51
|
Gao S, Zhang K, Wei L, Wei G, Xiong W, Lu Y, Zhang Y, Gao A, Li B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front Genet 2020; 11:589. [PMID: 32670352 PMCID: PMC7330086 DOI: 10.3389/fgene.2020.00589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Red flour beetle (Tribolium castaneum) is one of the most destructive pests of stored cereals worldwide. The essential oil (EO) of Artemisia vulgaris (mugwort) is known to be a strong toxicant that inhibits the growth, development, and reproduction of T. castaneum. However, the molecular mechanisms underlying the toxic effects of A. vulgaris EO on T. castaneum remain unclear. Here, two detoxifying enzymes, carboxylesterase (CarEs) and cytochrome oxidase P450 (CYPs), were dramatically increased in red flour beetle larvae when they were exposed to A. vulgaris EO. Further, 758 genes were differentially expressed between EO treated and control samples. Based on Gene Ontology (GO) analysis, numerous differentially expressed genes (DEGs) were enriched for terms related to the regulation of biological processes, response to stimulus, and antigen processing and presentation. Our results indicated that A. vulgaris EO disturbed the antioxidant activity in larvae and partially inhibited serine protease (SP), cathepsin (CAT), and lipase signaling pathways, thus disrupting larval development and reproduction as well as down-regulating the stress response. Moreover, these DEGs showed that A. vulgaris indirectly affected the development and reproduction of beetles by inducing the expression of genes encoding copper-zinc-superoxide dismutase (CuZnSOD), heme peroxidase (HPX), antioxidant enzymes, and transcription factors. Moreover, the majority of DEGs were mapped to the drug metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Notably, the following genes were detected: 6 odorant binding proteins (OBPs), 5 chemosensory proteins (CSPs), 14 CYPs, 3 esterases (ESTs), 5 glutathione S-transferases (GSTs), 6 UDP-glucuronosyltransferases (UGTs), and 2 multidrug resistance proteins (MRPs), of which 8 CYPs, 2 ESTs, 2 GSTs, and 3 UGTs were up-regulated dramatically after exposure to A. vulgaris EO. The residual DEGs were significantly down-regulated in EO exposed larvae, implying that partial compensation of metabolism detoxification existed in treated beetles. Furthermore, A. vulgaris EO induced overexpression of OBP/CYP, and RNAi against these genes significantly increased mortality of larvae exposed to EO, providing further evidence for the involvement of OBP/CYP in EO metabolic detoxification in T. castaneum. Our results provide an overview of the transcriptomic changes in T. castaneum in response to A. vulgaris EO.
Collapse
Affiliation(s)
- Shanshan Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guanyun Wei
- College of Life Sciences, Nantong University, Nantong, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yonglei Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Aoxiang Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
52
|
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation (N Y) 2020; 1:100017. [PMID: 34557705 PMCID: PMC8454569 DOI: 10.1016/j.xinn.2020.100017] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunpeng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
53
|
Acosta-Pérez P, Camacho-Zamora BD, Espinoza-Sánchez EA, Gutiérrez-Soto G, Zavala-García F, Abraham-Juárez MJ, Sinagawa-García SR. Characterization of Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase Genes and Analysis of its Differential Expression in Maize ( Zea mays) Seedlings under Drought Stress. PLANTS 2020; 9:plants9030315. [PMID: 32138235 PMCID: PMC7154934 DOI: 10.3390/plants9030315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/04/2022]
Abstract
Maize is the most important crop around the world and it is highly sensitive to abiotic stress caused by drought, excessive salinity, and extreme temperature. In plants, trehalose has been widely studied for its role in plant adaptation to different abiotic stresses such as drought, high and low temperature, and osmotic stress. Thus, the aim of this work was to clone and characterize at molecular level the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) genes from maize and to evaluate its differential expression in maize seedlings under drought stress. To carry out this, resistant and susceptible maize lines were subjected to drought stress during 72 h. Two full-length cDNAs of TPS and one of TPP were cloned and sequenced. Then, TPS and TPP amino acid sequences were aligned with their homologs from different species, showing highly conserved domains and the same catalytic sites. Relative expression of both genes was evaluated by RT-qPCR at different time points. The expression pattern showed significant induction after 0.5 h in resistant lines and after two to four hours in susceptible plants, showing their participation in drought stress response.
Collapse
Affiliation(s)
- Phamela Acosta-Pérez
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Lab. de Biotecnología, Calle Francisco I. Madero S/N, Hacienda el Canadá, Cd Gral. Escobedo 66050, N.L., Mexico; (P.A.-P.); (G.G.-S.); (F.Z.-G.)
| | - Bianka Dianey Camacho-Zamora
- Unidad de Genómica, Centro de Investigación y Desarrollo en Ciencias de la Salud, Campus Ciencias de la Salud, UANL, Dr. Carlos Canseco s/n, Mitras Centro, Monterrey 64460, N.L, Mexico;
| | - Edward A. Espinoza-Sánchez
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario S/N, Campus Uach II, Chihuahua 31125, Chih, Mexico;
| | - Guadalupe Gutiérrez-Soto
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Lab. de Biotecnología, Calle Francisco I. Madero S/N, Hacienda el Canadá, Cd Gral. Escobedo 66050, N.L., Mexico; (P.A.-P.); (G.G.-S.); (F.Z.-G.)
| | - Francisco Zavala-García
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Lab. de Biotecnología, Calle Francisco I. Madero S/N, Hacienda el Canadá, Cd Gral. Escobedo 66050, N.L., Mexico; (P.A.-P.); (G.G.-S.); (F.Z.-G.)
| | - María Jazmín Abraham-Juárez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, Lomas 4 sección, San Luis Potosí 78216, S.L.P., Mexico;
| | - Sugey Ramona Sinagawa-García
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Lab. de Biotecnología, Calle Francisco I. Madero S/N, Hacienda el Canadá, Cd Gral. Escobedo 66050, N.L., Mexico; (P.A.-P.); (G.G.-S.); (F.Z.-G.)
- Correspondence: ; Tel.: +52-(81)-1340-4400 (ext. 3517)
| |
Collapse
|
54
|
Lu F, Sun X, Xu X, Jiang X. SILAC-based proteomic profiling of the suppression of TGF-β1-induced lung fibroblast-to-myofibroblast differentiation by trehalose. Toxicol Appl Pharmacol 2020; 391:114916. [PMID: 32035996 DOI: 10.1016/j.taap.2020.114916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Fibroblast-to-myofibroblast differentiation is one of the most important characteristics of pulmonary fibrosis, and screening natural compounds targeting fibroblast differentiation is always a promising approach to discover drug candidates for treatment of pulmonary fibrosis. Trehalose reportedly has many potential medical applications, especially in treating neurodegeneration diseases. However, it remains unclear whether trehalose suppresses lung fibroblast differentiation. In this work, we found that trehalose decreased the expression levels of α-smooth muscle actin (α-SMA) following the induction of transforming growth factor β1 (TGF-β1) in pretreatment, co-treatment, and post-treatment groups. Trehalose also reduced the production of type I collagen, lung fibroblast-containing gel contractility and cell filament formation in TGF-β1-stimulated MRC-5 cells. Although trehalose is a known autophagy inducer, our results showed that its suppressive effect on fibroblast differentiation was not via trehalose-induced autophagy. And it did not affect canonical TGFβ/Smad2/3 pathway. By applying proteomic profiling technology, we demonstrated that the downregulation of β-catenin was involved in the trehalose-repressive action on fibroblast differentiation. The β-catenin agonist, SKL2001, reversed the suppressive effect of trehalose on fibroblast differentiation. Overall, these experiments demonstrated that trehalose suppressed fibroblast differentiation via the downregulation of β-catenin, but not through canonical autophagy and TGFβ/Smad2/3 pathway, which is not only a novel understanding of trehalose, but also quite helpful for in vivo research of trehalose on pulmonary fibrosis in future.
Collapse
Affiliation(s)
- Fanqing Lu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xiafang Xu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
55
|
Kamran M, Xie K, Sun J, Wang D, Shi C, Lu Y, Gu W, Xu P. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109877. [PMID: 31704320 DOI: 10.1016/j.ecoenv.2019.109877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 05/07/2023]
Abstract
Salinity represents a serious environmental threat to crop production and by extension, to world food supply, social and economic prosperity of the developing world. Salicylic acid (SA) is an endogenous plant signal molecule involved in regulating various plant responses to stress. In the present study, we characterized the regulatory role of exogenous SA for their ability to ameliorate deleterious effects of salt stress (0, 100, 150, 200 mM NaCl) in choysum plants through coordinated induction of antioxidants, ascorbate glutathione (AsA-GSH) cycle, and the glyoxalase enzymes. An increase in salt stress dramatically declined root and shoot growth, leaf chlorophyll and relative water content (RWC), subsequently increased electrolyte leakage (EL) and osmolytes accumulation in choysum plants. Salt stress disrupted the antioxidant and glyoxalase defense systems which persuaded oxidative damages and carbonyl toxicity, indicated by increased H2O2 generation, lipid peroxidation, and methylglyoxal (MG) content. However, application of SA had an additive effect on the growth of salt-affected choysum plants, which enhanced root length, plant biomass, chlorophyll contents, leaf area, and RWC. Moreover, SA application effectively eliminated the oxidative and carbonyl stress by improving AsA and GSH pool, upregulating the activities of antioxidant enzymes and the enzymes associated with AsA-GSH cycle and glyoxalase system. Overall, SA application completely counteracted the salinity-induced deleterious effects of 100 and 150 mM NaCl and partially mediated that of 200 mM NaCl stress. Therefore, we concluded that SA application induced tolerance to salinity stress in choysum plants due to the synchronized increase in activities of enzymatic and non-enzymatic antioxidants, enhanced efficiency of AsA-GSH cycle and the MG detoxification systems.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Kaizhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Jie Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| | - Peizhi Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| |
Collapse
|
56
|
Chandra P, Enespa, Singh R. Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
57
|
Khan MIR, Jahan B, Alajmi MF, Rehman MT, Khan NA. Exogenously-Sourced Ethylene Modulates Defense Mechanisms and Promotes Tolerance to Zinc Stress in Mustard ( Brassica juncea L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E540. [PMID: 31775257 PMCID: PMC6963746 DOI: 10.3390/plants8120540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022]
Abstract
Heavy metal (HM) contamination of agricultural soil is primarily related to anthropogenic perturbations. Exposure to high concentration of HMs causes toxicity and undesirable effects in plants. In this study, the significance of ethylene was studied in response of mustard (Brassica juncea) to a high level (200 mg kg-1 soil) of zinc (Zn) exposure. Plants with high Zn showed inhibited photosynthesis and growth with the increase in oxidative stress. Application of ethylene (as ethephon) to Zn-grown plants restored photosynthesis and growth by inhibiting oxidative stress through increased antioxidant activity, the proline metabolism glyoxalase system, and nutrient homoeostasis. The results suggested that ethylene played a role in modulating defense mechanisms for tolerance of plants to Zn stress.
Collapse
Affiliation(s)
- M. Iqbal R. Khan
- Plant Systems Biology Laboratory, Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110065, India
| | - Badar Jahan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (N.A.K.)
| | - Mohamed F Alajmi
- Department of Pharmacognosy, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia; (M.F.A.); (M.T.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia; (M.F.A.); (M.T.R.)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (N.A.K.)
| |
Collapse
|
58
|
Rahman MM, Mostofa MG, Rahman MA, Islam MR, Keya SS, Das AK, Miah MG, Kawser AQMR, Ahsan SM, Hashem A, Tabassum B, Abd Allah EF, Tran LSP. Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci Rep 2019; 9:15186. [PMID: 31645575 PMCID: PMC6811677 DOI: 10.1038/s41598-019-51178-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/25/2019] [Indexed: 11/12/2022] Open
Abstract
The current study sought the effective mitigation measure of seawater-induced damage to mung bean plants by exploring the potential roles of acetic acid (AA). Principal component analysis (PCA) revealed that foliar application of AA under control conditions improved mung bean growth, which was interlinked to enhanced levels of photosynthetic rate and pigments, improved water status and increased uptake of K+, in comparison with water-sprayed control. Mung bean plants exposed to salinity exhibited reduced growth and biomass production, which was emphatically correlated with increased accumulations of Na+, reactive oxygen species and malondialdehyde, and impaired photosynthesis, as evidenced by PCA and heatmap clustering. AA supplementation ameliorated the toxic effects of seawater, and improved the growth performance of salinity-exposed mung bean. AA potentiated several physio-biochemical mechanisms that were connected to increased uptake of Ca2+ and Mg2+, reduced accumulation of toxic Na+, improved water use efficiency, enhanced accumulations of proline, total free amino acids and soluble sugars, increased catalase activity, and heightened levels of phenolics and flavonoids. Collectively, our results provided new insights into AA-mediated protective mechanisms against salinity in mung bean, thereby proposing AA as a potential and cost-effective chemical for the management of salt-induced toxicity in mung bean, and perhaps in other cash crops.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Robyul Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - A Q M Robiul Kawser
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - S M Ahsan
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Baby Tabassum
- Toxicology Laboratory, Department of Zoology, Govt. Raza P.G. College, Rampur, UP, 244091, India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
59
|
Hoang SA, Nguyen LQ, Nguyen NH, Tran CQ, Nguyen DV, Le NT, Ha CV, Vu QN, Phan CM. Metal nanoparticles as effective promotors for Maize production. Sci Rep 2019; 9:13925. [PMID: 31558736 PMCID: PMC6763462 DOI: 10.1038/s41598-019-50265-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
Zero-valent metal nanoparticles (Cu, Fe and Co) were prepared by the reactive method from their oxide with hydrogen. The energy-rich solutions of metal nanoparticles were used for treatment Maize seeds prior to sowing. The treatment significantly improved the germination rate and early growth. Furthermore, both SOD and APX enzyme activity in leaves were improved, and enhanced the metabolism of superoxide, leading to increased drought resistance. The method was applied to the field over three seasons and greatly improved the harvest. In particular, the implementation of Cu particles at 4 mg/kg increased the productivity of the two Maize species more than 20%.
Collapse
Affiliation(s)
- Son A Hoang
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam.
| | - Liem Q Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
| | - Nhung H Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
| | - Chi Q Tran
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
| | - Dong V Nguyen
- Agricultural Genetics Institute, TuLiem, Ha Noi, Vietnam
| | - Nga T Le
- Agricultural Genetics Institute, TuLiem, Ha Noi, Vietnam
| | - Chien V Ha
- Agricultural Genetics Institute, TuLiem, Ha Noi, Vietnam
| | - Quy N Vu
- Maize Research Institute, Dan Phuong, Ha Noi, Vietnam
| | - Chi M Phan
- Department of Chemical Engineering and Curtin Institute of Functional Molecules and Interfaces, Curtin University, Perth, WA6045, Australia
| |
Collapse
|
60
|
Yu W, Zhao R, Wang L, Zhang S, Li R, Sheng J, Shen L. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. PLANTA 2019; 250:643-655. [PMID: 31144110 DOI: 10.1007/s00425-019-03195-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/16/2019] [Indexed: 05/03/2023]
Abstract
Trehalose increased drought tolerance of tomato plants, accompanied by reduced water loss and closed stomata, which was associated with the upregulated ABA signaling-related genes expression, but not in ABA accumulation. Drought is one of the principal abiotic stresses that negatively influence the growth of plant and yield. Trehalose has great agronomic potential to improve the stress tolerance of plants. However, little information is available on the role of ABA and its signaling components in trehalose-induced drought tolerance. The aim of this study is to elucidate the potential mechanism by which trehalose regulates ABA in response to drought stress. In this study, 6-week-old tomato (Solanum lycopersicum cv. Ailsa Craig) plants were treated with 0 or 15.0 mM trehalose solution. Results showed that trehalose treatment significantly enhanced drought tolerance of tomato plants, accompanied by encouraged stomatal closure and protected chloroplast ultrastructure. Compared with controls, trehalose-treated plants showed lower hydrogen peroxide content and higher antioxidant enzymes activities, which contributed to alleviate oxidative damage caused by drought. Moreover, trehalose treatment decreased ABA content, which was followed by the downregulation of ABA biosynthesis genes expression and the upregulation of ABA catabolism genes expression. In contrast, exogenous trehalose upregulated transcript levels of ABA signaling-related genes, including SlPYL1/3/4/5/6/7/9, SlSnRK2.3/4, SlAREB1/2, and SlDREB1. These results suggested that trehalose treatment enhanced drought tolerance of tomato plants, and it's ABA signaling rather than ABA metabolism that was involved in trehalose-induced drought tolerance in tomato plants. These findings provide evidence for the physiological role of trehalose and bring about a new understanding of the possible relationship between trehalose and ABA.
Collapse
Affiliation(s)
- Wenqing Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shujuan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
61
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. PLANTA 2019; 249:1903-1919. [PMID: 30877435 PMCID: PMC6875431 DOI: 10.1007/s00425-019-03139-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
62
|
Shi Y, Sun H, Wang X, Jin W, Chen Q, Yuan Z, Yu H. Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant. PLoS One 2019; 14:e0217204. [PMID: 31116769 PMCID: PMC6530874 DOI: 10.1371/journal.pone.0217204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
It is well known that exogenous trehalose can improve resistances of plants to some abiotic and biotic stresses. Nonetheless, information respecting the molecular responses of tobacco leaves to Tre treatment is limited. Here we show that exogenous Tre can rapidly reduce stomatal aperture, up-regulate NADPH oxidase genes and increase O2•-andH2O2 on tobacco leaves at 2 h after treatment. We further demonstrated that imidazole and DPI, inhibitors of NADPH oxidase, can promote recovery of stomatal aperture of tobacco leaves upon trehalose treatment. Exogenous trehalose increased tobacco leaf resistance to tobacco mosaic disease significantly in a concentration-dependent way. To elucidate the molecular mechanisms in response to exogenous trehalose, the transcriptomic responses of tobacco leaves with 10 (low concentration) or 50 (high concentration) mM of trehalose treatment at 2 or 24h were investigated through RNA-seq approach. In total, 1288 differentially expressed genes (DEGs) were found with different conditions of trehalose treatments relative to control. Among them, 1075 (83.5%) were triggered by low concentration of trehalose (10mM), indicating that low concentration of Tre is a better elicitor. Functional annotations with KEGG pathway analysis revealed that the DEGs are involved in metabolic pathway, biosynthesis of secondary metabolites, plant hormone signal transduction, plant-pathogen interaction, protein processing in ER, flavonoid synthesis and circadian rhythm and so on. The protein-protein interaction networks generated from the core DEGs regulated by all conditions strikingly revealed that eight proteins, including ClpB1, HSP70, DnaJB1-like protein, universal stress protein (USP) A-like protein, two FTSH6 proteins, GolS1-like protein and chloroplastics HSP, play a core role in responses to exogenous trehalose in tobacco leaves. Our data suggest that trehalose triggers a signal transduction pathway which involves calcium and ROS-mediated signalings. These core components could lead to partial resistance or tolerance to abiotic and biotic stresses. Moreover, 19 DEGs were chosen for analysis of quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR for the 19 candidate genes coincided with the DEGs identified via the RNA-seq analysis, sustaining the reliability of our RNA-seq data.
Collapse
Affiliation(s)
- Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui Sun
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qianyi Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhengdong Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
63
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:721-732. [PMID: 30031330 PMCID: PMC6354898 DOI: 10.1016/j.scitotenv.2018.07.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 05/05/2023]
Abstract
The emission of volatiles in response to salt stress in rice cultivars has not been studied much to date. Studies addressing the regulation of stress induced volatile emission by halotolerant plant growth promoting bacteria containing ACC (1-aminocyclopropane-1-carboxylate) deaminase are also limited. The objective of the present study was to investigate the salt alleviation potential of bacteria by regulating photosynthetic characteristics and volatile emissions in rice cultivars, and to compare the effects of the bacteria inoculation and salt responses between two rice genotypes. The interactive effects of soil salinity (0, 50, and 100 mM NaCl) and inoculation with Brevibacterium linens RS16 on ACC accumulation, ACC oxidase activity, carbon assimilation and stress volatile emissions after stress application were studied in the moderately salt resistant (FL478) and the salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. It was observed that salt stress reduced foliage photosynthetic rate, but induced foliage ACC accumulation, foliage ACC oxidase activity, and the emissions of all the major classes of volatile organic compounds (VOCs) including the lipoxygenase pathway volatiles, light-weight oxygenated volatiles, long-chained saturated aldehydes, benzenoids, geranylgeranyl diphosphate pathway products, and mono- and sesquiterpenes. All these characteristics scaled up quantitatively with increasing salt stress. The effects of salt stress were more pronounced in the salt-sensitive genotype IR29 compared to the moderately salt resistant FL478 genotype. However, the bacterial inoculation significantly enhanced photosynthesis, and decreased ACC accumulation and the ACC oxidase activity, and VOC emissions both in control and salt-treated plants. Taken together, these results suggested that the ACC deaminase-containing Brevibacterium linens RS16 reduces the temporal regulation of VOC emissions and increases the plant physiological activity by reducing the availability of ethylene precursor ACC and the ACC oxidase activity under salt stress.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
64
|
Huang B, Zhang JM, Chen XL, Xin X, Yin GK, He JJ, Lu XX, Zhou YC. Oxidative damage and antioxidative indicators in 48 h germinated rice embryos during the vitrification-cryopreservation procedure. PLANT CELL REPORTS 2018; 37:1325-1342. [PMID: 29926219 DOI: 10.1007/s00299-018-2315-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/12/2018] [Indexed: 05/25/2023]
Abstract
Cu/Zn SOD and other genes may be critical indicators of a stress response to reactive oxygen species (ROS) accumulation in 48 h germinated rice embryos subjected to vitrification cryopreservation. In the current study, reactive oxygen species (ROS) accumulation was investigated in 48 h germinated rice embryos during the vitrification-cryopreservation process. We found that vitrification-cryopreservation significantly affected ROS levels, especially superoxide anion levels, in 48 h germinated rice embryos. Malonaldehyde content in the apical meristems of germinated embryos was significantly positively correlated with the rate of superoxide anion generation and the highest levels of malonaldehyde content were reached after vitrification treatment. Cell viability in 48 h germinated embryos was significantly negatively correlated with the rate of superoxide anion generation, malonaldehyde content, and electrolyte leakage. Spatial and temporal patterns in ROS accumulation in these embryos existed during the vitrification procedure. Among the vitrification-cryopreservation treatments we assessed, the preculture treatment was found to stimulate superoxide anion generation and to activate the response system in the apical meristems of germinated embryos. Loading treatments motivated the catalase and ascorbate peroxidase activities. During the vitrification-dehydration treatment, oxidative stress reached the highest levels causing an antioxidative response. This response involved antioxidant enzymes promoting detoxification of ROS. Based on a comprehensive correlation analysis involving ROS accumulation, cell viability, the activities of antioxidant enzymes, and gene expression profiles, Cu/Zn SOD, CAT1, APX7, GR2, GR3, MDHAR1, and DHAR1 may be critical indicators of oxidative stress affected by the vitrification-cryopreservation treatments. The investigation of these antioxidative responses in 48 h germinated rice embryos may, therefore, provide useful information with respect to plant vitrification-cryopreservation.
Collapse
Affiliation(s)
- Bin Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jin-Mei Zhang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao-Ling Chen
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan-Juan He
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin-Xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuan-Chang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
65
|
Shaban M, Ahmed MM, Sun H, Ullah A, Zhu L. Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses. BMC Genomics 2018; 19:599. [PMID: 30092779 PMCID: PMC6085620 DOI: 10.1186/s12864-018-4985-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/31/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Plant lipoxygenase (LOX) genes are members of the non-haeme iron-containing dioxygenase family that catalyze the oxidation of polyunsaturated fatty acids into functionally diverse oxylipins. The LOX family genes have been extensively studied under biotic and abiotic stresses, both in model and non-model plant species; however, information on their roles in cotton is still limited. RESULTS A total of 64 putative LOX genes were identified in four cotton species (Gossypium (G. hirsutum, G. barbadense, G. arboreum, and G. raimondii)). In the phylogenetic tree, these genes were clustered into three categories (9-LOX, 13-LOX type I, and 13-LOX type II). Segmental duplication of putative LOX genes was observed between homologues from A2 to At and D5 to Dt hinting at allopolyploidy in cultivated tetraploid species (G. hirsutum and G. barbadense). The structure and motif composition of GhLOX genes appears to be relatively conserved among the subfamilies. Moreover, many cis-acting elements related to growth, stresses, and phytohormone signaling were found in the promoter regions of GhLOX genes. Gene expression analysis revealed that all GhLOX genes were induced in at least two tissues and the majority of GhLOX genes were up-regulated in response to heat and salinity stress. Specific expressions of some genes in response to exogenous phytohormones suggest their potential roles in regulating growth and stress responses. In addition, functional characterization of two candidate genes (GhLOX12 and GhLOX13) using virus induced gene silencing (VIGS) approach revealed their increased sensitivity to salinity stress in target gene-silenced cotton. Compared with controls, target gene-silenced plants showed significantly higher chlorophyll degradation, higher H2O2, malondialdehyde (MDA) and proline accumulation but significantly reduced superoxide dismutase (SOD) activity, suggesting their reduced ability to effectively degrade accumulated reactive oxygen species (ROS). CONCLUSION This genome-wide study provides a systematic analysis of the cotton LOX gene family using bioinformatics tools. Differential expression patterns of cotton LOX genes in different tissues and under various abiotic stress conditions provide insights towards understanding the potential functions of candidate genes. Beyond the findings reported here, our study provides a basis for further uncovering the biological roles of LOX genes in cotton development and adaptation to stress conditions.
Collapse
Affiliation(s)
- Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
66
|
Ju LJ, Zhang C, Liao JJ, Li YP, Qi HY. An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances. J Zhejiang Univ Sci B 2018; 19:596-609. [PMID: 30070083 DOI: 10.1631/jzus.b1700388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In plants, lipoxygenases (LOXs) play a crucial role in biotic and abiotic stresses. In our previous study, five 13-LOX genes of oriental melon were regulated by abiotic stress but it is unclear whether the 9-LOX is involved in biotic and abiotic stresses. The promoter analysis revealed that CmLOX09 (type of 9-LOX) has hormone elements, signal substances, and stress elements. We analyzed the expression of CmLOX09 and its downstream genes-CmHPL and CmAOS-in the leaves of four-leaf stage seedlings of the oriental melon cultivar "Yumeiren" under wound, hormone, and signal substances. CmLOX09, CmHPL, and CmAOS were all induced by wounding. CmLOX09 was induced by auxin (indole acetic acid, IAA) and gibberellins (GA3); however, CmHPL and CmAOS showed differential responses to IAA and GA3. CmLOX09, CmHPL, and CmAOS were all induced by hydrogen peroxide (H2O2) and methyl jasmonate (MeJA), while being inhibited by abscisic acid (ABA) and salicylic acid (SA). CmLOX09, CmHPL, and CmAOS were all induced by the powdery mildew pathogen Podosphaera xanthii. The content of 2-hexynol and 2-hexenal in leaves after MeJA treatment was significantly higher than that in the control. After infection with P. xanthii, the diseased leaves of the oriental melon were divided into four levels-levels 1, 2, 3, and 4. The content of jasmonic acid (JA) in the leaves of levels 1 and 3 was significantly higher than that in the level 0 leaves. In summary, the results suggested that CmLOX09 might play a positive role in the response to MeJA through the hydroperoxide lyase (HPL) pathway to produce C6 alcohols and aldehydes, and in the response to P. xanthii through the allene oxide synthase (AOS) pathway to form JA.
Collapse
Affiliation(s)
- Li-Jun Ju
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing-Jing Liao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue-Peng Li
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong-Yan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
67
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
68
|
Zhang X, Lei L, Lai J, Zhao H, Song W. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC PLANT BIOLOGY 2018; 18:68. [PMID: 29685101 PMCID: PMC5913800 DOI: 10.1186/s12870-018-1281-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/03/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Drought is one of the major factors limiting global maize production. Exposure to long-term drought conditions inhibits growth and leads to yield losses. Although several drought-responsive genes have been identified and functionally analyzed, the mechanisms underlying responses to drought and water recovery treatments have not been fully elucidated. To characterize how maize seedling respond to drought stress at the transcriptional level, we analyzed physiological responses and differentially expressed genes (DEGs) in the inbred line B73 under water deficit and recovery conditions. RESULTS The data for relative leaf water content, leaf size, and photosynthesis-related parameters indicated that drought stress significantly repressed maize seedling growth. Further RNA sequencing analysis revealed that 6107 DEGs were responsive to drought stress and water recovery, with more down-regulated than up-regulated genes. Among the DEGs, the photosynthesis- and hormone-related genes were enriched in responses to drought stress and re-watering. Additionally, transcription factor genes from 37 families were differentially expressed among the three analyzed time-points. Gene ontology enrichment analyses of the DEGs indicated that 50 GO terms, including those related to photosynthesis, carbohydrate metabolism, oxidoreductase activities, nutrient metabolism and other drought-responsive pathways, were over-represented in the drought-treated seedlings. The content of gibberellin in drought treatment seedlings was decreased compared to that of control seedlings, while abscisic acid showed accumulated in the drought treated plants. The deep analysis of DEGs related to cell wall development indicated that these genes were prone to be down-regulated at drought treatment stage. CONCLUSIONS Many genes that are differentially expressed in responses to drought stress and water recovery conditions affect photosynthetic systems and hormone biosynthesis. The identified DEGs, especially those encoding transcription factors, represent potential targets for developing drought-tolerant maize lines.
Collapse
Affiliation(s)
- Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology/National Maize Improvement Center of China/Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Lei Lei
- State Key Laboratory of Agrobiotechnology/National Maize Improvement Center of China/Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology/National Maize Improvement Center of China/Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology/National Maize Improvement Center of China/Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology/National Maize Improvement Center of China/Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
69
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 739] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
70
|
Tripathi A, Chacon O, Singla-Pareek SL, Sopory SK, Sanan-Mishra N. Mapping the microRNA Expression Profiles in Glyoxalase Over-expressing Salinity Tolerant Rice. Curr Genomics 2018; 19:21-35. [PMID: 29491730 PMCID: PMC5817874 DOI: 10.2174/1389202918666170228134530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022] Open
Abstract
In the recent years, glyoxalase pathway has been an active area of research in both human and plants. This pathway is reported to confer stress tolerance in plants, by modulating the glutathione homeostasis to achieve detoxification of a potent cytotoxic and mutagenic compound, methylglyoxal. The microRNAs (miRNAs) are also reported to play significant role in stress tolerance for plants. However, the cross-talk of miRNAs with the metabolism regulated by glyoxalase in the salinity-tolerance is unexplored. We therefore investigated whether expression profiles of miRNAs are altered in response to glyoxalase overexpression, and if any of these are also responsible for modulating the stress responses of plants. In this study, the Next Generation Sequencing (NGS) was employed to profile miRNA expression levels from glyoxalase overexpressing transgenic lines. The associated targets of differentially expressed miRNAs were predicted and their functional annotation was carried out using Gene Ontology (GO) and KEGG Orthology (KO), which showed their involvement in several crucial biological pathways. The analysis of NGS datasets also identified other isoforms or isomiRs of selected miRNAs, which may have an active role in developing tolerance against salt stress. Different aspects of miRNA modifications were also studied in glyoxalase overexpressing lines.
Collapse
Affiliation(s)
- Anita Tripathi
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Osmani Chacon
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneh Lata Singla-Pareek
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sudhir K. Sopory
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan-Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
71
|
Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. FRONTIERS IN PLANT SCIENCE 2017; 8:1143. [PMID: 28706529 PMCID: PMC5489591 DOI: 10.3389/fpls.2017.01143] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/14/2017] [Indexed: 05/04/2023]
Abstract
Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Lin Zhu
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Yue Xie
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Feiyue Li
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Xin Xiao
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| |
Collapse
|
72
|
Goswami K, Tripathi A, Sanan-Mishra N. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice. J Integr Bioinform 2017; 14:/j/jib.2017.14.issue-1/jib-2017-0002/jib-2017-0002.xml. [PMID: 28637931 PMCID: PMC6042804 DOI: 10.1515/jib-2017-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant's response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.
Collapse
Affiliation(s)
- Kavita Goswami
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Anita Tripathi
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
73
|
Hoque TS, Uraji M, Hoque MA, Nakamura Y, Murata Y. Methylglyoxal induces inhibition of growth, accumulation of anthocyanin, and activation of glyoxalase I and II in Arabidopsis thaliana. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tahsina Sharmin Hoque
- Department of Soil Science; Bangladesh Agricultural University; Mymensingh 2202 Bangladesh
- Graduate School of Natural Science and Technology; Okayama University; Okayama 700-8530 Japan
| | - Misugi Uraji
- Graduate School of Natural Science and Technology; Okayama University; Okayama 700-8530 Japan
| | - Md. Anamul Hoque
- Department of Soil Science; Bangladesh Agricultural University; Mymensingh 2202 Bangladesh
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| |
Collapse
|
74
|
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18010200. [PMID: 28117669 PMCID: PMC5297830 DOI: 10.3390/ijms18010200] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of these systems towards stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
75
|
Liao M, Xiao JJ, Zhou LJ, Liu Y, Wu XW, Hua RM, Wang GR, Cao HQ. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation. PLoS One 2016; 11:e0167748. [PMID: 27936192 PMCID: PMC5147960 DOI: 10.1371/journal.pone.0167748] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/19/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation. RESULTS M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain. CONCLUSION This is the first study to perform a comparative transcriptome analysis of S. zeamais in response to M. alternifolia essential oil fumigation. Our results provide new insights into the insecticidal mechanism of M. alternifolia essential oil fumigation against S. zeamais and eventually contribute to the management of this important agricultural pest.
Collapse
Affiliation(s)
- Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li-Jun Zhou
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang-Wei Wu
- Provincial Key Laboratory for Agri-Food Safety, Hefei, China
| | - Ri-Mao Hua
- Provincial Key Laboratory for Agri-Food Safety, Hefei, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Provincial Key Laboratory for Agri-Food Safety, Hefei, China
| |
Collapse
|
76
|
Macho AP. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. THE NEW PHYTOLOGIST 2016; 210:51-7. [PMID: 26306858 DOI: 10.1111/nph.13605] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/10/2015] [Indexed: 05/20/2023]
Abstract
Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination.
Collapse
Affiliation(s)
- Alberto P Macho
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
77
|
Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1341. [PMID: 27679640 PMCID: PMC5020096 DOI: 10.3389/fpls.2016.01341] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
Collapse
Affiliation(s)
- Tahsina S. Hoque
- Department of Soil Science, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| |
Collapse
|
78
|
Mostofa MG, Saegusa D, Fujita M, Tran LSP. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na(+)/K(+) Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1055. [PMID: 26734015 PMCID: PMC4685665 DOI: 10.3389/fpls.2015.01055] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 05/03/2023]
Abstract
Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na(+) and the Na(+)/K(+) ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes.
Collapse
Affiliation(s)
- Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Daisuke Saegusa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityMiki, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityMiki, Japan
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
79
|
Hou Y, Meng K, Han Y, Ban Q, Wang B, Suo J, Lv J, Rao J. The Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1073. [PMID: 26697033 PMCID: PMC4674570 DOI: 10.3389/fpls.2015.01073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 05/21/2023]
Abstract
The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. 'Fupingjianshi') 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed little response to the postharvest environments. DkLOX4 was expressed in all tissues and slightly stimulated by mechanical damage and low temperature. DkLOX3 was expressed mainly in mature fruit, and the expression was extremely high throughout the storage period, apparently up-regulated by mechanical damage and high carbon dioxide treatments. Further functional analysis showed that overexpression of DkLOX3 in tomato (Solanum lycopersicum cv. Micro-Tom) accelerated fruit ripening and softening. This was accompanied by higher malondialdehyde (MDA) content and lycopene accumulation, advanced ethylene release peak and elevated expression of ethylene synthesis genes, including ACS2, ACO1, and ACO3. In addition, DkLOX3 overexpression promoted dark induced transgenic Arabidopsis leaf senescence with more chlorophyll loss, increased electrolyte leakage and MDA content. Furthermore, the functions of DkLOX3 in response to abiotic stresses, including osmotic stress, high salinity and drought were investigated. Arabidopsis DkLOX3 overexpression (DkLOX3-OX) transgenic lines were found to be more tolerant to osmotic stress with higher germination rate and root growth than wild-type. Moreover, DkLOX3-OX Arabidopsis plants also exhibited enhanced resistance to high salinity and drought, with similar decreased O2 (-) and H2O2 accumulation and upregulation of stress-responsive genes expression, including RD22, RD29A, RD29B, and NCED3, except for FRY1, which plays a negative role in stress response. Overall, these results suggested that DkLOX3 plays positive roles both in promoting ripening and senescence through lipid peroxidation and accelerated ethylene production and in stress response via regulating reactive oxygen species accumulation and stress responsive genes expression.
Collapse
Affiliation(s)
- Yali Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Kun Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Ye Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Qiuyan Ban
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Biao Wang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Jiangtao Suo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jingyi Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jingping Rao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
80
|
Mostofa MG, Rahman A, Ansary MMU, Watanabe A, Fujita M, Tran LSP. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 2015; 5:14078. [PMID: 26361343 PMCID: PMC4566128 DOI: 10.1038/srep14078] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/14/2015] [Indexed: 12/20/2022] Open
Abstract
We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.,Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Md Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Ayaka Watanabe
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
81
|
Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. FRONTIERS IN PLANT SCIENCE 2015; 6:420. [PMID: 26136756 PMCID: PMC4468828 DOI: 10.3389/fpls.2015.00420] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/25/2015] [Indexed: 05/08/2023]
Abstract
Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, [Formula: see text]; hydroxyl radical, OH(⋅) and singlet oxygen, (1)O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism.
Collapse
Affiliation(s)
- Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | | | - Saed-Moucheshi Armin
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz UniversityShiraz, Iran
| | - Pingping Qian
- Department of Biological Science, Graduate School of Science, Osaka UniversityToyonaka, Japan
| | - Wang Xin
- School of Pharmacy, Lanzhou UniversityLanzhou, China
| | - Hong-Yu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan
| | - Lam-Son P. Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
82
|
Mostofa MG, Hossain MA, Fujita M, Tran LSP. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 2015; 5:11433. [PMID: 26073760 PMCID: PMC4650698 DOI: 10.1038/srep11433] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
In this study, we examined the possible mechanisms of trehalose (Tre) in improving copper-stress (Cu-stress) tolerance in rice seedlings. Our findings indicated that pretreatment of rice seedlings with Tre enhanced the endogenous Tre level and significantly mitigated the toxic effects of excessive Cu on photosynthesis- and plant growth-related parameters. The improved tolerance induced by Tre could be attributed to its ability to reduce Cu uptake and decrease Cu-induced oxidative damage by lowering the accumulation of reactive oxygen species (ROS) and malondialdehyde in Cu-stressed plants. Tre counteracted the Cu-induced increase in proline and glutathione content, but significantly improved ascorbic acid content and redox status. The activities of major antioxidant enzymes were largely stimulated by Tre pretreatment in rice plants exposed to excessive Cu. Additionally, increased activities of glyoxalases I and II correlated with reduced levels of methylglyoxal in Tre-pretreated Cu-stressed rice plants. These results indicate that modifying the endogenous Tre content by Tre pretreatment improved Cu tolerance in rice plants by inhibiting Cu uptake and regulating the antioxidant and glyoxalase systems, and thereby demonstrated the important role of Tre in mitigating heavy metal toxicity. Our findings provide a solid foundation for developing metal toxicity-tolerant crops by genetic engineering of Tre biosynthesis.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|