51
|
Napiórkowska T, Kobak J, Napiórkowski P, Templin J. The effect of temperature and light on embryogenesis and post-embryogenesis of the spider Eratigena atrica (Araneae, Agelenidae). J Therm Biol 2017; 72:26-32. [PMID: 29496011 DOI: 10.1016/j.jtherbio.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 11/19/2022]
Abstract
Embryogenesis and post-embryogenesis of spiders depend on several environmental factors including light and temperature. This study was aimed at evaluating the impact of different thermal and lighting conditions on embryonic and early post-embryonic development of Eratigena atrica. Embryos, larvae, nymphs I and II were incubated at constant temperatures of 12, 22, 25 and 32°C under three different light regimes: light, dark, light/dark. Extreme temperatures (12 and 32°C) significantly increased mortality of embryos (to 100%) and nymphs II, whereas larvae and nymphs I suffered reduced survival only at the lowest temperature. Moreover, the lowest temperature reduced the development rate of all stages. The impact of light conditions was less pronounced and more variable: constant light reduced the survival of nymphs I at lower temperatures, but increased that of larvae. Moreover, light increased the time of embryonic development and duration of nymphal stages, particularly at lower temperatures (12-22°C). Thus, the most optimal locations for spiders seem to be dark (though except larval stage) and warm (25°C) sites, where their development is fastest and mortality lowest.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland.
| | - Jarosław Kobak
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland
| | - Paweł Napiórkowski
- Department of Hydrobiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland
| | - Julita Templin
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland
| |
Collapse
|
52
|
Königsmann T, Turetzek N, Pechmann M, Prpic NM. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum. Dev Genes Evol 2017; 227:389-400. [PMID: 29116381 DOI: 10.1007/s00427-017-0595-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.
Collapse
Affiliation(s)
- Tatiana Königsmann
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Research Group Molecular Organogenesis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Natascha Turetzek
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Zelluläre Neurobiologie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Matthias Pechmann
- Biozentrum Köln, Institut für Zoologie, Abteilung für Entwicklungsbiologie, Universität zu Köln, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
53
|
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. eLife 2017; 6. [PMID: 28849761 PMCID: PMC5574703 DOI: 10.7554/elife.27590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
Collapse
Affiliation(s)
- Matthias Pechmann
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthew A Benton
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Nico Posnien
- Department of Developmental Biology, University of Goettingen, Goettingen, Germany
| | - Siegfried Roth
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
54
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017. [PMID: 28756775 DOI: 10.1186/s12915-017-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
- Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
55
|
Trabalon M, Ruhland F, Laino A, Cunningham M, Garcia F. Embryonic and post-embryonic development inside wolf spiders’ egg sac with special emphasis on the vitellus. J Comp Physiol B 2017; 188:211-224. [DOI: 10.1007/s00360-017-1120-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022]
|
56
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017; 15:62. [PMID: 28756775 PMCID: PMC5535294 DOI: 10.1186/s12915-017-0399-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. Results We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Conclusions Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0399-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.,Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.,Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark.,Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
57
|
Setton EVW, March LE, Nolan ED, Jones TE, Cho H, Wheeler WC, Extavour CG, Sharma PP. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev Biol 2017; 430:224-236. [PMID: 28764892 DOI: 10.1016/j.ydbio.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The deutocerebral (second) head segment is putatively homologous across Arthropoda, in spite of remarkable disparity of form and function of deutocerebral appendages. In Mandibulata this segment bears a pair of sensory antennae, whereas in Chelicerata the same segment bears a pair of feeding appendages called chelicerae. Part of the evidence for the homology of deutocerebral appendages is the conserved function of homothorax (hth), which has been shown to specify antennal or cheliceral fate in the absence of Hox signaling, in both mandibulate and chelicerate exemplars. However, the genetic basis for the morphological disparity of antenna and chelicera is not understood. To test whether downstream targets of hth have diverged in a lineage-specific manner, we examined the evolution of the function and expression of spineless (ss), which in two holometabolous insects is known to act as a hth target and distal antennal determinant. Toward expanding phylogenetic representation of gene expression data, here we show that strong expression of ss is observed in developing antennae of a hemimetabolous insect, a centipede, and an amphipod crustacean. By contrast, ss orthologs are not expressed throughout the cheliceral limb buds of spiders or harvestmen during developmental stages when appendage fate is specified. RNA interference-mediated knockdown of ss in Oncopeltus fasciatus, which bears a simple plesiomorphic antenna, resulted in homeotic distal antenna-to-leg transformation, comparable to data from holometabolous insect counterparts. Knockdown of hth in Oncopeltus fasciatus abrogated ss expression, suggesting conservation of upstream regulation. These data suggest that ss may be a flagellar (distal antennal) determinant more broadly, and that this function was acquired at the base of Mandibulata.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Holly Cho
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
58
|
Turetzek N, Khadjeh S, Schomburg C, Prpic NM. Rapid diversification of homothorax expression patterns after gene duplication in spiders. BMC Evol Biol 2017; 17:168. [PMID: 28709396 PMCID: PMC5513375 DOI: 10.1186/s12862-017-1013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Gene duplications provide genetic material for the evolution of new morphological and physiological features. One copy can preserve the original gene functions while the second copy may evolve new functions (neofunctionalisation). Gene duplications may thus provide new genes involved in evolutionary novelties. Results We have studied the duplicated homeobox gene homothorax (hth) in the spider species Parasteatoda tepidariorum and Pholcus phalangioides and have compared these data with previously published data from additional spider species. We show that the expression pattern of hth1 is highly conserved among spiders, consistent with the notion that this gene copy preserves the original hth functions. By contrast, hth2 has a markedly different expression profile especially in the prosomal appendages. The pattern in the pedipalps and legs consists of several segmental rings, suggesting a possible role of hth2 in limb joint development. Intriguingly, however, the hth2 pattern is much less conserved between the species than hth1 and shows a species specific pattern in each species investigated so far. Conclusions We hypothesise that the hth2 gene has gained a new patterning function after gene duplication, but has then undergone a second phase of diversification of its new role in the spider clade. The evolution of hth2 may thus provide an interesting example for a duplicated gene that has not only contributed to genetic diversity through neofunctionalisation, but beyond that has been able to escape evolutionary conservation after neofunctionalisation thus forming the basis for further genetic diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1013-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natascha Turetzek
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Current address: Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Zelluläre Neurobiologie, 37077, Göttingen, Germany
| | - Sara Khadjeh
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Present address: Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Christoph Schomburg
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany. .,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.
| |
Collapse
|
59
|
Janssen R, Budd GE. Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Dev Biol 2017; 427:155-164. [DOI: 10.1016/j.ydbio.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022]
|
60
|
Abstract
Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system (e.g., sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition.
Collapse
|
61
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
62
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
63
|
Feitosa NM, Pechmann M, Schwager EE, Tobias-Santos V, McGregor AP, Damen WGM, Nunes da Fonseca R. Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 2017; 55. [PMID: 28432834 DOI: 10.1002/dvg.23033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Matthias Pechmann
- Institute for Developmental Biology, University of Cologne, Cologne, North-Rhine Westphalia, 50674, Germany
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, Massachusetts, 01854
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Wim G M Damen
- Department of Genetics, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), 21941-599 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
64
|
Turetzek N, Prpic NM. Observations on germ band development in the cellar spider Pholcus phalangioides. Dev Genes Evol 2016; 226:413-422. [PMID: 27581033 DOI: 10.1007/s00427-016-0562-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
Most recent studies of spider embryonic development have focused on representatives of the species-rich group of entelegyne spiders (over 80 % of all extant species). Embryogenesis in the smaller spider groups, however, is less well studied. Here, we describe the development of the germ band in the spider species Pholcus phalangioides, a representative of the haplogyne spiders that are phylogenetically the sister group of the entelegyne spiders. We show that the transition from radially symmetric embryonic anlage to the bilaterally symmetric germ band involves the accumulation of cells in the centre of the embryonic anlage (primary thickening). These cells then disperse all across the embryonic anlage. A secondary thickening of cells then appears in the centre of the embryonic anlage, and this thickening expands and forms the segment addition zone. We also confirm that the major part of the opisthosoma initially develops as a tube shaped structure, and its segments are then sequentially folded down on the yolk during inversion. This special mode of opisthosoma formation has not been reported for entelegyne spiders, but a more comprehensive sampling of this diverse group is necessary to decide whether this peculiarity is indeed lacking in the entelegyne spiders.
Collapse
Affiliation(s)
- Natascha Turetzek
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung für Entwicklungsbiologie, 37077, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung für Entwicklungsbiologie, 37077, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
65
|
Farley RD. Book lung development in embryos of the cobweb spider, Parasteatoda tepidariorum C. L. Koch, 1841 (Araneomorphae, Theridiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:562-584. [PMID: 27693811 DOI: 10.1016/j.asd.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Light and transmission electron microscopy were used to study the development of book lungs in embryos of the spider Parasteatoda tepidariorum. There is a bilateral cluster of temporary lamellae that form just posterior to the second opisthosomal (O2) limb buds. These lamellae are replaced by advanced embryo (AE) book lungs that continue into postembryonic stages. Results herein agree with earlier suggestions that the O2 limb buds become the AE book lungs. Each O2 limb bud merges with the ventral surface of the O2 segment, where the limb bud/book lung is internalized by covering with epidermis. A strand of tissue (entapophysis) from the epidermis at the posterior opisthosoma provides precursor cells for the book lung lamellae, and possibly entapophysis cells induce limb bud cells to align and produce lamellae. Electron micrographs show the different modes (I-III) of lumen formation. The result is a spiracle, atrium and alternating air and hemolymph channels. A hypothesis is presented for the role of precursor cell polarity in producing the planar tissue polarity of the channels. Some type of apical/apical affinity results in air channels, while basal/basal affinity results in hemolymph channels. Strong basal/basal affinity is likely as opposed cells in hemolymph channels extend basal processes that span the channel and start pillar trabeculae that continue in postembryonic stages.
Collapse
Affiliation(s)
- Roger D Farley
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
66
|
Horváth B, Betancourt AJ, Kalinka AT. A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster. BMC Evol Biol 2016; 16:200. [PMID: 27717305 PMCID: PMC5054588 DOI: 10.1186/s12862-016-0776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Embryogenesis is a highly conserved, canalized process, and variation in the duration of embryogenesis (DOE), i.e., time from egg lay to hatching, has a potentially profound effect on the outcome of within- and between-species competition. There is both intra- and inter-specific variation in this trait, which may provide important fuel for evolutionary processes, particularly adaptation. However, while genetic variation underlying simpler morphological traits, or with large phenotypic effects is well described in the literature, less is known about the underlying genetics of traits, such as DOE, partly due to a lack of tools with which to study them. RESULTS Here, we establish a novel microscope-based assay to survey genetic variation for the duration of embryogenesis (DOE). First, to establish the potential importance of DOE in competitive fitness, we performed a set of experiments where we experimentally manipulated the time until hatching, and show that short hatching times result in priority effect in the form of improved larval competitive ability. We then use our assay to measure DOE for 43 strains from the Drosophila Genetic Reference Panel (DGRP). Our assay greatly simplifies the measurement of DOE, making it possible to precisely quantify this trait for 59,295 individual embryos (mean ± S.D. of 1103 ± 293 per DGRP strain, and 1002 ± 203 per control). We find extensive genetic variation in DOE, with a 15 % difference in rate between the slowest and fastest strains measured, and 89 % of phenotypic variation due to DGRP strain. Using sequence information from the DGRP, we perform a genome-wide association study, which suggests that some well-known developmental genes affect the speed of embryonic development. CONCLUSIONS We showed that the duration of embryogenesis (DOE) can be efficiently and precisely measured in Drosophila, and that the DGRP strains show remarkable variation in DOE. A genome-wide analysis suggests that some well-known developmental genes are potentially associated with DOE. Further functional assays, or transcriptomic analysis of embryos from the DGRP, can validate the role of our candidates in early developmental processes.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria. .,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Andrea J Betancourt
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
67
|
Whittle CA, Extavour CG. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2722-36. [PMID: 27017527 PMCID: PMC5630913 DOI: 10.1093/gbe/evw068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University Department of Molecular and Cellular Biology, Harvard University
| |
Collapse
|
68
|
Pechmann M, Schwager EE, Turetzek N, Prpic NM. Regressive evolution of the arthropod tritocerebral segment linked to functional divergence of the Hox gene labial. Proc Biol Sci 2016; 282:rspb.2015.1162. [PMID: 26311666 DOI: 10.1098/rspb.2015.1162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intercalary segment is a limbless version of the tritocerebral segment and is present in the head of all insects, whereas other extant arthropods have retained limbs on their tritocerebral segment (e.g. the pedipalp limbs in spiders). The evolutionary origin of limb loss on the intercalary segment has puzzled zoologists for over a century. Here we show that an intercalary segment-like phenotype can be created in spiders by interfering with the function of the Hox gene labial. This links the origin of the intercalary segment to a functional change in labial. We show that in the spider Parasteatoda tepidariorum the labial gene has two functions: one function in head tissue maintenance that is conserved between spiders and insects, and a second function in pedipalp limb promotion and specification, which is only present in spiders. These results imply that labial was originally crucial for limb formation on the tritocerebral segment, but that it has lost this particular subfunction in the insect ancestor, resulting in limb loss on the intercalary segment. Such loss of a subfunction is away to avoid adverse pleiotropic effects normally associated with mutations in developmental genes, and may thus be a common mechanism to accelerate regressive evolution.
Collapse
|
69
|
Pechmann M. Formation of the germ-disc in spider embryos by a condensation-like mechanism. Front Zool 2016; 13:35. [PMID: 27525029 PMCID: PMC4982120 DOI: 10.1186/s12983-016-0166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. Results Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. Conclusions The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Pechmann
- University of Cologne, Cologne Biocenter, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
70
|
Leite DJ, Ninova M, Hilbrant M, Arif S, Griffiths-Jones S, Ronshaugen M, McGregor AP. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2133-44. [PMID: 27324919 PMCID: PMC4987109 DOI: 10.1093/gbe/evw143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | | | | | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| |
Collapse
|
71
|
Napiórkowska T, Napiórkowski P, Templin J, Wołczuk K. Bicephality, a seldom occurring developmental deformity in Tegenaria atrica caused by alternating temperatures. J Therm Biol 2016; 60:125-31. [PMID: 27503724 DOI: 10.1016/j.jtherbio.2016.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/05/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022]
Abstract
The experiment was aimed at demonstrating the relationship between deformities of the front part of the prosoma accompanied by changes in the brain structure in bicephalous Tegenaria atrica and exposure of their embryos to temperature fluctuations. By exposing spider embryos to alternating temperatures of 14 and 32°C for the first 10 days of embryonic development, we obtained eight two-headed individuals, subsequently divided into three groups according to morphological differences. We described in detail morphological abnormalities of the prosoma identified in members of each group. Histological examination confirmed a close relationship between morphological deformities and the brain structure of teratogenically changed spiders. The fusion of appendages (pedipalps and chalicerae) was accompanied by the fusion of corresponding ganglia. The absence of appendages (pedipalps) was accompanied by the absence of corresponding ganglia. This correlation may have resulted from previously impaired neuromere development which led to changes in the morphological structure of the prosoma. Since no deformities were identified in control animals, it can be concluded that bicephaly was caused by exposing embryos to alternating temperatures.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland.
| | - Paweł Napiórkowski
- Department of Hydrobiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Julita Templin
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Wołczuk
- Department of Vertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Lwowska 1, Poland
| |
Collapse
|
72
|
Friesen KJ, Dixon M, Lysyk TJ. Embryo Development and Morphology of the Rocky Mountain Wood Tick (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:279-289. [PMID: 26668102 DOI: 10.1093/jme/tjv193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dermacentor andersoni Stiles embryogenesis was observed using fluorescent and scanning electron microscopy for eggs held under laboratory conditions (25°C and at 93% relative humidity). Early embryonic cell divisions appeared to be synchronous and holoblastic, giving rise to a uniform blastoderm surrounding the yolk. The cells of the blastoderm became concentrated on one side of the embryo, forming the segmented germ band. Distinct opisthosomal and prosomal segment morphologies, which are characteristic of chelicerate embryos, were observed during germ band elongation. Mouth and leg appendages grew from the prosomal segments. As development progressed, the segments were fused into the idiosoma and capitulum of the free-living larval form. An embryo staging system was established based on embryo developmental morphology and the timing of morphogenetic events. The staging system will serve as a basis for future studies directed at understanding morphogenetic mechanisms or for observing the impact of abiotic factors, such as temperature or humidity, on tick development.
Collapse
|
73
|
Hartmann K, Laumann M, Bergmann P, Heethoff M, Schmelzle S. Development of the synganglion and morphology of the adult nervous system in the miteArchegozetes longisetosusAoki (Chelicerata, Actinotrichida, Oribatida). J Morphol 2016; 277:537-48. [DOI: 10.1002/jmor.20517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Konstantin Hartmann
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin; Philippstraße 13 Haus 6 Berlin 10115 Germany
| | - Michael Laumann
- Electron Microscopy Center, University of Konstanz, Universitaetsstrasse 10; Konstanz 78457 Germany
| | - Paavo Bergmann
- Evolutionary Biology of Invertebrates, University of Tuebingen, Auf Der Morgenstelle 28E; Tuebingen 72076 Germany
| | - Michael Heethoff
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| | - Sebastian Schmelzle
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| |
Collapse
|
74
|
Schönauer A, Paese CLB, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, Eibner C, Damen WGM, McGregor AP. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development 2016; 143:2455-63. [DOI: 10.1242/dev.131656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022]
Abstract
In short germ arthropods, posterior segments are added sequentially from a growth zone or segment addition zone (SAZ) during embryogenesis. Studies in spiders such as the common house spider, Parasteatoda tepidariorum, have provided insights into the gene regulatory network (GRN) that underlies the development of the SAZ, and revealed the involvement of two important signalling pathways. It was shown that Wnt8 maintains a pool of undifferentiated cells in the SAZ, but this ligand is also required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and subsequently regulate segment addition. Here we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of the segmentation genes even-skipped (eve) and runt-1 (run-1), at least in part via the transcription factor encoded by caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium. Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but not sufficient to regulate the expression of the pair-rule genes eve and run-1. Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods including insects.
Collapse
Affiliation(s)
- Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christian L. B. Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Daniel J. Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Evelyn E. Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside St., Lowell, MA 01854, USA
| | - Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Universidade Federal do Rio de Janeiro- UFRJ/NUPEM-Campus Macaé
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Wim G. M. Damen
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
75
|
Chipman AD. An embryological perspective on the early arthropod fossil record. BMC Evol Biol 2015; 15:285. [PMID: 26678148 PMCID: PMC4683962 DOI: 10.1186/s12862-015-0566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. RESULTS I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. CONCLUSIONS The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel. .,The Department of Paleobiology, The Smithsonian Museum of Natural History, Washington, DC, USA.
| |
Collapse
|
76
|
Gonzaga MO, Cardoso JC, Vasconcellos-Neto J. Do parasitoids explain differential abundance of two syntopic orb-weaver spiders (Araneae: Araneidae)? ACTA OECOLOGICA 2015. [DOI: 10.1016/j.actao.2015.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
77
|
Edgar A, Bates C, Larkin K, Black S. Gastrulation occurs in multiple phases at two distinct sites in Latrodectus and Cheiracanthium spiders. EvoDevo 2015; 6:33. [PMID: 26500757 PMCID: PMC4618530 DOI: 10.1186/s13227-015-0029-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The longstanding canonical model of spider gastrulation posits that cell internalization occurs only at a unitary central blastopore; and that the cumulus (dorsal organizer) arises from within the early deep layer by cell-cell interaction. Recent work has begun to challenge the canonical model by demonstrating cell internalization at extra-blastoporal sites in two species (Parasteatoda tepidariorum and Zygiella x-notata); and showing in Zygiella that the prospective cumulus internalizes first, before other cells are present in the deep layer. The cell behaviors making up spider gastrulation thus appear to show considerable variation, and a wider sampling of taxa is indicated. RESULTS We evaluated the model in three species from two families by direct observation of living embryos. Movements of individual cells were traced from timelapse recordings and the origin and fate of the cumulus determined by CM-DiI labeling. We show that there are two distinct regions of internalization: most cells enter the deep layer via the central blastopore but many additional cells ingress via an extra-blastoporal ring, either at the periphery of the germ disc (Latrodectus spp.) or nearer the central field (Cheiracanthium mildei). In all species, the cumulus cells internalize first; this is shown by tracing cells in timelapse, histology, and by CM-DiI injection into the deep layer. Injection very early in gastrulation labels only cumulus mesenchyme cells whereas injections at later stages label non-cumulus mesoderm and endoderm. CONCLUSIONS We propose a revised model to accommodate the new data. Our working model has the prospective cumulus cells internalizing first, at the central blastopore. The cumulus cells begin migration before other cells enter the deep layer. This is consistent with early specification of the cumulus and suggests that cell-cell interaction with other deep layer cells is not required for its function. As the cumulus migrates, additional mesendoderm internalizes at two distinct locations: through the central blastopore and at an extra-blastoporal ring. Our work thus demonstrates early, cell-autonomous behavior of the cumulus and variation in subsequent location and timing of cell internalization during gastrulation in spiders.
Collapse
Affiliation(s)
- Allison Edgar
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
- />Department of Biology, Duke University, Durham, NC 27708 USA
| | - Christine Bates
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
- />Department of Internal Medicine, Duke University, Durham, NC 27708 USA
| | - Kay Larkin
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
| | - Steven Black
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
78
|
Janssen R, Schönauer A, Weber M, Turetzek N, Hogvall M, Goss GE, Patel NH, McGregor AP, Hilbrant M. The evolution and expression of panarthropod frizzled genes. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
79
|
Farley RD. Book lung development in the embryo, postembryo and first instar of the cobweb spider, Parasteatoda tepidariorum C. L Koch, 1841 (Araneomorphae, Theridiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:355-377. [PMID: 25936921 DOI: 10.1016/j.asd.2015.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/27/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Light and electron microscopy were used to compare spider book lung development with earlier studies of the development of horseshoe crab book gills and scorpion book lungs. Histological studies at the beginning of the 20th century provided evidence that spider and scorpion book lungs begin with outgrowth of a few primary lamellae (respiratory furrows, saccules) from the posterior surface of opisthosomal limb buds, reminiscent of the formation of book gills in the horseshoe crab. In spider embryos, light micrographs herein also show small primary lamellae formed at the posterior surface of opisthosomal limb buds. Later, more prominent primary lamellae extend into each book lung sinus from the inner wall of the book lung operculum formed from the limb bud. It appears most primary lamellae continue developing and become part of later book lungs, but there is variation in the rate and sequence of development. Electron micrographs show the process of air channel formation from parallel rows of precursor cells: mode I (cord hollowing), release of secretory vesicles into the extracellular space and mode II (cell hollowing), alignment and fusion of intracellular vesicles. Cell death (cavitation) is much less common but occurs in some places. Results herein support the early 20th century hypotheses that 1) book lungs are derived from book gills and 2) book lungs are an early step in the evolution of spider tracheae.
Collapse
Affiliation(s)
- Roger D Farley
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
80
|
Molecular characterization and embryonic origin of the eyes in the common house spider Parasteatoda tepidariorum. EvoDevo 2015; 6:15. [PMID: 26034574 PMCID: PMC4450840 DOI: 10.1186/s13227-015-0011-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 01/30/2023] Open
Abstract
Background Two visual systems are present in most arthropod groups: median and lateral eyes. Most of our current knowledge about the developmental and molecular mechanisms involved in eye formation in arthropods comes from research in the model system Drosophila melanogaster. Here, a core set of retinal determination genes, namely, sine-oculis (so), eyes absent (eya), dachshund (dac), and the two pax6 orthologues eyeless (ey) and twin of eyeless (toy) govern early retinal development. By contrast, not much is known about the development of the up-to-eight eyes present in spiders. Therefore, we analyzed the embryonic expression of core retinal determination genes in the common house spider Parasteatoda tepidariorum. Results We show that the anlagen of the median and lateral eyes in P. tepidariorum originate from different regions of the non-neurogenic ectoderm in the embryonic head. The median eyes are specified as two individual anlagen in an anterior median position in the developing head and subsequently move to their final position following extensive morphogenetic movements of the non-neurogenic ectoderm. The lateral eyes develop from a more lateral position. Intriguingly, they are specified as a unique field of cells that splits into the three individual lateral eyes during late embryonic development. Using gene expression analyses, we identified a unique combination of determination gene expression in the anlagen of the lateral and median eyes, respectively. Conclusions This study of retinal determination genes in the common house spider P. tepidariorum represents the first comprehensive analysis of the well-known retinal determination genes in arthropods outside insects. The development of the individual lateral eyes via the subdivision of one single eye primordium might be the vestige of a larger composite eye anlage, and thus supports the notion that the composite eye is the plesiomorphic state of the lateral eyes in arthropods. The molecular distinction of the two visual systems is similar to the one described for compound eyes and ocelli in Drosophila, suggesting that a unique core determination network for median and lateral eyes, respectively, might have been in place already in the last common ancestor of spiders and insects. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0011-9) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol 2014; 402:276-90. [PMID: 25257304 DOI: 10.1016/j.ydbio.2014.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Yue Meng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA.
| |
Collapse
|
82
|
Green JE, Akam M. Germ cells of the centipede Strigamia maritima are specified early in embryonic development. Dev Biol 2014; 392:419-30. [PMID: 24930702 PMCID: PMC4111900 DOI: 10.1016/j.ydbio.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/17/2022]
Abstract
We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.
Collapse
Affiliation(s)
- Jack E Green
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
83
|
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WGM, Prpic NM, McGregor AP, Extavour CG. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS One 2014; 9:e104885. [PMID: 25118601 PMCID: PMC4132015 DOI: 10.1371/journal.pone.0104885] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Parasteatoda tepidariorum is an increasingly popular model for the study of spider development and the evolution of development more broadly. However, fully understanding the regulation and evolution of P. tepidariorum development in comparison to other animals requires a genomic perspective. Although research on P. tepidariorum has provided major new insights, gene analysis to date has been limited to candidate gene approaches. Furthermore, the few available EST collections are based on embryonic transcripts, which have not been systematically annotated and are unlikely to contain transcripts specific to post-embryonic stages of development. We therefore generated cDNA from pooled embryos representing all described embryonic stages, as well as post-embryonic stages including nymphs, larvae and adults, and using Illumina HiSeq technology obtained a total of 625,076,514 100-bp paired end reads. We combined these data with 24,360 ESTs available in GenBank, and 1,040,006 reads newly generated from 454 pyrosequencing of a mixed-stage embryo cDNA library. The combined sequence data were assembled using a custom de novo assembly strategy designed to optimize assembly product length, number of predicted transcripts, and proportion of raw reads incorporated into the assembly. The de novo assembly generated 446,427 contigs with an N50 of 1,875 bp. These sequences obtained 62,799 unique BLAST hits against the NCBI non-redundant protein data base, including putative orthologs to 8,917 Drosophila melanogaster genes based on best reciprocal BLAST hit identity compared with the D. melanogaster proteome. Finally, we explored the utility of the transcriptome for RNA-Seq studies, and showed that this resource can be used as a mapping scaffold to detect differential gene expression in different cDNA libraries. This resource will therefore provide a platform for future genomic, gene expression and functional approaches using P. tepidariorum.
Collapse
Affiliation(s)
- Nico Posnien
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail: (NP); (CGE)
| | - Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Matthias Pechmann
- Cologne Biocenter, Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Joseph D. Keefe
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (NP); (CGE)
| |
Collapse
|
84
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
85
|
Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN. The embryogenesis of the TickRhipicephalus (Boophilus) microplus: The establishment of a new chelicerate model system. Genesis 2013; 51:803-18. [DOI: 10.1002/dvg.22717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Vitória Tobias Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Amanda Fraga
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Cíntia Monteiro de Barros
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório Integrado de Morfologia; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), UFRJ Macaé, Rio de Janeiro Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcio Ribeiro Fontenele
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Helena Marcolla Araújo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Natalia Martins Feitosa
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Carlos Logullo
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos; Universidade Estadual Norte Fluminense; Campos dos Goytacazes RJ, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
86
|
Frase T, Richter S. The fate of the onychophoran antenna. Dev Genes Evol 2013; 223:247-51. [PMID: 23423435 DOI: 10.1007/s00427-013-0436-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/28/2013] [Indexed: 01/07/2023]
Abstract
Recent gene expression data suggest that the region on which the onychophoran antenna is situated corresponds to the anteriormost, apparently appendage-less region of the arthropod head. The fate of the onychophoran antenna (or any appendage-like precursor), also called the primary antenna, has been discussed intensively, and there are conflicting suggestions that this anteriormost non-segmental appendage gave rise either to the arthropod labrum or, alternatively, to the so-called frontal filaments found in certain crustaceans. Our data on early axogenesis in anostracan crustaceans show that even in the earliest embryos, before the antennula and antennal nerves are developed, the circumoral anlagen of the brain display very prominent nerves which run into the frontal filament organ (also known as the cavity receptor organ). This situation resembles the development of the antennal nerves in onychophorans, which leads us to conclude that the frontal filaments are indeed homologous to the primary antenna. Frontal filaments also appear to be more common in crustaceans than previously thought, removing the need for a complicated scenario of transformation from a primary antenna into the labrum.
Collapse
Affiliation(s)
- Thomas Frase
- Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, 18055, Rostock, Germany.
| | | |
Collapse
|
87
|
Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M. The extraembryonic serosa protects the insect egg against desiccation. Proc Biol Sci 2013; 280:20131082. [PMID: 23782888 DOI: 10.1098/rspb.2013.1082] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.
Collapse
Affiliation(s)
- Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | | | |
Collapse
|
88
|
Ortega-Hernández J, Brena C. Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 2012; 7:e52623. [PMID: 23285116 PMCID: PMC3532300 DOI: 10.1371/journal.pone.0052623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 12/05/2022] Open
Abstract
Trilobites have a rich and abundant fossil record, but little is known about the intrinsic mechanisms that orchestrate their body organization. To date, there is disagreement regarding the correspondence, or lack thereof, of the segmental units that constitute the trilobite trunk and their associated exoskeletal elements. The phylogenetic position of trilobites within total-group Euarthropoda, however, allows inferences about the underlying organization in these extinct taxa to be made, as some of the fundamental genetic processes for constructing the trunk segments are remarkably conserved among living arthropods. One example is the expression of the segment polarity gene engrailed, which at embryonic and early postembryonic stages is expressed in extant panarthropods (i.e. tardigrades, onychophorans, euarthropods) as transverse stripes that define the posteriormost region of each trunk segment. Due to its conservative morphology and allegedly primitive trunk tagmosis, we have utilized the centipede Strigamia maritima to study the correspondence between the expression of engrailed during late embryonic to postembryonic stages, and the development of the dorsal exoskeletal plates (i.e. tergites). The results corroborate the close correlation between the formation of the tergite borders and the dorsal expression of engrailed, and suggest that this association represents a symplesiomorphy within Euarthropoda. This correspondence between the genetic and phenetic levels enables making accurate inferences about the dorsoventral expression domains of engrailed in the trunk of exceptionally preserved trilobites and their close relatives, and is suggestive of the widespread occurrence of a distinct type of genetic segmental mismatch in these extinct arthropods. The metameric organization of the digestive tract in trilobites provides further support to this new interpretation. The wider evolutionary implications of these findings suggest the presence of a derived morphogenetic patterning mechanism responsible for the reiterated occurrence of different types of trunk dorsoventral segmental mismatch in several phylogenetically distant, extinct and extant, arthropod groups.
Collapse
|