51
|
Gene Expression Changes Induced by Exposure of RAW 264.7 Macrophages to Particulate Matter of Air Pollution: The Role of Endotoxins. Biomolecules 2022; 12:biom12081100. [PMID: 36008994 PMCID: PMC9405577 DOI: 10.3390/biom12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the variable chemical and physical characteristics of particulate air pollutants, inflammation and oxidative stress have been identified as common mechanisms for cell damage and negative health influences. These effects are produced by organic components, especially by endotoxins. This study analyzed the gene expression profile after exposure of RAW 264.7 cells to the standard particulate matter (PM) material, NIST1648a, and PM with a reduced organic matter content, LAp120, in comparison to the effects of lipopolysaccharide (LPS). The selected parameters of cell viability, cell cycle progression, and metabolic and inflammatory activity were also investigated. Both forms of PM negatively influenced the parameters of cell activity. These results were generally reflected in the gene expression profile. Only NIST1648a, excluding LAp120, contained endotoxins and showed small but statistically significant pro-inflammatory activity. However, the gene expression profiling revealed strong pro-inflammatory cell activation induced by NIST1648a that was close to the effects of LPS. Changes in gene expression triggered by LAp120 were relatively small. The observed differences in the effects of NIST1648a and LAp120 were related to the content of organic matter in which bacterial endotoxins play an important role. However, other organic compounds and their interactions with other PM components also appear to be of significant importance.
Collapse
|
52
|
Siegel EL, Ghassabian A, Hipwell AE, Factor-Litvak P, Zhu Y, Steinthal HG, Focella C, Battaglia L, Porucznik CA, Collingwood SC, Klein-Fedyshin M, Kahn LG. Indoor and outdoor air pollution and couple fecundability: a systematic review. Hum Reprod Update 2022; 29:45-70. [PMID: 35894871 PMCID: PMC9825271 DOI: 10.1093/humupd/dmac029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/27/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Air pollution is both a sensory blight and a threat to human health. Inhaled environmental pollutants can be naturally occurring or human-made, and include traffic-related air pollution (TRAP), ozone, particulate matter (PM) and volatile organic compounds, among other substances, including those from secondhand smoking. Studies of air pollution on reproductive and endocrine systems have reported associations of TRAP, secondhand smoke (SHS), organic solvents and biomass fueled-cooking with adverse birth outcomes. While some evidence suggests that air pollution contributes to infertility, the extant literature is mixed, and varying effects of pollutants have been reported. OBJECTIVE AND RATIONALE Although some reviews have studied the association between common outdoor air pollutants and time to pregnancy (TTP), there are no comprehensive reviews that also include exposure to indoor inhaled pollutants, such as airborne occupational toxicants and SHS. The current systematic review summarizes the strength of evidence for associations of outdoor air pollution, SHS and indoor inhaled air pollution with couple fecundability and identifies gaps and limitations in the literature to inform policy decisions and future research. SEARCH METHODS We performed an electronic search of six databases for original research articles in English published since 1990 on TTP or fecundability and a number of chemicals in the context of air pollution, inhalation and aerosolization. Standardized forms for screening, data extraction and study quality were developed using DistillerSR software and completed in duplicate. We used the Newcastle-Ottawa Scale to assess risk of bias and devised additional quality metrics based on specific methodological features of both air pollution and fecundability studies. OUTCOMES The search returned 5200 articles, 4994 of which were excluded at the level of title and abstract screening. After full-text screening, 35 papers remained for data extraction and synthesis. An additional 3 papers were identified independently that fit criteria, and 5 papers involving multiple routes of exposure were removed, yielding 33 articles from 28 studies for analysis. There were 8 papers that examined outdoor air quality, while 6 papers examined SHS exposure and 19 papers examined indoor air quality. The results indicated an association between outdoor air pollution and reduced fecundability, including TRAP and specifically nitrogen oxides and PM with a diameter of ≤2.5 µm, as well as exposure to SHS and formaldehyde. However, exposure windows differed greatly between studies as did the method of exposure assessment. There was little evidence that exposure to volatile solvents is associated with reduced fecundability. WIDER IMPLICATIONS The evidence suggests that exposure to outdoor air pollutants, SHS and some occupational inhaled pollutants may reduce fecundability. Future studies of SHS should use indoor air monitors and biomarkers to improve exposure assessment. Air monitors that capture real-time exposure can provide valuable insight about the role of indoor air pollution and are helpful in assessing the short-term acute effects of pollutants on TTP.
Collapse
Affiliation(s)
- Eva L Siegel
- Columbia University, Mailman School of Public Health, New York, NY, USA
| | | | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pam Factor-Litvak
- Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Carolina Focella
- New York University Grossman School of Medicine, New York, NY, USA
| | - Lindsey Battaglia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Linda G Kahn
- Correspondence address. E-mail: https://orcid.org/0000-0002-6512-6160
| |
Collapse
|
53
|
Assessment of air quality changes during COVID-19 partial lockdown in a Brazilian metropolis: from lockdown to economic opening of Rio de Janeiro, Brazil. AIR QUALITY, ATMOSPHERE & HEALTH 2022; 15:1205-1220. [PMID: 34840623 PMCID: PMC8609175 DOI: 10.1007/s11869-021-01127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 10/27/2022]
|
54
|
Gaberšek M, Watts MJ, Gosar M. Attic dust: an archive of historical air contamination of the urban environment and potential hazard to health? JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128745. [PMID: 35344891 DOI: 10.1016/j.jhazmat.2022.128745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive study of attic dust in an urban area is presented. Its entire life cycle, from determining historical emission sources to recognising the processes that take place in attic dust and its potential to impact human health is discussed. Its chemical composition and morphological characteristics of individual solid particles reflect past anthropogenic activities. High levels of Be-Cd-Cu-Sb-Sn-Pb-Te-Zn and occurrence of Cu-Zn shavings are typical for an industrial zone characterised by a foundry and a battery factory. High levels of Co-Fe-Mo-Ni-W-Ba-Cr-Mg-Mn-Nb-Ti and occurrence of various solid Fe-oxides, particularly spherical particles, were identified in another industrial zone, which was dominated by the automotive and metal-processing industries. Emissions from coal combustion affected the distribution of S-Se-Hg-Tl-As-Ag-U. The predominant mineral in attic dust is gypsum, which was presumably formed in situ by the reaction of carbonate dust particles and atmospheric SO2 gas. The high oral bioaccessibility of As-Cd-Cu-Pb-Zn in the gastric phase and high bioaccessibility of As-Cu-Cd-Ni in the gastrointestinal phase were identified. Determined characteristics of attic dust and identified possibilities of prolonged human exposure to it indicate that attic dust should be treated as an excellent proxy for historical air contamination as well as a potentially hazardous material for human health.
Collapse
Affiliation(s)
- Martin Gaberšek
- Geological Survey of Slovenia, Dimičeva ulica 14, Ljubljana SI-1000, Slovenia.
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom.
| | - Mateja Gosar
- Geological Survey of Slovenia, Dimičeva ulica 14, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
55
|
Selected Research Issues of Urban Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095553. [PMID: 35564947 PMCID: PMC9105718 DOI: 10.3390/ijerph19095553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
Health is created within the urban settings of people’s everyday lives. In this paper we define Urban Public Health and compile existing evidence regarding the spatial component of health and disease in urban environments. Although there is already a substantial body of single evidence on the links between urban environments and human health, focus is mostly on individual health behaviors. We look at Urban Public Health through a structural lens that addresses health conditions beyond individual health behaviors and identify not only health risks but also health resources associated with urban structures. Based on existing conceptual frameworks, we structured evidence in the following categories: (i) build and natural environment, (ii) social environment, (iii) governance and urban development. We focused our search to review articles and reviews of reviews for each of the keywords via database PubMed, Cochrane, and Google Scholar in order to cover the range of issues in urban environments. Our results show that linking findings from different disciplines and developing spatial thinking can overcome existing single evidence and make other correlations visible. Further research should use interdisciplinary approaches and focus on health resources and the transformation of urban structures rather than merely on health risks and behavior.
Collapse
|
56
|
Characteristics and Health Risk Assessment of Mercury Exposure via Indoor and Outdoor Household Dust in Three Iranian Cities. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aims to increase our current knowledge on the concentration of particulate-bound mercury (PBM) in urban environments of three Iranian cities, where high concentrations of dust particles can act as carriers for mercury transport and deposition. A total of 172 dust samples were collected from Ahvaz, Asaluyeh, and Zabol residential houses and in outdoor air and were analyzed for total mercury content. Ahvaz is a highly industrialized city with large metallurgical plants, refineries, and major oil-related activities, which were assumed to contribute to elevated contents of PBM in this city. Very high levels of Hg contamination in Ahvaz indoor dust samples were calculated (Contamination Factor: CF > 6). Sampling sites in Asaluyeh are influenced by Hg emissions from the South Pars Gas Field. However, the results revealed a relatively lower concentration of PBM in Asaluyeh, with a low-to-moderate level of Hg contamination. This is likely ascribed to the lower content of total mercury in hydrocarbon gases than crude oil, in addition to the absence of metal smelting plants in this city compared to Ahvaz. Zabol, as a city devoid of industrial activity, presented the lowest levels of PBM concentration and contamination. Indoor dust in Ahvaz showed considerable potential to cause a non-carcinogenic health risk for children, mainly through the inhalation of PBM, while the health risk for other cities was below safe limits. The trend of health risk was found in the order of indoor > outdoor and children > adults in all studied cities.
Collapse
|
57
|
Arregocés HA, Rojano R, Restrepo G. Meteorological factors contributing to organic and elemental carbon concentrations in PM 10 near an open-pit coal mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28854-28865. [PMID: 34993810 DOI: 10.1007/s11356-022-18505-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Variations in the carbonaceous aerosol contents, organic carbon (OC) and elemental carbon (EC), in particulate matter less than 10 μm in size (PM10), were analyzed at sites influenced by coal mining in an open-pit mine located in northern Colombia. Samples were collected during different seasonal periods throughout 2015. Meteorological variables for each site were examined during the different seasons. Aerosols were detected using a thermal-optical reflectance protocol method. The highest PM10 concentrations, between the ranges of 28.2 ± 8.2 μg m-3 and 75.0 ± 36.5 μg m-3, were recorded during the dry season. However, the highest concentrations of OC (4.8-14.2 μg m-3) and EC (2.9-13.9 μg m-3) in PM10 were observed during the transition period between the dry and wet seasons. The strong correlation between OC and EC in PM10 (r = 0.6-1.0) during the transition season indicates a common primary combustion source. High OC (> 8.3 μg m-3) and EC (> 6.9 μg m-3) concentrations were associated with low wind speeds (< 2.1 m s-1) moving in different directions. Analyses of the sources of atmospheric aerosol pollutants in the mining area in northern Colombia showed that the daily maximum total carbon concentrations were mainly associated with regional atmospheric transport of particulate matter from industrial areas and biomass burning sites located in the territory of Venezuela.
Collapse
Affiliation(s)
- Heli A Arregocés
- Grupo de Investigación GISA, Facultad de Ingeniería, Universidad de La Guajira, Riohacha, Colombia.
- Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Roberto Rojano
- Grupo de Investigación GISA, Facultad de Ingeniería, Universidad de La Guajira, Riohacha, Colombia
| | - Gloria Restrepo
- Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
58
|
PM2.5 composition and disease aggravation in amyotrophic lateral sclerosis. Environ Epidemiol 2022; 6:e204. [PMID: 35434459 PMCID: PMC9005248 DOI: 10.1097/ee9.0000000000000204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 01/18/2023] Open
|
59
|
Cauci S, Tavano M, Curcio F, Francescato MP. Biomonitoring of urinary metals in athletes according to particulate matter air pollution before and after exercise. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26371-26384. [PMID: 34855175 PMCID: PMC8637506 DOI: 10.1007/s11356-021-17730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Exposure to air pollution during physical exercise is a health issue because fine particulate matter (dimension < 10 μm; PM10) includes several inhalable toxic metals. Body metal changes in athletes according to air pollution are poorly known. Urinary concentrations of 15 metals: beryllium (Be9), aluminum (Al27), vanadium (V51), chromium (Cr51 + Cr52), manganese (Mn55), cobalt (Co59), nickel (Ni61), copper (Cu63), zinc (Zn61), arsenic (As75), selenium (Se82), cadmium (Cd111 + Cd112), thallium (Tl125), lead (Pb207), and uranium (U238) were measured before and after ten 2-h training sessions in 8 non-professional Italian American-football players (18-28 years old, body mass index 24.2-33.6 kg/m2). Collectively, post-training sessions, urinary concentrations of As, Cd, Co, Cu, Mn, Ni, Pb, Se, Tl, and Zn were higher than pre-training sessions; Al, Be, Cr, and U did not change; conversely, V decreased. Subdividing training sessions according to air PM10 levels: low (< 20 μg/m3), medium (20-40 μg/m3), and high (> 40 μg/m3), pre-session and post-session urinary concentrations of Be, Cd, Cu, and Tl were significantly higher (p < 0.05) in more polluted days, whereas V concentrations were lower (p < 0.001). All the remaining metals were unaffected. We first showed that PM10 levels modulate urinary excretion of some toxic metals suggesting an effect of air pollution. The effects of toxic metals inhaled by athletes exercising in polluted air need further studies.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | - Michael Tavano
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| | - Francesco Curcio
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
- Clinical Analysis Laboratory, Department of Laboratory Medicine, Institute of Clinical Pathology, Santa Maria della Misericordia University-Hospital, 33100, Udine, Italy
| | - Maria Pia Francescato
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| |
Collapse
|
60
|
Tashakor M, Modabberi S, Argyraki A. Assessing the contamination level, sources and risk of potentially toxic elements in urban soil and dust of Iranian cities using secondary data of published literature. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:645-675. [PMID: 34115271 DOI: 10.1007/s10653-021-00994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Research in urban geochemistry has been expanding globally in recent years, following the trend of the ever-increasing human population living in cities. Environmental problems caused by non-degradable pollutants such as metals and metalloids are of particular interest considering the potential to affect the health of current and future urban residents. In comparison with the extensive global research on urban geochemistry, Iranian cities have not received sufficient study. However, rapid and often uncontrolled urban expansion in Iran over recent years has contributed to an increasing number of studies concerning contamination of urban soil and dust. The present work is based on a comprehensive nationwide evaluation and intercomparison of published quantitative datasets to determine the contamination levels of Iranian cities with respect to potentially toxic elements (PTEs) and assess health risks for urban population. Calculation of geoaccumulation, pollution, and integrated pollution indices facilitated the identification of the elements of most concern in the cities, while both carcinogenic and non-carcinogenic risks have been assessed using a widely accepted health-risk model. The analysis of secondary, literature data revealed a trend of contamination, particularly in old and industrial cities with some alarming levels of health risks. Among the elements of concern, As, Cd, Cu, and Pb were found to be most enriched in soils and dusts of the studied cities based on the calculated geochemical indices. The necessity of designing strategic plans to mitigate possible adverse effects of elevated PTE concentrations in urban environments is emphasized considering the role of long-term exposure in the occurrence of chronic carcinogenic and non-carcinogenic health problems.
Collapse
Affiliation(s)
- Mahsa Tashakor
- School of Geology, College of Science, University of Tehran, 16th Azar St., Tehran, Iran.
| | - Soroush Modabberi
- School of Geology, College of Science, University of Tehran, 16th Azar St., Tehran, Iran
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784, Athens, Greece
| |
Collapse
|
61
|
Koh C, Kondo MC, Rollins H, Bilal U. Socioeconomic Disparities in Hypertension by Levels of Green Space Availability: A Cross-Sectional Study in Philadelphia, PA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042037. [PMID: 35206224 PMCID: PMC8872624 DOI: 10.3390/ijerph19042037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Green spaces have been proposed as equigenic factors, potentially mitigating health disparities. We used data from the 3887 participants residing in Philadelphia who participated in the Public Health Management Corporation’s Southeastern Pennsylvania Household Health Survey in 2014–2015 to assess whether socioeconomic disparities in hypertension are modified by availability of neighborhood-level green spaces. Socioeconomic status (SES) was measured using individual-level education and neighborhood-level median household income. Green space availability was measured using surrounding percent tree canopy cover, mean normalized difference vegetation index (NDVI), and proximity to nearest park. Using logistic regression models adjusted for age, sex, and race/ethnicity, we found that adults with higher educational attainment had significantly lower levels of hypertension (OR = 0.63, 0.57, and 0.36 for high school, some college, and college graduates, respectively, as compared to those with less than high school education), and this pattern was similar for median household income (higher prevalence in lower income areas). We found no significant interaction between education and percent tree canopy cover (p = 0.83), meaning that educational disparities in hypertension were similar across all levels of green space availability. These results held when using mean NDVI or distance to nearest park as availability measures, or when considering neighborhood-level median household income as the socioeconomic measure, although the specific patterns and significance of interactions varied by exposure and modifier. While socioeconomic disparities in hypertension are strong for adults residing in Philadelphia, green spaces did not seem to modify them.
Collapse
Affiliation(s)
- Celina Koh
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market St., Philadelphia, PA 19104, USA;
- Urban Health Collaborative, Drexel University Dornsife School of Public Health, 3600 Market St., Philadelphia, PA 19104, USA;
| | - Michelle C. Kondo
- Northern Research Station, United States Department of Agriculture–Forest Service, 100 N. St., Ste 205, Philadelphia, PA 19103, USA;
| | - Heather Rollins
- Urban Health Collaborative, Drexel University Dornsife School of Public Health, 3600 Market St., Philadelphia, PA 19104, USA;
| | - Usama Bilal
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market St., Philadelphia, PA 19104, USA;
- Urban Health Collaborative, Drexel University Dornsife School of Public Health, 3600 Market St., Philadelphia, PA 19104, USA;
- Correspondence: ; Tel.: +1-267-359-6378
| |
Collapse
|
62
|
Wang S, Wang L, Huan Y, Wang R, Liang T. Concentrations, spatial distribution, sources and environmental health risks of potentially toxic elements in urban road dust across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150266. [PMID: 34536864 DOI: 10.1016/j.scitotenv.2021.150266] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 05/25/2023]
Abstract
Potentially toxic element (PTE) pollution is widespread in road dust across China, and the effects of PTEs in road dust on health cannot be ignored. In this study, the concentrations of six PTEs (Pb, Cd, Cr, Cu, Zn and Ni) in 4336 road dust samples from 58 cities in 31 provincial regions of China taken after 2000 were obtained from the literatures. Based on these data, the spatial distribution, pollution sources, and ecological and human health risks of PTEs in road dust were comprehensively assessed and the main pollution factors and areas of high risk were identified. The results revealed that PTE levels are generally higher in eastern cities than western cities in China. The key driving factors are socioeconomic factors, including those related to transportation, industry, and population, for which the contribution rates are 57.80%, 55.39% and 37.19%, respectively. PTEs in the road dust with high ecological risks are mainly distributed in the southeastern coastal areas and the Beijing-Tianjin-Hebei region. No obvious noncarcinogenic risk was found for PTEs in road dust, but Cd and Pb may have potential noncarcinogenic risk, mainly distributed in cities in western China. Therefore, regions and pollution sources contributing to Pb and Cd levels should be monitored. The control of PTE pollution in China is a priority for ecological and environmental protection.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhong Huan
- School of Public Policy and Management, Tsinghua University, Beijing 100084, China
| | - Rui Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Lab of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
63
|
Diener A, Mudu P. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148605. [PMID: 34271387 DOI: 10.1016/j.scitotenv.2021.148605] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
Air pollution causes the largest death toll among environmental risks globally, but interventions to purify ambient air remain inadequate. Vegetation and green spaces have shown reductive effects on air-borne pollutants concentrations, especially of particulate matter (PM). Guidance on green space utilisation for air quality control remains scarce, however, as does its application in practise. To strengthen the foundation for research and interventions, we undertook a critical review of the state of science from a public health perspective. We used inter-disciplinary search strategies for published reviews on green spaces and air pollution in key scientific databases. Using the PRISMA checklist, we systematically identified reviews with quantitative analyses. For each of the presented PM mitigation mechanisms, we conducted additional searches focused on the most recent articles published between 2016 and early 2021. The included reviews differentiate three mitigation mechanisms of green spaces for PM: deposition, dispersion and modification. The most studied mechanism is deposition, particularly measures of mass and settling velocity of PM on plant leaves. We consolidate how green space setups differ by scale and context in their potentials to reduce peak exposures, stationary (point) or mobile (line) pollution sources, and the potentially most harmful PM components. The assessed findings suggest diverse optimisation options for green space interventions, particularly concerning plant selection, spatial setup, ventilation and maintenance - all alongside the consideration of supplementary vegetation effects like on temperature or water. Green spaces' reductive effects on air-borne PM concentrations are considerable, multi-mechanistic and varied by scale, context and vegetation characteristics. Such effect-modifying factors must be considered when rethinking public space design, as accelerated by the COVID-19 pandemic. Weak linkages amid involved disciplines motivate the development of a research framework to strengthen health-oriented guidance. We conclude on an urgent need for an integrated and risk-based approach to PM mitigation through green space interventions.
Collapse
Affiliation(s)
- Arnt Diener
- European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany; Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Gurlittstr 55/II, 40223 Düsseldorf, North-Rhine Westphalia, Germany.
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany
| |
Collapse
|
64
|
Assessing the Current Integration of Multiple Personalised Wearable Sensors for Environment and Health Monitoring. SENSORS 2021; 21:s21227693. [PMID: 34833769 PMCID: PMC8620646 DOI: 10.3390/s21227693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
The ever-growing development of sensor technology brings new opportunities to investigate impacts of the outdoor environment on human health at the individual level. However, there is limited literature on the use of multiple personalized sensors in urban environments. This review paper focuses on examining how multiple personalized sensors have been integrated to enhance the monitoring of co-exposures and health effects in the city. Following PRISMA guidelines, two reviewers screened 4898 studies from Scopus, Web of Science, ProQuest, Embase, and PubMed databases published from January 2010 to April 2021. In this case, 39 articles met the eligibility criteria. The review begins by examining the characteristics of the reviewed papers to assess the current situation of integrating multiple sensors for health and environment monitoring. Two main challenges were identified from the quality assessment: choosing sensors and integrating data. Lastly, we propose a checklist with feasible measures to improve the integration of multiple sensors for future studies.
Collapse
|
65
|
Kováts N, Hubai K, Sainnokhoi TA, Hoffer A, Teke G. Ecotoxicity testing of airborne particulate matter-comparison of sample preparation techniques for the Vibrio fischeri assay. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4367-4378. [PMID: 33864174 PMCID: PMC8528798 DOI: 10.1007/s10653-021-00927-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The bioassay based on the bioluminescence inhibition of the marine bacterium Vibrio fischeri has been the most widely used test for the assessment of airborne particulate matter ecotoxicity. Most studies available use an extract of the solid sample, either made with water or organic solvents. As an alternative, a whole-aerosol test is also available where test bacteria are in actual contact with contaminated particles. In our study, different extraction procedures were compared to this direct contact test based on the V. fischeri assay and analytical measurements. The lowest PAH content and the highest EC50 were determined in water extract, while the highest PAH amount and lowest EC50 were measured in dichloromethane, hexane, and dimethyl-sulphoxide extracts. EC50 of the direct contact test was comparable to that of the methanol extract. Our results suggest that the sensitivity of the direct contact test equals to that of extraction procedures using organic solvents, moreover, it is mimicking an environmentally realistic exposure route.
Collapse
Affiliation(s)
- Nora Kováts
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
| | - Katalin Hubai
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Tsend-Ayush Sainnokhoi
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
- School of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul District, Zaisan, Ulaanbaatar, 17042, Mongolia
| | - András Hoffer
- MTA-PE Air Chemistry Research Group, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfuzfo, 8184, Hungary
| |
Collapse
|
66
|
Guarino F, Improta G, Triassi M, Castiglione S, Cicatelli A. Air quality biomonitoring through Olea europaea L.: The study case of "Land of pyres". CHEMOSPHERE 2021; 282:131052. [PMID: 34470149 DOI: 10.1016/j.chemosphere.2021.131052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The "Land of pyres", namely "La Terra dei Fuochi", is an area of Campania region (South-Italy), highly inhabited and comprises between the Provinces of Naples and Caserta, sadly known worldwide for the criminal activities related to the illegal waste disposal and burning. These fires, concomitantly with traffic emissions, might be the source of potential toxic element (PTE) dangerous for the human health and causing pathologies. In the framework of Correlation Health-Environment project, funded by the Campania region, eight municipalities (of area "Land of pyres") and three remote sites have been bio-monitored using the olive (Olea europaea L.) plants as biomonitors. Leaves of olive plants were collected in each assayed municipality and the concentration of 11 metal(loid)s was evaluated by means of ICP-OES. Our findings revealed that the air of these municipalities was limitedly contaminated by PTE; in fact, only Sb, Al and Mn were detected in the olive leaves collected in some of the assayed municipalities and showed a high enrichment factors (EC) manly due, probably, to the vehicular traffic emissions. Furthermore, the concentrations of the other assayed PTEs were lower than those of Sb, Al and Mn. For these reasons we suppose that their emissions in the troposphere have been and are limited, and they mainly have a crustal origin. Even if our data are very comforting for those urban area, regarded by many as one of the most contaminated one in Italy, a great environment care, in any case, is always needed.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, 80131, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, 80131, Naples, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy
| |
Collapse
|
67
|
Wu X, Li D, Feng M, Liu H, Li H, Yang J, Wu P, Lei X, Wei M, Bo X. Effects of air pollutant emission on the prevalence of respiratory and circulatory system diseases in Linyi, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4475-4491. [PMID: 33891256 DOI: 10.1007/s10653-021-00931-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a typical industrial city, Linyi has suffered severe atmospheric pollution in recent years. Meanwhile, a high incidence of respiratory and circulatory diseases has been observed in Linyi. The relationship between air pollutants and the prevalence of respiratory and circulatory system diseases in Linyi is still unclear, and therefore, there is an urgent need to assess the human health risks associated with air pollutants. In this study, the number of outpatient visits and spatial distribution of respiratory and circulatory diseases were first investigated. To clarify the correlation between diseases and air pollutant emissions, the residential intake fraction (IF) of air pollutants was calculated. The results showed that circulatory and respiratory diseases accounted for 62.32% of the total causes of death in 2015. The incidence of respiratory diseases was high in the winter, and outpatient visits were observed for more males (60.9%) than females (39.1%). The spatial distribution suggested that outpatient visits for respiratory and circulatory diseases were concentrated in the main urban area of Linyi, including the Hedong District, Lanshan District, and Luozhuang District, and especially at the junction of these three areas. After calculating the IF combined with the characteristics of pollution sources, meteorological conditions, and population data, a high IF value was concentrated in urban and suburban areas, which was consistent with the high incidence of diseases. Moreover, high R values and a significant correlation (R > 0.6, p < 0.05) between outpatient visits and residential IF of air pollutants imply similar spatial distributions of outpatient visits and IF value of residents. The spatial similarity of air pollution and outpatient visits suggested that future air pollution control policies should better reflect the health risks of spatial hotspots. This study can provide a potentially important reference for environmental management and air pollution-related health interventions.
Collapse
Affiliation(s)
- Xin Wu
- Network and Information Department, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Dong Li
- Network and Information Department, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Meihui Feng
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hongmei Li
- School of Management and Engineering, Capital University of Economics and Business, Beijing, 100070, China
| | - Jing Yang
- Network and Information Department, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Pengcheng Wu
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, Guangdong, China
| | - Xunjie Lei
- Guangdong Hydropower Planning and Design Institute, Guangzhou, 510635, Guangdong, China
| | - Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Xin Bo
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing, 100012, China.
| |
Collapse
|
68
|
Lee CW, Vo TTT, Wee Y, Chiang YC, Chi MC, Chen ML, Hsu LF, Fang ML, Lee KH, Guo SE, Cheng HC, Lee IT. The Adverse Impact of Incense Smoke on Human Health: From Mechanisms to Implications. J Inflamm Res 2021; 14:5451-5472. [PMID: 34712057 PMCID: PMC8548258 DOI: 10.2147/jir.s332771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Incense burning is a very popular activity in daily life among many parts all over the world. A growing body of both epidemiological and experimental evidences has reported the negative effects of incense use on human well-being, posing a potential threat at public significance. This work is a comprehensive review that covers the latest findings regarding the adverse impact of incense smoke on our health, providing a panoramic visualization ranging from mechanisms to implications. The toxicities of incense smoke come directly from its harmful constituents and deposition capacity in the body. Besides, reactive oxygen species-driven oxidative stress and associated inflammation seem to be plausible underlying mechanisms, eliciting various unfavorable responses. Although our current knowledge remains many gaps, this issue still has some important implications.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Miao-Ching Chi
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Min-Li Chen
- Department of Nursing, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Kuan-Han Lee
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Su-Er Guo
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
69
|
Rajan DK, Mohan K, Zhang S, Ganesan AR. Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 2021; 142:111988. [PMID: 34371307 DOI: 10.1016/j.biopha.2021.111988] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode 638316, Tamil Nadu, India.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Laimburg 6, I-39040 Post Auer, BZ, Italy
| |
Collapse
|
70
|
Puławska A, Manecki M, Flasza M, Styszko K. Origin, distribution, and perspective health benefits of particulate matter in the air of underground salt mine: a case study from Bochnia, Poland. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3533-3556. [PMID: 33575968 PMCID: PMC8405481 DOI: 10.1007/s10653-021-00832-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/23/2021] [Indexed: 05/09/2023]
Abstract
The composition and distribution of airborne particles in different locations in a salt mine were determined in terms of their origin, the distance from the air inlet, and the adaptation of post-mining chambers and corridors for tourists and general audience. The composition of aerosols in air was also evaluated from the perspective of human health. Air samples were collected on filters by using portable air pumps, in a historical underground salt mine in Bochnia (Poland), which is currently a touristic and recreation attraction and sanatorium. The particulate matter (PM) concentration was determined using the gravimetric method by weighing quartz filters. The content of carbon, water-soluble constituents, trace elements, and minerals was also determined. A genetic classification of the suspended matter was proposed and comprised three groups: geogenic (fragments of rock salt and associated minerals from the deposit), anthropogenic (carbon-bearing particles from tourist traffic and small amounts of fly ash, soot, and rust), and biogenic particles (occasional pollen). The total PM concentration in air varied between 21 and 79 μg/m3 (with PM4 constituting 4-24 μg/m3). The amount of atmospheric dust components coming from the surface was low and decreased with the distance from the intake shaft, thus indicating the self-cleaning process. NaCl dominated the water-soluble constituents, while Fe, Al, Ag, Mn, and Zn dominated the trace elements, with the concentration of majority of them below 30 ng/m3. These metals are released into air from both natural sources and the wear or/and corrosion of mining and tourists facilities in the underground functional space. No potentially toxic elements or constituents were detected. The presence of salt particles and salty spray in the atmosphere of salt mine, which may have anti-inflammatory and antiallergic properties, is beneficial to human health. This study will allow for a broader look at the potential of halotherapy in underground salt mines from a medical and regulatory point of view.
Collapse
Affiliation(s)
- Aleksandra Puławska
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.
- Bochnia Salt Mine, ul. Campi 15, 32-700, Bochnia, Poland.
| | - Maciej Manecki
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Michał Flasza
- KGHM CUPRUM Ltd. R&D Centre, ul. Sikorskiego 2-8, 53-659, Wrocław, Poland
| | - Katarzyna Styszko
- Department of Coal Chemistry and Environmental Sciences, Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
71
|
Cheng B, Ma Y, Wang H, Shen J, Zhang Y, Guo L, Guo Y, Li M. Particulate matter pollution and emergency room visits for respiratory diseases in a valley Basin city of Northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3457-3468. [PMID: 33559782 DOI: 10.1007/s10653-021-00837-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/23/2021] [Indexed: 05/25/2023]
Abstract
Epidemiological studies have suggested that particulate matter (PM) pollution seriously affects human health, particularly it is closely associated with respiratory diseases. The aim of this study is to quantitatively evaluate the effect of PMs (PM10 and PM2.5) on emergency room (ER) visits for respiratory diseases in Lanzhou, a valley basin city in northwest China. Based on the data of the ER visits, daily concentration of particulate matters and daily meteorological elements from January 1, 2013, to July 31, 2017, we used a generalized additive model (GAM) of time series to evaluate the exposure-response relationship between PMs and respiratory ER visits. Seasonal modified effects of PM2.5 and PM10 on different age and gender groups were also performed. Results showed that the highest incidence of respiratory diseases occurred in winter. Respiratory ER visits for the total were significantly associated with PM2.5 (at lag 0 day) and PM10 (at lag 3 days), with relative risks (RRs) of 1.042 (95%CI: 1.036 -1.047) and 1.013 (95%CI: 1.011-1.016), respectively. Effects of PM pollutants on respiratory diseases are different among different age and gender groups. Children under 15 years and the elders over 60 years were the most sensitive to PM pollution, and males were more sensitive than females. The results obtained in the current study would provide a scientific evidence for local government to make policy decision for prevention of respiratory diseases.
Collapse
Affiliation(s)
- Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hang Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jiahui Shen
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Lingyun Guo
- The Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Yongtao Guo
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Mingji Li
- Resource and Environment Department, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
72
|
Sun B, Wang B. Spatial Spillover Effects of Air Pollution on the Health Expenditure of Rural Residents: Based on Spatial Durbin Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137058. [PMID: 34280993 PMCID: PMC8297334 DOI: 10.3390/ijerph18137058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Background: Air pollution is one source of harm to the health of residents, and the impact of air pollution on health expenditure has become a hot topic worldwide. However, few studies aim at the spatial spillover effects of air pollution on the health expenditure of rural residents (HE-RR), including the impact on the health expenditure in neighboring areas. Objective: Based on the existing research, this paper further introduces the spatial dimension and uses the Spatial Durbin model to discuss the impact of environmental pollution on the health expenditure of rural residents (HE-RR). Methods: Based on provincial panel data during 2002–2015 in China, the Spatial Durbin model was used to investigate the spatial spillover effect of the average annual concentration of PM2.5 (AAC-PM2.5) on the health expenditure of rural residents (HE-RR). Results: There was a significant positive correlation between AAC-PM2.5 and health expenditure of rural residents (HE-RR) in neighboring areas at a significant level of 5% (COEF: 2.546, Z: 2.340), that is, AAC-PM2.5 has a spatial spillover effect on PC-HE-RR in neighboring areas, and the spatial spillover effect is greater than the direct effect. The migration and diffusion of PM2.5 pollution will affect the air quality of neighboring areas, leading to the health risk not only from the local PM2.5 pollution but also the nearby PM2.5 pollution. Conclusion: The results show a significant positive relationship between air pollution and HE-RR in neighboring areas, and the spatial spillover effect is greater than the direct effect.
Collapse
Affiliation(s)
- Bo Sun
- School of Economics and Management, Huzhou University, Huzhou 313000, China;
| | - Bo Wang
- Business School, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
73
|
Gaberšek M, Gosar M. Meltwater chemistry and characteristics of particulate matter deposited in snow as indicators of anthropogenic influences in an urban area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2583-2595. [PMID: 32495025 DOI: 10.1007/s10653-020-00609-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
A geochemical study of snow from the industrial town of Maribor (Slovenia) was performed. Concentrations of 61 elements in meltwater were determined, and a detailed semi-quantitative and qualitative analysis of individual PTE-bearing particles deposited in snow was performed with SEM/EDS. The physico-chemical characteristics of meltwater reflect the influence of winter road maintenance (high electrical conductivity and high Ca and Na concentrations close to the main roads) and industrial activities. Particulate matter deposited in snow consists mainly of carbonates and silicates, followed by carbon-rich particles and PTE-bearing particles. A higher abundance of PTE-bearing particles is typical for the industrial zones. The size, morphology and chemical composition of 4415 PTE-bearing particles were studied. They were organised into nine groups based on their characteristics. The majority were assigned to the group of Fe-oxides, which includes mostly angular particles of unidentified origin. Several groups of particles of anthropogenic origin were determined, mainly from industrial metal-processing activities. These particles include spherical Fe-oxides, Fe-alloys, other metal alloys and spherical Si-particles. Spherical Fe-oxides are typical for the Tezno industrial zone, while Fe-alloys, namely Fe-Cr (Cu, Mn, Ni) shavings and other metal alloys (Cu-Zn (Cl, Fe) shavings) are typical for the Melje industrial zone. The presence of naturally occurring mineral particles (e.g. zircon, ilmenite, monazite) reflects the influence of natural/geogenic sources on the composition of particulate matter deposited in snow. The presented study confirmed that snow is a very promising medium for the geochemical study of urban environments, especially for the identification of anthropogenic sources of particulate matter.
Collapse
Affiliation(s)
- Martin Gaberšek
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia.
| | - Mateja Gosar
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia
| |
Collapse
|
74
|
Assessment of Pollution Sources and Contribution in Urban Dust Using Metal Concentrations and Multi-Isotope Ratios (13C, 207/206Pb) in a Complex Industrial Port Area, Korea. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The metal concentrations and isotopic compositions (13C, 207/206Pb) of urban dust, topsoil, and PM10 samples were analyzed in a residential area near Donghae port, Korea, which is surrounded by various types of industrial factories and raw material stockpiled on empty land, to determine the contributions of the main pollution sources (i.e., Mn ore, Zn ore, cement, coal, coke, and topsoil). The metal concentrations of urban dust in the port and residential area were approximately 85~112 times higher (EF > 100) in comparison with the control area (EF < 2), especially the Mn and Zn ions, indicating they were mainly derived from anthropogenic source. These ions have been accumulating in urban dust for decades; furthermore, the concentration of PM10 is seven times higher than that of the control area, which means that contamination is even present. The isotopic (13C, 207/206Pb) values of the pollution sources were highly different, depending on the characteristics of each source: cement (−19.6‰, 0.8594‰), Zn ore (−24.3‰, 0.9175‰), coal (−23.6‰, 0.8369‰), coke (−27.0‰, 0.8739‰), Mn ore (−24.9‰, 0.9117‰), soil (−25.2‰, 0.7743‰). As a result of the evaluated contributions of pollution source on urban dust through the Iso-source and SIAR models using stable isotope ratios (13C, 207/206Pb), we found that the largest contribution of Mn (20.4%) and Zn (20.3%) ions are derived from industrial factories and ore stockpiles on empty land (Mn and Zn). It is suggested that there is a significant influence of dust scattered by wind from raw material stockpiles, which are stacked near ports or factories. Therefore, there is evidence to support the idea that port activities affect the air quality of residence areas in a city. Our results may indicate that metal concentrations and their stable isotope compositions can predict environmental changes and act as a powerful tool to trace the past and present pollution history in complex contexts associated with peri-urban regions.
Collapse
|
75
|
Gioda A, Beringui K, Justo EPS, Ventura LMB, Massone CG, Costa SSL, Oliveira SS, Araujo RGO, Nascimento NDM, Severino HGS, Duyck CB, de Souza JR, Saint Pierre TD. A Review on Atmospheric Analysis Focusing on Public Health, Environmental Legislation and Chemical Characterization. Crit Rev Anal Chem 2021; 52:1772-1794. [PMID: 34092145 DOI: 10.1080/10408347.2021.1919985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Atmospheric pollution has been considered one of the most important topics in environmental science once it can be related to the incidence of respiratory diseases, climate change, and others. Knowing the composition of this complex and variable mixture of gases and particulate matter is crucial to understand the damages it causes, help establish limit levels, reduce emissions, and mitigate risks. In this work, the current scenario of the legislation and guideline values for indoor and outdoor atmospheric parameters will be reviewed, focusing on the inorganic and organic compositions of particulate matter and on biomonitoring. Considering the concentration level of the contaminants in air and the physical aspects (meteorological conditions) involved in the dispersion of these contaminants, different approaches for air sampling and analysis have been developed in recent years. Finally, this review presents the importance of data analysis, whose main objective is to transform analytical results into reliable information about the significance of anthropic activities in air pollution and its possible sources. This information is a useful tool to help the government implement actions against atmospheric air pollution.
Collapse
Affiliation(s)
- Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Karmel Beringui
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Elizanne P S Justo
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Luciana M B Ventura
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Instituto Estadual do Ambiente (INEA), Rio de Janeiro, RJ, Brazil
| | - Carlos G Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Silvânio Silvério Lopes Costa
- Núcleo de Petróleo e Gás, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.,Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Sidimar Santos Oliveira
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Rennan Geovanny Oliveira Araujo
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nivia de M Nascimento
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hemmely Guilhermond S Severino
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Christiane B Duyck
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Jefferson Rodrigues de Souza
- Laboratório de Ciências Químicas, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Tatiana D Saint Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
76
|
Jin X, Yu H, Wang B, Sun Z, Zhang Z, Liu QS, Zheng Y, Zhou Q, Jiang G. Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. Part Fibre Toxicol 2021; 18:19. [PMID: 33985555 PMCID: PMC8117637 DOI: 10.1186/s12989-021-00411-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological processes, and the epidemiological study has indicated a positive association between PM exposure and the increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation of megakaryocytes upon PM treatment. RESULTS The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS) process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle size, but independent of sampling filters. CONCLUSION The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.
Collapse
Affiliation(s)
- Xiaoting Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hongyan Yu
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Baoqiang Wang
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China
| | - Ze Zhang
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Yuxin Zheng
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, People's Republic of China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
77
|
Popitanu C, Cioca G, Copolovici L, Iosif D, Munteanu FD, Copolovici D. The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094858. [PMID: 34063249 PMCID: PMC8124805 DOI: 10.3390/ijerph18094858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Benzene, toluene, and total BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations registered for one year (2016) have been determined every month for one high-density traffic area. The assessment was performed in Arad City, Romania, to evaluate these pollutants and their influence on the inhabitants’ health. The contaminants were sampled using a static sampling method and analyzed by gas chromatography coupled with mass spectrometry. Benzene was the most dominant among the BTEX compounds—the average concentrations ranged from 18.00 ± 1.32 µg m−3 in December to 2.47 ± 0.74 µg m−3 in August. The average toluene concentration over the year was 4.36 ± 2.42 µg m−3 (with a maximum of 9.60 ± 2.39 µg m−3 in November and a minimum of 1.04 ± 0.29 µg m−3 in May). The toluene/benzene ratio (T/B) was around 0.5, indicating substantial contributions from mobile sources (vehicles). The emission and accumulation of different aromatic compounds (especially benzene) could deteriorate the urban air quality. The lifetime cancer risk (LTCR) for benzene was found to be more than 10−5 in winter, including the inhabitants in the “probable cancer risk” category.
Collapse
Affiliation(s)
- Corina Popitanu
- Biomedical Sciences Doctoral School, University of Oradea, 410087 Oradea, Romania;
| | - Gabriela Cioca
- Preclinical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| | - Lucian Copolovici
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
- Correspondence: ; Tel.: +40-74-525-9816
| | - Dennis Iosif
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
| | - Florentina-Daniela Munteanu
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
| | - Dana Copolovici
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
| |
Collapse
|
78
|
Respiratory Hospitalizations and Their Relationship with Air Pollution Sources in the Period of FIFA World Cup and Olympic Games in Rio de Janeiro, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094716. [PMID: 33925194 PMCID: PMC8124488 DOI: 10.3390/ijerph18094716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/01/2022]
Abstract
Background: From 2010 onwards, the city of Rio de Janeiro has undergone changes related to the 2014 FIFA World Cup and the 2016 Olympic Games, potentially affecting the respiratory health of inhabitants. Thus, the spatial distribution of respiratory hospitalizations (2008–2017) and the relationship between this outcome and potential air pollution sources in the city of Rio de Janeiro (2013–2017) were evaluated. Methods: An ecological study was performed using the Bayesian model with multivariate Poisson regression for the period of the sporting events (2013–2017). The outcome was the ratio of hospitalizations for respiratory diseases by the population at risk. Data analysis was performed in the total population and by sex and age group. The air pollution-related variables included industrial districts, traffic density, tunnel portals, a seaport, airports, and construction/road work. Results: All explanatory variables, except tunnel portals, were associated with an increase in the outcome. Construction/road work showed a greater magnitude of association than the other pollution-related variables. Airports were associated with an increased hospitalization ratio among the ≥60 year-old group (mean = 2.46, 95% credible intervals = 1.35–4.46). Conclusion: This study allows for a better understanding of the geographical distribution of respiratory problems in the city of Rio de Janeiro. Present results may contribute to improved healthcare planning and raise hypotheses concerning exposure to air pollution and respiratory hospitalizations.
Collapse
|
79
|
Determination and Similarity Analysis of PM2.5 Emission Source Profiles Based on Organic Markers for Monterrey, Mexico. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Source attribution of airborne particulate matter (PM) relies on a host of different chemical species. Organic molecular markers are a set of particularly useful marker compounds for estimating source contributions to the fine PM fraction (i.e., PM2.5). Although there are many source apportionment studies based on organic markers, these studies heavily rely on the few studies that report region-specific emission profiles. Source attribution efforts, particularly those conducted in countries with emerging economies, benefit from ad hoc information to conduct the corresponding analyses. In this study, we report organic molecular marker source profiles for PM2.5 emitted from 12 major sources types from five general source categories (meat cooking operations, vehicle exhausts, industries, biomass and trash burning, and urban background) for the Monterrey Metropolitan Area (Mexico). Source emission samples were obtained from a ground-based source-dominated sampling approach. Filter-based instruments were utilized, and the loaded filters were chemically characterized for organic markers by GC-MS. Levoglucosan and cholesterol dominate charbroiled-cooking operation sources while methoxyphenols, PAHs and hopanes dominate open-waste burning, vehicle exhaust and industrial emissions, respectively. A statistical analysis showed values of the Pearson distance < 0.4 and the similarity identity distance > 0.8 in all cases, indicating dissimilar source profiles. This was supported by the coefficient of divergence average values that ranged from 0.62 to 0.72. These profiles could further be utilized in receptor models to conduct source apportionment in regions with similar characteristics and can also be used to develop air pollution abatement strategies.
Collapse
|
80
|
Gaberšek M, Gosar M. Towards a holistic approach to the geochemistry of solid inorganic particles in the urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144214. [PMID: 33373784 DOI: 10.1016/j.scitotenv.2020.144214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 05/28/2023]
Abstract
Airborne particulate matter (PM) has a major impact on the biogeochemical cycles of chemical elements in the urban environment. Anthropogenic-derived PM emissions are the cause of some of the most severe environmental and health problems. The presented study aims to improve our knowledge of PM dynamics by introducing a multi-media, multi-analytical and multi-elemental holistic approach to geochemical studies of inorganic PM in the urban environment. The importance of the holistic approach is highlighted and its application in a case study of Maribor (Slovenia) is presented. The chemical composition and individual particulate characteristics of street, attic and household dust were determined and compared with the characteristics of airborne PM, and PM deposited in snow, together with the chemical composition of the soil. We found that the mineralogical and chemical composition and the individual solid particle characteristics of the studied media differ considerably. Nevertheless, minerals of geogenic origin are present in all media. The highest levels of potentially toxic elements (PTEs) in all media, except household dust, are typical for industrial areas. Street dust primarily reflects the influence of winter road maintenance and industrial activities, while characteristics of household dust are predominantly influenced by indoor activities and properties of dwellings. The comparison of the chemical composition of attic and street dust indicates that emissions of As, Cd, Pb, S and Zn were higher in the past. The characterisation of airborne PM and PM deposited in snow is essential for the identification of the most recent sources of PTE-bearing particles. Several industrial sources and the fate of some particle types in the environment have been determined based on the findings of the SEM/EDS analyses. This study confirms that various environmental media are carriers of diverse geochemical information and highlights the importance of a holistic approach in geochemistry of PM in urban areas.
Collapse
Affiliation(s)
- Martin Gaberšek
- Geological Survey of Slovenia, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia.
| | - Mateja Gosar
- Geological Survey of Slovenia, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
81
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
82
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
83
|
Fang T, Jiang T, Yang K, Li J, Liang Y, Zhao X, Gao N, Li H, Lu W, Cui K. Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:151. [PMID: 33641075 DOI: 10.1007/s10661-021-08926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Air and dust borne heavy metals can be deposited and bioaccumulated by plants; therefore, biomonitoring employing plants is an effective tool for environmental impact assessment in urban environments. In this study, in addition to road dust, leaves and bark were collected from four common tree species at roadside and urban park sampling sites within the metropolitan area of Hefei, China. A range of heavy metals were analyzed by ICP-MS and AFS. The metal accumulation index (MAI) was adopted to compare the bioaccumulation capacity. Results showed that Cd was highly enriched in road dust although its abundance was low in comparison with that of other elements. The MAI values presented a narrow range (1.8-2.7); however, significant differences (p < 0.05) were found for Al, Cu, Zn, and As among the tree species. Moreover, deciduous Platanus orientalis bioaccumulated more nonessential As than the other species and deserved further risk management. In addition, bark samples from Cinnamomum camphora bioaccumulated more heavy metals than the other species as a result of its morphological and anatomical characteristics. The distribution patterns of heavy metals in tree tissues showed obvious spatial heterogeneity, as impacted by anthropogenic activities to varying degrees. This study examined the biomonitoring potential of roadside trees and the distribution pattern of heavy metals in an urban area under rapid development. Results from the present study could provide baseline data for urban environmental impact assessment and the design of green belts.
Collapse
Affiliation(s)
- Ting Fang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Ting Jiang
- Hefei City Landscaping Quality Supervision and Management Center, Hefei, 230001, Anhui, China
| | - Kun Yang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Jing Li
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Xiuxia Zhao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Na Gao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Hui Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230001, Anhui, China
| | - Wenxuan Lu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Kai Cui
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China.
| |
Collapse
|
84
|
Liao X, Zou T, Chen M, Song Y, Yang C, Qiu B, Chen ZF, Tsang SY, Qi Z, Cai Z. Contamination profiles and health impact of benzothiazole and its derivatives in PM 2.5 in typical Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142617. [PMID: 33045602 DOI: 10.1016/j.scitotenv.2020.142617] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Although benzothiazole and its derivatives (BTHs) are considered emerging contaminants in diverse environments and organisms, little information is available about their contamination profiles and health impact in ambient particles. In this study, an optimized method of ultrasound-assisted extraction coupled with the selected reaction monitoring (SRM) mode of GC-EI-MS/MS was applied to characterize and analyze PM2.5-bound BTHs from three cities of China (Guangzhou, Shanghai, and Taiyuan) during the winter of 2018. The total BTH concentration (ΣBTHs) in PM2.5 samples from the three cities decreased in the order of Guangzhou > Shanghai > Taiyuan, independently of the PM2.5 concentration. Despite the large variation in concentration of ΣBTHs in PM2.5, 2-hydroxybenzothiazole (OTH) was always the predominant compound among the PM2.5-bound BTHs and accounted for 50-80% of total BTHs in the three regions. Results from human exposure assessment and toxicity screening indicated that the outdoor exposure risk of PM2.5-bound BTHs in toddlers was much higher than in adults, especially for OTH. The developmental and reproduction toxicity of OTH was further explored in vivo and in vitro. Exposure of mouse embryonic stem cells (mESCs) to OTH for 48 h significantly increased the intracellular reactive oxygen species (ROS) and induced DNA damage and apoptosis via the functionally activating p53 expression. In addition, the growth and development of zebrafish embryos were found to be severely affected after OTH treatment. An overall metabolomics study was conducted on the exposed zebrafish larvae. The results indicated that exposure to OTH inhibited the phenylalanine hydroxylation reaction, which further increased the accumulation of toxic phenylpyruvate and acetylphenylalanine in zebrafish. These findings provide important insights into the contamination profiles of PM2.5-bound BTHs and emphasize the health risk of OTH.
Collapse
Affiliation(s)
- Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ting Zou
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bojun Qiu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
85
|
Mazuryk O, Stochel G, Brindell M. Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells-Impact of Inorganic Fraction. Front Chem 2021; 8:581752. [PMID: 33392147 PMCID: PMC7773840 DOI: 10.3389/fchem.2020.581752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022] Open
Abstract
Air pollution is associated with numerous negative effects on human health. The toxicity of organic components of air pollution is well-recognized, while the impact of their inorganic counterparts in the overall toxicity is still a matter of various discussions. The influence of airborne particulate matter (PM) and their inorganic components on biological function of human alveolar-like epithelial cells (A549) was investigated in vitro. A novel treatment protocol based on covering culture plates with PM allowed increasing the studied pollutant concentrations and prolonging their incubation time without cell exposure on physical suffocation and mechanical disturbance. PM decreased the viability of A549 cells and disrupted their mitochondrial membrane potential and calcium homeostasis. For the first time, the difference in the reactive oxygen species (ROS) profiles generated by organic and inorganic counterparts of PM was shown. Singlet oxygen generation was observed only after treatment of cells with inorganic fraction of PM, while hydrogen peroxide, hydroxyl radical, and superoxide anion radical were induced after exposure of A549 cells to both PM and their inorganic fraction.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grazyna Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
86
|
Feeling Stressed and Ugly? Leave the City and Visit Nature! An Experiment on Self-and Other-Perceived Stress and Attractiveness Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228519. [PMID: 33212963 PMCID: PMC7698395 DOI: 10.3390/ijerph17228519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 01/20/2023]
Abstract
Natural environments, compared to urban environments, usually lead to reduced stress and positive body appreciation. We assumed that walks through nature and urban environments affect self- and other-perceived stress and attractiveness levels. Therefore, we collected questionnaire data and took photographs of male participants' faces before and after they took walks. In a second step, female participants rated the photographs. As expected, participants felt more restored and attractive, and less stressed after they walked in nature compared to an urban environment. A significant interaction of environment (nature, urban) and time (pre, post) indicated that the men were rated by the women as being more stressed after the urban walk. Other-rated attractiveness levels, however, were similar for both walks and time points. In sum, we showed that the rather stressful experience of a short-term urban walk mirrors in the face of men and is detectable by women.
Collapse
|
87
|
Vo TTT, Wu CZ, Lee IT. Potential effects of noxious chemical-containing fine particulate matter on oral health through reactive oxygen species-mediated oxidative stress: Promising clues. Biochem Pharmacol 2020; 182:114286. [PMID: 33069666 DOI: 10.1016/j.bcp.2020.114286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, air pollution which is dominated by fine particulate matter with aerodynamic diameter less than or equal to 2.5 µm resulting from rapid industrialization and urbanization combined with population explosion has become more and more severe problem to mankind and the whole planet because of its diversity of deleterious effects. The latest data estimated that exposure to fine particulate matter, or PM2.5, contributes to approximately 4 million deaths worldwide due to cardiopulmonary conditions such as heart disease and stroke, respiratory infections, chronic lung disease and lung cancer. During recent years, there has been growing concern about the adverse effects of this global threat on oral health which is one of key components of general health and quality of life. Although a few studies have reported such possible association, the findings are still far from conclusion. Moreover, the underlying mechanisms remain unclear. To our knowledge, the analysis of literature regarding this scope has yet been published. Thus, current work systematically assesses existing evidences on the potential association between exposure to PM2.5 and the development of various oral diseases as well as figures out the plausible paradigm of PM2.5-induced damages in the oral cavity through its toxic chemical constituents along with its ability to induce oxidative stress via reactive oxygen species production. This might partially provide the clues for new research ideas and progression in the field of oral health.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
88
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
89
|
Muñoz D, Grijota FJ, Bartolomé I, Siquier-Coll J, Toro-Román V, Maynar M. Serum and urinary concentrations of arsenic, beryllium, cadmium and lead after an aerobic training period of six months in aerobic athletes and sedentary people. J Int Soc Sports Nutr 2020; 17:43. [PMID: 32807167 PMCID: PMC7433203 DOI: 10.1186/s12970-020-00372-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
Aim The aim of the present study was to evaluate the possible effect of a period of 6 months of aerobic physical training on serum and urinary concentrations of arsenic (As), beryllium (Be), cadmium (Cd) and lead (Pb), potentially toxic minerals. Methods Twenty-four well-trained, long distance runners (AG), were recruited at the start of their training period. They had been performing training regularly for the previous 2 years, recording an average volume of 120 km per week of rigorous aerobic exercise aimed at high-level competitions (1500 and 5000 m race modalities). Twenty-six untrained, sedentary participants constituted the control group (CG). All participants had been living in the same geographic area for at least 2 years before the start of the survey. Serum and urine samples were obtained from each participant at the beginning and at the end of the 6 months of the training program. The values of each mineral were determined by inductively coupled plasma mass spectrometry (ICP-MS). Additionally, the daily intake of each mineral was evaluated at both moments in time. Results The daily concentrations of trace elements in the diet were similar at the start and the end of the training period without differences between groups. In serum, significant differences between groups were observed in As, Cd and Pb (p < 0.05). Attending to time effects, a significant difference was obtained in Pb (p < 0.05). In urine, significant differences between groups were obtained in all minerals (p < 0.05). According to training period, significant differences were observed in As, Be and Pb (p < 0.05). Finally, the group x time interaction revealed significant differences in As and Be (p < 0.05). Conclusions Aerobic training may constitute a possibly effective method for increasing the elimination of Cd and Pb potentially toxic minerals from the body, especially among highly trained individuals.
Collapse
Affiliation(s)
- Diego Muñoz
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain.
| | - Francisco J Grijota
- Education Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - Ignacio Bartolomé
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - Jesús Siquier-Coll
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - Víctor Toro-Román
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - Marcos Maynar
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| |
Collapse
|
90
|
Chen M, Liao X, Yan SC, Gao Y, Yang C, Song Y, Liu Y, Li W, Tsang SY, Chen ZF, Qi Z, Cai Z. Uptake, Accumulation, and Biomarkers of PM 2.5-Associated Organophosphate Flame Retardants in C57BL/6 Mice after Chronic Exposure at Real Environmental Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9519-9528. [PMID: 32609501 DOI: 10.1021/acs.est.0c02237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the bioaccumulation of organophosphate flame retardants (OPFRs) in aquatic organisms has been investigated, little information is available about their bioaccumulation in mammals following chronic inhalation exposure. To address this knowledge gap, C57BL/6 mice were exposed to 7 PM2.5-associated OPFRs via the trachea to study their bioaccumulation, tissue distribution, and urinary metabolites. Low (corresponding to the real PM2.5 concentrations occurring during winter in Guangzhou), medium, and high dosages were examined. After 72 days' exposure, ∑OPFR concentrations in tissues from mice in the medium dosage group decreased in the order of intestine > heart > stomach > testis > kidney > spleen > brain > liver > lung > muscle. Of the OPFRs detected in all three exposure groups, chlorinated alkyl OPFRs were most heavily accumulated in mice. We found a significant positive correlation between the bioaccumulation ratio and octanol-air partition coefficient (KOA) in mice tissues for low log KOW OPFR congeners (log KOW ≤ 4, p < 0.05). Three urinary metabolites (di-p-cresyl phosphate: DCrP, diphenyl phosphate: DPhP, dibutyl phosphate: DnBP) were detected from the high dosage group. These results provide important insights into the bioaccumulation potential of OPFRs in mammals and emphasize the health risk of chlorinated alkyl OPFRs.
Collapse
Affiliation(s)
- Min Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi-Chao Yan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Suk-Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
91
|
Jung S, An J, Na H, Kim J. Surface Energy of Filtration Media Influencing the Filtration Performance against Solid Particles, Oily Aerosol, and Bacterial Aerosol. Polymers (Basel) 2019; 11:E935. [PMID: 31146436 PMCID: PMC6631268 DOI: 10.3390/polym11060935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023] Open
Abstract
Particulate airborne pollutants are a big concern to public health, and it brings growing attention about effective filtration devices. Especially, particulate matters smaller than 2.5 µm can reach the thoracic region and the blood stream, and the associated health risk can be exacerbated when pathogenic microbials are present in the air. This study aims at understanding the surface characteristics of nonwoven media that influence filtration performance against solid particles (sodium chloride, NaCl), oily aerosol (dioctyl phthalate, DOP), and Staphylococcus aureus (S. aureus) bacteria. Nonwoven media of polystyrene (PS) fibers were fabricated by electrospinning and its pristine surface energy (38.5 mN/m) was modified to decrease (12.3 mN/m) by the plasma enhanced chemical vapor deposition (PECVD) of octafluorocyclobutane (C4F8) or to increase (68.5 mN/m) by the oxygen (O2) plasma treatment. For NaCl particles and S. aureus aerosol, PS electrospun web showed higher quality factor than polypropylene (PP) meltblown electret that is readily available for commercial products. The O2 plasma treatment of PS media significantly deteriorated the filtration efficiency, presumably due to the quick dissipation of static charges by the O2 plasma treatment. The C4F8 treated, fluorinated PS media resisted quick wetting of DOP, and its filtration efficiency for DOP and S. aureus remained similar while its efficiency for NaCl decreased. The findings of this study will impact on determining relevant surface treatments for effective particulate filtration. As this study examined the instantaneous performance within 1-2 min of particulate exposure, and the further study with the extended exposure is suggested.
Collapse
Affiliation(s)
- Seojin Jung
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.
| | - Jaejin An
- Medical Convergence Textile Center, Gyeongbuk Technopark, Gyeongsangbuk-do 38412, Korea.
| | - Hyungjin Na
- Medical Convergence Textile Center, Gyeongbuk Technopark, Gyeongsangbuk-do 38412, Korea.
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
92
|
Cytotoxicity, Oxidative Stress, and Autophagy in Human Alveolar Epithelial Cell Line (A549 Cells) Exposed to Standardized Urban Dust. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1176:101-108. [DOI: 10.1007/5584_2019_387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|