51
|
Parmar HS, Nayak A, Gavel PK, Jha HC, Bhagwat S, Sharma R. Cross Talk between COVID-19 and Breast Cancer. Curr Cancer Drug Targets 2021; 21:575-600. [PMID: 33593260 DOI: 10.2174/1568009621666210216102236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
Cancer patients are more susceptible to COVID-19; however, the prevalence of COVID-19 in different types of cancer is still inconsistent and inconclusive. Here, we delineate the intricate relationship between breast cancer and COVID-19. Breast cancer and COVID-19 share the involvement of common comorbidities, hormonal signalling pathways, gender differences, rennin- angiotensin system (RAS), angiotensin-converting enzyme-2 (ACE-2), transmembrane protease serine 2 (TMPRSS2) and dipeptidyl peptidase-IV (DPP-IV). We also shed light on the possible effects of therapeutic modalities of COVID-19 on breast cancer outcomes. Briefly, we conclude that breast cancer patients are more susceptible to COVID-19 in comparison with their normal counterparts. Women are more resistant to the occurrence and severity of COVID-19. Increased expressions of ACE2 and TMPRSS2 are correlated with occurrence and severity of COVID-19, but higher expression of ACE2 and lower expression of TMPRSS2 are prognostic markers for overall disease free survival in breast cancer. The ACE2 inhibitors and ibuprofen therapies for COVID-19 treatment may aggravate the clinical condition of breast cancer patients through chemo-resistance and metastasis. Most of the available therapeutic modalities for COVID-19 were also found to exert positive effects on breast cancer outcomes. Besides drugs in clinical trend, TMPRSS2 inhibitors, estrogen supplementation, androgen deprivation and DPP-IV inhibitors may also be used to treat breast cancer patients infected with SARS-CoV-2. However, drug-drug interactions suggest that some of the drugs used for the treatment of COVID-19 may modulate the drug metabolism of anticancer therapies which may lead to adverse drug reaction events.
Collapse
Affiliation(s)
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Pramod Kumar Gavel
- Department of Chemical Sciences, IIT, Indore, Simrol, Indore, M.P., India
| | - Hem Chandra Jha
- Department of Bioscience and Bioengineering, IIT, Indore, Simrol, Indore, M.P., India
| | - Shivani Bhagwat
- Suraksha Diagnostics Pvt. Ltd., Newtown, Rajarhat, Kolkata-West Bengal, India
| | - Rajesh Sharma
- School of Pharmacy, Devi Ahilya University, Indore-452001., M.P., India
| |
Collapse
|
52
|
Nanomedicine Reformulation of Chloroquine and Hydroxychloroquine. Molecules 2020; 26:molecules26010175. [PMID: 33396545 PMCID: PMC7794963 DOI: 10.3390/molecules26010175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The chloroquine family of antimalarials has a long history of use, spanning many decades. Despite this extensive clinical experience, novel applications, including use in autoimmune disorders, infectious disease, and cancer, have only recently been identified. While short term use of chloroquine or hydroxychloroquine is safe at traditional therapeutic doses in patients without predisposing conditions, administration of higher doses and for longer durations are associated with toxicity, including retinotoxicity. Additional liabilities of these medications include pharmacokinetic profiles that require extended dosing to achieve therapeutic tissue concentrations. To improve chloroquine therapy, researchers have turned toward nanomedicine reformulation of chloroquine and hydroxychloroquine to increase exposure of target tissues relative to off-target tissues, thereby improving the therapeutic index. This review highlights these reformulation efforts to date, identifying issues in experimental designs leading to ambiguity regarding the nanoformulation improvements and lack of thorough pharmacokinetics and safety evaluation. Gaps in our current understanding of these formulations, as well as recommendations for future formulation efforts, are presented.
Collapse
|
53
|
Autophagy-A Hidden but Important Actor on Oral Cancer Scene. Int J Mol Sci 2020; 21:ijms21239325. [PMID: 33297472 PMCID: PMC7729760 DOI: 10.3390/ijms21239325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The duration of denture use, oral hygiene, smoking and male sex were identified as risk factors for oral mucosal lesions. As it is well known, all the oral mucosal lesions associated with risk factors have an important degree of malignity. Chronic mechanical irritation can be another cause of oral cancer and it is produced by the constant action of a deleterious agent from the oral cavity. Autophagy represents a complex evolutionary conserved catabolic process in which cells self-digest intracellular organelles in order to regulate their normal turnover and remove the damaged ones with compromised function to further maintain homeostasis. Autophagy is modulated by mTOR kinase and indirectly by PI3K/AKT survival pathway. Due to its dual capacity to either induce cell death or promote cell survival, important evidence pointed that autophagy has a two-faced role in response to chemotherapy in cancer. In conclusion, understanding how to overcome cytoprotective autophagy and how to take advantage of autophagic cell death is critical in order to enhance the cancer cells sensitivity to particular therapeutic agents.
Collapse
|
54
|
Motika SE, Hergenrother PJ. Re-engineering natural products to engage new biological targets. Nat Prod Rep 2020; 37:1395-1403. [PMID: 33034322 PMCID: PMC7720426 DOI: 10.1039/d0np00059k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020 Natural products have a long history in drug discovery, with their inherent biological activity often tailored by medicinal chemists to arrive at the final drug product. This process is illustrated by numerous examples, including the conversion of epothilone to ixabepilone, erythromycin to azithromycin, and lovastatin to simvastatin. However, natural products are also fruitful starting points for the creation of complex and diverse compounds, especially those that are markedly different from the parent natural product and accordingly do not retain the biological activity of the parent. The resulting products have physiochemical properties that differ considerably when compared to traditional screening collections, thus affording an opportunity to discover novel biological activity. The synthesis of new structural frameworks from natural products thus yields value-added compounds, as demonstrated in the last several years with multiple biological discoveries emerging from these collections. This Highlight details a handful of these studies, describing new compounds derived from natural products that have biological activity and cellular targets different from those evoked/engaged by the parent. Such re-engineering of natural products offers the potential for discovering compounds with interesting and unexpected biological activity.
Collapse
Affiliation(s)
- Stephen E Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| | - Paul J Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
55
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|
56
|
Pagliaro L, Sorrentino C, Roti G. Targeting Notch Trafficking and Processing in Cancers. Cells 2020; 9:E2212. [PMID: 33003595 PMCID: PMC7600097 DOI: 10.3390/cells9102212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch family comprises a group of four ligand-dependent receptors that control evolutionarily conserved developmental and homeostatic processes and transmit signals to the microenvironment. NOTCH undergoes remodeling, maturation, and trafficking in a series of post-translational events, including glycosylation, ubiquitination, and endocytosis. The regulatory modifications occurring in the endoplasmic reticulum/Golgi precede the intramembrane γ-secretase proteolysis and the transfer of active NOTCH to the nucleus. Hence, NOTCH proteins coexist in different subcellular compartments and undergo continuous relocation. Various factors, including ion concentration, enzymatic activity, and co-regulatory elements control Notch trafficking. Interfering with these regulatory mechanisms represents an innovative therapeutic way to bar oncogenic Notch signaling. In this review, we briefly summarize the role of Notch signaling in cancer and describe the protein modifications required for NOTCH to relocate across different subcellular compartments. We focus on the functional relationship between these modifications and the corresponding therapeutic options, and our findings could support the development of trafficking modulators as a potential alternative to the well-known γ-secretase inhibitors.
Collapse
Affiliation(s)
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (C.S.)
| |
Collapse
|
57
|
Sun D, Yang Z, Zhen Y, Yang Y, Chen Y, Yuan Y, Zhang L, Zeng X, Chen L. Discovery of 5-bromo-4-phenoxy-N-phenylpyrimidin-2-amine derivatives as novel ULK1 inhibitors that block autophagy and induce apoptosis in non-small cell lung cancer. Eur J Med Chem 2020; 208:112782. [PMID: 32961380 DOI: 10.1016/j.ejmech.2020.112782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
UNC51-like kinase1 (ULK1) recruits its binding partners and initiates the autophagy process in cancer. ULK1 is significantly overexpressed in Non-small cell lung cancer (NSCLC) and negatively correlated with clinical prognosis in NSCLC patients. Based upon the binding features of ULK1, we explored the pharmacophore modeling to discover the common anchoring features. It was verified by synthesizing 5-bromo-4-phenoxy-N-phenylpyrimidin-2-amine derivatives, as well as subsequently elucidating the structure-activity relationships (SAR). Among all the obtained ULK1 inhibitors, 5-bromo-4-(2-fluoro-4-nitrophenoxy)-N-(3,4,5-trimethoxyphenyl) pyrimidin-2-amine (3s), was the most active one. The docking analysis was conducted to compare 3s and SBI-0206965, which further elucidated the roles of the H-bond donor. This compound inhibited the proliferation of A549 cells and showed strong inhibitory activity against ULK1 kinase. Moreover, we found that compound 3s could induce apoptosis while simultaneously blocking autophagy. Collectively, these findings shed new light on compound 3s that would be utilized as a promising candidate drug for the future NSCLC therapy.
Collapse
Affiliation(s)
- Dejuan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zijian Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongqi Zhen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanmei Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
58
|
Ji Y, Liu X, Li J, Xie X, Huang M, Jiang J, Liao YP, Donahue T, Meng H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat Commun 2020; 11:4249. [PMID: 32843618 PMCID: PMC7447818 DOI: 10.1038/s41467-020-17996-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). However, a vast majority of PDAC cases do not harbor a durable response to monotherapy of CDK4/6 inhibitor. Utilizing remote loading to co-encapsulate CDK4/6 inhibitor palbociclib (PAL) and an autophagy inhibitor hydroxychloroquine (HCQ), we demonstrate a ratiometrically designed mesoporous silica nanoformulation with synergistic efficacy in subcutaneous and orthotopic PDAC mouse models. The synergism is attributed to the effective intratumoral buildup of PAL/HCQ, which otherwise exhibit distinctly different circulatory and biodistribution profile. PAL/HCQ co-delivery nanoparticles lead to the most effective shrinkage of PDAC compared to various controls, including free drug mixture. Immunohistochemistry reveals that PAL/HCQ co-delivery nanoparticles trigger anti-apoptotic pathway after repetitive intravenous administrations in mice. When combined with a Bcl inhibitor, the performance of co-delivery nanoparticles is further improved, leading to a long-lasting anti-PDAC effect in vivo. Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). Here, the authors use ratiometrically designed nanoparticles to codeliver the CDK4/6 inhibitor palbociclib and the autophagy inhibitor hydroxychloroquine, and show their synergistic therapeutic effects in mouse model of PDAC.
Collapse
Affiliation(s)
- Ying Ji
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,Key Laboratory of Biomedical Effects of Nanomaterial & Nanosafety, Chinese Academy of Science, 100049, Beijing, China
| | - Xiaodong Xie
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Max Huang
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Timothy Donahue
- Department of Surgery, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
59
|
Winer A, Denlinger CS, Vijayvergia N, Cohen SJ, Astaturov I, Dotan E, Gallant JN, Wang EW, Kunkel M, Lim B, Harvey HA, Sivik J, Korzekwa K, Ruth K, White K, Cooper HS, Ross EA, Zhou L, El-Deiry WS. First-in-Human Phase 1b Trial of Quinacrine Plus Capecitabine in Patients With Refractory Metastatic Colorectal Cancer. Clin Colorectal Cancer 2020; 20:e43-e52. [PMID: 32972830 DOI: 10.1016/j.clcc.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Quinacrine plus a fluoropyrimidine has in vivo efficacy against metastatic colorectal cancer (mCRC). This phase 1b trial evaluated the combination of quinacrine plus capecitabine in patients with treatment-refractory mCRC. PATIENTS AND METHODS Using a modified Simon accelerated titration design, adults with treatment-refractory mCRC were treated with capecitabine 1000 mg/m2 twice daily for 14/21-day cycle, and escalating doses of quinacrine 100 mg daily, 100 mg twice daily, and 200 mg twice daily for 21 days. The primary endpoint was identifying the maximum tolerated dose, determining tolerability and safety. In an expansion cohort, it was overall response rate and time to tumor progression (TTP). RESULTS Ten patients (median age of 60 years) were treated in phase 1b. The first 2 quinacrine dosing levels were well tolerated. Dose-limiting toxicities were seen in 3 patients treated with quinacrine 200 mg twice daily. Five additional patients tolerated quinacrine 100 mg twice daily without further dose-limiting toxicities, thus establishing the maximum tolerated dose. Seven additional expansion-cohort patients enrolled onto the study before quinacrine manufacturing ceased within the United States. Five patients experienced stable disease, 1 partial response, and 10 disease progression. Median TTP overall was 2.12 months and median overall survival 5.22 months for the 17 patients. CONCLUSION Capecitabine and quinacrine can be safely administered at the maximum tolerated dose of capecitabine 1000 mg/m2 by mouth twice daily on days 1-14 and quinacrine 100 mg by mouth twice daily on days 1-21 of a 21-day cycle in mCRC patients. Although the expansion study was halted early, TTP was in line with other studies of refractory mCRC, suggesting activity of this regimen in heavily pretreated patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean-Nicolas Gallant
- Vanderbilt University Medical Center, Nashville, TN; Penn State Hershey Medical Center, Hershey, PA
| | - Edward W Wang
- City of Hope Cancer Center, Duarte, CA; Penn State Hershey Medical Center, Hershey, PA
| | | | - Bora Lim
- Penn State Hershey Medical Center, Hershey, PA; MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Karen Ruth
- Fox Chase Cancer Center, Philadelphia, PA
| | | | | | | | - Lanlan Zhou
- Fox Chase Cancer Center, Philadelphia, PA; Penn State Hershey Medical Center, Hershey, PA; The Warren Alpert Medical School, Providence, RI
| | - Wafik S El-Deiry
- Fox Chase Cancer Center, Philadelphia, PA; Penn State Hershey Medical Center, Hershey, PA; The Warren Alpert Medical School, Providence, RI.
| |
Collapse
|
60
|
Okamoto S, Miyano K, Kajikawa M, Yamauchi A, Kuribayashi F. The rRNA synthesis inhibitor CX-5461 may induce autophagy that inhibits anticancer drug-induced cell damage to leukemia cells. Biosci Biotechnol Biochem 2020; 84:2319-2326. [PMID: 32799625 DOI: 10.1080/09168451.2020.1801378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autophagy induced in cancer cells during chemotherapy is classified into two types, which differ depending on the kind of cells or anticancer drugs. The first type of autophagy contributes to the death of cells treated with drugs. In contrast, the second type plays a crucial role in preventing anticancer drug-induced cell damages; the use of an autophagy inhibitor is considered effective in improving the efficacy of chemotherapy. Thus, it is important to determine which type of autophagy is induced during chemotherapy. Here, we showed that a novel inhibitor of RNA polymerase I, suppresses growth, induces cell cycle arrest and promotes apoptosis in leukemia cell lines. The number of apoptotic cells induced by co-treatment with CX-5461 and chloroquine, an autophagy inhibitor, increased compared with CX-5461 alone. Thus, the autophagy which may be induced by CX-5461 was the second type.
Collapse
Affiliation(s)
- Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School , Okayama, Japan
| | - Kei Miyano
- Department of Biochemistry, Kawasaki Medical School , Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University , Tokyo, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School , Okayama, Japan
| | | |
Collapse
|
61
|
Chen Y, Shen T, Zhong L, Liu Z, Dong X, Huang T, Wang Q, Xiao H. Research Progress of Chloroquine and Hydroxychloroquine on the COVID-19 and Their Potential Risks in Clinic Use. Front Pharmacol 2020; 11:1167. [PMID: 32848774 PMCID: PMC7412992 DOI: 10.3389/fphar.2020.01167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023] Open
Abstract
In December 2019, a severe outbreak of a novel coronavirus (COVID-19) occurred in the whole world, posing a great threat to people's health. With the outbreak and development of the epidemic, how to improve the cure rate, find effective drugs against this virus, has been the most urgent problem. Chloroquine (CQ) was verified effective against COVID-19 in vitro. As CQ's analogue, hydroxychloroquine (HCQ) was also reminded as a potential candidate for treating COVID-19. This review summarizes the latest clinical trials of CQ and HCQ against COVID-19 and its therapeutic regimen in China aiming to share their current usage to the whole world and provide insight into its appropriate future use in the treatment of COVID-19. Through searching the CNKI and Wangfang databases in Chinese language and PubMed, EMBASE, and Ovid databases in English language to identify published reports with the keywords including "coronavirus/COVID, chloroquine, hyroxychloroquine" in alone or combined, we found out the potential preclinical or clinical evidence for using CQ and HCQ against COVID-19. Consequently, we also searched the website of Chinese Clinical Trial Registry (http://www.chictr.org.cn/) till the day on 27th, June, 2020. This review found that there are 23 programs aimed to treat the different phases under COVID-19 pipeline in clinic with CQ and HCQ, totally. The inclusion criteria, exclusion criteria and therapeutic regimen were all shared to consult. Among them, seven have been canceled due to lack of patients or other objective factors. There are two trials have completed, which the potential relationship between usage and adverse reactions was discussed emphatically. Through literature research, we suggested that paid close attention to retinal toxicity and ophthalmologic adverse symptom of CQ and HCQ. And the outcome of HCQ in clinic shows better than CQ especially in protective effect with low dosage.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - TaiPeng Shen
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - LiJun Zhong
- Department of Information, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - ZhiXi Liu
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - XinWei Dong
- Department of Information, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - TingWenLi Huang
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - QiuJu Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - HongTao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
62
|
Xie Y, Zhang J, Lu B, Bao Z, Zhao J, Lu X, Wei Y, Yao K, Jiang Y, Yuan Q, Zhang X, Li B, Chen X, Dong Z, Liu K. Mefloquine Inhibits Esophageal Squamous Cell Carcinoma Tumor Growth by Inducing Mitochondrial Autophagy. Front Oncol 2020; 10:1217. [PMID: 32850358 PMCID: PMC7400730 DOI: 10.3389/fonc.2020.01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a worldwide impact on human health, due to its high incidence and mortality. Therefore, identifying compounds to increase patients' survival rate is urgently needed. Mefloquine (MQ) is an FDA-approved anti-malarial drug, which has been reported to inhibit cellular proliferation in several cancers. However, the anti-tumor activities of the drug have not yet been completely defined. In this study, mass spectrometry was employed to profile proteome changes in ESCC cells after MQ treatment. Sub-cellular localization and gene ontology term enrichment analysis suggested that MQ treatment mainly affect mitochondria. The KEGG pathway enrichment map of down-regulated pathways and Venn diagram indicated that all of the top five down regulated signaling pathways contain four key mitochondrial proteins (succinate dehydrogenase complex subunit C (SDHC), succinate dehydrogenase complex subunit D, mitochondrially encoded cytochrome c oxidase III and NADH: ubiquinone oxidoreductase subunit V3). Meanwhile, mitochondrial autophagy was observed in MQ-treated KYSE150 cells. More importantly, patient-derived xenograft mouse models of ESCC with SDHC high expression were more sensitive to MQ treatment than low SDHC-expressing xenografts. Taken together, mefloquine inhibits ESCC tumor growth by inducing mitochondrial autophagy and SDHC plays a vital role in MQ-induced anti-tumor effect on ESCC.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Zhuo Bao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Xianyu Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Yaxing Wei
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Ke Yao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Qiang Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Xiaofan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Bo Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
63
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
64
|
Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol 2020; 13:60. [PMID: 32456660 PMCID: PMC7249421 DOI: 10.1186/s13045-020-00901-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the initiation, recurrence, and metastasis of cancer; however, there are still no drugs targeting CSCs in clinical application. There are several signaling pathways playing critical roles in CSC progression, such as the Wnt, Hedgehog, Notch, Hippo, and autophagy signaling pathways. Additionally, targeting the ferroptosis signaling pathway was recently shown to specifically kill CSCs. Therefore, targeting these pathways may suppress CSC progression. The structure of small-molecule drugs shows a good spatial dispersion, and its chemical properties determine its good druggability and pharmacokinetic properties. These characteristics make small-molecule drugs show a great advantage in drug development, which is increasingly popular in the market. Thus, in this review, we will summarize the current researches on the small-molecule compounds suppressing CSC progression, including inhibitors of Wnt, Notch, Hedgehog, and autophagy pathways, and activators of Hippo and ferroptosis pathways. These small-molecule compounds emphasize CSC importance in tumor progression and propose a new strategy to treat cancer in clinic via targeting CSCs.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ting Wang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450003, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
65
|
Mucke HA. Drug Repurposing Patent Applications July–September 2019. Assay Drug Dev Technol 2020. [DOI: 10.1089/adt.2019.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
66
|
Short-term, high-dose hydroxychloroquine corneal toxicity. Am J Ophthalmol Case Rep 2020; 18:100713. [PMID: 32346653 PMCID: PMC7180161 DOI: 10.1016/j.ajoc.2020.100713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 01/27/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the corneal findings and management of a 61-year-old female with vortex keratopathy following short term, high dose hydroxychloroquine used in the setting of a clinical trial for recurrent breast cancer. Observations The patient was found to have significant corneal vortex keratopathy without retinal pathology within 3 months of 1200 mg daily hydroxychloroquine treatment as an adjuvant medication for cancer therapy. Cessation of the medication led to the resolution of the corneal verticillata within 1 month yet the vision did not return to baseline. Ultimately, remaining irregular astigmatism and ocular surface disease required a scleral contact lens to achieve a BSCVA of 20/25 OU. Conclusions and Importance Hydroxychloroquine-induced vortex keratopathy is largely considered dose and duration dependent and is uncommon with most standard treatment algorithms. However, with increasing use of high-dose hydroxychloroquine in adjunct cancer therapy, corneal findings are likely to become more frequent. Persistent visual impairment may occur, thus increased understanding of this pathology can aid in counseling patients and guiding treatment recommendations.
Collapse
|
67
|
Amani N, Shaki F, Shokrzadeh M. Contribution of Autophagy in Acquired Drug Resistance of Human Breast Cancer Cells MCF7 to Doxorubicin. ACTA ACUST UNITED AC 2019. [DOI: 10.1089/aivt.2019.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nahid Amani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
68
|
Arnaout A, Robertson SJ, Pond GR, Lee H, Jeong A, Ianni L, Kroeger L, Hilton J, Coupland S, Gottlieb C, Hurley B, McCarthy A, Clemons M. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res Treat 2019; 178:327-335. [PMID: 31392517 DOI: 10.1007/s10549-019-05381-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Chloroquine has demonstrated anti-tumor activities through autophagy inhibition and cell cycle disruption. This study aimed to assess the effect of single-agent chloroquine on breast tumor cellular proliferation in a randomized, phase II, double-blind, placebo-controlled, pre-surgical window of opportunity trial. METHODS Patients with newly diagnosed breast cancer were randomized 2:1 to chloroquine 500 mg daily or placebo for 2- to 6-weeks prior to their breast surgery. The primary outcome was the relative change in measures of proliferation (Ki67) in primary breast cancer cells pre- and post-treatment. Adverse events and toxicity profiles were also evaluated. RESULTS From September 2015 to December 2016, 70 patients were randomized [46 (66%) chloroquine and 24 (34%) placebo]. Ten patients who were randomized to chloroquine withdrew from study due to adverse events. Mean duration of drug intake was 15 days (range 14-29 days). There were no significant differences between the chloroquine or placebo arms with respect to either the percentage change (- 0.4 vs. - 1.2, p = 0.088) or absolute change (- 2.0% vs. - 5.2%, p = 0.066) in Ki67 index pre- and post-drug treatment. Although adverse effects were minimal and all classified as grade 1, the effects were significant enough to cause nearly 15% of patients to discontinue therapy. CONCLUSIONS Treatment with single-agent chloroquine 500 mg daily in the preoperative setting was not associated with any significant effects on breast cancer cellular proliferation. It was, however, associated with toxicity that may affect its broader use in oncology.
Collapse
Affiliation(s)
- Angel Arnaout
- Division of Surgical Oncology, Department of Surgery, Ottawa Hospital, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Gregory R Pond
- Department of Oncology, McMaster University, Hamilton, Canada
| | - Hoyun Lee
- Health Sciences North Research Institute, Sudbury, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Ahwon Jeong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Luisa Ianni
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Ottawa Hospital Breast Health Centre, Ottawa, Canada
| | - Lynne Kroeger
- Ottawa Hospital Breast Health Centre, Ottawa, Canada
| | - John Hilton
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Division of Medical Oncology, Department of Medicine, University of Ottawa and Ottawa Hospital Cancer Center, The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa, Canada
| | - Stuart Coupland
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Chloe Gottlieb
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Anne McCarthy
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital, Ottawa, Canada
| | - Mark Clemons
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada.
- Division of Medical Oncology, Department of Medicine, University of Ottawa and Ottawa Hospital Cancer Center, The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa, Canada.
| |
Collapse
|
69
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
70
|
Wang N, Yang B, Muhetaer G, Wang S, Zheng Y, Lu J, Li M, Zhang F, Situ H, Lin Y, Wang Z. XIAOPI formula promotes breast cancer chemosensitivity via inhibiting CXCL1/HMGB1-mediated autophagy. Biomed Pharmacother 2019; 120:109519. [PMID: 31629951 DOI: 10.1016/j.biopha.2019.109519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
XIAOPI formula is a national approved drug prescribed to patients with high breast cancer risk. Previously we demonstrated that XIAOPI formula could inhibit breast cancer metastasis via suppressing CXCL1 expression, and postulated that "autophagy in cancer" might be one of its most core anti-cancer mechanisms. However, whether XIAOPI formula could be simultaneously applied with chemodrugs and their synergistic mechanisms are still remained unknown. In the present study, XIAOPI formula at non-cytotoxic doses could synergistically enhance the chemosensitivity of breast cancer cells MDA-MB-231 and MCF-7. We found that rapamycin-induced autophagy could reduce the chemosensitivity of breast cancer cells to XIAOPI formula, and the autophagy suppression and chemosensitizing activity of this formula was CXCL1-dependent. The evidence came from that XIAOPI formula was associated with a lower expression of CXCL1 combined with either rapamycin or taxol alone. Besides, the inhibitory effect of XIAOPI formula on the LC3-II and ABCG2 signals was weakened following CXCL1 over-expression, whereas P62 upregulation induced by XIAOPI formula was re-declined. A high throughput - qPCR (HT-qPCR) assay identified HMGB1 as the main autophagic target of XIAOPI formula in chemosensitizing breast cancer. and furhter validation suggested XIAOPI formula exerted chemosensitivity mainly via CXCL1/HMGB1 autophagic axis. Finally, we generated both mice and zebrafish xenotransplantation models bearing MDA-MB-231 breast cancer cells, and found that XIAOPI formula safely enhanced in vivo taxol chemosensitivity on breast cancer. Taken together, XIAOPI formula is a potential adjuvant drug via inhibiting CXCL1/HMGB1-mediated autophagy for breast cancer treatment with good safety.
Collapse
Affiliation(s)
- Neng Wang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Bowen Yang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Gulizeba Muhetaer
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Shengqi Wang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Post-doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Post-doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Honglin Situ
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yi Lin
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Zhiyu Wang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Post-doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
71
|
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules 2019; 9:E530. [PMID: 31557936 PMCID: PMC6843293 DOI: 10.3390/biom9100530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Maryam Azarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran.
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
72
|
Chen CH, Hsieh TH, Lin YC, Liu YR, Liou JP, Yen Y. Targeting Autophagy by MPT0L145, a Highly Potent PIK3C3 Inhibitor, Provides Synergistic Interaction to Targeted or Chemotherapeutic Agents in Cancer Cells. Cancers (Basel) 2019; 11:cancers11091345. [PMID: 31514441 PMCID: PMC6770340 DOI: 10.3390/cancers11091345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Anticancer therapies reportedly promote pro-survival autophagy in cancer cells that confers drug resistance, rationalizing the concept to combine autophagy inhibitors to increase their therapeutic potential. We previously identified that MPT0L145 is a PIK3C3/FGFR inhibitor that not only increases autophagosome formation due to fibroblast growth factor receptor (FGFR) inhibition but also perturbs autophagic flux via PIK3C3 inhibition in bladder cancer cells harboring FGFR activation. In this study, we hypothesized that combined-use of MPT0L145 with agents that induce pro-survival autophagy may provide synthetic lethality in cancer cells without FGFR activation. The results showed that MPT0L145 synergistically sensitizes anticancer effects of gefitinib and gemcitabine in non-small cell lung cancer A549 cells and pancreatic cancer PANC-1 cells, respectively. Mechanistically, drug combination increased incomplete autophagy due to impaired PIK3C3 function by MPT0L145 as evidenced by p62 accumulation and no additional apoptotic cell death was observed. Meanwhile, drug combination perturbed survival pathways and increased vacuolization and ROS production in cancer cells. In conclusion, the data suggest that halting pro-survival autophagy by targeting PIK3C3 with MPT0L145 significantly sensitizes cancer cells to targeted or chemotherapeutic agents, fostering rational combination strategies for cancer therapy in the future.
Collapse
Affiliation(s)
- Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yun Yen
- The Ph.D. Program for Cancer Molecular Biology and drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University Taipei 110, Taiwan.
| |
Collapse
|
73
|
Amaravadi RK, Kimmelman AC, Debnath J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 2019; 9:1167-1181. [PMID: 31434711 DOI: 10.1158/2159-8290.cd-19-0292] [Citation(s) in RCA: 643] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, a multistep lysosomal degradation pathway that supports nutrient recycling and metabolic adaptation, has been implicated as a process that regulates cancer. Although autophagy induction may limit the development of tumors, evidence in mouse models demonstrates that autophagy inhibition can limit the growth of established tumors and improve response to cancer therapeutics. Certain cancer genotypes may be especially prone to autophagy inhibition. Different strategies for autophagy modulation may be needed depending on the cancer context. Here, we review new advances in the molecular control of autophagy, the role of selective autophagy in cancer, and the role of autophagy within the tumor microenvironment and tumor immunity. We also highlight clinical efforts to repurpose lysosomal inhibitors, such as hydroxychloroquine, as anticancer agents that block autophagy, as well as the development of more potent and specific autophagy inhibitors for cancer treatment, and review future directions for autophagy research. SIGNIFICANCE: Autophagy plays a complex role in cancer, but autophagy inhibition may be an effective therapeutic strategy in advanced cancer. A deeper understanding of autophagy within the tumor microenvironment has enabled the development of novel inhibitors and clinical trial strategies. Challenges and opportunities remain to identify patients most likely to benefit from this approach.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, California
| |
Collapse
|
74
|
Liu LQ, Wang SB, Shao YF, Shi JN, Wang W, Chen WY, Ye ZQ, Jiang JY, Fang QX, Zhang GB, Xuan ZX. Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed Pharmacother 2019; 118:109339. [PMID: 31545270 DOI: 10.1016/j.biopha.2019.109339] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
Bevacizumab (BEV) is widely used for the treatment of patients with recurrent glioblastoma (GBM), but recent evidence demonstrated that BEV induced cytoprotective autophagy, which allows tumor cells to survive. Hydroxychloroquine (HCQ) inhibits lysosomal acidification and blocks autophagy via influencing autophagosome fusion and degradation. HCQ is often used to enhance the efficacy of chemoradiotherapy. However, whether HCQ sensitizes GBM cells to BEV and the molecular mechanism of this effect are not clear. We showed that high concentrations of BEV increased the LC3-II/LC3-I ratio and caused the degradation of Beclin1 in the LN18 and LN229 cell lines, indicating that high concentrations of BEV induced the autophagy of the LN18 and LN229 cells. However, BEV (100 μg/ml) did not influence the autophagy of the LN18 and LN229 cells, and HCQ at less than 5 μg/ml significantly accumulated LC3B-II and p62 proteins and blocked the autophagy process. Importantly, we found that HCQ (5 μg/ml) potentiated the anti-cancer effect of BEV (100 μg/ml). Therefore, HCQ is a novel strategy that may augment the efficacy of BEV for GBM via the inhibition of autophagy.
Collapse
Affiliation(s)
- Lin-Qing Liu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province & Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yan-Fei Shao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jia-Na Shi
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wei Wang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wan-Yuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Zi-Qi Ye
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jin-Ying Jiang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qing-Xia Fang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Guo-Bing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Zi-Xue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
75
|
Thomé MP, Pereira LC, Onzi GR, Rohden F, Ilha M, Guma FT, Wink MR, Lenz G. Dipyridamole impairs autophagic flux and exerts antiproliferative activity on prostate cancer cells. Exp Cell Res 2019; 382:111456. [PMID: 31194978 DOI: 10.1016/j.yexcr.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Autophagy is a cellular bulk degradation process used as an alternative source of energy and metabolites and implicated in various diseases. Inefficient autophagy in nutrient-deprived cancer cells would be beneficial for cancer therapy making its modulation valuable as a therapeutic strategy for cancer treatment, especially in combination with chemotherapy. Dipyridamole (DIP) is a vasodilator and antithrombotic drug. Its major effects involve the block of nucleoside uptake and phosphodiestesase inhibition, leading to increased levels of intracellular cAMP. Here we report that DIP increases autophagic markers due to autophagic flux blockage, resembling autophagosome maturation and/or closure impairment. Treatment with DIP results in an increased number of autophagosomes and autolysosomes and impairs degradation of SQSTM1/p62. As blockage of autophagic flux decreases the recycling of cellular components, DIP reduced the intracellular ATP levels in cancer cells. Autophagic flux blockage was neither through inhibition of lysosome function nor blockage of nucleoside uptake, but could be prevented by treatment with a PKA inhibitor, suggesting that autophagic flux failure mediated by DIP results from increased intracellular levels of cAMP. Treatment with DIP presented antiproliferative effects in vitro alone and in combination with chemotherapy drugs. Collectively, these data demonstrate that DIP can impair autophagic degradation, by preventing the normal autophagosome maturation, and might be useful in combination anticancer therapy.
Collapse
Affiliation(s)
- Marcos P Thomé
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luiza C Pereira
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovana R Onzi
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francieli Rohden
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Ilha
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fátima T Guma
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Microscopia e Microanálise da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. http://
| |
Collapse
|
76
|
Hounjet J, Habets R, Schaaf MB, Hendrickx TC, Barbeau LMO, Yahyanejad S, Rouschop KM, Groot AJ, Vooijs M. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene 2019; 38:5457-5468. [PMID: 30967635 DOI: 10.1038/s41388-019-0802-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer arising from T-cell progenitors. Although current treatments, including chemotherapy and glucocorticoids, have significantly improved survival, T-ALL remains a fatal disease and new treatment options are needed. Since more than 60% of T-ALL cases bear oncogenic NOTCH1 mutations, small molecule inhibitors of NOTCH1 signalling; γ-secretase inhibitors (GSI), are being actively investigated for the treatment of T-ALL. Unfortunately, GSI have shown limited clinical efficacy and dose-limiting toxicities. We hypothesized that by combining known drugs, blocking NOTCH activity through another mechanism, may synergize with GSI enabling equal efficacy at a lower concentration. Here, we show that the clinically used anti-malarial drug chloroquine (CQ), an inhibitor of lysosomal function and autophagy, decreases T-ALL cell viability and proliferation. This effect of CQ was not observed in GSI-resistant T-ALL cell lines. Mechanistically, CQ impairs the redox balance, induces ds DNA breaks and activates the DNA damage response. CQ also interferes with intracellular trafficking and processing of oncogenic NOTCH1. Interestingly, we show for the first time that the addition of CQ to γ-secretase inhibition has a synergistic therapeutic effect on T-ALL and reduces the concentration of GSI required to obtain a reduction in cell viability and a block of proliferation. Overall, our results suggest that CQ may be a promising repurposed drug in the treatment of T-ALL, as a single treatment or in combination with GSI, increasing the therapeutic ratio.
Collapse
Affiliation(s)
- Judith Hounjet
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands.,MAASTRO Clinic, Maastricht, The Netherlands
| | - Roger Habets
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Marco B Schaaf
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Tessa C Hendrickx
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Sanaz Yahyanejad
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Kasper M Rouschop
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy/GROW, School for Developmental Biology & Oncology and Comprehensive Cancer Centre Maastricht MUMC+, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
77
|
Nti AA, Serrano LW, Sandhu HS, Uyhazi KE, Edelstein ID, Zhou EJ, Bowman S, Song D, Gangadhar TC, Schuchter LM, Mitnick S, Huang A, Nichols CW, Amaravadi RK, Kim BJ, Aleman TS. FREQUENT SUBCLINICAL MACULAR CHANGES IN COMBINED BRAF/MEK INHIBITION WITH HIGH-DOSE HYDROXYCHLOROQUINE AS TREATMENT FOR ADVANCED METASTATIC BRAF MUTANT MELANOMA: Preliminary Results From a Phase I/II Clinical Treatment Trial. Retina 2019; 39:502-513. [PMID: 29324592 PMCID: PMC6039280 DOI: 10.1097/iae.0000000000002027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the potential ocular toxicity of a combined BRAF inhibition (BRAFi) + MEK inhibition (MEKi) + hydroxychloroquine (HCQ) regime used to treat metastatic BRAF mutant melanoma. METHODS Patients with stage IV metastatic melanoma and BRAF V600E mutations (n = 11, 31-68 years of age) were included. Treatment was with oral dabrafenib, 150 mg bid, trametinib, 2 mg/day, and HCQ, 400 mg to 600 mg bid. An ophthalmic examination, spectral domain optical coherence tomography, near-infrared and short-wavelength fundus autofluorescence, and static perimetry were performed at baseline, 1 month, and q/6 months after treatment. RESULTS There were no clinically significant ocular events; there was no ocular inflammation. The only medication-related change was a separation of the photoreceptor outer segment tip from the apical retinal pigment epithelium that could be traced from the fovea to the perifoveal retina noted in 9/11 (82%) of the patients. There were no changes in retinal pigment epithelium melanization or lipofuscin content by near-infrared fundus autofluorescence and short-wavelength fundus autofluorescence, respectively. There were no inner retinal or outer nuclear layer changes. Visual acuities and sensitivities were unchanged. CONCLUSION BRAFi (trametinib) + MEKi (dabrafenib) + HCQ causes very frequent, subclinical separation of the photoreceptor outer segment from the apical retinal pigment epithelium without inner retinal changes or signs of inflammation. The changes suggest interference with the maintenance of the outer retinal barrier and/or phagocytic/pump functions of the retinal pigment epithelium by effective MEK inhibition.
Collapse
Affiliation(s)
- Akosua A. Nti
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leona W. Serrano
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harpal S. Sandhu
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine E. Uyhazi
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ilaina D. Edelstein
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elaine J. Zhou
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott Bowman
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Delu Song
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C. Gangadhar
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M. Schuchter
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheryl Mitnick
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Huang
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles W. Nichols
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K. Amaravadi
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Kim
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tomas S. Aleman
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Ophthalmology Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
78
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
79
|
Zheng K, He Z, Kitazato K, Wang Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics 2019; 9:104-125. [PMID: 30662557 PMCID: PMC6332805 DOI: 10.7150/thno.30308] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Aberrant function of cell cycle regulators results in uncontrolled cell proliferation, making them attractive therapeutic targets in cancer treatment. Indeed, survival of many cancers exclusively relies on these proteins, and several specific inhibitors are in clinical use. Although the ubiquitin-proteasome system is responsible for the periodic quality control of cell cycle proteins during cell cycle progression, increasing evidence clearly demonstrates the intimate interaction between cell cycle regulation and selective autophagy, important homeostasis maintenance machinery. However, these studies have often led to divergent rather than unifying explanations due to complexity of the autophagy signaling network, the inconsistent functions between general autophagy and selective autophagy, and the different characteristics of autophagic substrates. In this review, we highlight current data illustrating the contradictory and important role of cell cycle proteins in regulating autophagy. We also focus on how selective autophagy acts as a central mechanism to maintain orderly DNA repair and genome integrity by degrading specific cell cycle proteins, regulating cell division, and promoting DNA damage repair. We further discuss the ways in which selective autophagy may impact the cell cycle regulators, since failure to appropriately remove these can interfere with cell death-related processes, including senescence and autophagy-related cell death. Imbalanced cell proliferation is typically utilized by cancer cells to acquire resistance. Finally, we discuss the possibility of a potent anticancer therapeutic strategy that targets selective autophagy or autophagy and cell cycle together.
Collapse
|
80
|
Papanagnou P, Papadopoulos GE, Stivarou T, Pappas A. Toward fully exploiting the therapeutic potential of marketed pharmaceuticals: the use of octreotide and chloroquine in oncology. Onco Targets Ther 2018; 12:319-339. [PMID: 30643430 PMCID: PMC6317484 DOI: 10.2147/ott.s182685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pleiotropy in biological systems and their targeting allows many pharmaceuticals to be used for multiple therapeutic purposes. Fully exploiting the therapeutic properties of drugs that are already marketed would be highly advantageous. This is especially the case in the field of oncology, where the ineffectiveness of typical anticancer agents is a common issue, while the development of novel anticancer agents is a costly and particularly time-consuming process. Octreotide and chloroquine are two pharmaceuticals that exhibit profound antitumorigenic activities. However, the current therapeutic use of octreotide is restricted primarily to the management of acromegaly and neuroendocrine tumors, both of which are rare medical conditions. Similarly, chloroquine is used mainly for the treatment of malaria, which is designated as a rare disease in Western countries. This limited exploitation contradicts the experimental findings of numerous studies outlining the possible expansion of the use of octreotide to include the treatment of common human malignancies and the repositioning of chloroquine in oncology. Herein, we review the current knowledge on the antitumor function of these two agents stemming from preclinical or clinical experimentation. In addition, we present in silico evidence on octreotide potentially binding to multiple Wnt-pathway components. This will hopefully aid in the design of new efficacious anticancer therapeutic regimens with minimal toxicity, which represents an enormous unmet demand in oncology.
Collapse
Affiliation(s)
| | | | - Theodora Stivarou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasios Pappas
- Department of Urology, Agios Savvas Cancer Hospital, Athens 11522, Greece,
| |
Collapse
|
81
|
Bi W, Bi Y, Li P, Hou S, Yan X, Hensley C, Bammert CE, Zhang Y, Gibson KM, Ju J, Bi L. Indole Alkaloid Derivative B, a Novel Bifunctional Agent That Mitigates 5-Fluorouracil-Induced Cardiotoxicity. ACS OMEGA 2018; 3:15850-15864. [PMID: 30533582 PMCID: PMC6275955 DOI: 10.1021/acsomega.8b02139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Clinically approved therapeutics that mitigate chemotherapy-induced cardiotoxicity, a serious adverse effect of chemotherapy, are lacking. The aim of this study was to determine the putative protective capacity of a novel indole alkaloid derivative B (IADB) against 5-fluorouracil (5-FU)-induced cardiotoxicity. To assess the free-radical scavenging activities of IADB, the acetylcholine-induced relaxation assay in rat thoracic aorta was used. Further, IADB was tested in normal and cancer cell lines with assays gauging autophagy induction. We further examined whether IADB could attenuate cardiotoxicity in 5-FU-treated male ICR mice. We found that IADB could serve as a novel bifunctional agent (displaying both antioxidant and autophagy-modulating activities). Further, we demonstrated that IADB induced production of cytosolic autophagy-associated structures in both cancer and normal cell lines. We observed that IADB cytotoxicity was much lower in normal versus cancer cell lines, suggesting an enhanced potency toward cancer cells. The cardiotoxicity induced by 5-FU was significantly relieved in animals pretreated with IADB. Taken together, IADB treatment, in combination with chemotherapy, may lead to reduced cardiotoxicity, as well as the reduction of anticancer drug dosages that may further improve chemotherapeutic efficacy with decreased off-target effects. Our data suggest that the use of IADB may be therapeutically beneficial in minimizing cardiotoxicity associated with high-dose chemotherapy. On the basis of the redox status difference between normal and tumor cells, IADB selectively induces autophagic cell death, mediated by reactive oxygen species overproduction, in cancer cells. This novel mechanism could reveal novel therapeutic targets in chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wei Bi
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Yue Bi
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Pengfei Li
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Shanshan Hou
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Connor Hensley
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Catherine E. Bammert
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Yanrong Zhang
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jingfang Ju
- Translational
Research Laboratory, Department of Pathology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Lanrong Bi
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
82
|
Baquero P, Dawson A, Helgason GV. Autophagy and mitochondrial metabolism: insights into their role and therapeutic potential in chronic myeloid leukaemia. FEBS J 2018; 286:1271-1283. [PMID: 30222247 DOI: 10.1111/febs.14659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/07/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Despite the development of selective BCR-ABL-targeting tyrosine kinase inhibitors (TKIs) transforming the management of chronic myeloid leukaemia (CML), therapy-resistant leukaemic stem cells (LSCs) persist after TKI treatment and present an obstacle to a CML cure. Recently, we and others have made significant contributions to the field by unravelling survival dependencies in LSCs to work towards the goal of eradicating LSCs in CML patients. In this review, we describe these findings focusing on autophagy and mitochondrial metabolism, which have recently been uncovered as two essential processes for LSCs quiescence and survival respectively. In addition, we discuss the therapeutic potential of autophagy and mitochondrial metabolism inhibition as a strategy to eliminate CML cells in patients where the resistance to TKI is driven by BCR-ABL-independent mechanism(s).
Collapse
Affiliation(s)
- Pablo Baquero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Gudmundur Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, UK.,Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
83
|
Zhang L, Qiang P, Yu J, Miao Y, Chen Z, Qu J, Zhao Q, Chen Z, Liu Y, Yao X, Liu B, Cui L, Jing H, Sun G. Identification of compound CA-5f as a novel late-stage autophagy inhibitor with potent anti-tumor effect against non-small cell lung cancer. Autophagy 2018; 15:391-406. [PMID: 30145925 DOI: 10.1080/15548627.2018.1511503] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, particular focus is placed on the implication of autophagy in a variety of human diseases, including cancer. Discovery of small-molecule modulators of autophagy as well as their potential use as anti-cancer therapeutic agents would be of great significance. To this end, a series of curcumin analogs previously synthesized in our laboratory were screened. Among these compounds, (3E,5E)-3-(3,4-dimethoxybenzylidene)-5-[(1H-indol-3-yl)methylene]-1-methylpiperidin-4-one (CA-5f) was identified as a potent late-stage macroautophagy/autophagy inhibitor via inhibiting autophagosome-lysosome fusion. We found that CA-5f neither impaired the hydrolytic function nor the quantity of lysosomes. Use of an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic screen in combination with bioinformatics analysis suggested that treatment of human umbilical vein endothelial cells (HUVECs) with CA-5f for 1 h suppressed the levels of cytoskeletal proteins and membrane traffic proteins. Subsequent studies showed that CA-5f exhibited strong cytotoxicity against A549 non-small cell lung cancer (NSCLC) cells, but low cytotoxicity to normal human umbilical vein endothelial cells (HUVECs), by increasing mitochondrial-derived reactive oxygen species (ROS) production. Moreover, CA-5f effectively suppressed the growth of A549 lung cancer xenograft as a single agent with an excellent tolerance in vivo. Results from western blot, immunofluorescence, and TdT-mediated dUTP nick end labeling (TUNEL) assays showed that CA-5f inhibited autophagic flux, induced apoptosis, and did not affect the level of CTSB (cathepsin B) and CTSD (cathepsin D) in vivo, which were consistent with the in vitro data. Collectively, these results demonstrated that CA-5f is a novel late-stage autophagy inhibitor with potential clinical application for NSCLC therapy. Abbreviations: 3-MA, 3-methyladenine; ANXA5, annexin A5; ATG, autophagy related; CA-5f, (3E,5E)-3-(3,4-dimethoxybenzylidene)-5-[(1H-indol-3-yl)methylene]-1-methylpiperidin-4-one; CQ, chloroquine; CTSB, cathepsin B; CTSD, cathepsin D; DMSO, dimethyl sulfoxide; DNM2, dynamin 2; EBSS, Earle's balanced salt solution; GFP, green fluorescent protein; HCQ, hydroxyl CQ; HEK293, human embryonic kidney 293; HUVEC, human umbilical vein endothelial cells; LAMP1, lysosomal associated membrane protein 1; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LDH, lactic acid dehydrogenase; LMO7, LIM domain 7; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; NAC, N-acetyl cysteine; MYO1E, myosin IE; NSCLC, non-small cell lung cancer; PARP1, poly(ADP-ribose) polymerase 1; PI, propidium iodide; RFP, red fluorescent protein; ROS, reactive oxygen species; SQSTM1, sequestosome 1; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling.
Collapse
Affiliation(s)
- Lu Zhang
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - PengFei Qiang
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - JingTing Yu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - YiMing Miao
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - ZhiQiang Chen
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Ju Qu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - QianBing Zhao
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Zhuo Chen
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Yachao Liu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Xin Yao
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Bin Liu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - LiuQing Cui
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - HongJuan Jing
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Gangchun Sun
- b College of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou , China
| |
Collapse
|
84
|
Mao IC, Lin CY, Wu CL, Kor CT, Chang CC. Hydroxychloroquine and risk of development of cancers: a nationwide population-based cohort study. Ther Clin Risk Manag 2018; 14:1435-1443. [PMID: 30154660 PMCID: PMC6108344 DOI: 10.2147/tcrm.s175581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hydroxychloroquine (HCQ), one of the disease-modifying antirheumatic drugs, may lead to an inhibition of autophagy. Autophagy, an intracellular self-defense mechanism for the lysosomal degradation of cytoplasmic components such as damaged organelles, plays a role in protecting against neoplasm growth but is also vital for cancer cells due to an increased intracellular metabolic waste. METHODS Taiwan National Health Insurance Database was subjected to analysis to investigate the effect of HCQ exposure on cancer risk in patients with autoimmune diseases. Cancer incidence between patients with or without at least 12-month HCQ use was compared by propensity score-matched landmark analysis. A total of 100,000 participants were enrolled, including 7,662 patients who were diagnosed with autoimmune diseases between January 1, 2000, and December 31, 2012. RESULTS After propensity score matching, HCQ user and nonuser groups consist of 1,933 patients with a mean follow-up time of 7.82 and 6.7 years, respectively. During the follow-up period, 93 HCQ users and 77 HCQ nonusers developed cancers. Meanwhile, Kaplan-Meier estimates showed no difference in the overall incidence of cancer between HCQ users and nonusers. CONCLUSION This propensity score-matched study of Taiwanese patients with autoimmune diseases suggested that HCQ exposure did not increase the cancer risk.
Collapse
Affiliation(s)
- I-Chieh Mao
- Division of Critical Care, Departmen of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yeh Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan,
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chew-Teng Kor
- Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan,
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan,
| | - Chia-Chu Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan,
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan,
- School of Medicine, Chung-Shan Medical University, Taichung, Taiwan,
- Department of Nutrition, Hungkuang University, Taichung, Taiwan,
| |
Collapse
|
85
|
Beus M, Rajić Z, Maysinger D, Mlinarić Z, Antunović M, Marijanović I, Fontinha D, Prudêncio M, Held J, Olgen S, Zorc B. SAHAquines, Novel Hybrids Based on SAHA and Primaquine Motifs, as Potential Cytostatic and Antiplasmodial Agents. ChemistryOpen 2018; 7:624-638. [PMID: 30151334 PMCID: PMC6104433 DOI: 10.1002/open.201800117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
We report the synthesis of SAHAquines and related primaquine (PQ) derivatives. SAHAquines are novel hybrid compounds that combine moieties of suberoylanilide hydroxamic acid (SAHA), an anticancer agent with weak antiplasmodial activity, and PQ, an antimalarial drug with low antiproliferative activity. The preparation of SAHAquines is simple, cheap, and high yielding. It includes the following steps: coupling reaction between primaquine and a dicarboxylic acid monoester, hydrolysis, a new coupling reaction with O-protected hydroxylamine, and deprotection. SAHAquines 5 a-d showed significant reduction in cell viability. Among the three human cancer cell lines (U2OS, HepG2, and MCF-7), the most responsive were the MCF-7 cells. The antibodies against acetylated histone H3K9/H3K14 in MCF-7 cells revealed a significant enhancement following treatment with N-hydroxy-N'-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}pentanediamide (5 b). Ethyl (2E)-3-({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)prop-2-enoate (2 b) and SAHAquines were the most active compounds against both the hepatic and erythrocytic stages of Plasmodium parasites, some of them at sub-micromolar concentrations. The results of our research suggest that SAHAquines are promising leads for new anticancer and antimalarial agents.
Collapse
Affiliation(s)
- Maja Beus
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Zrinka Rajić
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill University23655 Promenade Sir-William-Osler, McIntyre Medical Sciences BuildingMontrealQuebecH3G 1Y6Canada
| | - Zvonimir Mlinarić
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Maja Antunović
- Faculty of ScienceUniversity of ZagrebHorvatovac 102A10 000ZagrebCroatia
| | - Inga Marijanović
- Faculty of ScienceUniversity of ZagrebHorvatovac 102A10 000ZagrebCroatia
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaAv. Prof. Egas Moniz1649-028LisboaPortugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaAv. Prof. Egas Moniz1649-028LisboaPortugal
| | - Jana Held
- Institute of Tropical MedicineUniversity of TübingenWilhelmstraße 2772074TübingenGermany
| | - Sureyya Olgen
- Faculty of PharmacyBiruni University10th street No: 4534010 TopkapiIstanbulTurkey
| | - Branka Zorc
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| |
Collapse
|
86
|
Onorati A, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Cancer 2018; 124:3307-3318. [PMID: 29671878 PMCID: PMC6108917 DOI: 10.1002/cncr.31335] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/15/2018] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis during stress conditions. Dysregulated autophagy has implications in health and disease. Specifically, in cancer, autophagy plays a dichotomous role by inhibiting tumor initiation but supporting tumor progression. Early results from clinical trials that repurposed hydroxychloroquine for cancer have suggested that autophagy inhibition may be a promising approach for advanced cancers. In this review of the literature, the authors present fundamental advances in the biology of autophagy, approaches to targeting autophagy, the preclinical rationale and clinical experience with hydroxychloroquine in cancer clinical trials, the potential role of autophagy in tumor immunity, and recent developments in next-generation autophagy inhibitors that have clinical potential. Autophagy is a promising target for drug development in cancer. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Angelique Onorati
- Abramson Cancer Center and Department of Medicine; University of Pennsylvania, Philadelphia, PA, 19104; U.S.A
| | - Matheus Dyczynski
- Department of Oncology & Pathology Karolinska Institute, Stockholm, Sweden
| | - Rani Ojha
- Abramson Cancer Center and Department of Medicine; University of Pennsylvania, Philadelphia, PA, 19104; U.S.A
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine; University of Pennsylvania, Philadelphia, PA, 19104; U.S.A
| |
Collapse
|
87
|
Zhou P, Li Y, Li B, Zhang M, Xu C, Liu F, Bian L, Liu Y, Yao Y, Li D. Autophagy inhibition enhances celecoxib-induced apoptosis in osteosarcoma. Cell Cycle 2018; 17:997-1006. [PMID: 29884091 PMCID: PMC6103699 DOI: 10.1080/15384101.2018.1467677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/01/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most prevalent bone malignancy in childhood and adolescence, with highly aggressive and early systemic metastases. Here, we reported that celecoxib, a selective COX-2 inhibitor in the NSAID class, exhibits strong antitumor activity in dose dependent manner in two OS cell lines-143B and U2OS. We showed that celecoxib inhibits OS cell growth, causes G0/G1-phase arrest, modulates apoptosis and autophagy and reduces migration in OS cells. In addition, the results of fluorescent mitochondrial probe JC-1 test indicated that the mitochondrial pathway mediates celecoxib-induced apoptosis. Significantly, the autophagy inhibitor CQ combined with celecoxib causes greater cell proliferation inhibition and apoptosis. Pharmacologic inhibition of autophagy with another potent autophagy inhibitor SAR405 also enhances celecoxib-mediated suppression of cell viability. These results were confirmed with shRNAs targeting the autophagy-related gene Atg5. In OS tumor xenografts in vivo, celecoxib also presents antitumor activity. Taken together, our results shed light on the function and mechanism of antitumor action of celecoxib for treatment of OS patients.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Li
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ci Xu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Furao Liu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
Collins KP, Jackson KM, Gustafson DL. Hydroxychloroquine: A Physiologically-Based Pharmacokinetic Model in the Context of Cancer-Related Autophagy Modulation. J Pharmacol Exp Ther 2018; 365:447-459. [PMID: 29438998 PMCID: PMC5931434 DOI: 10.1124/jpet.117.245639] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022] Open
Abstract
Hydroxychloroquine (HCQ) is a lysosomotropic autophagy inhibitor being used in over 50 clinical trials either alone or in combination with chemotherapy. Pharmacokinetic (PK) and pharmacodynamic (PD) studies with HCQ have shown that drug exposure in the blood does not correlate with autophagy inhibition in either peripheral blood mononuclear cells or tumor tissue. To better explain this PK/PD disconnect, a PBPK was developed for HCQ describing the tissue-specific absorption, distribution, metabolism, and excretion as well as lysosome-specific sequestration. Using physiologic and biochemical parameters derived from literature or obtained experimentally, the model was first developed and validated in mice, and then adapted to simulate human HCQ exposure in whole blood and urine through allometric scaling and species-specific parameter modification. The human model accurately simulated average steady-state concentrations (Css) of those observed in five different HCQ combination clinical trials across seven different doses, which was then expanded by comparison of the Css distribution in a virtual human population at this range of doses. Value of this model lies in its ability to simulate HCQ PK in patients while accounting for PK modification by combination treatment modalities, drug concentrations at the active site in the lysosome under varying pH conditions, and exposure in tissues where toxicity is observed.
Collapse
Affiliation(s)
- Keagan P Collins
- School of Biomedical Engineering (K.P.C., K.M.J., D.L.G.) and Department of Clinical Sciences (D.L.G.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G.)
| | - Kristen M Jackson
- School of Biomedical Engineering (K.P.C., K.M.J., D.L.G.) and Department of Clinical Sciences (D.L.G.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G.)
| | - Daniel L Gustafson
- School of Biomedical Engineering (K.P.C., K.M.J., D.L.G.) and Department of Clinical Sciences (D.L.G.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G.)
| |
Collapse
|
89
|
Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. Clin Drug Investig 2018; 38:653-671. [DOI: 10.1007/s40261-018-0656-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
90
|
Hydroxychloroquine: balancing the need to maintain therapeutic levels with ocular safety: an update. Curr Opin Rheumatol 2018. [DOI: 10.1097/bor.0000000000000500] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
91
|
Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 2018; 75:1803-1826. [PMID: 29417176 PMCID: PMC11105210 DOI: 10.1007/s00018-018-2759-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuxin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
92
|
Abstract
Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis during stress conditions. Dysregulated autophagy has implications in health and disease. Specifically, in cancer, autophagy plays a dichotomous role by inhibiting tumor initiation but supporting tumor progression. Early results from clinical trials that repurposed hydroxychloroquine for cancer have suggested that autophagy inhibition may be a promising approach for advanced cancers. In this review of the literature, the authors present fundamental advances in the biology of autophagy, approaches to targeting autophagy, the preclinical rationale and clinical experience with hydroxychloroquine in cancer clinical trials, the potential role of autophagy in tumor immunity, and recent developments in next-generation autophagy inhibitors that have clinical potential. Autophagy is a promising target for drug development in cancer. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Angelique V Onorati
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matheus Dyczynski
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rani Ojha
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
93
|
Zeng Y, Tian X, Wang Q, He W, Fan J, Gou X. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:911-920. [PMID: 29719377 PMCID: PMC5914548 DOI: 10.2147/dddt.s160557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001.
Collapse
Affiliation(s)
- Yizhou Zeng
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xiaofang Tian
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Quan Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Weiyang He
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jing Fan
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xin Gou
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
94
|
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J, Li L. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 2018; 52:1057-1070. [PMID: 29436618 DOI: 10.3892/ijo.2018.4270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy is a key catabolic process, in which cytosolic cargo is engulfed by the formation of a double membrane and then degraded through the fusing of autophagosomes with lysosomes. Autophagy is a constitutively active, evolutionarily conserved, catabolic process important for the maintenance of homeostasis in cellular stress responses and cell survival. Although the mechanisms of autophagy have not yet been fully elucidated, emerging evidence suggests that it plays a dual role in breast cancer and in maintaining the activity of breast cancer stem cells (CSCs). However, it may play a complex role in breast CSC therapy. Breast CSCs, a population of cells with the ability to self-renew, differentiate, and initiate and sustain tumor growth, play an essential role in cancer recurrence, anticancer resistance and metastasis. In addition, the elucidation of the association between autophagy and apoptosis in the tumor context is crucial in order to better address appropriate therapy strategies. In the present review, a summary of the mechanisms and roles of autophagy in breast cancer and CSCs is presented. The potential value of such autophagy modulators in the development of novel breast cancer therapies is discussed.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Tao Qin
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jinfeng Yang
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Yan Sun
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| |
Collapse
|
95
|
Niu Q, Chen J, Xia T, Li P, Zhou G, Xu C, Zhao Q, Dong L, Zhang S, Wang A. Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:889-899. [PMID: 29100748 DOI: 10.1016/j.envpol.2017.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Qiang Niu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingwen Chen
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pei Li
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guoyu Zhou
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chunyan Xu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhao
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lixin Dong
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
96
|
Abstract
Autophagy is a catabolic program that is responsible for the degradation of dysfunctional or unnecessary proteins and organelles to maintain cellular homeostasis. Mechanistically, it involves the formation of double-membrane autophagosomes that sequester cytoplasmic material and deliver it to lysosomes for degradation. Eventually, the material is recycled back to the cytoplasm. Abnormalities of autophagy often lead to human diseases, such as neurodegeneration and cancer. In the case of cancer, increasing evidence has revealed the paradoxical roles of autophagy in both tumor inhibition and tumor promotion. Here, we summarize the context-dependent role of autophagy and its complicated molecular mechanisms in the hallmarks of cancer. Moreover, we discuss how therapeutics targeting autophagy can counter malignant transformation and tumor progression. Overall, the findings of studies discussed here shed new light on exploiting the complicated mechanisms of the autophagic machinery and relevant small-molecule modulators as potential antitumor agents to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Tianzhi Huang
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xiao Song
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yongyong Yang
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xuechao Wan
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Angel A. Alvarez
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Namratha Sastry
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Hu
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shi-Yuan Cheng
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
97
|
Follo C, Cheng Y, Richards WG, Bueno R, Broaddus VC. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma. Mol Carcinog 2017; 57:319-332. [PMID: 29073722 DOI: 10.1002/mc.22757] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer.
Collapse
Affiliation(s)
- Carlo Follo
- Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, California
| | - Yao Cheng
- Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, California
| | - William G Richards
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Virginia Courtney Broaddus
- Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
98
|
“In vivo self-assembled” nanoprobes for optimizing autophagy-mediated chemotherapy. Biomaterials 2017; 141:199-209. [DOI: 10.1016/j.biomaterials.2017.06.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
|
99
|
Abstract
Eukaryotes use autophagy as a mechanism for maintaining cellular homeostasis by degrading and recycling organelles and proteins. This process assists in the proliferation and survival of advanced cancers. There is mounting preclinical evidence that targeting autophagy can enhance the efficacy of many cancer therapies. Hydroxychloroquine (HCQ) is the only clinically-approved autophagy inhibitor, and this systematic review focuses on HCQ use in cancer clinical trials. Preclinical trials have shown that HCQ alone and in combination therapy leads to enhancement of tumor shrinkage. This has provided the base for multiple ongoing clinical trials involving HCQ alone and in combination with other treatments. However, due to its potency, there is still a need for more potent and specific autophagy inhibitors. There are multiple autophagy inhibitors in the pre-clinical stage at various stages of development. Additional studies on the mechanism of HCQ and other autophagy inhibitors are still required to answer questions surrounding how these agents will eventually be used in the clinic.
Collapse
Affiliation(s)
- Cynthia I Chude
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, 852 BRB, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, 852 BRB, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|