51
|
Ding B, Walton JP, Zhu X, Frisina RD. Age-related changes in Na, K-ATPase expression, subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea. Hear Res 2018; 367:59-73. [PMID: 30029086 DOI: 10.1016/j.heares.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Due to the critical role of cochlear ion channels for hearing, the focus of the present study was to examine age-related changes of Na, K-ATPase (NKA) subunits in the lateral wall of mouse cochlea. We combined qRT-PCR, western blot and immunocytochemistry methodologies in order to determine gene and protein expression levels in the lateral wall of young and aged CBA/CaJ mice. Of the seven NKA subunits, only the mRNA expressions of α1, β1 and β2 subunit isoforms were detected in the lateral wall of CBA/CaJ mice. Aging was accompanied by dys-regulation of gene and protein expression of all three subunits detected. Hematoxylin and eosin (H&E) staining revealed atrophy of the cochlear stria vascularis (SV). The SV atrophy rate (20%) was much less than the ∼80% decline in expression of all three NKA isoforms, indicating lateral wall atrophy and NKA dys-regulation are independent factors and that there is a combination of changes involving the morphology of SV and NKA expression in the aging cochlea which may concomitantly affect cochlear function. Immunoprecipitation assays showed that the α1-β1 heterodimer is the selective preferential heterodimer over the α1-β2 heterodimer in cochlea lateral wall. Interestingly, in vitro pathway experiments utilizing cultured mouse cochlear marginal cells from the SV (SV-K1 cells) indicated that decreased mRNA and protein expressions of α1, β1 and β2 subunit isoforms are not associated with reduction of NKA activity following in vitro application of ouabain, but ouabain did disrupt the α1-β1 heterodimer interaction. Lastly, the association between the α1 and β1 subunit isoforms was present in the cochlear lateral wall of young adult mice, but this interaction could not be detected in old mice. Taken together, these data suggest that in the young adult mouse there is a specific, functional selection and assembly of NKA subunit isoforms in the SV lateral wall, which is disrupted and dys-regulated with age. Interventions for this age-linked ion channel disruption may have the potential to help diagnose, prevent, or treat age-related hearing loss.
Collapse
Affiliation(s)
- Bo Ding
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.
| | - Xiaoxia Zhu
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Robert D Frisina
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
52
|
Milon B, Mitra S, Song Y, Margulies Z, Casserly R, Drake V, Mong JA, Depireux DA, Hertzano R. The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ 2018; 9:12. [PMID: 29530094 PMCID: PMC5848513 DOI: 10.1186/s13293-018-0171-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) is the most prevalent form of acquired hearing loss and affects about 40 million US adults. Among the suggested therapeutics tested in rodents, suberoylanilide hydroxamic acid (SAHA) has been shown to be otoprotective from NIHL; however, these results were limited to male mice. METHODS Here we tested the effect of SAHA on the hearing of 10-week-old B6CBAF1/J mice of both sexes, which were exposed to 2 h of octave-band noise (101 dB SPL centered at 11.3 kHz). Hearing was assessed by measuring auditory brainstem responses (ABR) at 8, 16, 24, and 32 kHz, 1 week before, as well as at 24 h and 15-21 days following exposure (baseline, compound threshold shift (CTS) and permanent threshold shift (PTS), respectively), followed by histologic analyses. RESULTS We found significant differences in the CTS and PTS of the control (vehicle injected) mice to noise, where females had a significantly smaller CTS at 16 and 24 kHz (p < 0.0001) and PTS at 16, 24, and 32 kHz (16 and 24 kHz p < 0.001, 32 kHz p < 0.01). This sexual dimorphic effect could not be explained by a differential loss of sensory cells or synapses but was reflected in the amplitude and amplitude progression of wave I of the ABR, which correlates with outer hair cell (OHC) function. Finally, the frequency of the protective effect of SAHA differed significantly between males (PTS, 24 kHz, p = 0.002) and females (PTS, 16 kHz, p = 0.003), and the magnitude of the protection was smaller in females than in males. Importantly, the magnitude of the protection by SAHA was smaller than the effect of sex as a biological factor in the vehicle-injected mice. CONCLUSIONS These results indicate that female mice are significantly protected from NIHL in comparison to males and that therapeutics for NIHL may have a different effect in males and females. The data highlight the importance of analyzing NIHL experiments from males and females, separately. Finally, these data also raise the possibility of effectors in the estrogen signaling pathway as novel therapeutics for NIHL.
Collapse
Affiliation(s)
- Béatrice Milon
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Sunayana Mitra
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Yang Song
- 0000 0001 2175 4264grid.411024.2Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zachary Margulies
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Ryan Casserly
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Virginia Drake
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Jessica A. Mong
- 0000 0001 2175 4264grid.411024.2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Didier A. Depireux
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA ,0000 0001 0941 7177grid.164295.dInstitute for Systems Research, University of Maryland, College Park, MD 20742 USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD, 21201, USA. .,Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
53
|
Frisina RD, Ding B, Zhu X, Walton JP. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons. Aging (Albany NY) 2017; 8:2081-2099. [PMID: 27667674 PMCID: PMC5076453 DOI: 10.18632/aging.101045] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL.
Collapse
Affiliation(s)
- Robert D Frisina
- Department Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA.,Department Chemical and Biomedical Engineering, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| | - Bo Ding
- Department Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| | - Xiaoxia Zhu
- Department Chemical and Biomedical Engineering, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| | - Joseph P Walton
- Department Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA.,Department Chemical and Biomedical Engineering, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| |
Collapse
|
54
|
Santa Maria PL, Gottlieb P, Santa Maria C, Kim S, Puria S, Yang YP. Functional Outcomes of Heparin-Binding Epidermal Growth Factor-Like Growth Factor for Regeneration of Chronic Tympanic Membrane Perforations in Mice. Tissue Eng Part A 2017; 23:436-444. [PMID: 28142401 PMCID: PMC5444491 DOI: 10.1089/ten.tea.2016.0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/02/2023] Open
Abstract
We aim to demonstrate that regeneration of chronic tympanic perforations with heparin-binding epidermal growth factor-like growth factor (HB-EGF) delivered by an injectable hydrogel restored hearing to levels similar to that of nonperforated tympanic membranes. Chronic tympanic membrane perforation is currently managed as an outpatient surgery with tympanoplasty. Due to the costs of this procedure in the developed world and a lack of accessibility and resources in developing countries, there is a great need for a new treatment that does not require surgery. In this study, we show in a mouse model through measurement of auditory brainstem response and distortion product otoacoustic emissions that tympanic perforations lead to hearing loss and this can be predominantly recovered with HB-EGF treatment (5 μg/mL). Our animal model suggests a return to function between 2 and 6 months after treatment. Auditory brainstem response thresholds had returned to the control levels at 2 months, but the distortion product otoacoustic emissions returned between 2 and 6 months. We also show how the vibration characteristics of the regenerated tympanic membrane, as measured by laser Doppler vibrometry, can be similar to that of an unperforated tympanic membrane. Using the best available methods for preclinical evaluation in animal models, it is likely that HB-EGF-like growth factor treatment leads to regeneration of chronic tympanic membrane perforations and restoration of the tympanic membrane to normal function, suggesting a potential route for nonsurgical treatment.
Collapse
Affiliation(s)
- Peter Luke Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia
- Ear Science Institute Australia, Subiaco, Australia
| | - Peter Gottlieb
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Chloe Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia
- Ear Science Institute Australia, Subiaco, Australia
| | - Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Sunil Puria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, California
- Department of Materials Science and Engineering, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
55
|
Brecht EJ, Barsz K, Gross B, Walton JP. Increasing GABA reverses age-related alterations in excitatory receptive fields and intensity coding of auditory midbrain neurons in aged mice. Neurobiol Aging 2017; 56:87-99. [PMID: 28532644 DOI: 10.1016/j.neurobiolaging.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/18/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
A key feature of age-related hearing loss is a reduction in the expression of inhibitory neurotransmitters in the central auditory system. This loss is partially responsible for changes in central auditory processing, as inhibitory receptive fields play a critical role in shaping neural responses to sound stimuli. Vigabatrin (VGB), an antiepileptic agent that irreversibly inhibits γ-amino butyric acid (GABA) transaminase, leads to increased availability of GABA throughout the brain. This study used multi-channel electrophysiology measurements to assess the excitatory frequency response areas in old CBA mice to which VGB had been administered. We found a significant post-VGB reduction in the proportion of V-type shapes, and an increase in primary-like excitatory frequency response areas. There was also a significant increase in the mean maximum driven spike rates across the tonotopic frequency range of all treated animals, consistent with observations that GABA buildup within the central auditory system increases spike counts of neural receptive fields. This increased spiking is also seen in the rate-level functions and seems to explain the improved low-frequency thresholds.
Collapse
Affiliation(s)
- Elliott J Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA
| | - Kathy Barsz
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Benjamin Gross
- Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Physics, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
56
|
Konishi H, Ohgami N, Matsushita A, Kondo Y, Aoyama Y, Kobayashi M, Nagai T, Ugawa S, Yamada K, Kato M, Kiyama H. Exposure to diphtheria toxin during the juvenile period impairs both inner and outer hair cells in C57BL/6 mice. Neuroscience 2017; 351:15-23. [PMID: 28344071 DOI: 10.1016/j.neuroscience.2017.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Abstract
Diphtheria toxin (DT) administration into transgenic mice that express the DT receptor (DTR) under control of specific promoters is often used for cell ablation studies in vivo. Because DTR is not expressed in mice, DT injection has been assumed to be nontoxic to cells in vivo. In this study, we demonstrated that DT application during the juvenile stage leads to hearing loss in wild-type mice. Auditory brainstem response measurement showed severe hearing loss in C57BL/6 mice administered DT during the juvenile period, and the hearing loss persisted into adulthood. However, ototoxicity did not occur when DT was applied on postnatal day 28 or later. Histological studies demonstrated that hearing loss was accompanied by significant degeneration of inner and outer hair cells (HCs), as well as spiral ganglion neurons. Scanning electron microscopy showed quick degeneration of inner HCs within 3days and gradual degeneration of outer HCs within 1week. These results demonstrated that DT has ototoxic action on C57BL/6 mice during the juvenile period, but not thereafter, and the hearing loss was due to degeneration of inner and outer HCs by unknown DT-related mechanisms.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Nutritional Health Science Research Center, Chubu University, Kasugai 487-8501, Japan.
| | - Aika Matsushita
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yuki Kondo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yuki Aoyama
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
57
|
A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus. Sci Rep 2017; 7:42433. [PMID: 28195225 PMCID: PMC5307958 DOI: 10.1038/srep42433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain.
Collapse
|
58
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
59
|
Embryonic/fetal mortality and intrauterine growth restriction is not exclusive to the CBA/J sub-strain in the CBA × DBA model. Sci Rep 2016; 6:35138. [PMID: 27767070 PMCID: PMC5073309 DOI: 10.1038/srep35138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/19/2016] [Indexed: 11/24/2022] Open
Abstract
Inbred strains of mice are powerful models for understanding human pregnancy complications. For example, the exclusive mating of CBA/J females to DBA/2J males increases fetal resorption to 20–35% with an associated decline in placentation and maintenance of maternal Th1 immunity. More recently other complications of pregnancy, IUGR and preeclampsia, have been reported in this model. The aim of this study was to qualify whether the CBA/CaH substrain female can substitute for CBA/J to evoke a phenotype of embryonic/fetal mortality and IUGR. (CBA/CaH × DBA/2J) F1 had significantly higher embryonic/fetal mortality mortality (p = 0.0063), smaller fetuses (p < 0.0001), and greater prevalence of IUGR (<10th percentile; 47% vs 10%) than (CBA/CaH × Balb/c) F1. Placentae from IUGR fetuses from all mating groups were significantly smaller (p < 0.0001) with evidence of thrombosis and fibrosis when compared to normal-weight fetuses ( > 10th percentile). In addition, placentae of “normal-weight” (CBA/CaH × DBA/2J) F1 were significantly smaller (p < 0.0006) with a greater proportion of labyrinth (p = 0.0128) and an 11-fold increase in F4/80 + macrophage infiltration (p < 0.0001) when compared to placentae of (CBA/CaH × Balb/c) F1. In conclusion, the embryonic/fetal mortality and IUGR phenotype is not exclusive to CBA/J female mouse, and CBA/CaH females can be substituted to provide a model for the assessment of novel therapeutics.
Collapse
|
60
|
Xie R, Manis PB. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss. J Physiol 2016; 595:919-934. [PMID: 27618790 DOI: 10.1113/jp272683] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Synaptic transmission at the endbulb of Held was assessed by whole-cell patch clamp recordings from auditory neurons in mature (2-4 months) and aged (20-26 months) mice. Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age-related hearing loss. The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential-evoked calcium influx. These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. ABSTRACT Age-related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2-4 months) and old (20-26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA-AM or decreasing calcium influx with ω-agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA-AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium-dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7545, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7070, USA
| |
Collapse
|
61
|
Kobrina A, Dent ML. The effects of aging and sex on detection of ultrasonic vocalizations by adult CBA/CaJ mice (Mus musculus). Hear Res 2016; 341:119-129. [PMID: 27579993 DOI: 10.1016/j.heares.2016.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
Abstract
Mice are frequently used as animal models for human hearing research, yet their auditory capabilities have not been fully explored. Previous studies have established auditory threshold sensitivities for pure tone stimuli in CBA/CaJ mice using ABR and behavioral methodologies. Little is known about how they perceive their own ultrasonic vocalizations (USVs), and nothing is known about how aging influences this perception. The aim of the present study was to establish auditory threshold sensitivity for several USV types, as well as to track these thresholds across the mouse's lifespan. In order to determine how well mice detect these complex communication stimuli, several CBA/CaJ mice were trained and tested at various ages on a detection task using operant conditioning procedures. Results showed that mice were able to detect USVs into old age. Not surprisingly, thresholds differed for the different USV types. Male mice suffered greater hearing loss than females for all calls but not for 42 kHz tones. In conclusion, the results highlight the importance of studying complex signals across the lifespan.
Collapse
Affiliation(s)
- Anastasiya Kobrina
- Department of Psychology, University at Buffalo-SUNY, Buffalo, NY 14260, USA.
| | - Micheal L Dent
- Department of Psychology, University at Buffalo-SUNY, Buffalo, NY 14260, USA.
| |
Collapse
|
62
|
Ohlemiller KK, Kiener AL, Gagnon PM. QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 2016; 17:173-94. [PMID: 26980469 DOI: 10.1007/s10162-016-0558-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
We reported earlier that the endocochlear potential (EP) differs between C57BL/6J (B6) and BALB/cJ (BALB) mice, being lower in BALBs by about 10 mV (Ohlemiller et al. Hear Res 220: 10-26, 2006). This difference corresponds to strain differences with respect to the density of marginal cells in cochlear stria vascularis. After about 1 year of age, BALB mice also tend toward EP reduction that correlates with further marginal cell loss. We therefore suggested that early sub-clinical features of the BALB stria vascularis may predispose these mice to a condition modeling Schuknecht's strial presbycusis. We further reported (Ohlemiller et al. J Assoc Res Otolaryngol 12: 45-58, 2011) that the acute effects of a 2-h 110 dB SPL noise exposure differ between B6 and BALB mice, such that the EP remains unchanged in B6 mice, but is reduced by 40-50 mV in BALBs. In about 25 % of BALBs, the EP does not completely recover, so that permanent EP reduction may contribute to noise-induced permanent threshold shifts in BALBs. To identify genes and alleles that may promote natural EP variation as well as noise-related EP reduction in BALB mice, we have mapped related quantitative trait loci (QTLs) using 12 recombinant inbred (RI) strains formed from B6 and BALB (CxB1-CxB12). EP and strial marginal cell density were measured in B6 mice, BALB mice, their F1 hybrids, and RI mice without noise exposure, and 1-3 h after broadband noise (4-45 kHz, 110 dB SPL, 2 h). For unexposed mice, the strain distribution patterns for EP and marginal cell density were used to generate preliminary QTL maps for both EP and marginal cell density. Six QTL regions were at least statistically suggestive, including a significant QTL for marginal cell density on chromosome 12 that overlapped a weak QTL for EP variation. This region, termed Maced (Marginal cell density QTL) supports the notion of marginal cell density as a genetically influenced contributor to natural EP variation. Candidate genes for Maced notably include Foxg1, Foxa1, Akap6, Nkx2-1, and Pax9. Noise exposure produced significant EP reductions in two RI strains as well as significant EP increases in two RI strains. QTL mapping of the EP in noise-exposed RI mice yielded four suggestive regions. Two of these overlapped with QTL regions we previously identified for noise-related EP reduction in CBA/J mice (Ohlemiller et al. Hear Res 260: 47-53, 2010) on chromosomes 5 and 18 (Nirep). The present map may narrow the Nirep interval to a ~10-Mb region of proximal Chr. 18 that includes Zeb1, Arhgap12, Mpp7, and Gjd4. This study marks the first exploration of natural gene variants that modulate the EP. Their orthologs may underlie some human hearing loss that originates in the lateral wall.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA.
| | - Anna L Kiener
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH, USA
| | - Patricia M Gagnon
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA
| |
Collapse
|
63
|
Stebbings KA, Choi HW, Ravindra A, Llano DA. The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging. Neurobiol Aging 2016; 42:101-9. [PMID: 27143426 DOI: 10.1016/j.neurobiolaging.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 01/21/2023]
Abstract
The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also measured. We found striking aging-related increases in the redox ratio that were isolated to the stratum pyramidale, while such changes were not observed in thalamus or cortex. These changes were driven primarily by changes in flavin adenine dinucleotide, not nicotinamide adenine dinucleotide hydride. Multiple regression analysis suggested that neither hearing threshold nor cortical thickness independently contributed to this change in hippocampal redox ratio. However, body weight did independently contribute to predicted changes in hippocampal redox ratio. These data suggest that aging-related changes in hippocampal redox ratio are not a general reflection of overall brain oxidative state but are highly localized, while still being related to at least one marker of late aging, weight loss at the end of life.
Collapse
Affiliation(s)
- Kevin A Stebbings
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hyun W Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aditya Ravindra
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel Adolfo Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
64
|
Stebbings KA, Choi HW, Ravindra A, Caspary DM, Turner JG, Llano DA. Ageing-related changes in GABAergic inhibition in mouse auditory cortex, measured using in vitro flavoprotein autofluorescence imaging. J Physiol 2015; 594:207-21. [PMID: 26503482 DOI: 10.1113/jp271221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/18/2015] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Ageing is associated with hearing loss and changes in GABAergic signalling in the auditory system. We tested whether GABAergic signalling in an isolated forebrain preparation also showed ageing-related changes. A novel approach was used, whereby population imaging was coupled to quantitative pharmacological sensitivity. Sensitivity to GABAA blockade was inversely associated with age and cortical thickness, but hearing loss did not independently contribute to the change in GABAA ergic sensitivity. Redox states in the auditory cortex of young and aged animals were similar, suggesting that the differences in GABAA ergic sensitivity are unlikely to be due to differences in slice health. To examine ageing-related changes in the earliest stages of auditory cortical processing, population auditory cortical responses to thalamic afferent stimulation were studied in brain slices obtained from young and aged CBA/CAj mice (up to 28 months of age). Cortical responses were measured using flavoprotein autofluorescence imaging, and ageing-related changes in inhibition were assessed by measuring the sensitivity of these responses to blockade of GABAA receptors using bath-applied SR95531. The maximum auditory cortical response to afferent stimulation was not different between young and aged animals under control conditions, but responses to afferent stimulation in aged animals showed a significantly lower sensitivity to GABA blockade with SR95531. Cortical thickness, but not hearing loss, improved the prediction of all imaging variables when combined with age, particularly sensitivity to GABA blockade for the maximum response. To determine if the observed differences between slices from young and aged animals were due to differences in slice health, the redox state in the auditory cortex was assessed by measuring the FAD+/NADH ratio using fluorescence imaging. We found that this ratio is highly sensitive to known redox stressors such as H2 O2 and NaCN; however, no difference was found between young and aged animals. By using a new approach to quantitatively assess pharmacological sensitivity of population-level cortical responses to afferent stimulation, these data demonstrate that auditory cortical inhibition diminishes with ageing. Furthermore, these data establish a significant relationship between cortical thickness and GABAergic sensitivity, which had not previously been observed in an animal model of ageing.
Collapse
Affiliation(s)
- K A Stebbings
- Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA
| | - H W Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL, USA
| | - A Ravindra
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL, USA
| | - D M Caspary
- Department of Pharmacology, Southern Illinois University College of Medicine, IL, USA
| | - J G Turner
- Department of Pharmacology, Southern Illinois University College of Medicine, IL, USA.,Department of Psychology, Illinois College, IL, USA
| | - D A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
65
|
Cazals Y, Bévengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun 2015; 6:8780. [PMID: 26549439 PMCID: PMC4659937 DOI: 10.1038/ncomms9780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/01/2015] [Indexed: 01/03/2023] Open
Abstract
In the cochlea, K(+) is essential for mechano-electrical transduction. Here, we explore cochlear structure and function in mice lacking K(+) channels of the two-pore domain family. A profound deafness associated with a decrease in endocochlear potential is found in adult Kcnk5(-/-) mice. Hearing occurs around postnatal day 19 (P19), and completely disappears 2 days later. At P19, Kcnk5(-/-) mice have a normal endolymphatic [K(+)] but a partly lowered endocochlear potential. Using Lac-Z as a gene reporter, KCNK5 is mainly found in outer sulcus Claudius', Boettcher's and root cells. Low levels of expression are also seen in the spiral ganglion, Reissner's membrane and stria vascularis. Essential channels (KCNJ10 and KCNQ1) contributing to K(+) secretion in stria vascularis have normal expression in Kcnk5(-/-) mice. Thus, KCNK5 channels are indispensable for the maintenance of hearing. Among several plausible mechanisms, we emphasize their role in K(+) recycling along the outer sulcus lateral route.
Collapse
Affiliation(s)
- Yves Cazals
- Laboratoire de Neurosciences Intégratives et Adaptatives (UMR7260), Fédération de Recherche 3C (Cerveau, Comportement, Cognition), Aix-Marseille-Université and CNRS, Marseille 13331, France
| | - Michelle Bévengut
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
| | - Sébastien Zanella
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille 13005, France
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille 13005, France
| | - Jacques Barhanin
- Laboratoire de Physio-Médecine Moléculaire (UMR7370), Université de Nice-Sophia Antipolis and CNRS, Nice 06107, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
| | - Christian Gestreau
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
| |
Collapse
|
66
|
Yang CH, Schrepfer T, Schacht J. Age-related hearing impairment and the triad of acquired hearing loss. Front Cell Neurosci 2015; 9:276. [PMID: 26283913 PMCID: PMC4515558 DOI: 10.3389/fncel.2015.00276] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 07/06/2015] [Indexed: 02/03/2023] Open
Abstract
Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA ; Division of Otology, Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Thomas Schrepfer
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| | - Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
67
|
Song Y, Xia A, Lee HY, Wang R, Ricci AJ, Oghalai JS. Activity-dependent regulation of prestin expression in mouse outer hair cells. J Neurophysiol 2015; 113:3531-42. [PMID: 25810486 DOI: 10.1152/jn.00869.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/19/2015] [Indexed: 12/11/2022] Open
Abstract
Prestin is a membrane protein necessary for outer hair cell (OHC) electromotility and normal hearing. Its regulatory mechanisms are unknown. Several mouse models of hearing loss demonstrate increased prestin, inspiring us to investigate how hearing loss might feedback onto OHCs. To test whether centrally mediated feedback regulates prestin, we developed a novel model of inner hair cell loss. Injection of diphtheria toxin (DT) into adult CBA mice produced significant loss of inner hair cells without affecting OHCs. Thus, DT-injected mice were deaf because they had no afferent auditory input despite OHCs continuing to receive normal auditory mechanical stimulation and having normal function. Patch-clamp experiments demonstrated no change in OHC prestin, indicating that loss of information transfer centrally did not alter prestin expression. To test whether local mechanical feedback regulates prestin, we used Tecta(C1509G) mice, where the tectorial membrane is malformed and only some OHCs are stimulated. OHCs connected to the tectorial membrane had normal prestin levels, whereas OHCs not connected to the tectorial membrane had elevated prestin levels, supporting an activity-dependent model. To test whether the endocochlear potential was necessary for prestin regulation, we studied Tecta(C1509G) mice at different developmental ages. OHCs not connected to the tectorial membrane had lower than normal prestin levels before the onset of the endocochlear potential and higher than normal prestin levels after the onset of the endocochlear potential. Taken together, these data indicate that OHC prestin levels are regulated through local feedback that requires mechanoelectrical transduction currents. This adaptation may serve to compensate for variations in the local mechanical environment.
Collapse
Affiliation(s)
- Yohan Song
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Hee Yoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Rosalie Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| |
Collapse
|
68
|
Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015; 361:685-96. [PMID: 25740201 DOI: 10.1007/s00441-015-2147-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Tight control over cochlear blood flow (CoBF) and the blood-labyrinth barrier (BLB) in the striavascularis is critical for maintaining the ionic, fluid and energy balance necessary for hearing function. Inefficient CoBF and disruption of BLB integrity have long been considered major etiologic factors in a variety of hearing disorders. In this study, we investigate structural changes in the BLB of the striavascularis in age-graded C57BL/6 mice (1 to 21 months) with a focus on changes in two blood barrier accessory cells, namely pericytes (PCs) and perivascular-resident macrophage-like melanocytes (PVM/Ms). Decreased capillary density was detectable at 6 months, with significant capillary degeneration seen in 9- to 21-month-old mice. Reduced capillary density was highly correlated with lower numbers of PCs and PVM/Ms. "Drop-out" of PCs and "activation" of PVM/Ms were seen at 6 months, with drastic changes being observed by 21 months. With newly established in vitro three-dimensional cell-based co-culture models, we demonstrate that PCs and PVM/Ms are essential for maintaining cochlear vascular architecture and stability.
Collapse
|
69
|
Longenecker RJ, Chonko KT, Maricich SM, Galazyuk AV. Age effects on tinnitus and hearing loss in CBA/CaJ mice following sound exposure. SPRINGERPLUS 2014; 3:542. [PMID: 25279331 PMCID: PMC4177444 DOI: 10.1186/2193-1801-3-542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/10/2014] [Indexed: 11/17/2022]
Abstract
Tinnitus is a maladaptive neuropathic condition that develops in humans and laboratory animals following auditory insult. In our previous study we demonstrated that sound exposure leads to development of behavioral evidence of tinnitus in a sample of exposed mice. However, this tinnitus mouse model did not account for long-term maladaptive plasticity or aging, factors that are commonly linked to the human tinnitus population. Therefore the same group of mice was monitored for tinnitus for 360 days post exposure. Tinnitus was assessed behaviorally by measuring gap-induced pre-pulse suppression of the acoustic startle (GPIAS). Cochlear histology was performed on both control (unexposed) and experimental mice to determine whether sound exposure caused any evident cochlear damage. We found that 360 days after exposure the vast majority of exposed mice exhibited similar gap detection deficits as detected at 84 days post exposure. These mice did not demonstrate significant loss of inner/outer hair cells or spiral ganglion neurons compared to the control sample. Lastly, we demonstrated that GPIAS deficits observed in exposed animals were unlikely exclusively caused by cochlear damage, but could be a result of central auditory maladaptive plasticity. We conclude that CBA/CaJ mice can be considered a good animal model to study the possible contribution of age effects on tinnitus development following auditory insult.
Collapse
Affiliation(s)
- Ryan J Longenecker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272 USA ; Kent State University, Kent, OH 44240 USA
| | - Kurt T Chonko
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Steve M Maricich
- Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh, Pittsburgh, PA 15224 USA
| | - Alexander V Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272 USA
| |
Collapse
|
70
|
Hao X, Xing Y, Moore MW, Zhang J, Han D, Schulte BA, Dubno JR, Lang H. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea. PLoS One 2014; 9:e97389. [PMID: 24887110 PMCID: PMC4041576 DOI: 10.1371/journal.pone.0097389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear.
Collapse
Affiliation(s)
- Xinping Hao
- Department of Otolaryngology – Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael W. Moore
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jianning Zhang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology, Shanghai Yueyang Integrated Medicine Hospital, Shanghai, China
| | - Demin Han
- Department of Otolaryngology – Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail: (HL); (DH)
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail: (HL); (DH)
| |
Collapse
|
71
|
Xia A, Song Y, Wang R, Gao SS, Clifton W, Raphael P, Chao SI, Pereira FA, Groves AK, Oghalai JS. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS One 2013; 8:e82602. [PMID: 24376553 PMCID: PMC3869702 DOI: 10.1371/journal.pone.0082602] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/25/2013] [Indexed: 12/27/2022] Open
Abstract
The outer hair cell (OHC) motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. TectaC1509G transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss. In the present study, we sought to determine the effects of noise-induced hearing loss on prestin expression. After noise exposure, we performed cytocochleograms and observed OHC loss only in the basal region of the cochlea. Next, we patch clamped OHCs from the apical turn (9–12 kHz region), where no OHCs were lost, in noise-exposed and age-matched control mice. The non-linear capacitance was significantly higher in noise-exposed mice, consistent with higher functional prestin levels. We then measured prestin protein and mRNA levels in whole-cochlea specimens. Both Western blot and qPCR studies demonstrated increased prestin expression after noise exposure. Finally, we examined the effect of the prestin increase in vivo following noise damage. Immediately after noise exposure, ABR and DPOAE thresholds were elevated by 30–40 dB. While most of the temporary threshold shifts recovered within 3 days, there were additional improvements over the next month. However, DPOAE magnitudes, basilar membrane vibration, and CAP tuning curve measurements from the 9–12 kHz cochlear region demonstrated no differences between noise-exposed mice and control mice. Taken together, these data indicate that prestin is up-regulated by 32–58% in residual OHCs after noise exposure and that the prestin is functional. These findings are consistent with the notion that prestin increases in an attempt to partially compensate for reduced force production because of missing OHCs. However, in regions where there is no OHC loss, the cochlea is able to compensate for the excess prestin in order to maintain stable auditory thresholds and frequency discrimination.
Collapse
MESH Headings
- Animals
- Cochlear Microphonic Potentials
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression Regulation
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice
- Models, Biological
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Noise
- Otoacoustic Emissions, Spontaneous
- Patch-Clamp Techniques
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Anping Xia
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Yohan Song
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Rosalie Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Simon S. Gao
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Will Clifton
- Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Patrick Raphael
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Sung-il Chao
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Chosun University, Gwangju, South Korea
| | - Fred A. Pereira
- Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John S. Oghalai
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
72
|
Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 2013; 111:552-64. [PMID: 24198321 DOI: 10.1152/jn.00184.2013] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Perceptual abnormalities such as hyperacusis and tinnitus often occur after acoustic overexposure. Although such exposure can also result in permanent threshold elevation, some individuals with noise-induced hyperacusis or tinnitus show clinically normal thresholds. Recent work in animals has shown that a "neuropathic" noise exposure can cause immediate, permanent degeneration of the cochlear nerve despite complete threshold recovery and lack of hair cell damage (Kujawa SG, Liberman MC. J Neurosci 29: 14077-14085, 2009; Lin HW, Furman AC, Kujawa SG, Liberman MC. J Assoc Res Otolaryngol 12: 605-616, 2011). Here we ask whether this noise-induced primary neuronal degeneration results in abnormal auditory behavior, based on the acoustic startle response (ASR) and prepulse inhibition (PPI) of startle. Responses were measured in mice exposed either to a "neuropathic" noise or to a lower-intensity, "nonneuropathic" noise and in unexposed control mice. Mice with cochlear neuropathy displayed hyperresponsivity to sound, evidenced by enhanced ASR and PPI, while exposed mice without neuronal loss showed control-like responses. Gap PPI tests, often used to assess tinnitus, revealed limited gap detection deficits in mice with cochlear neuropathy only for certain gap-startle latencies, inconsistent with the presence of tinnitus "filling in the gap." Despite significantly reduced wave 1 of the auditory brainstem response, representing cochlear nerve activity, later peaks were unchanged or enhanced, suggesting compensatory neural hyperactivity in the auditory brainstem. Considering the rapid postexposure onset of both cochlear neuropathy and exaggerated startle-based behavior, the results suggest a role for cochlear primary neuronal degeneration, per se, in the central neural excitability that could underlie the generation of hyperacusis.
Collapse
Affiliation(s)
- Ann E Hickox
- Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | | |
Collapse
|
73
|
Jagger DJ, Forge A. The enigmatic root cell – Emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hear Res 2013; 303:1-11. [DOI: 10.1016/j.heares.2012.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
|
74
|
Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 2013; 33:13686-94. [PMID: 23966690 PMCID: PMC3755715 DOI: 10.1523/jneurosci.1783-13.2013] [Citation(s) in RCA: 554] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 12/29/2022] Open
Abstract
Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization.
Collapse
Affiliation(s)
| | - Kumud Lall
- Eaton-Peabody Laboratories and
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| | - M. Charles Liberman
- Eaton-Peabody Laboratories and
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sharon G. Kujawa
- Eaton-Peabody Laboratories and
- Department of Audiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
75
|
Abstract
OBJECTIVES Presbyacusis, one of the most common ailments of the elderly, is often treated with hearing aids, which serve to reintroduce some or all of those sounds lost to peripheral hearing loss. However, little is known about the underlying changes to the ear and brain as a result of such experience with sound late in life. The present study attempts to model this process by rearing aged CBA mice in an augmented acoustic environment (AAE). DESIGN Aged (22-23 months) male (n = 12) and female (n = 9) CBA/CaJ mice were reared in either 6 weeks of low-level (70 dB SPL) broadband noise stimulation (AAE) or normal vivarium conditions. Changes as a function of the treatment were measured for behavior, auditory brainstem response thresholds, hair cell cochleograms, and gamma aminobutyric acid neurochemistry in the key central auditory structures of the inferior colliculus and primary auditory cortex. RESULTS The AAE-exposed group was associated with sex-specific changes in cochlear pathology, auditory brainstem response thresholds, and gamma aminobutyric acid neurochemistry. Males exhibited significantly better thresholds and reduced hair cell loss (relative to controls) whereas females exhibited the opposite effect. AAE was associated with increased glutamic acid decarboxylase (GAD67) levels in the inferior colliculus of both male and female mice. However, in primary auditory cortex AAE exposure was associated with increased GAD67 labeling in females and decreased GAD67 in males. CONCLUSIONS These findings suggest that exposing aged mice to a low-level AAE alters both peripheral and central properties of the auditory system and these changes partially interact with sex or the degree of hearing loss before AAE. Although direct application of these findings to hearing aid use or auditory training in aged humans would be premature, the results do begin to provide direct evidence for the underlying changes that might be occurring as a result of hearing aid use late in life. These results suggest the aged brain retains significantly anatomical, electrophysiological, and neurochemical plasticity.
Collapse
|
76
|
Cho SI, Gao SS, Xia A, Wang R, Salles FT, Raphael PD, Abaya H, Wachtel J, Baek J, Jacobs D, Rasband MN, Oghalai JS. Mechanisms of hearing loss after blast injury to the ear. PLoS One 2013; 8:e67618. [PMID: 23840874 PMCID: PMC3698122 DOI: 10.1371/journal.pone.0067618] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body's most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction.
Collapse
Affiliation(s)
- Sung-Il Cho
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Chosun University, Gwangju, South Korea
| | - Simon S. Gao
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Anping Xia
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Rosalie Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Felipe T. Salles
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Patrick D. Raphael
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Homer Abaya
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Jacqueline Wachtel
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Jongmin Baek
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - David Jacobs
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - John S. Oghalai
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Tyagi N. Response to a Letter to the Editor to ‘Folic acid improves inner ear vascularization in hyperhomocysteinemic mice’. Hear Res 2012. [DOI: 10.1016/j.heares.2012.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
78
|
Zhao XY, Sun JL, Hu YJ, Yang Y, Zhang WJ, Hu Y, Li J, Sun Y, Zhong Y, Peng W, Zhang HL, Kong WJ. The effect of overexpression of PGC-1α on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear Res 2012; 296:13-24. [PMID: 23159434 DOI: 10.1016/j.heares.2012.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/17/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Aging is a natural process usually defined as a progressive loss of function with an accumulation of senescent cells. The clinical manifestations of this process include age-related hearing loss (AHL)/presbycusis. Several investigations indicated the association between a mitochondrial common deletion (CD) (mtDNA 4977-bp deletion in humans, corresponding to 4834-bp deletion in rats) and presbycusis. Previous researches have shown that peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key regulator of mitochondrial biogenesis and energy metabolism. However, the expression of PGC-1α in the inner ear and the possible effect of PGC-1α on presbycusis are not clear. Our data demonstrated the distribution of PGC-1α and its downstream transcription factors nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (Tfam) and nuclear factor κB (NF-κB) in marginal cells (MCs) for the first time. To explore the role of PGC-1α in cellular senescence, we established a model of marginal cell senescence harboring the mtDNA4834 common deletion induced by d-galactose. We also found that PGC-1α and its downstream transcription factors compensatorily increased in our cell senescence model. Furthermore, the overexpression of PGC-1α induced by transfection largely increased the expression levels of NRF-1 and TFAM and significantly decreased the expression level of NF-κB in the cell senescence model. And the levels of CD, senescent cells and apoptotic cells in the cell model decreased after PGC-1α overexpression. These results suggested that PGC-1α might protect MCs in this cell model from senescence through a nuclear-mitochondrial interaction and against apoptosis. Our study may shed light on the pathogenesis of presbycusis and provide a new therapeutic target for presbycusis.
Collapse
Affiliation(s)
- Xue-Yan Zhao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ohlemiller KK. Comment on Folic acid improves inner ear vascularization in hyperhomocysteinemic mice, Hearing Research 2012, 284: 42-51 (Kundu, Munjal, N. Tyagi, Sen, A. Tyagi, S. Tyagi). Hear Res 2012; 294:166-7; author reply 168-70. [PMID: 22634391 DOI: 10.1016/j.heares.2012.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
|
80
|
Xing Y, Samuvel DJ, Stevens SM, Dubno JR, Schulte BA, Lang H. Age-related changes of myelin basic protein in mouse and human auditory nerve. PLoS One 2012; 7:e34500. [PMID: 22496821 PMCID: PMC3320625 DOI: 10.1371/journal.pone.0034500] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/06/2012] [Indexed: 11/19/2022] Open
Abstract
Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38-46 years (middle-aged group) and 6 adults aged 63-91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP(+) auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis.
Collapse
Affiliation(s)
- Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Devadoss J. Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Shawn M. Stevens
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
81
|
Abstract
Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
82
|
Kane KL, Longo-Guess CM, Gagnon LH, Ding D, Salvi RJ, Johnson KR. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 2011; 283:80-8. [PMID: 22138310 DOI: 10.1016/j.heares.2011.11.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/18/2022]
Abstract
Inbred strain variants of the Cdh23 gene have been shown to influence the onset and progression of age-related hearing loss (AHL) in mice. In linkage backcrosses, the recessive Cdh23 allele (ahl) of the C57BL/6J strain, when homozygous, confers increased susceptibility to AHL, while the dominant allele (Ahl+) of the CBA/CaJ strain confers resistance. To determine the isolated effects of these alleles on different strain backgrounds, we produced the reciprocal congenic strains B6.CBACa-Cdh23(Ahl)(+) and CBACa.B6-Cdh23(ahl) and tested 15-30 mice from each for hearing loss progression. ABR thresholds for 8 kHz, 16 kHz, and 32 kHz pure-tone stimuli were measured at 3, 6, 9, 12, 15 and 18 months of age and compared with age-matched mice of the C57BL/6J and CBA/CaJ parental strains. Mice of the C57BL/6N strain, which is the source of embryonic stem cells for the large International Knockout Mouse Consortium, were also tested for comparisons with C57BL/6J mice. Mice of the C57BL/6J and C57BL/6N strains exhibited identical hearing loss profiles: their 32 kHz ABR thresholds were significantly higher than those of CBA/CaJ and congenic strain mice by 6 months of age, and their 16 kHz thresholds were significantly higher by 12 months. Thresholds of the CBA/CaJ, the B6.CBACa-Cdh23(Ahl)(+), and the CBACa.B6-Cdh23(ahl) strain mice differed little from one another and only slightly increased throughout the 18-month test period. Hearing loss, which corresponded well with cochlear hair cell loss, was most profound in the C57BL/6J and C57BL/6NJ strains. These results indicate that the CBA/CaJ-derived Cdh23(Ahl)(+) allele dramatically lessens hearing loss and hair cell death in an otherwise C57BL/6J genetic background, but that the C57BL/6J-derived Cdh23(ahl) allele has little effect on hearing loss in an otherwise CBA/CaJ background. We conclude that although Cdh23(ahl) homozygosity is necessary, it is not by itself sufficient to account for the accelerated hearing loss of C57BL/6J mice.
Collapse
MESH Headings
- Acoustic Stimulation
- Age Factors
- Aging
- Animals
- Audiometry, Pure-Tone
- Auditory Threshold
- Cadherins/genetics
- Cadherins/metabolism
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/physiopathology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem
- Female
- Genetic Predisposition to Disease
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Phenotype
- Polymorphism, Single Nucleotide
- Presbycusis/genetics
- Presbycusis/metabolism
- Presbycusis/pathology
- Presbycusis/physiopathology
- Species Specificity
Collapse
Affiliation(s)
- Kelly L Kane
- The Jackson Laboratory, Bar Harbor, 600 Main Street, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
83
|
α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis. Neurosci Res 2011; 71:303-10. [PMID: 21840348 DOI: 10.1016/j.neures.2011.07.1835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/14/2011] [Accepted: 07/26/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVES/HYPOTHESIS Efferent nerves under the outer hair cells (OHCs) play a role in the protection of these cells from loud stimuli. Previously, we showed that cochlear α-synuclein expression is localized to efferent auditory synapses at the base of the OHCs. To prove our hypothesis that α-synuclein deficiency and efferent auditory deficit might be a cause of hearing loss, we compared the morphology of efferent nerve endings and α-synuclein expression within the cochleae of two mouse models of presbycusis. STUDY DESIGN Comparative animal study of presbycusis. METHODS The C57BL/6J(C57) mouse strain, a well-known model of early-onset hearing loss, and the CBA mouse strain, a model of relatively late-onset hearing loss, were examined. Auditory brainstem responses and distortion product otoacoustic emissions were recorded, and cochlear morphology with efferent nerve ending was compared. Western blotting was used to examine α-synuclein expression in the cochlea. RESULTS Compared with CBA mice, C57 mice showed earlier onset high-frequency hearing loss and decreased function in OHCs, especially within high-frequency regions. C57 mice demonstrated more severe pathologic changes within the cochlea, particularly within the basal turn, than CBA mice of the same age. Weaker α-synuclein and synaptophysin expression in the efferent nerve endings and cochlear homogenates in C57 mice was observed. CONCLUSIONS Our results support the hypothesis that efferent nerve degeneration, possibly due to differential α-synuclein expression, is a potential cause of early-onset presbycusis. Further studies at the cellular level are necessary to verify our results.
Collapse
|
84
|
Ohlemiller KK, Rybak Rice ME, Rosen AD, Montgomery SC, Gagnon PM. Protection by low-dose kanamycin against noise-induced hearing loss in mice: dependence on dosing regimen and genetic background. Hear Res 2011; 280:141-7. [PMID: 21645602 DOI: 10.1016/j.heares.2011.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 12/20/2022]
Abstract
We recently demonstrated that sub-chronic low-dose kanamycin (KM, 300 mg/kg sc, 2×/day, 10 days) dramatically reduces permanent noise-induced hearing loss (NIHL) and hair cell loss in 1 month old CBA/J mice (Fernandez et al., 2010, J. Assoc. Res. Otolaryngol. 11, 235-244). Protection by KM remained for at least 48 h after the last dose, and appeared to involve a cumulative effect of multiple doses as part of a preconditioning process. The first month of life lies within the early 'sensitive period' for both cochlear noise and ototoxic injury in mice, and CBA/J mice appear exquisitely vulnerable to noise during this period (Ohlemiller et al., 2011; Hearing Res. 272, 13-20). From our initial data, we could not rule out 1) that less rigorous treatment protocols than the intensive one we applied may be equally-or more-protective; 2) that protection by KM is tightly linked to processes unique to the sensitive period for noise or ototoxins; or 3) that protection by KM is exclusive to CBA/J mice. The present experiments address these questions by varying the number and timing of fixed doses (300 mg/kg sc) of KM, as well as the age at treatment in CBA/J mice. We also tested for protection in young C57BL/6J (B6) mice. We find that nearly complete protection against at least 2 h of intense (110 dB SPL) broadband noise can be observed in CBA/J mice at least for ages up to 1 year. Reducing dosing frequency to as little as once every other day (a four-fold decrease in dosing frequency) appeared as protective as twice per day. However, reducing the number of doses to just 1 or 2, followed by noise 24 or 48 h later greatly reduced protection. Notably, hearing thresholds and hair cells in young B6 mice appeared completely unprotected by the same regimen that dramatically protects CBA/J mice. We conclude that protective effects of KM against NIHL in CBA/J mice can be engaged by a wide range of dosing regimens, and are not exclusive to the sensitive period for noise or ototoxins. While we cannot presently judge the generality of protection across genetic backgrounds, it appears not to be universal, since B6 showed no benefit. Classical genetic approaches based on CBA/J × B6 crosses may reveal loci critical to protective cascades engaged by kanamycin and perhaps other preconditioners. Their human analogs may partly determine who is at elevated risk of acquired hearing loss.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Fay and Carl Simons Center for Biology of Hearing and Deafness, Department of Otolaryngology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
85
|
Ohlemiller KK, Rosen AD, Rellinger EA, Montgomery SC, Gagnon PM. Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. J Assoc Res Otolaryngol 2011; 12:45-58. [PMID: 20922451 PMCID: PMC3015030 DOI: 10.1007/s10162-010-0238-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/20/2010] [Indexed: 12/18/2022] Open
Abstract
The acute and permanent effects of noise exposure on the endocochlear potential (EP) and cochlear lateral wall were evaluated in BALB/cJ (BALB) inbred mice, and compared with CBA/J (CBA) and C57BL/6 (B6) mice. Two-hour exposure to broadband noise (4-45 kHz) at 110 dB SPL leads to a approximately 50 mV reduction in the EP in BALB and CBA, but not B6. EP reduction in BALB and CBA is reliably associated with characteristic acute cellular pathology in stria vascularis and spiral ligament. By 8 weeks after exposure, the EP in CBA mice has returned to normal. In BALBs, however, the EP remains depressed by an average approximately 10 mV, so that permanent EP reduction contributes to permanent threshold shifts in these mice. We recently showed that the CBA noise phenotype in part reflects the influence of a large effect quantitative trait locus on Chr. 18, termed Nirep (Ohlemiller et al., Hear Res 260:47-53, 2010b). While CBA "EP susceptibility" alleles are dominant to those in B6, examination of (B6 × BALB) F1 hybrid mice and (F1 × BALB) N2 backcross mice revealed that noise-related EP reduction and associated cell pathology in BALBs are inherited in an autosomal recessive manner, and are dependent on multiple genes. Moreover, while N2 mice formed from B6 and CBA retain strong correspondence between acute EP reduction, ligament pathology, and strial pathology, N2s formed from B6 and BALB include subsets that dissociate pathology of ligament and stria. We conclude that the genes and cascades that govern the very similar EP susceptibility phenotypes in BALB and CBA mice need not be the same. BALBs appear to carry alleles that promote more pronounced long term effects of noise on the lateral wall. Separate loci in BALBs may preferentially impact stria versus ligament.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
86
|
Ohlemiller KK, Rybak Rice ME, Rellinger EA, Ortmann AJ. Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice. Hear Res 2010; 272:13-20. [PMID: 21108998 DOI: 10.1016/j.heares.2010.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
CBA/CaJ and CBA/J inbred mouse strains appear relatively resistant to age- and noise-related cochlear pathology, and constitute the predominant 'good hearing' control strains in mouse studies of hearing and deafness. These strains have often been treated as nearly equivalent in their hearing characteristics, and have even been mixed in some studies. Nevertheless, we recently showed that their trajectories with regard to age-associated cochlear pathology diverge after one year of age (Ohlemiller et al., 2010a). We also recently reported that they show quite different susceptibility to cochlear noise injury during the 'sensitive period' of heightened vulnerability to noise common to many models, CBA/J being far more vulnerable than CBA/CaJ (Fernandez et al., 2010 J. Assoc. Res. Otolaryngol. 11:235-244). Here we explore this relation in a side-by-side comparison of the effect of varying noise exposure duration in young (6 week) and older (6 month) CBA/J and CBA/CaJ mice, and in F1 hybrids formed from these. Both the extent of permanent noise-induced threshold shifts (NIPTS) and the probability of a defined NIPTS were determined as exposure to intense broadband noise (4-45 kHz, 110 dB SPL) increased by factors of two from 7 s to 4 h. At 6 months of age the two strains appeared very similar by both measures. At 6 weeks of age, however, both the extent and probability of NIPTS grew much more rapidly with noise duration in CBA/J than in CBA/CaJ. The 'threshold' exposure duration for NIPTS was <1.0 min in CBA/J versus >4.0 min in CBA/CaJ. F1 hybrid mice showed both NIPTS and hair cell loss similar to that in CBA/J. This suggests that dominant-acting alleles at unknown loci distinguish CBA/J from CBA/CaJ. These loci have novel effects on hearing phenotype, as they come into play only during the sensitive period, and may encode factors that demarcate this period. Since the cochlear cells whose fragility defines the early window appear to be hair cells, these loci may principally impact the mechanical or metabolic resiliency of hair cells or the organ of Corti.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Program in Audiology and Communication Sciences, Washington University School of Medicine, United States.
| | | | | | | |
Collapse
|