, stiffer stool consistency, and less severe perianal bleeding. Importantly, numbers and diameters of tumors and the degree of colonic inflammation are dramatically reduced in TM mice as compared to WT mice. This is concomitant with a reduced colonic inflammatory response involving expression of cyclooxygenase 2 and the production of C-X-C motif chemokine ligand 1 (CXCL1) and CXCL2. We conclude that H4R is involved in the tumorigenesis of chemically-induced CRC in mice via cyclooxygenase 2 expression and, probably, CXCL1 and CXCL2 as effector molecules.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Tamina Rother
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Pathology and German Center of Lung Research (DZL), Partner site BREATH, Hannover Medical School, 30625 Hannover, Germany
| | - Inga Bruesch
- Institute of Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute of Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christopher Werlein
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-4082
| |
Collapse
|
57
|
Hou Z, Liang X, Wang X, Zhou Z, Shi G. Myeloid-derived suppressor cells infiltration in non-small-cell lung cancer tumor and MAGE-A4 and NY-ESO-1 expression. Oncol Lett 2020; 19:3982-3992. [PMID: 32382343 PMCID: PMC7202317 DOI: 10.3892/ol.2020.11497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer/testis antigens melanoma-associated antigen 4 (MAGE-A4) and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) are of clinical interest as biomarkers and present valuable targets for immunotherapy; however, they are poor prognostic markers in non-small cell lung cancer (NSCLC). In addition, myeloid derived suppressor cells (MDSCs) are recognized as a key element in tumor escape and progression. The aim of the present study was to investigate the diagnostic and prognostic value of MAGE-A4 and NY-ESO-1, and their association with MDSCs in NSCLC samples. The expression levels of MAGE-A4 and NY-ESO-1, and the infiltration of MDSCs (CD33+), were analyzed by immunohistochemistry of 67 tissue samples from patients with NSCLC. Overall, 58.33% of the NSCLC squamous cell carcinoma tissues and 94.7% of adenocarcinoma tissues were positive for MAGE-A4. NY-ESO-1 expression was observed in 52.78% of the squamous cell carcinoma tissues and 80% of the adenocarcinoma tissues. In primary adenocarcinoma tumor tissues, MAGE-A4 and NY-ESO-1 demonstrated a higher intensity of expression compared with the squamous cell carcinoma tissues. A total of 33 (91.7%) squamous cell carcinoma and 19 (95.0%) adenocarcinoma specimens were positive for CD33. The expression of MAGE-A4 and NY-ESO-1 antigens and infiltration of MDSCs was associated with poor prognosis of patients with NSCLC. Further studies investigating the association between these findings and underlying molecular mechanisms are required.
Collapse
Affiliation(s)
- Zhenbo Hou
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Xiao Liang
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Xinmei Wang
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Ziqiang Zhou
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Guilan Shi
- Department of Immunology, School of Nursing, Zibo Vocational Institute, Zibo, Shandong 255314, P.R. China.,Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
58
|
Ou X, Lv W. Metabolic changes and interaction of tumor cell, myeloid-derived suppressor cell and T cell in hypoxic microenvironment. Future Oncol 2020; 16:383-393. [PMID: 32067476 DOI: 10.2217/fon-2019-0692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is universally acknowledged that a large number of immune cells, as well as inflammatory factors, regulatory factors and metabolites, accumulate in the tumor microenvironment to jointly promote tumor escape, development and metastasis. Hypoxia is one of the characteristics in tumor microenvironment and is a common phenomenon in all solid tumors. In tumor hypoxia response, there is a key regulator called HIF-1a, which is a key transcriptional regulatory protein that regulates many critical genes. In this paper, the effects of hypoxia on glucose metabolism of tumor cells, myeloid-derived suppressor cells and T cells in tumor microenvironment were reviewed, and the interaction among the three was also described.
Collapse
Affiliation(s)
- Xiantu Ou
- Clinical laboratory of Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Weibiao Lv
- Clinical laboratory of Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province 528308, PR China
| |
Collapse
|
59
|
Sun L, Yang H, Mao Y. Programmed cell death protein 1/programmed death ligand-1 checkpoint blockade meets patient-derived organoids. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S287. [PMID: 32016006 DOI: 10.21037/atm.2019.11.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
60
|
Lim J, Lee A, Lee HG, Lim JS. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells. Biomol Ther (Seoul) 2020; 28:1-17. [PMID: 31431006 PMCID: PMC6939693 DOI: 10.4062/biomolther.2019.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
61
|
Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019; 20:ijms20215459. [PMID: 31683978 PMCID: PMC6862591 DOI: 10.3390/ijms20215459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
|
62
|
Palumbo GA, Parrinello NL, Giallongo C, D'Amico E, Zanghì A, Puglisi F, Conticello C, Chiarenza A, Tibullo D, Raimondo FD, Romano A. Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019. [PMID: 31683978 DOI: 10.3390/ijms20215459.pmid:31683978;pmcid:pmc6862591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
Affiliation(s)
- Giuseppe Alberto Palumbo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Nunziatina Laura Parrinello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Cesarina Giallongo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Emanuele D'Amico
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Aurora Zanghì
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Fabrizio Puglisi
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Concetta Conticello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Annalisa Chiarenza
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Daniele Tibullo
- BIOMETEC, Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95125 Catania, Italy.
| | - Francesco Di Raimondo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Alessandra Romano
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
63
|
Lv M, Wang K, Huang XJ. Myeloid-derived suppressor cells in hematological malignancies: friends or foes. J Hematol Oncol 2019; 12:105. [PMID: 31640764 PMCID: PMC6805310 DOI: 10.1186/s13045-019-0797-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are newly identified immature myeloid cells that are characterized by the ability to suppress immune responses and expand during cancer, infection, and inflammatory diseases. Although MDSCs have attracted a lot of attention in the field of tumor immunology in recent years, little is known about their multiple roles in hematological malignancies as opposed to their roles in solid tumors. This review will help researchers better understand the various characteristics and functions of MDSCs, as well as the potential therapeutic applications of MDSCs in hematological malignancies, including lymphoma, multiple myeloma, leukemia, and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Ke Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, No 11 Xizhimen South Street, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
64
|
Puttmann K, Duggan M, Mortazavi A, Diaz DA, Carson III WE, Sundi D. The Role of Myeloid Derived Suppressor Cells in Urothelial Carcinoma Immunotherapy. Bladder Cancer 2019. [DOI: 10.3233/blc-190219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kathleen Puttmann
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Megan Duggan
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amir Mortazavi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - William E. Carson III
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
65
|
Nilsson MS, Hallner A, Brune M, Nilsson S, Thorén FB, Martner A, Hellstrand K. Immunotherapy with HDC/IL-2 may be clinically efficacious in acute myeloid leukemia of normal karyotype. Hum Vaccin Immunother 2019; 16:109-111. [PMID: 31242079 PMCID: PMC7012093 DOI: 10.1080/21645515.2019.1636598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with histamine dihydrochloride and low-dose interleukin-2 (HDC/IL-2) reduces the risk of relapse in the post-chemotherapy phase of acute myeloid leukemia (AML). Here we report the results of exploratory analyses of the clinical efficacy of HDC/IL-2 in AML with focus on the impact of karyotype aberrations in leukemic cells. Post-hoc analyses of phase III trial data suggested that HDC/IL-2 is primarily beneficial for patients with AML of normal karyotype. These results may be helpful in the selection of patients who are suitable for therapy and in the design of future immunotherapy protocols aiming at further defining the mechanism of relapse prevention by HDC/IL-2.
Collapse
Affiliation(s)
- Malin S Nilsson
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Hallner
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Brune
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|