51
|
Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1005793. [PMID: 34660776 PMCID: PMC8517627 DOI: 10.1155/2021/1005793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Objective Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). Methods Single-cell RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log2fold change (FC) | >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed. Results After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E, GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. Conclusion Our findings revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel insight into the heterogeneity of ovarian cancer.
Collapse
|
52
|
Leng J, Li H, Niu Y, Chen K, Yuan X, Chen H, Fu Z, Zhang L, Wang F, Chen C, Héroux P, Yang J, Zhu X, Lu W, Xia D, Wu Y. Low-dose mono(2-ethylhexyl) phthalate promotes ovarian cancer development through PPARα-dependent PI3K/Akt/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147990. [PMID: 34380243 DOI: 10.1016/j.scitotenv.2021.147990] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) and its hydrolysate mono(2-ethylhexyl) phthalate (MEHP) are major toxicants from plastics, but their association with hormone-dependent cancers has been controversial. We treated the human ovarian cancer cell lines SKOV3 and A2780 with low concentrations of DEHP/MEHP, and found that although no significant effect on cell proliferation was observed, ovarian cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT) were promoted by submicromolar MEHP but not DEHP. Next, ovarian cancer patient data from The Cancer Genome Atlas (TCGA) were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) supported enrichment and Kaplan-Meier survival analyses, which identified PI3K/Akt pathway as a pivotal signaling pathway in ovarian cancer. We found that 500 nM MEHP treatment significantly increased PIK3CA expression, which could be reversed by the knockdown of peroxisome proliferator-activated receptor alpha (PPARα). Silencing PIK3CA significantly suppressed the MEHP-induced migration, invasion and EMT. In addition, we validated that MEHP treatment promoted phosphorylation of Akt and degradation of IκB-α, thereby activating NF-κB and enhancing NF-κB nuclear translocation. In nude mice, MEHP exposure significantly promoted the metastasis of ovarian cancer xenografts, which could be suppressed by the treatment of PPARα inhibitor GW6471. Our findings showed that low-dose MEHP promoted ovarian cancer progression through activating PI3K/Akt/NF-κB pathway, in a PPARα-dependent manner.
Collapse
Affiliation(s)
- Jing Leng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyi Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Scientific Research Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwen Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoyi Chen
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Jun Yang
- Department of Public Health, Hangzhou Normal University School of Medicine, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinqiang Zhu
- Central Laboratory of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiguo Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
53
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
54
|
Ye L, Zhang Y, Yang X, Shen F, Xu B. An Ovarian Cancer Susceptible Gene Prediction Method Based on Deep Learning Methods. Front Cell Dev Biol 2021; 9:730475. [PMID: 34485310 PMCID: PMC8414800 DOI: 10.3389/fcell.2021.730475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most fatal diseases among women all around the world. It is highly lethal because it is usually diagnosed at an advanced stage which may reduce the survival rate greatly. Even though most of the patients are treated timely and effectively, the survival rate is still low due to the high recurrence rate of OC. With a large number of genome-wide association analysis (GWAS)-discovered risk regions of OC, expression quantitative trait locus (eQTL) analyses can explore candidate susceptible genes based on these risk loci. However, a large number of OC-related genes remain unknown. In this study, we proposed a novel gene prediction method based on different omics data and deep learning methods to identify OC causal genes. We first employed graph attention network (GAT) to obtain a compact gene feature representation, then a deep neural network (DNN) is utilized to predict OC-related genes. As a result, our model achieved a high AUC of 0.761 and AUPR of 0.788, which proved the accuracy and effectiveness of our proposed method. At last, we conducted a gene-set enrichment analysis to further explore the mechanism of OC. Finally, we predicted 245 novel OC causal genes and 10 top related KEGG pathways.
Collapse
Affiliation(s)
- Lu Ye
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Zhang
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xinying Yang
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Fei Shen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
55
|
Singh SK, Apata T, Singh S, McFadden M, Singh R. Clinical Implication of Metformin in Relation to Diabetes Mellitus and Ovarian Cancer. Biomedicines 2021; 9:biomedicines9081020. [PMID: 34440224 PMCID: PMC8394937 DOI: 10.3390/biomedicines9081020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Since multiple reports established an association between diabetes mellitus and various cancers, emerging studies have surfaced to understand the effects of metformin as an anti-cancer agent. Although there was previous, but conflicting evidence, of a relationship between diabetes and ovarian cancer (OvCa), recent studies have supported this association. The mechanism of cancer development in patients with diabetes is likely to involve hyperglycemia, hyperinsulinemia, chronic inflammation, reactive oxygen species, regulation of cellular homeostasis, and activation of various pathways that lead to tumor cell proliferation. Preclinical evidence indicating that metformin, a medication commonly used to treat type 2 diabetes mellitus, may protect against OvCa. Metformin exerts anti-cancer properties by activating the MAPK pathway, inhibiting the PI3K/AKT/mTOR pathway, increasing tumor suppressor genes, inducing G2/M cycle arrest, and various other processes. Several studies have shown the efficacy of metformin as an adjunct with standard chemotherapeutic agents due to its synergistic effects on OvCa cells. This review highlights the epidemiologic evidence supporting a link between diabetes and OvCa, the fundamental molecular mechanism underlying carcinogenesis in patients with diabetes, the anti-cancer effects of metformin, and the need for further clinical investigations on combination therapies with metformin and standard chemotherapeutic agents for OvCa.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.S.); (T.A.); (M.M.)
| | - Tejumola Apata
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.S.); (T.A.); (M.M.)
| | - Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Melayshia McFadden
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.S.); (T.A.); (M.M.)
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.S.); (T.A.); (M.M.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-6661; Fax: +1-404-752-1179
| |
Collapse
|
56
|
Zhao J, Tan W, Zhang L, Liu J, Shangguan M, Chen J, Zhao B, Peng Y, Cui M, Zhao S. FGFR3 phosphorylates EGFR to promote cisplatin-resistance in ovarian cancer. Biochem Pharmacol 2021; 190:114536. [PMID: 33794187 DOI: 10.1016/j.bcp.2021.114536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/08/2022]
Abstract
Ovarian cancer is a deadly gynecologic cancer, and the majority of patients with ovarian cancer experience relapse after traditional treatment. Cisplatin (DDP) is a common chemotherapeutic drug for ovarian cancer, but many patients acquire DDP-resistance after treatment with long-term chemotherapy. The mechanisms of drug-resistance in ovarian cancer are not clear, and we thus aim to investigate novel targets for DDP-resistant ovarian cancer. Differential analysis, KEGG pathway enrichment and protein interaction networks were employed to identify the key genes related to DDP-resistance in ovarian cancer. Subsequently, cell viability, apoptosis and migration were measured to assess the effect of fibroblast growth factor receptor 3 (FGFR3) on DDP-resistance. Further, Pearson correlation analysis and co-expression analysis were used to explore the downstream pathways of FGFR3, and the function of FGFR3 and its downstream targets were further demonstrated by in vitro and nude mice experiments. FGFR3 were expressed at high levels in DDP-resistant ovarian cancer cells. FGFR3 silencing suppressed the activation of PI3K/AKT pathway and impeded the drug-resistance and development of tumor cells. Afterwards, we found that FGFR3 was co-expressed with epidermal growth factor receptor (EGFR). FGFR3 overexpression elevated EGFR phosphorylation and activated PI3K/AKT signaling. Furthermore, in nude mice, silencing FGFR3 and inhibiting EGFR phosphorylation were observed to promote the therapeutic effect of DDP. In conclusion, FGFR3 overexpression enhances DDP-resistance of ovarian cancer by promoting EGFR phosphorylation and further activating PI3K/AKT pathway. This study may offer promising targets for DDP-resistant ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Wenxi Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Lingyi Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Mengyuan Shangguan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Benzheng Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China.
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China.
| |
Collapse
|
57
|
Oto J, Herranz R, Plana E, Sánchez-González JV, Pérez-Ardavín J, Hervás D, Fernández-Pardo Á, Cana F, Vera-Donoso CD, Martínez-Sarmiento M, Medina P. Identification of miR-20a-5p as Robust Normalizer for Urine microRNA Studies in Renal Cell Carcinoma and a Profile of Dysregulated microRNAs. Int J Mol Sci 2021; 22:7913. [PMID: 34360679 PMCID: PMC8347250 DOI: 10.3390/ijms22157913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is the third most frequent urinary malignancy and one of the most lethal. Current diagnostic and follow-up techniques are harmful and unspecific in low-grade tumors. Novel minimally invasive markers such as urine microRNAs (miRNAs) are under study. However, discrepancies arise among studies in part due to lack of consent regarding normalization. We aimed to identify the best miRNA normalizer for RCC studies performed in urine samples together with a miRNA profile with diagnostic value and another for follow-up. We evaluated the performance of 120 candidate miRNAs in the urine of 16 RCC patients and 16 healthy controls by RT-qPCR followed by a stability analysis with RefFinder. In this screening stage, miR-20a-5p arose as the most stably expressed miRNA in RCC and controls, with a good expression level. Its stability was validated in an independent cohort of 51 RCC patients and 32 controls. Using miR-20a-5p as normalizer, we adjusted and validated a diagnostic model for RCC with three miRNAs (miR-200a-3p, miR-34a-5p and miR-365a-3p) (AUC = 0.65; Confidence Interval 95% [0.51, 0.79], p = 0.043). let-7d-5p and miR-205-5p were also upregulated in patients compared to controls. Comparing RCC samples before surgery and fourteen weeks after, we identified let-7d-5p, miR-152-3p, miR-30c-5p, miR-362-3p and miR-30e-3p as potential follow-up profile for RCC. We identified validated targets of most miRNAs in the renal cell carcinoma pathway. This is the first study that identifies a robust normalizer for urine RCC miRNA studies, miR-20a-5p, which may allow the comparison of future studies among laboratories. Once confirmed in a larger independent cohort, the miRNAs profiles identified may improve the non-invasive diagnosis and follow-up of RCC.
Collapse
Affiliation(s)
- Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - José Vicente Sánchez-González
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - Javier Pérez-Ardavín
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - David Hervás
- Data Science, Biostatistics and Bioinformatics Unit, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain;
- Department of Applied Statistics, Operations Research, and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - César David Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - Manuel Martínez-Sarmiento
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| |
Collapse
|
58
|
Ochoa R, Ortega-Pajares A, Castello FA, Serral F, Fernández Do Porto D, Villa-Pulgarin JA, Varela-M RE, Muskus C. Identification of Potential Kinase Inhibitors within the PI3K/AKT Pathway of Leishmania Species. Biomolecules 2021; 11:biom11071037. [PMID: 34356660 PMCID: PMC8301987 DOI: 10.3390/biom11071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis is a public health disease that requires the development of more effective treatments and the identification of novel molecular targets. Since blocking the PI3K/AKT pathway has been successfully studied as an effective anticancer strategy for decades, we examined whether the same approach would also be feasible in Leishmania due to their high amount and diverse set of annotated proteins. Here, we used a best reciprocal hits protocol to identify potential protein kinase homologues in an annotated human PI3K/AKT pathway. We calculated their ligandibility based on available bioactivity data of the reported homologues and modelled their 3D structures to estimate the druggability of their binding pockets. The models were used to run a virtual screening method with molecular docking. We found and studied five protein kinases in five different Leishmania species, which are AKT, CDK, AMPK, mTOR and GSK3 homologues from the studied pathways. The compounds found for different enzymes and species were analysed and suggested as starting point scaffolds for the design of inhibitors. We studied the kinases’ participation in protein–protein interaction networks, and the potential deleterious effects, if inhibited, were supported with the literature. In the case of Leishmania GSK3, an inhibitor of its human counterpart, prioritized by our method, was validated in vitro to test its anti-Leishmania activity and indirectly infer the presence of the enzyme in the parasite. The analysis contributes to improving the knowledge about the presence of similar signalling pathways in Leishmania, as well as the discovery of compounds acting against any of these kinases as potential molecular targets in the parasite.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medellín 050010, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Amaya Ortega-Pajares
- Department of Medicine, The Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Florencia A. Castello
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Federico Serral
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Darío Fernández Do Porto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Janny A. Villa-Pulgarin
- Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín 050034, Colombia;
| | - Rubén E. Varela-M
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
59
|
van der Ploeg P, Uittenboogaard A, Thijs AMJ, Westgeest HM, Boere IA, Lambrechts S, van de Stolpe A, Bekkers RLM, Piek JMJ. The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis. Gynecol Oncol 2021; 163:433-444. [PMID: 34253390 DOI: 10.1016/j.ygyno.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the clinical benefit of monotherapy with PI3K/AKT/mTOR inhibitors in patients diagnosed with advanced or recurrent ovarian cancer and to investigate the predictive value of current PI3K/AKT/mTOR biomarkers on therapy response. METHODS A systematic search was conducted in PubMed, Embase and the Cochrane Library for articles reporting on treatment with PI3K/AKT/mTOR inhibitors in ovarian cancer. The primary endpoint was defined as the clinical benefit rate (CBR), including the proportion of patients with complete (CR) and partial response (PR) and stable disease (SD). Secondary endpoints included the overall response rate (ORR, including CR and PR) and drug-related grade 3 and 4 adverse events. RESULTS We included 233 patients from 19 studies and observed a pooled CBR of 32% (95% CI 20-44%) and ORR of 3% (95% CI 0-6%) in advanced or recurrent ovarian cancer patients treated with PI3K/AKT/mTOR inhibitors. Subgroup analysis tended to favor the studies who selected patients based on current PI3K/AKT/mTOR biomarker criteria (e.g. genomic alterations or loss of PTEN protein expression), but the difference in CBR was not statistically significant from studies with unselected populations (respectively, CBR of 42% (95% CI 23-62%) and 27% (95% CI 14-42%), P = 0.217). To better reflect true patient benefit, we excluded SD <6 months as a beneficial outcome which resulted in a pooled CBR of 7% (95% CI 2-13%). The overall proportion of patients with drug-related grade 3 and 4 adverse events was 36%. CONCLUSIONS The efficacy of monotherapy with PI3K/AKT/mTOR inhibitors in advanced recurrent ovarian cancer patients is limited to a small subgroup and selection of patients with the use of current biomarkers did not improved the CBR significantly. Given the toxicity profile, we suggest that current treatment with PI3K/AKT/mTOR inhibitors should not be initiated unless in clinical trials. Furthermore, improved biomarkers to measure functional PI3K/AKT/mTOR pathway activity are needed to optimize patient selection.
Collapse
Affiliation(s)
- Phyllis van der Ploeg
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Aniek Uittenboogaard
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Anna M J Thijs
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Ingrid A Boere
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Ruud L M Bekkers
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
60
|
Phosphorylation of RCC1 on Serine 11 Facilitates G1/S Transition in HPV E7-Expressing Cells. Biomolecules 2021; 11:biom11070995. [PMID: 34356619 PMCID: PMC8301946 DOI: 10.3390/biom11070995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.
Collapse
|
61
|
Weng H, Feng X, Lan Y, Zheng Z. TCP1 regulates PI3K/AKT/mTOR signaling pathway to promote proliferation of ovarian cancer cells. J Ovarian Res 2021; 14:82. [PMID: 34162426 PMCID: PMC8223286 DOI: 10.1186/s13048-021-00832-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE TCP1 is one of the eight subunits of the TCP1 ring complex (TRiC) or the multi-protein mammalian cytosolic chaperone complex. TRiC participates in protein folding and regulates the expression of multiple signaling proteins and cytoskeletal components in cells. Although the clinical importance of its subunits has been clarified in various carcinomas, the function of TCP1 in ovarian cancer (OC) remains unclear. We aimed to identify the association between the expression of TCP1 and the development of epithelial OC (EOC) and patient prognosis, and explore the underlying mechanisms of TCP1 on the tumor progression of OC cells. METHODS TCP1 protein expression was tested in various ovarian tissues by immunohistochemistry, and the correlation between TCP1 expression and clinical physiologic or pathologic parameters of patients with EOC was analyzed. The relationship between TCP1 expression and the prognosis of patients with OC was investigated and analyzed using the Kaplan-Meier (KM) plotter online database. The expression level of TCP1 was then tested in different OC cell lines by Western blotting. Further, a model using OC cell line A2780 was constructed to study the functions of TCP1 in growth, migration, and invasion of human EOC cells. Finally, the possible regulating signaling pathways were discussed. RESULTS TCP1 protein expression in OC or borderline tissues was significantly higher than that in benign ovarian tumors and normal ovarian tissue. The upregulated expression of TCP1 in OC was positively associated with the differentiation grade and FIGO stage of tumors and predicted poor clinical outcomes. Compared with IOSE-80 cells, TCP1 protein was overexpressed in A2780 cells. TCP1 knockdown using shRNA lentivirus inhibited the viability of A2780 cells. Western blotting showed that the phosphatidylinositol-3 kinase (PI3K) signaling pathway was activated in the tumor invasion in EOC driven by TCP1. CONCLUSION Upregulated TCP1 is correlated with the poor prognosis of patients with OC. The mechanism of cancer progression promoted by TCP1 upregulation may be linked to the activation of the PI3K signaling pathway, and TCP1 may serve as a novel target for the treatment of OC.
Collapse
Affiliation(s)
- Huixi Weng
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| | - Xiushan Feng
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| | - Yu Lan
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| | - Zhiqun Zheng
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| |
Collapse
|
62
|
Mukherjee S, Sundfeldt K, Borrebaeck CAK, Jakobsson ME. Comprehending the Proteomic Landscape of Ovarian Cancer: A Road to the Discovery of Disease Biomarkers. Proteomes 2021; 9:25. [PMID: 34070600 PMCID: PMC8163166 DOI: 10.3390/proteomes9020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Despite recent technological advancements allowing the characterization of cancers at a molecular level along with biomarkers for cancer diagnosis, the management of ovarian cancers (OC) remains challenging. Proteins assume functions encoded by the genome and the complete set of proteins, termed the proteome, reflects the health state. Comprehending the circulatory proteomic profiles for OC subtypes, therefore, has the potential to reveal biomarkers with clinical utility concerning early diagnosis or to predict response to specific therapies. Furthermore, characterization of the proteomic landscape of tumor-derived tissue, cell lines, and PDX models has led to the molecular stratification of patient groups, with implications for personalized therapy and management of drug resistance. Here, we review single and multiple marker panels that have been identified through proteomic investigations of patient sera, effusions, and other biospecimens. We discuss their clinical utility and implementation into clinical practice.
Collapse
Affiliation(s)
- Shuvolina Mukherjee
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Carl A. K. Borrebaeck
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| | - Magnus E. Jakobsson
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| |
Collapse
|
63
|
Feng Y, Hao F. Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov Extract Suppresses Proliferation of HepG2 Cells via the PTEN-PI3K-AKT Pathway Uncovered by Integrating Network Pharmacology and Iin Vitro Experiments. Front Pharmacol 2021; 12:620897. [PMID: 33967754 PMCID: PMC8097175 DOI: 10.3389/fphar.2021.620897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov extracts (HWEs) have antitumor activity, but their mechanism in vitro is still unclear. In this study, we first combined network pharmacology with experimental evaluation and applied a comprehensive strategy to explore and prove the therapeutic potential and potential mechanism of HWE. The mRNA expression profiles of PTEN, PIK3A, and AKT1 are from the Cancer Cell Line Encyclopedia (CCLE) of the Broad Institute. Our results showed that HWE has a good inhibition on HepG2 cells, and a slight inhibition on other cells. The results of the CCLE database showed that PTEN/PIK3A/AKT1 mRNA expression was up-regulated in HepG2 cells. Through further study, it was found that HWE increased the release of LDH, induced early and late apoptosis, and increased ROS levels in HepG2 cells. Western blot showed that HWE regulates the expression of mitochondrial apoptosis-related proteins. Meanwhile, the expression of PTEN was increased, and the expression of phosphorylated PI3K and Akt was down-regulated after HWE treatment. Our results show that HWE promotes HepG2 cell apoptosis via the PTEN-PI3K-Akt signaling pathway. This study is the first to report the potential role of HWE in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fengjin Hao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
64
|
Hypoxia-induced up-regulation of miR-27a promotes paclitaxel resistance in ovarian cancer. Biosci Rep 2021; 40:222414. [PMID: 32190895 PMCID: PMC7109003 DOI: 10.1042/bsr20192457] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is a malignant tumor with high mortality in women. Although cancer patients initially respond to paclitaxel chemotherapy following surgery, most patients will relapse after 12-24 months and gradually die from chemotherapy resistance. In OC, cancer cells become resistant to paclitaxel chemotherapy under hypoxic environment. The miR-27a has been identified as an oncogenic molecular in ovarian cancer, prostate cancer, liver cancer etc. In addition, the miR-27a is involved in hypoxia-induced chemoresistance in various cancers. However, the role of miR-27a in hypoxia-induced OC resistance remains unclear. The aim of the present study was to investigate the regulatory mechanism of miR-27a in hypoxia-induced OC resistance. The expression of HIF-1α induced Hypoxia overtly up-regulated. At the same time, hypoxia increased viability of Skov3 cells and decreased cell apoptosis when treated with paclitaxel. The expression of the miR-27a was obviously up-regulated under hypoxia and involved in hypoxia-induced paclitaxel resistance. Follow-up experiments portray that miR-27a improved paclitaxel resistance by restraining the expression of APAF1 in OC. Finally, we further elucidated the important regulatory role of the miR-27a-APAF1 axis in OC through in vivo experiments. According to our knowledge, we first reported the regulation of miR-27a in hypoxia-induced chemoresistance in OC, providing a possible target for chemoresistance treatment of OC.
Collapse
|
65
|
Bacterial, Archaea, and Viral Transcripts (BAVT) Expression in Gynecological Cancers and Correlation with Regulatory Regions of the Genome. Cancers (Basel) 2021; 13:cancers13051109. [PMID: 33807612 PMCID: PMC7961894 DOI: 10.3390/cancers13051109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Microorganisms are found in all human tissues. Some of them are responsible for cancer formation. In our study we found gene expression from bacteria, archaea, and viruses in the upper female genital tract and this expression was associated with ovarian and endometrial cancer. We also found that the expression from these organisms may be involved in regulatory mechanisms of infection and cancer formation. Some of the processes associated with these organisms may affect cancer heterogeneity and be potential targets for cancer therapy. Abstract Bacteria, archaea, and viruses are associated with numerous human cancers. To date, microbiome variations in transcription have not been evaluated relative to upper female genital tract cancer risk. Our aim was to assess differences in bacterial, archaea, and viral transcript (BAVT) expression between different gynecological cancers and normal fallopian tubes. In this case-control study we performed RNA sequencing on 12 normal tubes, 112 serous ovarian cancers (HGSC) and 62 endometrioid endometrial cancers (EEC). We used the centrifuge algorithm to classify resultant transcripts into four indexes: bacterial, archaea, viral, and human genomes. We then compared BAVT expression from normal samples, HGSC and EEC. T-test was used for univariate comparisons (correcting for multiple comparison) and lasso for multivariate modelling. For validation we performed DNA sequencing of normal tubes in comparison to HGSC and EEC BAVTs in the TCGA database. Pathway analyses were carried out to evaluate the function of significant BAVTs. Our results show that BAVT expression levels vary between different gynecological cancers. Finally, we mapped some of these BAVTs to the human genome. Numerous map locations were close to regulatory genes and long non-coding RNAs based on the pathway enrichment analysis. BAVTs may affect gynecological cancer risk and may be part of potential targets for cancer therapy.
Collapse
|
66
|
Chanjiao Y, Chunyan C, Xiaoxin Q, Youjian H. MicroRNA-378a-3p contributes to ovarian cancer progression through downregulating PDIA4. Immun Inflamm Dis 2021; 9:108-119. [PMID: 33159506 PMCID: PMC7860521 DOI: 10.1002/iid3.350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE MicroRNAs, as essential players in tumorigenesis, have been demonstrated to have a revolutionary effect on human cancer research. Ovarian cancer is the primary reason of death among gynecologic malignancies. In view of this, it is significant to identify prognostic and predictive markers for treatment of ovarian cancer. The aim of this study was to probe into the effects of miR-378a-3p and protein disulfide-isomerase A4 (PDIA4) on the biological functions of ovarian cancer cells. METHODS miR-378a-3p expression and PDIA4 messenger RNA expression in human ovarian cancer cells, normal human ovarian epithelial cells, and serum of both ovarian cancer patients and healthy people were detected by reverse transcription-quantitative polymerase chain reaction, and the PDIA4 protein expression was tested by Western blot analysis. Ovarian cancer OVCAR3 and SKOV3 cells were transfected or cotransfected with miR-378a-3p mimic or pcDNA3.1-PDIA4 or their negative control plasmids to explore their roles in biological functions in ovarian cancer cells. Luciferase activity and RIPA assays were implemented to validate the interaction between miR-378a-3p and PDIA4. Western blot analysis was utilized to detect phosphatidylinositol-3 kinase/serine/threonine kinase (PI3K/AKT) signaling pathway-related protein expression and their phosphate expression levels. RESULTS miR-378a-3p was elevated and PDIA4 was decreased in ovarian cancer cells and serum. In addition, miR-378a-3p mimic induced ovarian cancer cell growth, while miR-378a-3p inhibitor and pcDNA3.1-PDIA4 presented an inverse trend. pcDNA3.1-PDIA4 partially eliminated the capabilities of miR-378a-3p mimic on ovarian cancer progression. Meanwhile, miR-378a-3p was found to negatively regulate PDIA4, and miR-378a-3p mimic increased the phosphorylation levels of AKT and PI3K, while pcDNA3.1-PDIA4 exhibited an opposite tendency. Furthermore, pcDNA3.1-PDIA4 largely eliminated the functions of miR-378a-3p mimic on phosphorylation levels of AKT and PI3K. CONCLUSION This study provides evidences that miR-378a-3p activates PI3K/AKT signaling pathway by modulating PDIA4 expression, thereby playing a role in promoting the growth of ovarian cancer cells. This study provides novel directions for targeted therapy of ovarian cancer.
Collapse
Affiliation(s)
- Yao Chanjiao
- No. 3 Department of Obstetrics and GynecologyHunan Provincial People's HospitalChangshaChina
| | - Chen Chunyan
- No. 3 Department of Obstetrics and GynecologyHunan Provincial People's HospitalChangshaChina
| | - Qiu Xiaoxin
- No. 3 Department of Obstetrics and GynecologyHunan Provincial People's HospitalChangshaChina
| | - Han Youjian
- Department of cardiologyHunan Provincial People's HospitalChangshaChina
| |
Collapse
|
67
|
Popova NV, Jücker M. The Role of mTOR Signaling as a Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms22041743. [PMID: 33572326 PMCID: PMC7916160 DOI: 10.3390/ijms22041743] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to summarize current available information about the role of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling in cancer as a potential target for new therapy options. The mTOR and PI3K/AKT/mTORC1 (mTOR complex 1) signaling are critical for the regulation of many fundamental cell processes including protein synthesis, cell growth, metabolism, survival, catabolism, and autophagy, and deregulated mTOR signaling is implicated in cancer, metabolic dysregulation, and the aging process. In this review, we summarize the information about the structure and function of the mTOR pathway and discuss the mechanisms of its deregulation in human cancers including genetic alterations of PI3K/AKT/mTOR pathway components. We also present recent data regarding the PI3K/AKT/mTOR inhibitors in clinical studies and the treatment of cancer, as well the attendant problems of resistance and adverse effects.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
68
|
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M, Qing C. Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 2021; 45:824-834. [PMID: 33432368 PMCID: PMC7859916 DOI: 10.3892/or.2021.7927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
Collapse
Affiliation(s)
- Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Min Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
69
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
70
|
Dasgupta A, Bakshi A, Chowdhury N, De RK. A control theoretic three timescale model for analyzing energy management in mammalian cancer cells. Comput Struct Biotechnol J 2020; 19:477-508. [PMID: 33510857 PMCID: PMC7809419 DOI: 10.1016/j.csbj.2020.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Interaction among different pathways, such as metabolic, signaling and gene regulatory networks, of cellular system is responsible to maintain homeostasis in a mammalian cell. Malfunctioning of this cooperation may lead to many complex diseases, such as cancer and type 2 diabetes. Timescale differences among these pathways make their integration a daunting task. Metabolic, signaling and gene regulatory networks have three different timescales, such as, ultrafast, fast and slow respectively. The article deals with this problem by developing a support vector regression (SVR) based three timescale model with the application of genetic algorithm based nonlinear controller. The proposed model can successfully capture the nonlinear transient dynamics and regulations of such integrated biochemical pathway under consideration. Besides, the model is quite capable of predicting the effects of certain drug targets for many types of complex diseases. Here, energy and cell proliferation management of mammalian cancer cells have been explored and analyzed with the help of the proposed novel approach. Previous investigations including in silico/in vivo/in vitro experiments have validated the results (the regulations of glucose transporter 1 (glut1), hexokinase (HK), and hypoxia-inducible factor-1 α (HIF-1 α ) among others, and the switching of pyruvate kinase (M2 isoform) between dimer and tetramer) generated by this model proving its effectiveness. Subsequently, the model predicts the effects of six selected drug targets, such as, the deactivation of transketolase and glucose-6-phosphate isomerase among others, in the case of mammalian malignant cells in terms of growth, proliferation, fermentation, and energy supply in the form of adenosine triphosphate (ATP).
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Abhisek Bakshi
- Department of Information Technology, Bengal Institute of Technology, Basanti Highway, Kolkata 700150, India
| | - Nirmalya Chowdhury
- Department of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| |
Collapse
|
71
|
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous group of diseases with distinct biological and clinical behaviour. Despite the differences between them, the capability of tumour cells to continuously proliferate and avoid death is maintained among histotypes. This ability is the result of alterations at different levels, causing the deregulation of cell cycle and proliferative-related pathways. Even if the leading role is played by RB and TP53, changes in other molecular pathways are involved in the development of EOC. This ability can be exploited to generate in vitro and in vivo models resembling the conditions of tumour development in a patient. In vivo models, such as patient-derived xenografts (PDX) or genetically engineered mouse models (GEMM), represent a fundamental tool in the study of the molecular mechanisms implicated in each EOC biotype for testing new therapeutic approaches. Herein we describe the major proliferation-related pathways and its disruption found in EOC and how these features can be used to establish in vivo models for translational research. Epithelial ovarian cancer (EOC) molecular biotypes are defined by distinct biology and clinical behaviour. Sustained proliferation and resistance to cell death mechanisms characterised tumour cells. RB and TP53 tumour-suppressor genes are highly implicated in EOC pathogenesis. In vitro and in vivo models have a key role in the study of molecular mechanisms involved in EOC pathogenesis. Development of animal models that mimic disease features constitute essential tools for new drugs testing.
Collapse
|
72
|
Whole exome sequencing and transcriptome-wide profiling identify potentially subtype-relevant genes of nasopharyngeal carcinoma. Pathol Res Pract 2020; 216:153244. [PMID: 33113455 DOI: 10.1016/j.prp.2020.153244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To date, no targeted therapy has been approved for nasopharyngeal carcinoma (NPC), suggesting that comprehensive understanding of genomic changes turns out to be an urgent need to break through the calm of currently known therapies of NPC. METHODS Whole exome sequencing (WES) was performed for 14 NPC patients, including 6 NPC-IIA cases, 8 NPC-IIB cases. The cancer chip expression data named GSE12452 was downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) of each subtype were obtained using the Lima R package. Then gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Protein-protein interaction (PPI) network and Gene Set Enrichment Analysis (GSEA) were performed. Finally 7 potentially subtype relevant genes (PSRGs)1 were obtained. RESULTS In total, 37 clinically relevant mutations (CRMs)2 were obtained from WES. The 2 NPC subtypes exhibited different mutational landscapes, indicating that different NPC subtypes harbor different CRMs. Notably, we discovered that mutations of CCND1 and FGF family appeared simultaneously in 3 NPC-IIB cases, but 0 in NPC-IIA. In addition, 1395 DEGs were identified from GSE12452. PI3K-Akt signaling pathway showed significant enrichment in both the pathway distribution of CRMs and KEGG analysis of DEGs, suggesting that it is a key pathway in the development of NPC. Through PPI analysis of genes involved in the PI3K-Akt pathways and expression significance analysis of DEGs co-expressed by the 2 subtypes, 54 genes finally were screened for expression significance analysis. The GSEA analysis between patients with high and low expression of 11 candidate genes were performed. As a result, 7 PSRGs were selected, including COL4A1, ASB9, RDH10, TNFRSF21, BACE2, EVA1C and LHX2. CONCLUSIONS These results indicate that different NPC subtypes have different genetic changes, suggesting that they may be potential targets for the diagnosis and treatment of NPC, and ultimately point to new strategies for intelligence.
Collapse
|
73
|
Shi Y, He R, Yang Y, He Y, Zhan L, Wei B. Potential relationship between Sirt3 and autophagy in ovarian cancer. Oncol Lett 2020; 20:162. [PMID: 32934730 PMCID: PMC7471650 DOI: 10.3892/ol.2020.12023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (Sirt3) is an important member of the sirtuin protein family. It is a deacetylase that was previously reported to modulate the level of reactive oxygen species (ROS) production and limit the extent of oxidative damage in cellular components. As an important member of the class III type of histone deacetylases, Sirt3 has also been documented to mediate nuclear gene expression, metabolic control, neuroprotection, cell cycle and proliferation. In ovarian cancer (OC), Sirt3 has been reported to regulate cellular metabolism, apoptosis and autophagy. Sirt3 can regulate autophagy through a variety of different molecular signaling pathways, including the p62, 5'AMP-activated protein kinase and mitochondrial ROS-superoxide dismutase pathways. However, autophagy downstream of Sirt3 and its association with OC remains poorly understood. In the present review, the known characteristics of Sirt3 and autophagy were outlined, and their potential functional roles were discussed. Following a comprehensive analysis of the current literature, Sirt3 and autophagy may either serve positive or negative roles in the regulation of OC. Therefore, it is important to identify the appropriate expression level of Sirt3 to control the activation of autophagy in OC cells. This strategy may prove to be a novel therapeutic method to reduce the mortality of patients with OC. Finally, potential research directions into the association between Sirt3 and other signaling pathways were provided.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Runhua He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
74
|
Ruta LL, Farcasanu IC. Saccharomyces cerevisiae and Caffeine Implications on the Eukaryotic Cell. Nutrients 2020; 12:nu12082440. [PMID: 32823708 PMCID: PMC7468979 DOI: 10.3390/nu12082440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Caffeine-a methylxanthine analogue of the purine bases adenine and guanine-is by far the most consumed neuro-stimulant, being the active principle of widely consumed beverages such as coffee, tea, hot chocolate, and cola. While the best-known action of caffeine is to prevent sleepiness by blocking the adenosine receptors, caffeine exerts a pleiotropic effect on cells, which lead to the activation or inhibition of various cell integrity pathways. The aim of this review is to present the main studies set to investigate the effects of caffeine on cells using the model eukaryotic microorganism Saccharomyces cerevisiae, highlighting the caffeine synergy with external cell stressors, such as irradiation or exposure to various chemical hazards, including cigarette smoke or chemical carcinogens. The review also focuses on the importance of caffeine-related yeast phenotypes used to resolve molecular mechanisms involved in cell signaling through conserved pathways, such as target of rapamycin (TOR) signaling, Pkc1-Mpk1 mitogen activated protein kinase (MAPK) cascade, or Ras/cAMP protein kinase A (PKA) pathway.
Collapse
|
75
|
High expression of PTPRM predicts poor prognosis and promotes tumor growth and lymph node metastasis in cervical cancer. Cell Death Dis 2020; 11:687. [PMID: 32826853 PMCID: PMC7443137 DOI: 10.1038/s41419-020-02826-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
The prognosis for cervical cancer (CCa) patients with lymph node metastasis (LNM) is dismal. Elucidation of the molecular mechanisms underlying LNM may provide clinical therapeutic strategies for CCa patients with LNM. However, the precise mechanism of LNM in CCa remains unclear. Herein, we demonstrated that protein tyrosine phosphatase receptor type M (PTPRM), identified from TCGA dataset, was markedly upregulated in CCa with LNM and correlated with LNM. Moreover, PTPRM was an independent prognostic factor of CCa patients in multivariate Cox′s proportional hazards model analysis and associated with poor prognosis. Furthermore, through gain-of-function and loss-of-function approaches, we found that PTPRM promoted CCa cells proliferation, migration, invasion, lymphangiogenesis, and LNM. Mechanistically, PTPRM promoted epithelial–mesenchymal transition (EMT) via Src-AKT signaling pathway and induced lymphangiogenesis in a VEGF-C dependent manner, resulting in LNM of CCa. Importantly, knockdown of PTPRM dramatically reduced LNM in vivo, suggesting that PTPRM plays an important role in the LNM of CCa. Taken together, our findings uncover a novel molecular mechanism in the LNM of CCa and identify PTPRM as a novel prognostic factor and potential therapeutic target for LNM in CCa.
Collapse
|
76
|
Brunetti M, Panagopoulos I, Kostolomov I, Davidson B, Heim S, Micci F. Mutation analysis and genomic imbalances of cells found in effusion fluids from patients with ovarian cancer. Oncol Lett 2020; 20:2273-2279. [PMID: 32782545 PMCID: PMC7400987 DOI: 10.3892/ol.2020.11782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian carcinomas and carcinosarcomas often cause malignant effusions, an accumulation within serous cavities of fluid containing cancer cells. Few studies have focused on the molecular alterations and genetic mechanisms behind effusion formation. The present study investigated the mutation status of TP53, PIK3CA, KRAS, HRAS, NRAS and BRAF in effusion fluids from 103 patients with ovarian cancer. In addition, array Comparative Genomic Hybridization (aCGH) analysis was performed on 20 effusions from patients with high-grade serous carcinoma (10 cases positive for TP53 mutation and 10 with TP53 wild-type). TP53 mutations, two of which were novel: c.826_830delCCTGT and c.475_476GC>TT, were identified in 44% of the cases. Mutations in KRAS, HRAS, and PIK3CA were identified in two, two and four cases, respectively. None of the effusions analysed showed NRAS or BRAF mutations. The aCGH analysis revealed highly imbalanced genomes similar to those described in primary ovarian carcinomas. No specific profile was indicated to distinguish tumors with TP53 mutations from those without. The molecular profiling of cells found in effusion fluids from patients with ovarian cancer thus showed considerable molecular heterogeneity. TP53 seems to be the most frequently mutated gene in these cells and may serve a leading role in the metastatic process.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Ilyá Kostolomov
- Section for Applied Informatics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
77
|
Zhang X, Ishibashi M, Kitatani K, Shigeta S, Tokunaga H, Toyoshima M, Shimada M, Yaegashi N. Potential of Tyrosine Kinase Receptor TIE-1 as Novel Therapeutic Target in High-PI3K-Expressing Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061705. [PMID: 32604863 PMCID: PMC7352248 DOI: 10.3390/cancers12061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Tyrosine kinase receptor TIE-1 plays a critical role in angiogenesis and blood-vessel stability. In recent years, increased TIE-1 expression has been observed in many types of cancers; however, the biological significance and underlying mechanisms remain unknown. Thus, in the present study, we investigated the tumor biological functions of TIE-1 in ovarian cancer. The treatment of SKOV3 ovarian-cancer cells with siRNA against TIE-1 decreased the expression of key molecules in the PI3K/Akt signaling pathway, such as p110α and phospho-Akt, suggesting that TIE-1 is related to the PI3K/Akt pathway. Furthermore, the knockdown of TIE-1 significantly decreased cell proliferation in high-PI3K-expressing cell lines (SKOV3, CAOV3) but not low-PI3K-expressing cell lines (TOV112D, A2780). These results suggested that inhibition of TIE-1 decreases cell growth in high-PI3K-expressing cells. Moreover, in low-PI3K-expressing TOV112D ovarian-cancer cells, TIE-1 overexpression induced PI3K upregulation and promoted a PI3K-mediated cell proliferative phenotype. Mechanistically, TIE-1 participates in cell growth and proliferation by regulating the PI3K/Akt signaling pathway. Taken together, our findings strongly implicate TIE-1 as a novel therapeutic target in high-PI3K-expressing ovarian-cancer cells.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119077, Singapore
- Correspondence: ; Tel.: +81-022-717-7251; Fax: +81-022-717-7258
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 572-8508, Japan;
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki 986-8522, Japan;
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| |
Collapse
|
78
|
Kondo S, Tajimi M, Funai T, Inoue K, Asou H, Ranka VK, Wacheck V, Doi T. Phase 1 dose-escalation study of a novel oral PI3K/mTOR dual inhibitor, LY3023414, in patients with cancer. Invest New Drugs 2020; 38:1836-1845. [PMID: 32578154 PMCID: PMC7575488 DOI: 10.1007/s10637-020-00968-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023]
Abstract
LY3023414 is an oral, selective adenosine triphosphate-competitive inhibitor of class I phosphatidylinositol 3-kinase isoforms, mammalian target of rapamycin, and DNA-protein kinase in clinical development. We report results of a 3 + 3 dose-escalation Phase 1 study for twice-daily (BID) dosing of LY3023414 monotherapy in Japanese patients with advanced malignancies. The primary objective was to evaluate tolerability and safety of LY3023414. Secondary objectives were to evaluate pharmacokinetics and to explore antitumor activity. A total of 12 patients were enrolled and received 150 mg (n = 3) or 200 mg (n = 9) LY3023414 BID. Dose-limiting toxicities were only reported at 200 mg LY3023414 for 2 patients with Grade 3 stomatitis. Common treatment-related adverse events (AEs) across both the dose levels included stomatitis (75.0%), nausea (66.7%), decreased appetite (58.3%), diarrhea, and decreased platelet count (41.7%), and they were mostly mild or moderate in severity. Related AEs Grade ≥ 3 reported for ≥1 patient included anemia, stomatitis, hypophosphatemia, and hyperglycemia (n = 2, 16.7%). Two patients discontinued due to AEs (interstitial lung disease and stomatitis). No fatal events were reported. The pharmacokinetic profile of LY3023414 was characterized by rapid absorption and elimination. Five patients had a best overall response of stable disease (150 mg, n = 3; 200 mg, n = 2) for a 55.6% disease control rate. LY3023414 up to 200 mg BID is tolerable and safe in Japanese patients with advanced malignancies.
Collapse
Affiliation(s)
- Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.
| | | | | | | | | | | | | | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
79
|
Muñoz-Galván S, Carnero A. Targeting Cancer Stem Cells to Overcome Therapy Resistance in Ovarian Cancer. Cells 2020; 9:cells9061402. [PMID: 32512891 PMCID: PMC7349391 DOI: 10.3390/cells9061402] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to its late detection and high recurrence rate. Resistance to conventional platinum-based therapies and metastasis are attributed to a population of cells within tumors called cancer stem cells, which possess stem-like features and are able to recapitulate new tumors. Recent studies have deepened the understanding of the biology of ovarian cancer stem cells and their special properties and have identified multiple markers and signaling pathways responsible for their self-renewal abilities. Targeting cancer stem cells represents the most promising strategy for overcoming therapy resistance and reducing mortality in ovarian cancer, but further efforts must be made to improve our understanding of the mechanisms involved in therapy resistance. In this review, we summarize our current knowledge about ovarian cancer stem cells, their involvement in metastasis and their interactions with the tumor microenvironment; we also discuss the therapeutic approaches that are being developed to target them to prevent tumor relapse.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| |
Collapse
|
80
|
Xiao Y, Yu Y, Jiang P, Li Y, Wang C, Zhang R. The PI3K/mTOR dual inhibitor GSK458 potently impedes ovarian cancer tumorigenesis and metastasis. Cell Oncol (Dordr) 2020; 43:669-680. [PMID: 32382996 DOI: 10.1007/s13402-020-00514-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The PI3K/AKT/mTOR pathway is one of the most highly activated cellular signaling pathways in advanced ovarian cancer. Although several PI3K/AKT/mTOR inhibitors have been developed to treat various types of cancer, the antitumor efficacy of many of these compounds against ovarian cancer has remained unclear. METHODS Here, we tested and compared a panel of 16 PI3K/AKT/mTOR inhibitors (XL765, Miltefosine, Rapamycin, CCI-779, RAD001, FK506, XL147, GSK2110183, IPI-145, GSK2141795, BYL719, GSK458, CAL-101, XL765 analogue SAR245409, Triciribine, and GDC0941) that have entered clinical trials for antitumor activity against ovarian cancer, as well as the front line drug, paclitaxel. Antitumor efficacy was measured in both ovarian cancer cell lines and patient-derived ovarian primary tumor cell lines in vitro and in vivo. RESULTS We identified the PI3K/mTOR dual inhibitor GSK458 as a potent inhibitor of proliferation in all cell lines tested at half maximal inhibitory concentrations (IC50) of approximately 0.01-1 µM, a range tens to hundreds fold lower than that of the other PI3K/AKT/mTOR inhibitors tested. Additionally, GSK458 showed the highest inhibitory efficacy against ovarian cancer cell migration. GSK458 also inhibited tumor growth and metastasis in nude mice intraperitoneally engrafted with SKOV3 cells or a patient-derived tumor cell xenograft (PDCX). Importantly, the inhibitory efficiency of GSK458 on cell proliferation and migration both in vitro and in vivo was comparable to that of paclitaxel. Mechanistically, the anti-tumor activity of GSK458 was found to be associated with inactivation of AKT and mTOR, and induction of cell cycle arrest at the G0/G1 phase. CONCLUSIONS Based on our results, we conclude that GSK458 may serve as an attractive candidate to treat ovarian cancer.
Collapse
Affiliation(s)
- Yangjiong Xiao
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Southern Medical University, 201499, Shanghai, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 510182, Guangzhou, China. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yang Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Pengcheng Jiang
- Department of Gynecology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213004, China
| | - Yuhong Li
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Chao Wang
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Southern Medical University, 201499, Shanghai, China.
| |
Collapse
|
81
|
Huang FL, Liao EC, Li CL, Yen CY, Yu SJ. Pathogenesis of pediatric B-cell acute lymphoblastic leukemia: Molecular pathways and disease treatments. Oncol Lett 2020; 20:448-454. [PMID: 32565969 PMCID: PMC7285861 DOI: 10.3892/ol.2020.11583] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
B-cell acute lymphoblastic lymphoma (B-ALL) is a disease found mainly in children and in young adults. B-ALL is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. In the United States, ~4,000 of these patients are diagnosed each year, accounting for ~30% of childhood cancer types. The tumorigenesis of the disease involves a number of abnormal gene expressions (including TEL-AML1, BCR-ABL-1, RAS and PI3K) leading to dysregulated cell cycle. Risk factors of B-ALL are the history of parvovirus B 19 infection, high birth weight and exposure to environmental toxins. These risk factors can induce abnormal DNA methylation and DNA damages. Treatment procedures are divided into three phases: Induction, consolidation and maintenance. The goal of treatment is complete remission without relapses. Apart from traditional treatments, newly developed approaches include gene targeting therapy, with the aim of wiping out leukemic cells through the inhibition of mitogen-activated protein kinases and via c-Myb inhibition enhancing sensitivity to chemotherapy. To evaluate the efficacy of ongoing treatments, several indicators are currently used. The indicators include the expression levels of microRNAs (miRs) miR-146a, miR-155, miR-181a and miR-195, and soluble interleukin 2 receptor. Multiple drug resistance and levels of glutathione reductase can affect treatment efficacy through the increased efflux of anti-cancer drugs and weakening the effect of chemotherapy through the reduction of intracellular reactive oxygen species. The present review appraised recent studies on B-ALL regarding its pathogenesis, risk factors, treatments, treatment evaluation and causes of disease relapse. Understanding the mechanisms of B-ALL initiation and causes of treatment failure can help physicians improve disease management and reduce relapses.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C.,Department of Physical Therapy, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - En-Chih Liao
- Department of Medicine, Mackay Medical College, Sanzhi, New Taipei 252, Taiwan, R.O.C
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C
| | - Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying, Kaohsiung 813, Taiwan, R.O.C
| |
Collapse
|
82
|
Kok PS, Beale P, O'Connell RL, Grant P, Bonaventura T, Scurry J, Antill Y, Goh J, Sjoquist K, DeFazio A, Mapagu C, Amant F, Friedlander M. PARAGON (ANZGOG-0903): a phase 2 study of anastrozole in asymptomatic patients with estrogen and progesterone receptor-positive recurrent ovarian cancer and CA125 progression. J Gynecol Oncol 2020; 30:e86. [PMID: 31328463 PMCID: PMC6658604 DOI: 10.3802/jgo.2019.30.e86] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/18/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
Objective A subset of patients with recurrent ovarian cancer (ROC) may benefit from antiestrogen therapy with higher response rates reported in tumors that are strongly estrogen receptor (ER)-positive (ER+). PARAGON is a basket trial that incorporates 7 phase 2 trials investigating the activity of anastrozole in patients with ER+ and/or progesterone receptor (PR)-positive (PR+) recurrent/metastatic gynecological cancers. Methods Postmenopausal women with ER+ and/or PR+ ROC, who were asymptomatic and had cancer antigen 125 (CA125) progression after response to first line chemotherapy, where chemotherapy was not clinically indicated. Patients received anastrozole 1 mg daily until progression or unacceptable toxicity. Results Fifty-four patients were enrolled (52 evaluable). Clinical benefit at three months (primary endpoint) was observed in 18 patients (34.6%; 95% confidence interval [CI]=23%–48%). Median progression-free survival (PFS) was 2.7 months (95% CI=2.1–3.1). The median duration of clinical benefit was 6.5 months (95% CI=2.8–11.7). Most patients progressed within 6 months of starting anastrozole but 12 (22%) continued treatment for longer than 6 months. Anastrozole was well tolerated. In the exploratory analysis, ER histoscores and the intensity of ER staining did not correlate with clinical benefit rate or PFS. Conclusion A subset of asymptomatic patients with ER+ and/or PR+ ROC and CA125 progression had durable clinical benefit on anastrozole, with acceptable toxicity. Anastrozole may delay symptomatic progression and the time to subsequent chemotherapy. The future challenge is to identify the subset of patients most likely to benefit from an aromatase inhibitor and whether the clinical benefit could be increased by the addition of other agents.
Collapse
Affiliation(s)
- Peey Sei Kok
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
| | | | - Rachel L O'Connell
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
| | - Peter Grant
- Mercy Hospital for Women, Melbourne, VIC, Australia
| | | | - James Scurry
- Calvary Mater Newcastle, Newcastle, NSW, Australia
| | | | - Jeffrey Goh
- Royal Brisbane and Women's Hospital, Brisbane & University of Queensland, St Lucia, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Katrin Sjoquist
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.,Cancer Care Centre St George Hospital, Sydney, NSW, Australia
| | - Anna DeFazio
- The Westmead Institute for Medical Research, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Sydney, NSW, Australia
| | - Cristina Mapagu
- The Westmead Institute for Medical Research, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Sydney, NSW, Australia
| | - Frederic Amant
- Department of Gynecologic Oncology, UZ Gasthuisberg KU Leuven, Leuven, Belgium
| | - Michael Friedlander
- Prince of Wales Hospital and Royal Hospital for Women, Sydney, NSW, Australia
| | | |
Collapse
|
83
|
Li J, Liu G, Li L, Yao Z, Huang J. Research progress on the effect of autophagy-lysosomal pathway on tumor drug resistance. Exp Cell Res 2020; 389:111925. [DOI: 10.1016/j.yexcr.2020.111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
|
84
|
Ovarian Cancer, Cancer Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9:cells9030719. [PMID: 32183385 PMCID: PMC7140629 DOI: 10.3390/cells9030719] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.
Collapse
|
85
|
Xiang Y, Chen YJ, Yan YB, Liu Y, Qiu J, Tan RQ, Tian Q, Guan L, Niu SS, Xin HW. MiR-186 bidirectionally regulates cisplatin sensitivity of ovarian cancer cells via suppressing targets PIK3R3 and PTEN and upregulating APAF1 expression. J Cancer 2020; 11:3446-3453. [PMID: 32284740 PMCID: PMC7150455 DOI: 10.7150/jca.41135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is a highly lethal malignancy in the female reproductive system. Platinum drugs, represented by cisplatin, are the first-line chemotherapeutic agents for treatment of various malignancies including ovarian cancer, but drug resistance leads to chemotherapy failure. MicroRNAs emerged as promising molecules in reversal of cisplatin resistance. MiR-186 was reported to be downregulated in the cisplatin-resistant ovarian cell lines and miR-186 expression increased cisplatin sensitivity. However, we found the bidirectional regulatory effects of miR-186 on cisplatin sensitivity for the first time that overexpression of miR-186 at low concentration increased the cisplatin sensitivity of ovarian cancer cells A2780/DDP, while high concentration of miR-186 decreased the cisplatin sensitivity. The survival assay in other types of cancer cell lines verified the bidirectional regulatory function of miR-186 on cisplatin sensitivity in dose and cell type dependent manners. MiR-186 suppressed the protein levels of PTEN and PIK3R3 dose-dependently, which are opposite regulatory molecules of the oncogenic AKT pathway. MiR-186 also enhanced the protein levels of apoptotic gene APAF1 dose-dependently. We proposed the final effects of PTEN and APAF1 outweighed PIK3R3 when miR-186 at low concentration so as to increase the cisplatin sensitivity of ovarian cancer cells, while the final effects of PIK3R3 outweighed PTEN and APAF1 when miR-186 at high concentration so as to decrease the cisplatin sensitivity. We concluded the outcome of regulation of these opposite functional molecules contributed to the bidirectional regulatory effects of miR-186 in ovarian cancer cisplatin sensitivity. It deserves more attentions when developing therapeutic strategies based on the bidirectional functional miRNAs.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Ya-Jun Chen
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yun-Bo Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Yu Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Jiao Qiu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Rui-Qiao Tan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Qing Tian
- Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Li Guan
- Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Shuai-Shuai Niu
- Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| |
Collapse
|
86
|
Yuan D, Qian H, Guo T, Ye J, Jin C, Liu X, Jiang L, Wang X, Lin M, Yu H. LncRNA-ATB Promotes the Tumorigenesis of Ovarian Cancer via Targeting miR-204-3p. Onco Targets Ther 2020; 13:573-583. [PMID: 32021299 PMCID: PMC6980864 DOI: 10.2147/ott.s230552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer ranks fifth among the most prevalent cancer type in females all over the world. It is the second most frequent malignant tumor which accounts for 3% of cancer in females. Therefore, to explore the mechanism of carcinogenesis in ovarian cancer is important to develop new treatment methods. It has been previously found that lncRNA-ATB could promote the tumorigenesis of malignant tumors. However, the role of lncRNA-ATB during the progression of ovarian cancer remains unclear. Methods Gene expressions in tissues or cells were detected by using qRT-PCR. Western blot was performed to investigate the protein expressions in ovarian cancer cells. Cell apoptosis was tested by flow cytometry. Moreover, the correction between lncRNA-ATB and miR-204-3p was examined by Dual-luciferase reporter assay and RNA pulldown. Cell proliferation and invasion were detected by CCK-8, Ki-67 staining and transwell assay, respectively. Finally, xenograft mice model was established to confirm the result of in vitro experiments. Results LncRNA-ATB silencing significantly inhibited the proliferation and induced apoptosis of ovarian cancer cells. In addition, luciferase activity suggested that lncRNA-ATB negatively regulated miR-204-3p in ovarian cancer. Besides, Nidogen 1 (NID1) was the direct target of miR-204-3p. Overexpression of NID1 could notably reverse the inhibitory effect of lncRNA-ATB knockdown on the progression of ovarian cancer. Finally, lncRNA-ATB silencing notably attenuated the severity of ovarian cancer in vivo. Conclusion Downregulation of lncRNA-ATB significantly inhibited the tumorigenesis of ovarian cancer in vitro and in vivo, which may serve as a potential novel target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Hua Qian
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Ting Guo
- Center for Molecular Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Jun Ye
- Center for Molecular Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Chunyan Jin
- Center for Molecular Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Li Jiang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Xiaoxiang Wang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Mei Lin
- Scientific Research Office, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| |
Collapse
|
87
|
Zolotovskaia M, Sorokin M, Garazha A, Borisov N, Buzdin A. Molecular Pathway Analysis of Mutation Data for Biomarkers Discovery and Scoring of Target Cancer Drugs. Methods Mol Biol 2020; 2063:207-234. [PMID: 31667773 DOI: 10.1007/978-1-0716-0138-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA mutations govern cancer development. Cancer mutation profiles vary dramatically among the individuals. In some cases, they may serve as the predictors of disease progression and response to therapies. However, the biomarker potential of cancer mutations can be dramatically (several orders of magnitude) enhanced by applying molecular pathway-based approach. We developed Oncobox system for calculation of pathway instability (PI) values for the molecular pathways that are aggregated mutation frequencies of the pathway members normalized on gene lengths and on number of genes in the pathway. PI scores can be effective biomarkers in different types of comparisons, for example, as the cancer type biomarkers and as the predictors of tumor response to target therapies. The latter option is implemented using mutation drug score (MDS) values, which algorithmically rank the drugs capacity of interfering with the mutated molecular pathways. Here, describe the mathematical basis and algorithms for PI and MDS values calculation, validation and implementation. The example analysis is provided encompassing 5956 human tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project, that totally make 2,316,670 mutations in 19,872 genes and 1748 molecular pathways, thus enabling ranking of 128 clinically approved target drugs. Our results evidence that the Oncobox PI and MDS approaches are highly useful for basic and applied aspects of molecular oncology and pharmacology research.
Collapse
Affiliation(s)
- Marianna Zolotovskaia
- Omicsway Corp., Walnut, CA, USA
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim Sorokin
- Omicsway Corp., Walnut, CA, USA
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Nikolay Borisov
- Omicsway Corp., Walnut, CA, USA
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA, USA.
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
88
|
Perez-Juarez CE, Arechavaleta-Velasco F, Zeferino-Toquero M, Alvarez-Arellano L, Estrada-Moscoso I, Diaz-Cueto L. Inhibition of PI3K/AKT/mTOR and MAPK signaling pathways decreases progranulin expression in ovarian clear cell carcinoma (OCCC) cell line: a potential biomarker for therapy response to signaling pathway inhibitors. Med Oncol 2019; 37:4. [PMID: 31713081 DOI: 10.1007/s12032-019-1326-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Abstract
Patients with advanced stage ovarian clear cell carcinoma (OCCC) have a poor prognosis due to resistance to conventional platinum chemotherapy. Recent studies have demonstrated that PI3K/AKT/mTOR and ERK1/2 signaling pathways are involved in this chemoresistance. Progranulin (PGRN) overexpression contributes to cisplatin resistance of epithelial ovarian cancer cell lines. Also, PGRN expression is regulated by AKT/mTOR and ERK1/2 signaling pathways in different cell types. Thus, the present study was designed to identify if PGRN expression is regulated by AKT, mTOR, and ERK1/2 signaling pathways in the OCCC cell line TOV-21G. Cultured TOV-21G cells were incubated with different concentrations of pharmacological cell signaling inhibitors. PGRN expression and phosphorylation of ERK1/2, AKT, and mTOR were assessed by Western blotting. Inhibition of AKT, mTOR, and ERK1/2 significantly reduced PGRN expression. Cell viability was not affected, while cell proliferation significantly decreased with all inhibitors used in this study. These observations demonstrated that inhibition of PI3K/AKT/mTOR and ERK1/2 signaling pathways reduces PGRN expression in TOV-21G cells. Thus, PGRN could be considered as a candidate for explaining the high resistance to platinum-based treatment and a potential biomarker for therapy response to cell signaling inhibitors in patients with OCCC.
Collapse
Affiliation(s)
- Carlos Eduardo Perez-Juarez
- Unidad de Investigacion Medica en Medicina Reproductiva, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Av. Rio Magdalena No. 289, Sexto piso, Tizapan San Angel, 01090, Ciudad de Mexico, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Fabian Arechavaleta-Velasco
- Unidad de Investigacion Medica en Medicina Reproductiva, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Av. Rio Magdalena No. 289, Sexto piso, Tizapan San Angel, 01090, Ciudad de Mexico, Mexico
| | - Moises Zeferino-Toquero
- Departamento de Oncologia Ginecologica, UMAE Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico.,Departamento de Cirugia Oncologica, Hospital de Gineco-Obstetricia No.3, Centro Medico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - Isaias Estrada-Moscoso
- Departamento de Patologia, UMAE Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala", IMSS, Ciudad de Mexico, Mexico
| | - Laura Diaz-Cueto
- Unidad de Investigacion Medica en Medicina Reproductiva, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Av. Rio Magdalena No. 289, Sexto piso, Tizapan San Angel, 01090, Ciudad de Mexico, Mexico.
| |
Collapse
|
89
|
Wang D, Zhou W, Chen J, Wei W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 2019; 234:14460-14472. [PMID: 30710358 DOI: 10.1002/jcp.28215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
90
|
Wu YY, Wu HC, Wu JE, Huang KY, Yang SC, Chen SX, Tsao CJ, Hsu KF, Chen YL, Hong TM. The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:282. [PMID: 31262325 PMCID: PMC6604380 DOI: 10.1186/s13046-019-1282-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Background Lung cancer is the most common cause of cancer-related mortality worldwide despite diagnostic improvements and the development of targeted therapies, notably including epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). The phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling has been shown to contribute to tumorigenesis, tumor progression, and resistance to therapy in most human cancer types, including lung cancer. Here, we explored the therapeutic effects of co-inhibition of PI3K and mTOR in non-small-cell lung cancer (NSCLC) cells with different EGFR status. Methods The antiproliferative activity of a dual PI3K/mTOR inhibitor BEZ235 was examined by the WST-1 assay and the soft agar colony-formation assay in 2 normal cell lines and 12 NSCLC cell lines: 6 expressing wild-type EGFR and 6 expressing EGFR with activating mutations, including exon 19 deletions, and L858R and T790 M point mutations. The combination indexes of BEZ235 with cisplatin or an EGFR-TKI, BIBW2992 (afatinib), were calculated. The mechanisms triggered by BEZ235 were explored by western blotting analysis. The anti-tumor effect of BEZ235 alone or combined with cisplatin or BIBW2992 were also studied in vivo. Results BEZ235 suppressed tumor growth in vitro and in vivo by inducing cell-cycle arrest at G1 phase, but without causing cell death. It also reduced the expression of cyclin D1/D3 by regulating both its transcription and protein stability. Moreover, BEZ235 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells by enhancing or prolonging DNA damage and BIBW2992-induced apoptosis in EGFR-TKI–resistant NSCLC cells containing a second TKI-resistant EGFR mutant. Conclusions The dual PI3K/mTOR inhibition by BEZ235 is an effective antitumor strategy for enhancing the efficacy of chemotherapy or targeted therapy, even as a monotherapy, to restrict tumor growth in lung cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1282-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Clinical Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hung-Chang Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Yong Kang, Tainan, 71004, Taiwan
| | - Jia-En Wu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Si-Xuan Chen
- Institute of Clinical Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Chao-Jung Tsao
- Department of Hematology and Oncology, Chi-Mei Medical Center, Liouying, Tainan, 73657, Taiwan
| | - Keng-Fu Hsu
- Institute of Clinical Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan. .,Clinical Medicine Research Center, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
91
|
Li C, Liang G, Yang S, Sui J, Wu W, Xu S, Ye Y, Shen B, Zhang X, Zhang Y. LncRNA-LOC101928316 contributes to gastric cancer progression through regulating PI3K-Akt-mTOR signaling pathway. Cancer Med 2019; 8:4428-4440. [PMID: 31207155 PMCID: PMC6675725 DOI: 10.1002/cam4.2165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (lncRNA) has played the important function in regulation of various biological processes and in diagnostic value has been widely appreciated. In the present study, we have found that LOC101928316 was significantly downregulated in gastric cancer (GC) tissues specimen, GC cell lines, and associated with the GC patients tumor, node, and metastasis (TNM) stage and degree of differentiation (P < 0.05). LOC101928316 overexpression can significantly inhibit SGC‐7901 cell migration, invasion, and proliferation (P<0.05). LOC101928316 molecular mechanism investigates suggested that LOC101928316 can regulate PI3K‐Akt‐mTOR signaling pathway and change the GC development progression in vivo and in vitro. In vivo experiment also revealed that LOC101928316‐Overexpression can inhibit the tumorigenicity of GC cells in tumor‐burdened experimental nude mice (P < 0.05). LOC101928316 may function as anti‐oncogene and also plays an important role in GC tumorigenesis. Collectively, our data provided the key role of LOC101928316 in the tumorigenesis of GC. In addition, the present study elucidates LOC101928316 potential regulatory network, which may help us to lead a better knowing of the pathogenesis of GC and probe the lncRNA as a novel biomarker to diagnosis and therapy for this malignant tumor.
Collapse
Affiliation(s)
- Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Xiaomei Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yan Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, China
| |
Collapse
|
92
|
Yang M, Zhai Z, Zhang Y, Wang Y. Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer. Arch Gynecol Obstet 2019; 300:703-710. [PMID: 31197441 DOI: 10.1007/s00404-019-05218-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To explore the clinical significance and mechanism of long noncoding RNA (lncRNA) HAGLROS in ovarian cancer. METHODS The expression of HAGLROS in ovarian cancer was verified by online databases and quantitative reverse transcription polymerase chain reaction (qRT-PCR), and its relationship with clinicopathological parameters was analysed. Pearson correlation analysis was used to study the correlation between HAGLROS and miR-100 in ovarian cancer. Meta-analysis was used to explore the expression of miR-100 in ovarian cancer. In addition, we used bioinformatics to explore the target genes of miR-100 and perform functional analysis. RESULTS HAGLROS was significantly upregulated in ovarian cancer (P < 0.001) and was closely related to disease stage (P = 0.033), tumour size (P = 0.032) and poor prognosis (P = 0.019). HAGLROS had a certain diagnostic value in ovarian cancer (area under the curve = 0.751). MiR-100 was negatively correlated with HAGLROS (r = 0.167, P = 0.001) and significantly downregulated in ovarian cancer. Bioinformatics analysis predicted a total of 31 potential target genes that interact with miR-100. These target genes were mainly involved in the regulation of cellular catabolic process, proteoglycan biosynthetic process and positive regulation of proteasomal ubiquitin-dependent protein catabolic process. Among them, mTOR and ZNRF2 are hub genes. CONCLUSION HAGLROS is a potential biomarker for early diagnosis and prognosis evaluation of ovarian cancer. It can be used as a molecular sponge of miR-100 to regulate the expression of mTOR and ZNRF2 and affect the signal transduction of the mTOR pathway. HAGLROS is expected to be a new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Meiqin Yang
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450000, Henan, China
| | - Zhensheng Zhai
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Yunfeng Zhang
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450000, Henan, China
| | - Yue Wang
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
93
|
Revisiting mTOR inhibitors as anticancer agents. Drug Discov Today 2019; 24:2086-2095. [PMID: 31173912 DOI: 10.1016/j.drudis.2019.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates a variety of cellular processes, influencing diverse pathological conditions including a variety of cancers. Accordingly, therapies that target mTOR as anticancer agents benefit patients in various clinical settings. It is therefore important to fully investigate mTOR signaling at a molecular level and corresponding mTOR inhibitors to identify additional clinical opportunities of targeting mTOR in cancers. In this review, we introduce the function and regulation of the mTOR signaling pathway and organize and summarize the different roles of mTOR in cancers and a variety of mTOR inhibitors that can be used as anticancer agents. This article aims to enlighten and guide the development of mTOR-targeted anticancer agents in the future.
Collapse
|
94
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59:147-160. [PMID: 31128298 DOI: 10.1016/j.semcancer.2019.05.012] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023]
Abstract
Ovarian cancer (OC) is a lethal gynecological cancer. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the regulation of cell survival, growth, and proliferation. Irregularities in the major components of the PI3K/AKT/mTOR signaling pathway are common in human cancers. Despite the availability of strong pre-clinical and clinical data of PI3K/AKT/mTOR pathway inhibitors in OC, there is no FDA approved inhibitor available for the treatment of OC. Here, we outline the importance of PI3K/AKT/mTOR signaling pathway in OC tumorigenesis, proliferation and progression, and pre-clinical and clinical experience with several PI3K/AKT/mTOR pathway inhibitors in OC.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Sameera Ranganath Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| |
Collapse
|
95
|
Di X, Jin X, Ma H, Wang R, Cong S, Tian C, Liu J, Zhao M, Li R, Wang K. The Oncogene IARS2 Promotes Non-small Cell Lung Cancer Tumorigenesis by Activating the AKT/MTOR Pathway. Front Oncol 2019; 9:393. [PMID: 31157169 PMCID: PMC6528107 DOI: 10.3389/fonc.2019.00393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
A limited number of studies have indicated an association between isoleucyl-tRNA synthetase 2 (IARS2) and tumorigenesis. We evaluated IARS2 protein expression in lung tumor tissues and paired non-tumor tissues. We found higher IARS2 expression in the tumor tissues, which was associated with the late Tumor and Node stages of the Tumor, Node, Metastasis staging system. Silencing IARS2 inhibited the activity of A549 and H1299 cells, resulting in G0/G1 stasis of A549 cells and mitochondrial apoptosis. IARS2 silencing was also found to inhibit NSCLC tumor growth in nude mice. Complementary DNA microarray analysis revealed 742 differentially expressed genes (507 upregulated and 235 downregulated) in IARS2-silenced A549 cells compared to controls. Ingenuity Pathway Analysis of the differential expression data suggested that multiple pathways are associated with IARS2 silencing in NSCLC cells; upstream analysis predicted the activation or inhibition of transcriptional regulators. Correlation analysis revealed that AKT and MTOR activities were significantly inhibited in IARS2-silenced cells, but were partially restored by the AKT-stimulating agent SC79. IARS2 appears to regulate lung cancer cell proliferation via the AKT/MTOR pathway. Our results help clarify the complex roles of IARS2 in tumorigenesis and suggest that it may be a novel regulator of lung cancer development.
Collapse
Affiliation(s)
- Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.,Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Ruimin Wang
- Department of Operation Room, The Second Hospital of Jilin University, Changchun, China
| | - Shan Cong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Chang Tian
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jiaying Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Min Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
96
|
Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 2019; 228:167-175. [PMID: 31029778 DOI: 10.1016/j.lfs.2019.04.046] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS), a multisystem disease, is a major reason for female infertility around the world. It is no longer considered simply as a disease of ovary. Now researchers growing awareness of the multisystem features of this disease. PCOS has a higher relationship with metabolic disturbance and hypothalamic-pituitary-ovarian axis (HPOA) function disorders. This syndrome results in hyperandrogenemia (HA), hyperinsulinemia/insulin resistance (IR), increased estrone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ratio imbalance, infertility, cardiovascular diseases, endometrial dysfunction, obesity, and including a litany of other health issues. Furthermore, PCOS has been garnered in recent times. Interventions like metformin, orlistat, hormonal contraceptives, GLP1 agonists, and VitD have been applied to ameliorate or reverse the pathological characterization of PCOS. Moreover, drug-combined therapy of PCOS is superior to single drug administration. This review will focus on the recent progress in pathogenesis and therapy of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, PR China; Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan 410078, PR China
| | - Changye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yan Ma
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Guifang Luo
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yukun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China.
| | - Daichao Wu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China; University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| |
Collapse
|
97
|
Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch Gynecol Obstet 2019; 299:1627-1639. [PMID: 31006841 DOI: 10.1007/s00404-019-05058-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE Curcumin (Cur), a yellow-colored dietary flavor from the plant (Curcuma longa), has been demonstrated to potentially resist diverse diseases, including ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with curcumin resistance in ovarian cancer still remains unclear. The aim of our study was to investigate the effects of curcumin on autophagy in ovarian cancer cells and elucidate the underlying mechanism. METHODS In our study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), EdU proliferation assay and colony-forming assay were used to assess cell viability. Apoptosis was detected by western blot and flow cytometric analysis of apoptosis. Autophagy was defined by both electron microscopy and immunofluorescence staining markers such as microtubule-associated protein 1 light chain 3 (LC3). Plasmid construction and shRNA transfection helped us to confirm the function of curcumin. RESULTS Curcumin reduced cell viability and induced apoptotic cell death by MTT assay in human ovarian cancer cell lines SK-OV-3 and A2780 significantly. Electron microscopy, western blot and immunofluorescence staining proved that curcumin could induce protective autophagy. Moreover, treatment with autophagy-specific inhibitors or stable knockdown of LC3B by shRNA could markedly enhance curcumin-induced apoptosis. Finally, the cells transiently transfected with AKT1 overexpression plasmid demonstrated that autophagy had a direct relationship with the AKT/mTOR/p70S6K pathway. CONCLUSIONS Curcumin can induce protective autophagy of human ovarian cancer cells by inhibiting the AKT/mTOR/p70S6K pathway, indicating the synergistic effects of curcumin and autophagy inhibition as a possible strategy to overcome the limits of current therapies in the eradication of epithelial ovarian cancer.
Collapse
|
98
|
Poly (ADP-ribose) polymerase inhibitors combined with other small-molecular compounds for the treatment of ovarian cancer. Anticancer Drugs 2019; 30:554-561. [PMID: 30998513 DOI: 10.1097/cad.0000000000000793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ovarian cancer is a heterogeneous disease with complex molecular and genetic hallmarks. Benefitting from profound understanding of molecular mechanisms in ovarian cancer pathogenesis, novel targeted drugs have been actively explored in preclinical studies and clinical trials. Considered as one of the most potent and effective targeted therapies for the treatment of ovarian cancer, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) take advantages of synthetic lethality mechanisms to prevent DNA damage repair in cancer cells and cause their death, especially in cancers with BRCA mutations. Mounting evidence has indicated that the combination of PARPis with cytotoxic drugs or other targeted drugs has shown favorable synergistic effects. Excitingly, the antitumor activity of combination therapy of PARPis has been actively tested in multiple clinical trials and in-vitro or in-vivo experiments. In this review, we will briefly discuss the molecular mechanisms of PARPis combined with other therapeutic small-molecular compounds for the treatment of ovarian cancer.
Collapse
|
99
|
Dereli Eke E, Arga KY, Dikicioglu D, Eraslan S, Erkol E, Celik A, Kirdar B, Di Camillo B. Identification of Novel Components of Target-of-Rapamycin Signaling Pathway by Network-Based Multi-Omics Integrative Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:274-284. [PMID: 30985253 DOI: 10.1089/omi.2019.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Target of rapamycin (TOR) is a major signaling pathway and regulator of cell growth. TOR serves as a hub of many signaling routes, and is implicated in the pathophysiology of numerous human diseases, including cancer, diabetes, and neurodegeneration. Therefore, elucidation of unknown components of TOR signaling that could serve as potential biomarkers and drug targets has a great clinical importance. In this study, our aim is to integrate transcriptomics, interactomics, and regulomics data in Saccharomyces cerevisiae using a network-based multiomics approach to enlighten previously unidentified, potential components of TOR signaling. We constructed the TOR-signaling protein interaction network, which was used as a template to search for TOR-mediated rapamycin and caffeine signaling paths. We scored the paths passing from at least one component of TOR Complex 1 or 2 (TORC1/TORC2) using the co-expression levels of the genes in the transcriptome data of the cells grown in the presence of rapamycin or caffeine. The resultant network revealed seven hitherto unannotated proteins, namely, Atg14p, Rim20p, Ret2p, Spt21p, Ylr257wp, Ymr295cp, and Ygr017wp, as potential components of TOR-mediated rapamycin and caffeine signaling in yeast. Among these proteins, we suggest further deciphering of the role of Ylr257wp will be particularly informative in the future because it was the only protein whose removal from the constructed network hindered the signal transduction to the TORC1 effector kinase Npr1p. In conclusion, this study underlines the value of network-based multiomics integrative data analysis in discovering previously unidentified components of the signaling networks by revealing potential components of TOR signaling for future experimental validation.
Collapse
Affiliation(s)
- Elif Dereli Eke
- 1 Department of Information Engineering, University of Padua, Padua, Italy
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- 3 Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Duygu Dikicioglu
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- 4 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Serpil Eraslan
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- 5 Diagnostic Centre for Genetic Diseases, Koc University Hospital, Istanbul, Turkey
| | - Emir Erkol
- 6 Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Arzu Celik
- 6 Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Betul Kirdar
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Barbara Di Camillo
- 1 Department of Information Engineering, University of Padua, Padua, Italy
| |
Collapse
|
100
|
Wang WY, Cao YX, Zhou X, Wei B, Zhan L, Sun SY. Stimulative role of ST6GALNAC1 in proliferation, migration and invasion of ovarian cancer stem cells via the Akt signaling pathway. Cancer Cell Int 2019; 19:86. [PMID: 30996686 PMCID: PMC6451308 DOI: 10.1186/s12935-019-0780-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer is known as one of the most common cancers in the world among women. ST6GALNAC1 is highly expressed in cancer stem cells (CSCs), which correlates to high tumor-initiating, self-renewal and differentiation abilities. This present study aims to investigate how ST6GALNAC1 affects ovarian cancer stem cells (OCSCs). Methods In order to identify the differentially expressed genes related to ovarian cancer, microarray-based gene expression profiling of ovarian cancer was used, and ST6GALANC1 was one of the identified targets. After that, levels of ST6GALNAC1 in OCSCs and ovarian cancer cells were examined. Subsequently, an Akt signaling pathway inhibitor LY294002 was introduced into the cluster of differentiation 90+ (CD90+) stem cells, and cell proliferation, migration and invasion, levels of CXCL16, EGFR, CD44, Nanog and Oct4, as well as tumorigenicity of OCSCs were examined. Results By using a comprehensive microarray analysis, it was determined that ST6GALNAC1 was highly expressed in ovarian cancer and it regulated the Akt signaling pathway. High levels of ST6GALNAC1 were observed in OCSCs and ovarian cancer cells. Silencing ST6GALNAC1 was shown to be able to reduce cell proliferation, migration, invasion, self-renewal ability, tumorigenicity of OCSCs. In accordance with these results, the effects of ST6GALNAC1 in OCSCs were dependent on the Akt signaling pathway. Conclusions When taken together, our findings defined the potential stimulative roles of ST6GALNAC1 in ovarian cancer and OCSCs, which relied on the Akt signaling pathway.
Collapse
Affiliation(s)
- Wen-Yan Wang
- 1Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Hefei, 230601 People's Republic of China.,2Teaching and Research Group of Obstetrics & Gynecology, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Yun-Xia Cao
- 2Teaching and Research Group of Obstetrics & Gynecology, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Xiao Zhou
- 3Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601 People's Republic of China
| | - Bing Wei
- 1Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Hefei, 230601 People's Republic of China
| | - Lei Zhan
- 1Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Hefei, 230601 People's Republic of China
| | - Shi-Ying Sun
- 1Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Hefei, 230601 People's Republic of China
| |
Collapse
|