51
|
Nguyen TX, Chandrasekar S, Neher S, Walter P, Shan SO. Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle. Biochemistry 2011; 50:7208-17. [PMID: 21780778 PMCID: PMC6309729 DOI: 10.1021/bi200742a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The universally conserved signal recognition particle (SRP) and SRP receptor (SR) mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the GTPase cycle in each system adapts to its distinct substrate proteins were unclear. Here, we show that interactions at the active site essential for GTPase activation in the chloroplast SRP and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic homologues, GTPase activation in the chloroplast SRP-SR complex contributes marginally to the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast GTPases may forego the GTPase activation step as a key regulatory point. These features may reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein.
Collapse
Affiliation(s)
- Thang X. Nguyen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| | - Saskia Neher
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158
- Current address: Department of biochemistry and biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| |
Collapse
|
52
|
Zalucki YM, Beacham IR, Jennings MP. Coupling between codon usage, translation and protein export in Escherichia coli. Biotechnol J 2011; 6:660-7. [PMID: 21567959 DOI: 10.1002/biot.201000334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/07/2022]
Abstract
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein.
Collapse
Affiliation(s)
- Yaramah M Zalucki
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
53
|
Braig D, Mircheva M, Sachelaru I, van der Sluis EO, Sturm L, Beckmann R, Koch HG. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Mol Biol Cell 2011; 22:2309-23. [PMID: 21551068 PMCID: PMC3128533 DOI: 10.1091/mbc.e11-02-0152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our study reveals an alternative route in the SRP-dependent protein targeting pathway that includes a preassembled, membrane-bound SRP-SR complex. This alternative route is fully sufficient to maintain cell viability in the absence of a soluble SRP. Protein targeting by the signal recognition particle (SRP) and the bacterial SRP receptor FtsY requires a series of closely coordinated steps that monitor the presence of a substrate, the membrane, and a vacant translocon. Although the influence of substrate binding on FtsY-SRP complex formation is well documented, the contribution of the membrane is largely unknown. In the current study, we found that negatively charged phospholipids stimulate FtsY-SRP complex formation. Phospholipids act on a conserved positively charged amphipathic helix in FtsY and induce a conformational change that strongly enhances the FtsY-lipid interaction. This membrane-bound, signal sequence–independent FtsY-SRP complex is able to recruit RNCs to the membrane and to transfer them to the Sec translocon. Significantly, the same results were also observed with an artificial FtsY-SRP fusion protein, which was tethered to the membrane via a transmembrane domain. This indicates that substrate recognition by a soluble SRP is not essential for cotranslational targeting in Escherichia coli. Our findings reveal a remarkable flexibility of SRP-dependent protein targeting, as they indicate that substrate recognition can occur either in the cytosol via ribosome-bound SRP or at the membrane via a preassembled FtsY-SRP complex.
Collapse
Affiliation(s)
- David Braig
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
54
|
Compositional and Structural Features Related to Thermal Stability in the Archaea SRP19 and SRP54 Signal Recognition Particle Proteins. J Mol Evol 2011; 72:450-65. [DOI: 10.1007/s00239-011-9443-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
|
55
|
Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, Sourjik V, Koch HG. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 2011; 12:563-78. [PMID: 21255212 DOI: 10.1111/j.1600-0854.2011.01167.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRβ subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRβ subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRβ subunits in one single protein.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Rolland D, Bouamrani A, Houlgatte R, Barbarat A, Ramus C, Arlotto M, Ballester B, Berger F, Felman P, Callet-Bauchu E, Baseggio L, Traverse-Glehen A, Brugière S, Garin J, Coiffier B, Berger F, Thieblemont C. Identification of proteomic signatures of mantle cell lymphoma, small lymphocytic lymphoma, and marginal zone lymphoma biopsies by surface enhanced laser desorption/ionization-time of flight mass spectrometry. Leuk Lymphoma 2011; 52:648-58. [PMID: 21438832 DOI: 10.3109/10428194.2010.549256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mantle cell lymphoma (MCL), small lymphocytic lymphoma (SLL), and marginal zone lymphoma (MZL) are small B-cell non-Hodgkin lymphomas (NHLs) that may be difficult to distinguish. In order to identify specific proteomic biomarkers, differential proteomic analysis of these three NHLs was performed using surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). Whole cell lysates obtained from 18 MCL, 20 SLL, and 20 MZL biopsies were applied on two different ProteinChips (cationic and anionic). Hierarchical clustering and discriminating scores combined with an innovative bio-informatics microdissection strategy allowed us to distinguish specific lymphoma proteomic signatures based on the expression of 37 protein peaks. SELDI-assisted protein purification combined with nano-liquid chromatography (LC) quadrupole-time of flight tandem mass spectrometry (Q-TOF MS/MS) was used to identify proteins overexpressed in both MCL and SLL tumors. Among them two histones, H2B and H4, were identified in MCL tumor biopsies and the signal recognition particle 9 kDa protein, SRP9, in SLL tumor biopsies.
Collapse
Affiliation(s)
- Delphine Rolland
- INSERM U836, Equipe 7 Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Iakhiaeva E, Iakhiaev A, Zwieb C. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA. BMC Mol Biol 2010; 11:83. [PMID: 21073748 PMCID: PMC2995471 DOI: 10.1186/1471-2199-11-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/13/2010] [Indexed: 12/04/2022] Open
Abstract
Background Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, Texas 75708, USA
| | | | | |
Collapse
|
58
|
Kraut-Cohen J, Gerst JE. Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 2010; 35:459-69. [DOI: 10.1016/j.tibs.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 12/26/2022]
|
59
|
Bibi E. Early targeting events during membrane protein biogenesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:841-50. [PMID: 20682283 DOI: 10.1016/j.bbamem.2010.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
All living cells have co-translational pathways for targeting membrane proteins. Co-translation pathways for secretory proteins also exist but mostly in eukaryotes. Unlike secretory proteins, the biosynthetic pathway of most membrane proteins is conserved through evolution and these proteins are usually synthesized by membrane-bound ribosomes. Translation on the membrane requires that both the ribosomes and the mRNAs be properly localized. Theoretically, this can be achieved by several means. (i) The current view is that the targeting of cytosolic mRNA-ribosome-nascent chain complexes (RNCs) to the membrane is initiated by information in the emerging hydrophobic nascent polypeptides. (ii) The alternative model suggests that ribosomes may be targeted to the membrane also constitutively, whereas the appropriate mRNAs may be carried on small ribosomal subunits or targeted by other cellular factors to the membrane-bound ribosomes. Importantly, the available experimental data do not rule out the possibility that cells may also utilize both pathways in parallel. In any case, it is well documented that a major player in the targeting pathway is the signal recognition particle (SRP) system composed of the SRP and its receptor (SR). Although the functional core of the SRP system is evolutionarily conserved, its composition and biological practice come with different flavors in various organisms. This review is dedicated mainly to the Escherichia (E.) coli SRP, where the biochemical and structural properties of components of the SRP system have been relatively characterized, yielding essential information about various aspects of the pathway. In addition, several cellular interactions of the SRP and its receptor have been described in E. coli, providing insights into their spatial function. Collectively, these in vitro studies have led to the current view of the targeting pathway [see (i) above]. Interestingly, however, in vivo studies of the role of the SRP and its receptor, with emphasis on the temporal progress of the pathway, elicited an alternative hypothesis [see (ii) above]. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
60
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
61
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
62
|
Archaea signal recognition particle shows the way. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:485051. [PMID: 20672053 PMCID: PMC2905702 DOI: 10.1155/2010/485051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/14/2010] [Indexed: 01/24/2023]
Abstract
Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY). Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY) are strikingly diverse or absent even among the members of a taxonomic subgroup.
Collapse
|
63
|
Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. mBio 2010; 1. [PMID: 20714446 PMCID: PMC2921155 DOI: 10.1128/mbio.00020-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli signal recognition particle (SRP) system plays an important role in membrane protein biogenesis. Previous studies have suggested indirectly that in addition to its role during the targeting of ribosomes translating membrane proteins to translocons, the SRP might also have a quality control role in preventing premature synthesis of membrane proteins in the cytoplasm. This proposal was studied here using cells simultaneously overexpressing various membrane proteins and either SRP, the SRP protein Ffh, its 4.5S RNA, or the Ffh M domain. The results show that SRP, Ffh, and the M domain are all able to selectively inhibit the expression of membrane proteins. We observed no apparent changes in the steady-state mRNA levels or membrane protein stability, suggesting that inhibition may occur at the level of translation, possibly through the interaction between Ffh and ribosome-hydrophobic nascent chain complexes. Since E. coli SRP does not have a eukaryote-like translation arrest domain, we discuss other possible mechanisms by which this SRP might regulate membrane protein translation when overexpressed. The eukaryotic SRP slows down translation of SRP substrates by cytoplasmic ribosomes. This activity is important for preventing premature synthesis of secretory and membrane proteins in the cytoplasm. It is likely that an analogous quality control step would be required in all living cells. However, on the basis of its composition and domain structure and limited in vitro studies, it is believed that the E. coli SRP is unable to regulate ribosomes translating membrane proteins. Nevertheless, several in vivo studies have suggested otherwise. To address this issue further in vivo, we utilized unbalanced conditions under which E. coli simultaneously overexpresses SRP and each of several membrane or cytosolic proteins. Surprisingly, our results clearly show that the E. coli SRP is capable of regulating membrane protein synthesis and demonstrate that the M domain of Ffh mediates this activity. These results thus open the way for mechanistic characterization of this quality control process in bacteria.
Collapse
|
64
|
Christensen NM, Oparka KJ, Tilsner J. Advances in imaging RNA in plants. TRENDS IN PLANT SCIENCE 2010; 15:196-203. [PMID: 20153241 DOI: 10.1016/j.tplants.2010.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 05/09/2023]
Abstract
Increasing evidence shows that many RNAs are targeted to specific locations within cells, and that RNA-processing pathways occur in association with specific subcellular structures. Compartmentation of mRNA translation and RNA processing helps to assemble large RNA-protein complexes, while RNA targeting allows local protein synthesis and the asymmetric distribution of transcripts during cell polarisation. In plants, intercellular RNA trafficking also plays an additional role in plant development and pathogen defence. Methods that allow the visualisation of RNA sequences within a cellular context, and preferably at subcellular resolution, can help to answer important questions in plant cell and developmental biology. Here, we summarise the approaches currently available for localising RNA in vivo and address the specific limitations inherent with plant systems.
Collapse
Affiliation(s)
- Nynne M Christensen
- Biosystems Department, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
65
|
A novel complete reconstitution system for membrane integration of the simplest membrane protein. Biochem Biophys Res Commun 2010; 394:733-6. [DOI: 10.1016/j.bbrc.2010.03.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 11/22/2022]
|
66
|
Velappan N, Fisher HE, Pesavento E, Chasteen L, D’Angelo S, Kiss C, Longmire M, Pavlik P, Bradbury ARM. A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins. Nucleic Acids Res 2010; 38:e22. [PMID: 19955231 PMCID: PMC2831335 DOI: 10.1093/nar/gkp809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 09/14/2009] [Indexed: 01/11/2023] Open
Abstract
Filamentous phage display has been extensively used to select proteins with binding properties of specific interest. Although many different display platforms using filamentous phage have been described, no comprehensive comparison of their abilities to display similar proteins has been conducted. This is particularly important for the display of cytoplasmic proteins, which are often poorly displayed with standard filamentous phage vectors. In this article, we have analyzed the ability of filamentous phage to display a stable form of green fluorescent protein and modified variants in nine different display vectors, a number of which have been previously proposed as being suitable for cytoplasmic protein display. Correct folding and display were assessed by phagemid particle fluorescence, and with anti-GFP antibodies. The poor correlation between phagemid particle fluorescence and recognition of GFP by antibodies, indicates that proteins may fold correctly without being accessible for display. The best vector used a twin arginine transporter leader to transport the displayed protein to the periplasm, and a coil-coil arrangement to link the displayed protein to g3p. This vector was able to display less robust forms of GFP, including ones with inserted epitopes, as well as fluorescent proteins of the Azami green series. It was also functional in mock selection experiments.
Collapse
|
67
|
Yosef I, Bochkareva ES, Adler J, Bibi E. Membrane protein biogenesis in Ffh- or FtsY-depleted Escherichia coli. PLoS One 2010; 5:e9130. [PMID: 20161748 PMCID: PMC2817740 DOI: 10.1371/journal.pone.0009130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically. Methodology/Principal Findings We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization. Conclusions Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Elena S. Bochkareva
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
68
|
Mircheva M, Boy D, Weiche B, Hucke F, Graumann P, Koch HG. Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor. BMC Biol 2009; 7:76. [PMID: 19912622 PMCID: PMC2780400 DOI: 10.1186/1741-7007-7-76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/13/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The signal recognition particle (SRP) receptor plays a vital role in co-translational protein targeting, because it connects the soluble SRP-ribosome-nascent chain complex (SRP-RNCs) to the membrane bound Sec translocon. The eukaryotic SRP receptor (SR) is a heterodimeric protein complex, consisting of two unrelated GTPases. The SRbeta subunit is an integral membrane protein, which tethers the SRP-interacting SRalpha subunit permanently to the endoplasmic reticulum membrane. The prokaryotic SR lacks the SRbeta subunit and consists of only the SRalpha homologue FtsY. Strikingly, although FtsY requires membrane contact for functionality, cell fractionation studies have localized FtsY predominantly to the cytosolic fraction of Escherichia coli. So far, the exact function of the soluble SR in E. coli is unknown, but it has been suggested that, in contrast to eukaryotes, the prokaryotic SR might bind SRP-RNCs already in the cytosol and only then initiates membrane targeting. RESULTS In the current study we have determined the contribution of soluble FtsY to co-translational targeting in vitro and have re-analysed the localization of FtsY in vivo by fluorescence microscopy. Our data show that FtsY can bind to SRP-ribosome nascent chains (RNCs) in the absence of membranes. However, these soluble FtsY-SRP-RNC complexes are not efficiently targeted to the membrane. In contrast, we observed effective targeting of SRP-RNCs to membrane-bond FtsY. These data show that soluble FtsY does not contribute significantly to cotranslational targeting in E. coli. In agreement with this observation, our in vivo analyses of FtsY localization in bacterial cells by fluorescence microscopy revealed that the vast majority of FtsY was localized to the inner membrane and that soluble FtsY constituted only a negligible species in vivo. CONCLUSION The exact function of the SRP receptor (SR) in bacteria has so far been enigmatic. Our data show that the bacterial SR is almost exclusively membrane-bound in vivo, indicating that the presence of a soluble SR is probably an artefact of cell fractionation. Thus, co-translational targeting in bacteria does not involve the formation of a soluble SR-signal recognition particle (SRP)-ribosome nascent chain (RNC) intermediate but requires membrane contact of FtsY for efficient SRP-RNC recruitment.
Collapse
Affiliation(s)
- Miryana Mircheva
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
69
|
Nishiyama KI, Tokuda H. Development of a functional in vitro integration system for an integral membrane protein, SecG. Biochem Biophys Res Commun 2009; 390:920-4. [PMID: 19853580 DOI: 10.1016/j.bbrc.2009.10.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
A functional in vitro integration system for an integral membrane protein, SecG, comprising an efficient translation system supplemented with inverted membrane vesicles (IMV) was developed. When SecG was synthesized in the presence of IMV prepared from a DeltasecG strain (DeltaSecG IMV), the synthesized SecG was recovered with the IMV. A population of SecG was resistant to urea extraction, indicating that the synthesized SecG was integrated into DeltaSecG IMV. Addition of signal recognition particle and its receptor (SRP) and SecA caused an increase in the amount of the urea-resistant form of SecG. When IMV into which SecG had been integrated were subjected to the translocation assay, the translocation activity was found to be significantly stimulated compared with for DeltaSecG IMV. Moreover, when SRP and SecA had been supplemented, the translocation activity nearly recovered to the level in IMV prepared from the wild type strain. These results indicate that the in vitro synthesized SecG could be functionally integrated into DeltaSecG IMV with the help of SRP and SecA. We also present evidence that the membrane targeting and integration of SecG is stimulated by externally added SecA and SecG itself.
Collapse
Affiliation(s)
- Ken-ichi Nishiyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
70
|
Depletion of the signal recognition particle receptor inactivates ribosomes in Escherichia coli. J Bacteriol 2009; 191:7017-26. [PMID: 19749044 DOI: 10.1128/jb.00208-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle (SRP)-dependent cotranslational targeting of proteins to the cytoplasmic membrane in bacteria or the endoplasmic reticulum membrane in eukaryotes is an essential process in most living organisms. Eukaryotic cells have been shown to respond to an impairment of the SRP pathway by (i) repressing ribosome biogenesis, resulting in decreased protein synthesis, and (ii) by increasing the expression of protein quality control mechanisms, such as chaperones and proteases. In the current study, we have analyzed how bacteria like Escherichia coli respond to a gradual depletion of FtsY, the bacterial SRP receptor. Our analyses using cell-free transcription/translation systems showed that FtsY depletion inhibits the translation of both SRP-dependent and SRP-independent proteins. This synthesis defect is the result of a multifaceted response that includes the upregulation of the ribosome-inactivating protein ribosome modulation factor (RMF). Although the consequences of these responses in E. coli are very similar to some of the effects also observed in eukaryotic cells, one striking difference is that E. coli obviously does not reduce the rate of protein synthesis by downregulating ribosome biogenesis. Instead, the upregulation of RMF leads to a direct and reversible inhibition of translation.
Collapse
|
71
|
Significant bias against the ACA triplet in the tmRNA sequence of Escherichia coli K-12. J Bacteriol 2009; 191:6157-66. [PMID: 19633073 DOI: 10.1128/jb.00699-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin MazF in Escherichia coli cleaves single-stranded RNAs specifically at ACA sequences. MazF overexpression virtually eliminates all cellular mRNAs to completely block protein synthesis. However, protein synthesis can continue on an mRNA that is devoid of ACA triplets. The finding that ribosomal RNAs remain intact in the face of complete translation arrest suggested a purpose for such preservation. We therefore examined the sequences of all transcribed RNAs to determine if there was any statistically significant bias against ACA. While ACA motifs are absent from tmRNA, 4.5S RNA, and seven of the eight 5S rRNAs, statistical analysis revealed that only for tmRNA was the absence nonrandom. The introduction of single-strand ACAs makes tmRNA highly susceptible to MazF cleavage. Furthermore, analysis of tmRNA sequences from 442 bacteria showed that the discrimination against ACA in tmRNAs was seen mostly in enterobacteria. We propose that the unusual bias against ACA in tmRNA may have coevolved with the acquisition of MazF.
Collapse
|
72
|
Yi L, Dalbey RE. Oxal/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (Review). Mol Membr Biol 2009; 22:101-11. [PMID: 16092528 DOI: 10.1080/09687860500041718] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies have shown that there is a pathway that is evolutionarily conserved for the insertion of proteins into the membrane in mitochondria, chloroplasts, and bacteria. In this pathway, the Oxa1/Alb3/YidC proteins are believed to function as membrane insertases that play an important role in the membrane protein biogenesis of respiratory and energy transduction proteins. Additional roles of the Oxa1/Alb3/YidC members may be in the lateral integration of proteins into the lipid bilayer, and in the folding and assembly of proteins into membrane protein complexes.
Collapse
Affiliation(s)
- Liang Yi
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
73
|
Braig D, Bär C, Thumfart JO, Koch HG. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J Mol Biol 2009; 390:401-13. [PMID: 19414018 DOI: 10.1016/j.jmb.2009.04.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/02/2009] [Accepted: 04/28/2009] [Indexed: 11/19/2022]
Abstract
Protein targeting by the bacterial signal recognition particle requires the specific interaction of the signal recognition particle (SRP)-ribosome-nascent chain complex with FtsY, the bacterial SRP receptor. Although FtsY in Escherichia coli lacks a transmembrane domain, the membrane-bound FtsY displays many features of an integral membrane protein. Our data reveal that it is the cooperative action of two lipid-binding helices that allows this unusually strong membrane contact. Helix I comprises the first 14 amino acids of FtsY and the second is located at the interface between the A- and the N-domain of FtsY. We show by site-directed cross-linking and binding assays that both helices bind to negatively charged phospholipids, with a preference for phosphatidyl glycerol. Despite the strong lipid binding, helix I does not seem to be completely inserted into the lipid phase, but appears to be oriented parallel with the membrane surface. The two helices together with the connecting linker constitute an independently folded domain, which maintains its lipid binding even in the absence of the conserved NG-core of FtsY. In summary, our data reveal that the two consecutive lipid-binding helices of FtsY can provide a membrane contact that does not differ significantly in stability from that provided by a transmembrane domain. This explains why the bacterial SRP receptor does not require an integral beta-subunit for membrane binding.
Collapse
Affiliation(s)
- David Braig
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
74
|
Boy D, Koch HG. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 2009; 20:1804-15. [PMID: 19158385 DOI: 10.1091/mbc.e08-08-0886] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The universally conserved SecYEG/Sec61 translocon constitutes the major protein-conducting channel in the cytoplasmic membrane of bacteria and the endoplasmic reticulum membrane of eukaryotes. It is engaged in both translocating secretory proteins across the membrane as well as in integrating membrane proteins into the lipid phase of the membrane. In the current study we have detected distinct SecYEG translocon complexes in native Escherichia coli membranes. Blue-Native-PAGE revealed the presence of a 200-kDa SecYEG complex in resting membranes. When the SecA-dependent secretory protein pOmpA was trapped inside the SecYEG channel, a smaller SecY-containing complex of approximately 140-kDa was observed, which probably corresponds to a monomeric SecYEG-substrate complex. Trapping the SRP-dependent polytopic membrane protein mannitol permease in the SecYEG translocon, resulted in two complexes of 250 and 600 kDa, each containing both SecY and the translocon-associated membrane protein YidC. The appearance of both complexes was correlated with the number of transmembrane domains that were exposed during targeting of mannitol permease to the membrane. These results suggest that the assembly or the stability of the bacterial SecYEG translocon is influenced by the substrate that needs to be transported.
Collapse
Affiliation(s)
- Diana Boy
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
75
|
Clérico EM, Szymańska A, Gierasch LM. Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods. Biopolymers 2009; 92:201-11. [PMID: 19280642 PMCID: PMC2896254 DOI: 10.1002/bip.21181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photoaffinity crosslinking comprises a group of invaluable techniques used to investigate in detail a binding interaction between two polypeptides. As the diverse photo crosslinking techniques available display inherent differences, the method of choice will provide specific information about a particular system under study. We used two complementary crosslinking approaches: photo-induced crosslinking of unmodified proteins (PICUP) and benzophenone-mediated (BPM) crosslinking to extensively examine the interaction between the signal recognition particle (SRP) and signal sequences. Signal peptide binding by SRP presents a central puzzle in the protein targeting process because signal sequences must be recognized with fidelity but lack strict primary structural homology. The concurrent use of PICUP and BPM crosslinking to link signal peptides to E. coli SRP allowed us to explore the crosslinking pattern resulting from using different crosslinking chemistries, varying the position of the photoprobe in the hydrophobic core of the signal sequence, and shifting the crosslinking reactive group away from the signal peptide backbone. By PICUP, signal peptides crosslinked exclusively to the NG domain of the SRP protein Ffh, regardless of the position of the reactive residue. Benzophenone-modified amino acids preferentially crosslinked the signal peptide to the C-terminal (M) domain of Ffh. We conclude that signal peptide binding is largely mediated by the M domain. Importantly, our data also indicate intimate, at least transient, contacts between the hydrophobic core of the signal peptide and the NG domain. These results reopen the possibility of a direct involvement of the NG domain in signal sequence recognition.
Collapse
Affiliation(s)
- Eugenia M. Clérico
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts, Amherst MA 01003, U.S.A
| | - Aneta Szymańska
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts, Amherst MA 01003, U.S.A
| |
Collapse
|
76
|
Kuruma Y, Nishiyama KI, Shimizu Y, Müller M, Ueda T. Development of a Minimal Cell-Free Translation System for the Synthesis of Presecretory and Integral Membrane Proteins. Biotechnol Prog 2008; 21:1243-51. [PMID: 16080708 DOI: 10.1021/bp049553u] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By combining translation and membrane integration/translocation systems, we have constructed a novel cell-free system for the production of presecretory and integral membrane proteins in vitro. A totally defined, cell-free system reconstituted from a minimal number of translation factors was supplemented with urea-washed inverted membrane vesicles (U-INVs) prepared from Escherichia coli, as well as with purified proteins mediating membrane targeting of presecretory and integral membrane proteins. Initially, efficient membrane translocation of a presecretory protein (pOmpA) was obtained simply by the addition of only SecA and SecB. Proteinase K digestion clearly showed the successful translocation of pOmpA inside the vesicles. Next, integration of an inner membrane protein (MtlA) into U-INVs was achieved in the presence of only SRP (Ffh) and SR (FtsY). Finally, a membrane protein possessing a large periplasmic region (FtsQ) and therefore requiring both factors (SRP/SR and SecA/SecB) for membrane integration/translocation was also shown to be integrated correctly in this cell-free system. Thus, our novel cell-free system provides not only an efficient strategy for the production of membrane-related proteins but also an improved platform for the biological study of protein translocation and integration mechanisms.
Collapse
Affiliation(s)
- Yutetsu Kuruma
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
77
|
Richter CV, Träger C, Schünemann D. Evolutionary substitution of two amino acids in chloroplast SRP54 of higher plants cause its inability to bind SRP RNA. FEBS Lett 2008; 582:3223-9. [PMID: 18755190 DOI: 10.1016/j.febslet.2008.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
The chloroplast signal recognition particle (cpSRP) consists of a conserved 54 kDa subunit (cpSRP54) and a unique 43 kDa subunit (cpSRP43) but lacks SRP-RNA, an essential and universally conserved component of cytosolic SRPs. High sequence similarity exists between cpSRP54 and bacterial SRP54 except for a plant-specific C-terminal extension containing the cpSRP43-binding motif. We found that cpSRP54 of higher plants lacks the ability to bind SRP-RNA because of two amino acid substitutions within a region corresponding to the RNA binding domain of cytosolic SRP54, whereas the C-terminal extension does not affect RNA binding. Phylogenetic analysis revealed that these mutations occur in the cpSRP54 homologues of higher plants but not in most algae.
Collapse
Affiliation(s)
- Christine V Richter
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | |
Collapse
|
78
|
Weiche B, Bürk J, Angelini S, Schiltz E, Thumfart JO, Koch HG. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J Mol Biol 2008; 377:761-73. [PMID: 18281057 DOI: 10.1016/j.jmb.2008.01.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/27/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Different from eukaryotes, the bacterial signal recognition particle (SRP) receptor lacks a membrane-tethering SRP receptor (SR) beta subunit and is composed of only the SR alpha homologue FtsY. FtsY is a modular protein composed of three domains. The N- and G-domains of FtsY are highly similar to the corresponding domains of Ffh/SRP54 and SR alpha and constitute the essential core of FtsY. In contrast, the weakly conserved N-terminal A-domain does not seem to be essential, and its exact function is unknown. Our data show that a 14-amino-acid-long positively charged region at the N-terminus of the A-domain is involved in stabilizing the FtsY-SecYEG interaction. Mutant analyses reveal that the positively charged residues are crucial for this function, and we propose that the 14-amino-acid region serves as a transient lipid anchor. In its absence, the activity of FtsY to support cotranslational integration is reduced to about 50%. Strikingly, in vivo, a truncated isoform of FtsY that lacks exactly these first 14 amino acids exists. Different from full-length FtsY, which primarily cofractionates with the membrane, the N-terminally truncated isoform is primarily present in the soluble fraction. Mutating the conserved glycine residue at position 14 prevents the formation of the truncated isoform and impairs the activity of FtsY in cotranslational targeting. These data suggest that membrane binding and function of FtsY are in part regulated by proteolytic cleavage of the conserved 14-amino-acid motif.
Collapse
Affiliation(s)
- Benjamin Weiche
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Yakhnin AV. A model for the origin of protein synthesis as coreplicational scanning of nascent RNA. ORIGINS LIFE EVOL B 2007; 37:523-36. [PMID: 17882534 DOI: 10.1007/s11084-007-9108-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/15/2007] [Indexed: 10/22/2022]
Abstract
The origin of protein synthesis is one of the major riddles of molecular biology. It was proposed a decade ago that the ribosomal RNA evolved from an earlier RNA-replisome (a ribozyme fulfilling RNA replication) while transfer RNA (tRNA) evolved from a genomic replication origin. Applying these hypotheses, I suggest that protein synthesis arose for the purpose of segregating copy and template RNA during replication through the conventional formation of a complementary strand. Nascent RNA was scanned in 5' to 3' direction following the progress of replication. The base pairing of several tRNA-like molecules with nascent RNA released the replication intermediates trapped in duplex. Synthesis of random peptides evolved to fuel the turnover of tRNAs. Then the combination of replication-coupled peptide formation and the independent development of amino acid-specific tRNA aminoacylation resulted in template-based protein synthesis. Therefore, the positioning of tRNAs adjacent to each other developed for the purpose of replication rather than peptide synthesis. This hypothesis does not include either selection for useful peptides or specific recognition of amino acids at the initial evolution of translation. It does, however, explain a number of features of modern translation apparatus, such as the relative flexibility of genetic code, the number of proteins shared by the transcription and translation machines, the universal participation of an RNA subunit in co-translational protein secretion, 'unscheduled translation', and factor-independent translocation. Assistance of original ribosomes in keeping apart the nascent transcript from its template is still widely explored by modern bacteria and perhaps by other domains of life.
Collapse
Affiliation(s)
- Alexander V Yakhnin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
80
|
Lustig Y, Vagima Y, Goldshmidt H, Erlanger A, Ozeri V, Vince J, McConville MJ, Dwyer DM, Landfear SM, Michaeli S. Down-regulation of the trypanosomatid signal recognition particle affects the biogenesis of polytopic membrane proteins but not of signal peptide-containing proteins. EUKARYOTIC CELL 2007; 6:1865-75. [PMID: 17715370 PMCID: PMC2043396 DOI: 10.1128/ec.00134-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein translocation across the endoplasmic reticulum is mediated by the signal recognition particle (SRP). In this study, the SRP pathway in trypanosomatids was down-regulated by two approaches: RNA interference (RNAi) silencing of genes encoding SRP proteins in Trypanosoma brucei and overexpression of dominant-negative mutants of 7SL RNA in Leptomonas collosoma. The biogenesis of both signal peptide-containing proteins and polytopic membrane proteins was examined using endogenous and green fluorescent protein-fused proteins. RNAi silencing of SRP54 or SRP68 in T. brucei resulted in reduced levels of polytopic membrane proteins, but no effect on the level of signal peptide-containing proteins was observed. When SRP deficiency was achieved in L. collosoma by overexpression of dominant-negative mutated 7SL RNA, a major effect was observed on polytopic membrane proteins but not on signal peptide-containing proteins. This study included two trypanosomatid species, tested various protein substrates, and induced depletion of the SRP pathway by affecting either the levels of SRP binding proteins or that of SRP RNA. Our results demonstrate that, as in bacteria but in contrast to mammalian cells, the trypanosome SRP is mostly essential for the biogenesis of membrane proteins.
Collapse
Affiliation(s)
- Yaniv Lustig
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gawronski-Salerno J, Coon JS, Focia PJ, Freymann DM. X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases. Proteins 2007; 66:984-95. [PMID: 17186523 PMCID: PMC3543818 DOI: 10.1002/prot.21200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
FtsY and Ffh are structurally similar prokaryotic Signal Recognition Particle GTPases that play an essential role in the Signal Recognition Particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The two GTPases assemble in a GTP-dependent manner to form a heterodimeric SRP targeting complex. We report here the 2.1 A X-ray structure of FtsY from T. aquaticus bound to GDP. The structure of the monomeric protein reveals, unexpectedly, canonical binding interactions for GDP. A comparison of the structures of the monomeric and complexed FtsY NG GTPase domain suggests that it undergoes a conformational change similar to that of Ffh NG during the assembly of the symmetric heterodimeric complex. However, in contrast to Ffh, in which the C-terminal helix shifts independently of the other subdomains, the C-terminal helix and N domain of T. aquaticus FtsY together behave as a rigid body during assembly, suggesting distinct mechanisms by which the interactions of the NG domain "module" are regulated in the context of the two SRP GTPases.
Collapse
Affiliation(s)
| | | | | | - Douglas M. Freymann
- Correspondence to: Douglas M. Freymann, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611.
| |
Collapse
|
82
|
Schaffitzel C, Ban N. Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 2007; 158:463-71. [PMID: 17350284 DOI: 10.1016/j.jsb.2007.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/10/2007] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Biochemical and structural studies of co-translational folding, targeting and translocation depend on an efficient methodology to prepare ribosome nascent chain complexes (RNCs). Here we present our approach for the generation of homogenous and stable RNCs involving in vitro translation and affinity purification. Fusing the SecM arrest sequence, which tightly interacts with the ribosomal tunnel, to the nascent polypeptide chain significantly enhanced the stability of the RNCs. We have been able to increase the yield of the affinity purification step by engineering a tag with higher affinity. The RNCs generated with this approach have been successfully used to obtain 3D cryo-electron microscopic reconstructions of complexes with the signal recognition particle and the translocon. The established procedure is highly efficient and if scaled up could yield milligram amounts of RNCs sufficient for crystallization experiments.
Collapse
Affiliation(s)
- Christiane Schaffitzel
- ETH Zürich, Institute for Molecular Biology and Biophysics, HPK Building, Schafmattstr. 20, 8093 Zürich, Switzerland.
| | | |
Collapse
|
83
|
Kiefer D, Kuhn A. YidC as an essential and multifunctional component in membrane protein assembly. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:113-38. [PMID: 17425940 DOI: 10.1016/s0074-7696(06)59003-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins fulfill a number of vital functions in prokaryotic and eukaryotic cells. They are often organized in multicomponent complexes, folded within the membrane bilayer and interacting with the cytoplasmic and periplasmic or external soluble compartments. For the biogenesis of integral membrane proteins, the essential biochemical steps are (1) the insertion and topogenesis of the transmembrane protein segments into the lipid bilayer, (2) the three-dimensional folding of the translocated hydrophilic domains, and (3) the assembly into multimeric complexes. Intensive research has elucidated the basic mechanisms of membrane protein insertion in the homologous translocation machineries of different cellular systems. Whereas the Sec translocation system is found in the endoplasmic reticulum of eukaryotic cells and in the prokaryotic plasma membrane, the YidC-Oxa1 membrane insertase is present in prokaryotic and organellar membranes. This review focuses on the discoveries of the YidC system in bacterial as well as the Oxa1/Alb3 protein family of eukaryotic cells and will particularly emphasize evolutionary aspects.
Collapse
Affiliation(s)
- Dorothee Kiefer
- Department of Microbiology, University of Hohenheim, D-70599 Stuttgart, Germany
| | | |
Collapse
|
84
|
Frøystad MK, Lilleeng E, Sundby A, Krogdahl A. Cloning and characterization of α-amylase from Atlantic salmon (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 2006; 145:479-92. [PMID: 17020811 DOI: 10.1016/j.cbpa.2006.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 07/28/2006] [Accepted: 08/06/2006] [Indexed: 11/29/2022]
Abstract
Amylase has a lower activity in carnivorous fish species, particularly in Atlantic salmon. We report the first cloning of a salmonid alpha-amylase cDNA from Atlantic salmon, a major species in aquaculture. By amino acid alignment of several species, we identified a seven amino acid deletion in one of the large loops of the enzyme in relatively close proximity to the active site, that could impair substrate binding. We also found the signal peptide to be less hydrophobic compared to other species. This may affect import into ER during protein synthesis. Active site residues were shown to be conserved. Amylase mRNA expression was shown in pancreatic tissue, liver, and in the heart. Using blocked p-nitrophenyl-maltoheptaoside as a substrate, we measured a low amylase activity in Atlantic salmon intestinal content, which was about half of the activity measured in Atlantic cod, whereas activity measured in rainbow trout was fourteen times higher. Amylase activities in all three species showed similar degree of reduction in hydrolytic activity in a dose-response trial with a wheat amylase inhibitor preparation. This indicates similar specific activity per amylase molecule.
Collapse
|
85
|
Penaud S, Fernandez A, Boudebbouze S, Ehrlich SD, Maguin E, van de Guchte M. Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus. Appl Environ Microbiol 2006; 72:7445-54. [PMID: 16997986 PMCID: PMC1694267 DOI: 10.1128/aem.01109-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus bulgaricus is a lactic acid bacteria (LAB) that, through the production of lactic acid, gradually acidifies its environment during growth. In the course of this process, L. bulgaricus acquires an improved tolerance to acidity. A survey of the recently established genome sequence shows that this bacterium possesses few of the pH control functions that have been described in other LAB and raises the question of what other mechanisms could be involved in its adaptation to the decreasing environmental pH. In some bacteria other than LAB, ion transport systems have been implicated in acid adaptation. We therefore studied the expression of this type of transport system during acid adaptation in L. bulgaricus by reverse transcription and real-time quantitative PCR and mapped transcription start sites. Intriguingly, the most significantly induced were three ATPases carrying the CPX signature of heavy-metal transporters. Protein homology and the presence of a conserved sequence motif in the promoter regions of the genes encoding these proteins strongly suggest that they are involved in copper homeostasis. Induction of this system is thought to assist in avoiding indirect damage that could result from medium acidification.
Collapse
Affiliation(s)
- S Penaud
- Génétique Microbienne, INRA-CRJ, 78352 Jouy en Josas cedex, France
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Cell-free translation systems have developed significantly over the last two decades and improvements in yield have resulted in their use for protein production in the laboratory. These systems have protein engineering applications, such as the production of proteins containing unnatural amino acids and development of proteins exhibiting novel functions. Recently, it has been suggested that cell-free translation systems might be used as the fundamental basis for cell-like systems. We review recent progress in the field of cell-free translation systems and describe their use as tools for protein production and engineering.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
87
|
Angelini S, Boy D, Schiltz E, Koch HG. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. ACTA ACUST UNITED AC 2006; 174:715-24. [PMID: 16923832 PMCID: PMC2064314 DOI: 10.1083/jcb.200606093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRα subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRβ subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY–SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor.
Collapse
Affiliation(s)
- Sandra Angelini
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
88
|
Steiner D, Forrer P, Stumpp MT, Plückthun A. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 2006; 24:823-31. [PMID: 16823375 DOI: 10.1038/nbt1218] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 05/12/2006] [Indexed: 11/09/2022]
Abstract
Even proteins that fold well in bacteria are frequently displayed poorly on filamentous phages. Low protein presentation on phage might be caused by premature cytoplasmic folding, leading to inefficient translocation into the periplasm. As translocation is an intermediate step in phage assembly, we tested the display levels of a range of proteins using different translocation pathways by employing different signal sequences. Directing proteins to the cotranslational signal recognition particle (SRP) translocation pathway resulted in much higher display levels than directing them to the conventional post-translational Sec translocation pathway. For example, the display levels of designed ankyrin-repeat proteins (DARPins) were improved up to 700-fold by simply exchanging Sec- for SRP-dependent signal sequences. In model experiments this exchange of signal sequences improved phage display from tenfold enrichment to >1,000-fold enrichment per phage display selection round. We named this method 'SRP phage display' and envision broad applicability, especially when displaying cDNA libraries or very stable and fast-folding proteins from libraries of alternative scaffolds.
Collapse
Affiliation(s)
- Daniel Steiner
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
89
|
Lingelbach K, Przyborski JM. The long and winding road: Protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte. Mol Biochem Parasitol 2006; 147:1-8. [PMID: 16540187 DOI: 10.1016/j.molbiopara.2006.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/19/2006] [Accepted: 01/31/2006] [Indexed: 11/17/2022]
Abstract
Mature human erythrocytes infected with the human malarial parasite Plasmodium falciparum are extensively modified to provide a more comfortable "home" for their intracellular guests. This process is mediated by parasite-encoded factors that are exported into, and through the host erythrocyte. This intra- yet simultaneously extra-cellular protein trafficking and sorting system has, in the past decades received much attention, also due to its unusual nature. Recent reports have highlighted the importance of a short peptide sequence, referred to individually as Plasmodium export element (PEXEL), vacuolar translocation signal (VTS) or generally as host cell targeting signal (HCT) in the export of both soluble and membrane bound proteins, allowing the partial definition of the parasite's "exportome". Mechanistically however, the discovery of this sequence raises as many questions as it answers. In this article, we comment on current models of protein transport to the host cell, discuss the mechanistic problems highlighted by these signals, and suggest what might be the next important steps in studying the protein export mechanisms of an obligate intracellular parasite that chooses to inhabit a de-nucleated host cell.
Collapse
|
90
|
van Bloois E, Haan GJ, de Gier JW, Oudega B, Luirink J. Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J Biol Chem 2006; 281:10002-9. [PMID: 16481320 DOI: 10.1074/jbc.m511357200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inner membrane proteins (IMPs) of Escherichia coli use different pathways for membrane targeting and integration. YidC plays an essential but poorly defined role in the integration and folding of IMPs both in conjunction with the Sec translocon and as a Sec-independent insertase. Depletion of YidC only marginally affects the insertion of Sec-dependent IMPs, whereas it blocks the insertion of a subset of Sec-independent IMPs. Substrates of this latter "YidC-only" pathway include the relatively small IMPs M13 procoat, Pf3 coat protein, and subunit c of the F(1)F(0) ATPase. Recently, it has been shown that the steady state level of the larger and more complex CyoA subunit of the cytochrome o oxidase is also severely affected upon depletion of YidC. In the present study we have analyzed the biogenesis of the integral lipoprotein CyoA. Collectively, our data suggest that the first transmembrane segment of CyoA rather than the signal sequence recruits the signal recognition particle for membrane targeting. Membrane integration and assembly appear to occur in two distinct sequential steps. YidC is sufficient to catalyze insertion of the N-terminal domain consisting of the signal sequence, transmembrane segment 1, and the small periplasmic domain in between. Translocation of the large C-terminal periplasmic domain requires the Sec translocon and SecA, suggesting that for this particular IMP the Sec translocon might operate downstream of YidC.
Collapse
Affiliation(s)
- Edwin van Bloois
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
91
|
Lustig Y, Goldshmidt H, Uliel S, Michaeli S. The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi. J Cell Sci 2006; 118:4551-62. [PMID: 16179612 DOI: 10.1242/jcs.02578] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomes are protozoan parasites that have a major impact on human health and that of livestock. These parasites represent a very early branch in the eukaryotic lineage, and possess unique RNA processing mechanisms. The trypanosome signal recognition particle (SRP) is also unusual in being the first signal recognition particle described in nature to be comprised of two RNA molecules, the 7SL RNA and a tRNA-like molecule. In this study, we further elucidated the unique properties of this particle. The genes encoding three SRP proteins (SRP19, SRP72 and SRP68) were identified by bioinformatics analysis. Silencing of these genes by RNAi suggests that the SRP-mediated protein translocation pathway is essential for growth. The depletion of SRP72 and SRP68 induced sudden death, most probably as a result of toxicity due to the accumulation of the pre-SRP in the nucleolus. Purification of the trypanosome particle to homogeneity, by TAP-tagging, identified four SRP proteins (SRP72, SRP68, SRP54 and SRP19), but no Alu-domain-binding protein homologs. This study highlights the unique features of the trypanosome SRP complex and further supports the hypothesis that the tRNA-like molecule present in this particle may replace the function of the Alu-domain-binding proteins present in many eukaryotic SRP complexes.
Collapse
Affiliation(s)
- Yaniv Lustig
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
92
|
Eisner G, Moser M, Schäfer U, Beck K, Müller M. Alternate recruitment of signal recognition particle and trigger factor to the signal sequence of a growing nascent polypeptide. J Biol Chem 2006; 281:7172-9. [PMID: 16421097 DOI: 10.1074/jbc.m511388200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different from cytoplasmic membrane proteins, presecretory proteins of bacteria usually do not require the signal recognition particle for targeting to the Sec translocon. Nevertheless signal sequences of presecretory proteins have been found in close proximity to signal recognition particle immediately after they have emerged from the ribosome. We show here that at the ribosome, the molecular environment of a signal sequence depends on the nature of downstream sequence elements that can cause an alternate recruitment of signal recognition particle and the ribosome-associated chaperone Trigger factor to a growing nascent chain. While signal recognition particle and Trigger factor might remain bound to the same ribosome, both ligands are clearly able to displace each other from a nascent chain. The data also imply that a signal sequence owes its molecular environment to the fact that it remains closely apposed to the ribosomal exit site during growth of a nascent secretory protein.
Collapse
Affiliation(s)
- Gottfried Eisner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
93
|
Abstract
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes, the inner membrane and the outer membrane. The biogenesis of most inner membrane proteins (IMPs), typical alpha-helical proteins, appears to follow a partly conserved cotranslational pathway. Targeting involves a relatively simple signal recognition particle (SRP) and SRP-receptor. Insertion of most IMPs into the membrane occurs via the Sec-translocon, which is also used for the vectorial transport of secretory proteins. Similar to eukaryotic systems, little is known about the later stages of biogenesis of IMPs, the folding and assembly in the lipid bilayer. Recently, YidC has been identified as a factor that assists in the integration, folding, and assembly of IMPs both in association with the Sec-translocon and separately. This review deals mainly with recent structural and biochemical data from various experimental systems that offer new insight into the different stages of biogenesis of E. coli IMPs.
Collapse
Affiliation(s)
- Joen Luirink
- Department of Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
94
|
Hasona A, Crowley PJ, Levesque CM, Mair RW, Cvitkovitch DG, Bleiweis AS, Brady LJ. Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci U S A 2005; 102:17466-71. [PMID: 16293689 PMCID: PMC1297686 DOI: 10.1073/pnas.0508778102] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The signal recognition particle (SRP)-translocation pathway is conserved in all three domains of life and delivers membrane and secretory proteins to the cytoplasmic membrane or endoplasmic reticulum. We determined the requirement in the cariogenic oral pathogen Streptocococcus mutans of the three universally conserved elements of the SRP pathway: Ffh/SRP54, scRNA, and FtsY/SRalpha. Previously, we reported that insertional interruption of S. mutans ffh was not lethal, but resulted in acid sensitivity. To test whether S. mutans could survive extensive disruption of the SRP pathway, single and double deletions of genes encoding Ffh, scRNA, and FtsY were generated. Without environmental stressors, all mutant strains were viable, but unlike the wild-type, none could initiate growth at pH 5.0 or in 3.5% NaCl. Survival of challenge with 0.3 mM H(2)O(2) was also diminished without ffh. Members of the YidC/Oxa1/Alb3 family are also ubiquitous, involved in the translocation and assembly of membrane proteins, and have been identified in prokaryotes/mitochondria/chloroplasts. Two genes encoding YidC homologs, YidC1 and YidC2, are present in streptococcal genomes with both expressed in S. mutans. Deletion of YidC1 demonstrated no obvious phenotype. Elimination of YidC2 resulted in a stress-sensitive phenotype similar to SRP pathway mutants. Mutants lacking both YidC2 and SRP components were severely impaired and barely able to grow, even in the absence of environmental stress. Here, we report the dispensability of the cotranslational SRP protein translocation system in a bacterium. In S. mutans, this pathway contributes to protection against rapid environmental challenge and may overlap functionally with YidC2.
Collapse
Affiliation(s)
- Adnan Hasona
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
The complexity of pathways for protein import into thylakoids: it's not easy being green. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous proteins are transported into or across the chloroplast thylakoid membrane. To date, two major pathways have been identified for the transport of luminal proteins (the Sec- and Tat-dependent pathways) and it is now clear that these protein translocases use fundamentally different transport mechanisms. Integral membrane proteins are inserted by means of at least two further pathways. One involves the input of numerous targeting factors, including SRP (signal recognition particle), FtsY and Albino3. Surprisingly, the other pathway does not involve any of the known chloroplastic targeting factors, and insertion is energy-independent, raising the possibility of an unusual ‘spontaneous’ insertion mechanism.
Collapse
|
96
|
Abstract
The importance of small, noncoding RNAs that act as regulators of transcription, of RNA modification or stability, and of mRNA translation is becoming increasingly apparent. Here we discuss current knowledge of regulatory RNA function and review how the RNAs have been identified in a variety of organisms. Many of the regulatory RNAs act through base-pairing interactions with target RNAs. The base-pairing RNAs can be grouped into two general classes: those that are encoded on the opposite strand of their target RNAs such that they contain perfect complementarity with their targets, and those that are encoded at separate locations on the chromosome and have imperfect base-pairing potential with their targets. Other regulatory RNAs act by modifying protein activity, in some cases by mimicking the structures of other RNA or DNA molecules.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Gene Expression
- Humans
- Mice
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA Stability
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
97
|
Deitermann S, Sprie GS, Koch HG. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J Biol Chem 2005; 280:39077-85. [PMID: 16186099 DOI: 10.1074/jbc.m509647200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of bacterial membrane proteins with large periplasmic loops is an intrinsically complex process because the SecY translocon has to coordinate the signal recognition particle-dependent targeting and integration of transmembrane domains with the SecA-dependent translocation of the periplasmic loop. The current model suggests that the ATP hydrolysis by SecA is required only if periplasmic loops larger than 30 amino acids have to be translocated. In agreement with this model, our data demonstrate that the signal recognition particle- and SecA-dependent multiple spanning membrane protein YidC becomes SecA-independent if the large periplasmic loop connecting transmembrane domains 1 and 2 is reduced to less than 30 amino acids. Strikingly, however, we were unable to render single spanning membrane proteins SecA-independent by reducing the length of their periplasmic loops. For these proteins, the complete assembly was always SecA-dependent even if the periplasmic loop was reduced to 13 amino acids. If, however, the 13-amino acid-long periplasmic loop was fused to a downstream transmembrane domain, SecA was no longer required for complete translocation. Although these data support the current model on the SecA dependence of multiple spanning membrane proteins, they indicate a novel function of SecA for the assembly of single spanning membrane proteins. This could suggest that single and multiple spanning membrane proteins are processed differently by the bacterial SecY translocon.
Collapse
Affiliation(s)
- Sandra Deitermann
- Institute for Biochemistry and Molecular Biology, Faculty for Medicine, University Freiburg, 79104 Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
98
|
Zanen G, Houben ENG, Meima R, Tjalsma H, Jongbloed JDH, Westers H, Oudega B, Luirink J, van Dijl JM, Quax WJ. Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J 2005; 272:4617-30. [PMID: 16156784 DOI: 10.1111/j.1742-4658.2005.04777.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.
Collapse
Affiliation(s)
- Geeske Zanen
- Department of Pharmaceutical Biology, University of Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Nishiyama KI, Tokuda H. Genes coding for SecG and Leu2-tRNA form an operon to give an unusual RNA comprising mRNA and a tRNA precursor. ACTA ACUST UNITED AC 2005; 1729:166-73. [PMID: 15951035 DOI: 10.1016/j.bbaexp.2005.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 04/18/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022]
Abstract
The secG gene encoding the SecG subunit of the SecYEG translocon and the leuU gene encoding Leu2-tRNA are very closely located on the Escherichia coli chromosome. A secG-leuU disruptant was not viable unless secG-leuU was induced from a plasmid, indicating that leuU is an essential gene since secG is dispensable at 37 degrees C. A mutant strain in which the promoter region for secG was replaced with cat revealed the same phenotype as the secG-leuU disruptant, indicating that leuU was expressed from the secG promoter. When the secG-leuU locus was placed on a high copy plasmid, an RNA comprising both mRNA for SecG and a precursor for Leu2-tRNA was detected on a Northern blot. Moreover, a secG-leuU transcript was amplified by RT-PCR using the total RNA fraction prepared from wild type E. coli cells but not from the secG-leuU and the secG promoter disruptants, indicating that secG-leuU forms an operon. Thus, the expression of Leu2-tRNA requires expression of the upstream secG gene. The gene structure of secG-leuU was conserved among Gram-negative bacteria, although the sequences separating the two genes were quite diverse. The physiological significance of this unusual gene organization is discussed.
Collapse
Affiliation(s)
- Ken-ichi Nishiyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
100
|
Misra S, Tripathi MK, Chaudhuri G. Down-regulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages. J Biol Chem 2005; 280:29364-73. [PMID: 15955815 PMCID: PMC3089017 DOI: 10.1074/jbc.m504162200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The parasitic protozoan Leishmania specifically manipulates the expression of host macrophage genes during initial interactions, as revealed by mRNA differential display reverse transcription-PCR and cDNA microarray analyses. The genes that are down-regulated in mouse (J774G8) or human (U937) macrophages upon exposure to Leishmania include small RNA transcripts from the short interspersed element sequences. Among the short interspersed element RNAs that are down-regulated is 7SL RNA, which is the RNA component of the signal recognition particle. Because the microbicidal functions of macrophages profoundly count on vesicular protein transport processes, down-regulation of 7SL RNA may be significant in the establishment of infection by Leishmania in macrophage phagolysosomes. To evaluate whether down-regulation of 7SL RNA results in inhibition of signal recognition particle-mediated vesicular protein transport processes, we have tested and found that the targeting of proteins to the endoplasmic reticulum and plasma membrane and the secretion of proteins by macrophages are compromised in Leishmania-infected J774G8 and U937 cells. Knocking down 7SL RNA using small interfering RNA mimicked the effect of exposure of macrophages to Leishmania. The overexpression of 7SL RNA in J774G8 or U937 cells made these cells resistant to Leishmania infection, suggesting the possible biological significance of down-regulation of 7SL RNA synthesis in the establishment of infection by Leishmania. We conclude that Leishmania down-regulates 7SL RNA in macrophages to manipulate the targeting of many proteins that use the vesicular transport pathway and thus favors its successful establishment of infection in macrophages.
Collapse
Affiliation(s)
- Smita Misra
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| | | | - Gautam Chaudhuri
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|