51
|
Guo Z, Geng M, Huang Y, Han G, Jing R, Lin C, Zhang X, Zhang M, Fan G, Wang F, Yin H. Upregulation of Wilms' Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 2022; 29:1928-1940. [PMID: 35306537 PMCID: PMC9525265 DOI: 10.1038/s41418-022-00979-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms' tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR-/-). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR-/- dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR-/- mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR-/- mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms' Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.
Collapse
Affiliation(s)
- Zhenglong Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
- Medical Genetic Institute of Henan Province, Henan Provincial Key laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengyuan Geng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Gang Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Renwei Jing
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Caorui Lin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Xiaoning Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - HaiFang Yin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
52
|
Early Development of Cardiac Fibrosis in Young Old-Father Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8770136. [PMID: 36193084 PMCID: PMC9526616 DOI: 10.1155/2022/8770136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
Cardiac aging is characterized by progressive fibrosis. Epidemiological studies have found that advanced paternal age is associated with an increased risk of heart failure in the next generation. This study is aimed at evaluating the effect of paternal age, in the young male rat progeny, on cardiac phenotype under circulatory stress conditions. Offspring rats were obtained by mating old males (24 months old) with young females (two months old) and by mating young males (two months old) with the same young females. Hypertension was induced in old father offspring (OFO) rats and young old father (YFO) offspring rats using L-NAME (N(ω)-nitro-L-arginine methyl ester). The OFO L-NAME rats showed a high blood pressure phenotype associated with substantial cardiac hypertrophy and an exacerbation of cardiac fibrosis compared to the YFO L-NAME rats. Histological analysis of heart tissue showed an expansion of the extracellular matrix, with fibroblasts displaying markers of epicardial origin (Tcf21, Tbx18, and Wt1) in the OFO group. Moreover, western blot and protein phosphorylation antibody array identified the TGF-β2 receptor pathway as preferentially activated in aged hearts as well as in OFO cardiac tissue treated with L-NAME. In addition, old father offspring rats (OFO+OFO L-NAME) had increased cardiac DNA methylation. In young hypertensive progeny, advanced paternal age at conception may be a risk factor for early progression towards cardiac fibrosis. An intergenerational transmission may be behind the paternal age-related cardiac remodeling in the young offspring.
Collapse
|
53
|
Obstructive Sleep Apnea Syndrome In Vitro Model: Controlled Intermittent Hypoxia Stimulation of Human Stem Cells-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:ijms231810272. [PMID: 36142186 PMCID: PMC9499466 DOI: 10.3390/ijms231810272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular morbidity is the leading cause of death of obstructive sleep apnea (OSA) syndrome patients. Nocturnal airway obstruction is associated with intermittent hypoxia (IH). In our previous work with cell lines, incubation with sera from OSA patients induced changes in cell morphology, NF-κB activation and decreased viability. A decrease in beating rate, contraction amplitude and a reduction in intracellular calcium signaling was also observed in human cardiomyocytes differentiated from human embryonic stem cells (hESC-CMs). We expanded these observations using a new controlled IH in vitro system on beating hESC-CMs. The Oxy-Cycler system was programed to generate IH cycles. Following IH, we detected the activation of Hif-1α as an indicator of hypoxia and nuclear NF-κB p65 and p50 subunits, representing pro-inflammatory activity. We also detected the secretion of inflammatory cytokines, such as MIF, PAI-1, MCP-1 and CXCL1, and demonstrated a decrease in beating rate of hESC-CMs following IH. IH induces the co-activation of inflammatory features together with cardiomyocyte alterations which are consistent with myocardial damage in OSA. This study provides an innovative approach for in vitro studies of OSA cardiovascular morbidity and supports the search for new pharmacological agents and molecular targets to improve diagnosis and treatment of patients.
Collapse
|
54
|
Chen G, Xu H, Xu T, Ding W, Zhang G, Hua Y, Wu Y, Han X, Xie L, Liu B, Zhou Y. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154277. [PMID: 35752078 DOI: 10.1016/j.phymed.2022.154277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Excessive myocardial fibrosis is the pathological basis of heart failure following myocardial infarction (MI). Although calycosin improves cardiac function, its effect on cardiac fibrosis and cardiac function after MI in mice and its precise mechanism remain unclear. PURPOSE Here, we firstly investigated the effects of calycosin on cardiac fibrosis and ventricular function in mice after MI and the role of transforming growth factor-beta receptor 1 (TGFBR1) signaling in the amelioration of cardiac fibrosis and ventricular function. METHODS In vivo effects of calycosin on cardiac structure and function in mice with MI induced by left anterior descending coronary artery ligation were determined by hematoxylin and eosin staining, Masson trichrome staining, and echocardiography. The molecular mechanism of the interaction between TGFBR1 and calycosin was investigated using molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance imaging (SPRi), immunohistochemistry, and western blotting (WB). Subsequently, cardiac-specific Tgfbr1 knockout mice were used to verify the effects of calycosin. The effect of calycosin on primary cardiac fibroblasts (CFs) proliferation and collagen deposition was detected using cell counting (CCK-8), EdU assay, and WB in vitro. CFs infected with an adenovirus that encodes TGFBR1 were used to verify the effects of calycosin. RESULTS In vivo, calycosin attenuated myocardial fibrosis and cardiac dysfunction following MI in a dose-dependent pattern. Calycosin-TGFBR1 complex was found to have a binding energy of -9.04 kcal/mol based on molecular docking. In addition, calycosin bound steadily in the cavity of TGFBR1 during the MD simulation. Based on SPRi results, the solution equilibrium dissociation constant for calycosin and TGFBR1 was 5.11 × 10-5 M. Calycosin inhibited the expression of TGFBR1, Smad2/3, collagen I, and collagen III. The deletion of TGFBR1 partially counteracted these effects. In vitro, calycosin suppressed CFs proliferation and collagen deposition after TGF-β1 stimulation by suppressing the TGFBR1 signaling pathway. The suppressive effects of calycosin were partially rescued by overexpression of TGFBR1. CONCLUSION Calycosin attenuates myocardial fibrosis and cardiac dysfunction following MI in mice in vivo via suppressing the TGFBR1 signaling pathway. Calycosin suppresses CFs proliferation and collagen deposition induced by TGF-β1 via inhibition of the TGFBR1 signaling pathway in vitro.
Collapse
Affiliation(s)
- Guanghong Chen
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Honglin Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Wenjun Ding
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Yue Hua
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Yuting Wu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Xin Han
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Lingpeng Xie
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
55
|
Byrne SE, Vishwakarma N, Sriramula S, Katwa LC. Dopamine receptor 3: A mystery at the heart of cardiac fibrosis. Life Sci 2022; 308:120918. [PMID: 36041503 DOI: 10.1016/j.lfs.2022.120918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
Dopamine receptors have been extensively studied in the mammalian brain and spinal cord, as dopamine is a vital determinant of bodily movement, cognition, and overall behavior. Thus, dopamine receptor antagonist antipsychotic drugs are commonly used to treat multiple psychiatric disorders. Although less discussed, these receptors are also expressed in other peripheral organ systems, such as the kidneys, eyes, gastrointestinal tract, and cardiac tissue. Consequently, therapies for certain psychiatric disorders which target dopamine receptors could have unidentified consequences on certain functions of these peripheral tissues. The existence of an intrinsic dopaminergic system in the human heart remains controversial and debated within the literature. Therefore, this review focuses on literature related to dopamine receptors within cardiac tissue, specifically dopamine receptor 3 (D3R), and summarizes the current state of knowledge while highlighting areas of research which may be lacking. Additionally, recent findings regarding crosstalk between D3R and dopamine receptor 1 (D1R) are examined. This review discusses the novel concept of understanding the role of the loss of function of D3R may play in collagen accumulation and cardiac fibrosis, eventually leading to heart failure.
Collapse
Affiliation(s)
- Shannon E Byrne
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Nandini Vishwakarma
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
56
|
Myostatin deficiency decreases cardiac extracellular matrix in pigs. Transgenic Res 2022; 31:553-565. [PMID: 35978205 DOI: 10.1007/s11248-022-00322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Myostatin (MSTN), a member of the TGF-β superfamily, negatively regulates muscle growth. MSTN inhibition has been known to cause a double-muscled phenotype in skeletal muscle and fibrosis reduction in the heart. However, the role of MSTN in the cardiac extracellular matrix (ECM) needs more studies in various species of animal models to draw more objective conclusions. The main objective of the present study was to investigate whether loss of MSTN affects the cardiac extracellular matrix in pigs. Three MSTN knockouts (MSTN-/-) and three wild type (WT) male pigs were generated by crossing MSTN ± heterozygous gilts and boars. Cardiac ECM and underlying mechanisms were determined post-mortem. The role of MSTN on collagen expression was investigated by treating cardiac fibroblasts with active MSTN protein in vitro. MSTN protein was detected in WT hearts, while no expression was detected in MSTN-/- hearts. The heart-to-body weight ratio was significantly decreased in MSTN-/- pigs. The morphometric analyses, including picrosirius red staining, immunofluorescent staining, and ultra-structural thickness examination of the endomysium, revealed a significant reduction of connective tissue content in MSTN-/- hearts compared to WT. Hydroxyproline, type I collagen (Col1A), and p-Smad3/Smad3 levels were significantly lower in MSTN-/- hearts in vivo. On the contrary, cardiac fibroblasts treated with exogenous MSTN protein overexpressed Col1A and activated Smad and AKT signaling pathways in vitro. The present study suggests that inhibition of MSTN decreases cardiac extracellular matrix.
Collapse
|
57
|
Santos GL, DeGrave AN, Rehman A, Al Disi S, Xhaxho K, Schröder H, Bao G, Meyer T, Tiburcy M, Dworatzek E, Zimmermann WH, Lutz S. Using different geometries to modulate the cardiac fibroblast phenotype and the biomechanical properties of engineered connective tissues. BIOMATERIALS ADVANCES 2022; 139:213041. [PMID: 35909053 DOI: 10.1016/j.bioadv.2022.213041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.
Collapse
Affiliation(s)
- Gabriela L Santos
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Alisa N DeGrave
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Sara Al Disi
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Kristin Xhaxho
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Helen Schröder
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Guobin Bao
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Elke Dworatzek
- Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Germany; DZHK (German Center for Cardiovascular Research) partner site, Berlin, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany; Center for Neurodegenerative Diseases (DZNE), Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany.
| |
Collapse
|
58
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
59
|
Pivato R, Klimovic S, Kabanov D, Sverák F, Pesl M, Pribyl J, Rotrekl V. hESC derived cardiomyocyte biosensor to detect the different types of arrhythmogenic properties of drugs. Anal Chim Acta 2022; 1216:339959. [PMID: 35691674 DOI: 10.1016/j.aca.2022.339959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
In the present work, we introduce a new cell-based biosensor for detecting arrhythmias based on a novel utilization of the combination of the Atomic Force Microscope (AFM) lateral force measurement as a nanosensor with a dual 3D cardiomyocyte syncytium. Two spontaneously coupled clusters of cardiomyocytes form this. The syncytium's functional contraction behavior was assessed using video sequences analyzed with Musclemotion ImageJ/Fiji software, and immunocytochemistry evaluated phenotype composition. The application of caffeine solution induced arrhythmia as a model drug, and its spontaneous resolution was monitored by AFM lateral force recording and interpretation and calcium fluorescence imaging as a reference method describing non-synchronized contractions of cardiomyocytes. The phenotypic analysis revealed the syncytium as a functional contractile and conduction cardiac behavior model. Calcium fluorescence imaging was used to validate that AFM fully enabled to discriminate cardiac arrhythmias in this in vitro cellular model. The described novel 3D hESCs-based cellular biosensor is suitable to detect arrhythmic events on the level of cardiac contractile and conduction tissue cellular model. The resulting biosensor allows for screening of arrhythmogenic properties of tailored drugs enabling its use in precision medicine.
Collapse
Affiliation(s)
- Roberto Pivato
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Simon Klimovic
- International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Daniil Kabanov
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Filip Sverák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic; First Department of Internal Medicine - Cardioangiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Jan Pribyl
- Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic.
| |
Collapse
|
60
|
Huang X, Lin X, Wang L, Xie Y, Que Y, Li S, Hu P, Tong X. Substitution of SERCA2 Cys 674 aggravates cardiac fibrosis by promoting the transformation of cardiac fibroblasts to cardiac myofibroblasts. Biochem Pharmacol 2022; 203:115164. [PMID: 35809651 DOI: 10.1016/j.bcp.2022.115164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is vital to maintain intracellular calcium homeostasis, and its redox Cys674 (C674) is the key to regulating activity. Our goal was to investigate whether the redox state of SERCA2 C674 is critical for cardiac fibrosis and the mechanisms involved. Heterozygous SERCA2 C674S knock-in (SKI) mice, in which half of C674 was substituted by serine, were used to mimic the partial loss of the reactive C674 thiol in pathological conditions. In cardiac fibroblasts, the substitution of C674 thiol increased Ca2+ levels in cytoplasm and mitochondria, and intracellular ROS levels, and activated calcineurin/nuclear factor of activated T-lymphocytes (NFAT) pathway, increased the protein expression of profibrotic factors TGF beta 1 (TGF-β1), alpha smooth muscle actin, collagen I and collagen III, and promoted the transformation of cardiac fibroblasts to cardiac myofibroblasts, which could be reversed by calcineurin/NFAT inhibitor, SERCA2 agonist, or ROS scavenger. Activation of SERCA2 or scavenging ROS is beneficial to alleviate cardiac fibrosis caused by the substitution of C674. In conclusion, the partial loss of the reactive C674 thiol in the SERCA2 exacerbates cardiac fibrosis by activating the calcineurin/NFAT/TGF-β1 pathway to promote the transformation of cardiac fibroblasts to cardiac myofibroblasts, which highlights the importance of C674 redox state in maintaining the homeostasis of cardiac fibroblasts. SERCA2 is a potential therapeutic target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Lin
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yufei Xie
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
61
|
Liu A, Zhang Y, Xun S, Zhou G, Lin L, Mei Y. Fibroblast growth factor 12 attenuated cardiac remodeling via suppressing oxidative stress. Peptides 2022; 153:170786. [PMID: 35304156 DOI: 10.1016/j.peptides.2022.170786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factors (FGFs) mediate key cardiac functions from development to homeostasis and disease. The current research was to explore the effects of FGF12 in the fibrosis of cardiac function and heart failure, and whether FGF12 alleviated cardiac fibrosis via inhibition of oxidative stress. Ligation of left coronary artery in mice induced heart failure and myocardial infarction (MI). Angiotensin II (Ang II) was administered to cardiac fibroblasts (CFs). FGF12 upregulation or FGF12 transgenic (Tg) mice could improve cardiac dysfunction of MI mice, and attenuated cardiac fibrosis of heart failure induced by MI in mice. FGF12 overexpression suppressed the increases of collagen I, collagen III and fibronectin which was induced by Ang II in CFs. The oxidative stress was enhanced in the heart of MI mice and CFs treated with Ang II, and these enhances were attenuated via FGF12 overexpression. Superoxide dismutase (SOD) overexpression inhibited the enhancements of collagen I, collagen III and fibronectin in the heart of MI mice, and in the CFs treated with Ang II. Overexpression of nicotinamide adenine dinucleotide phosphate oxidases (Nox1) reversed the attenuating influences of FGF12 on the enhancements of collagen I, collagen III and fibronectin in the CFs induced by Ang II. These outcomes showed that FGF12 upregulation can improve cardiac dysfunction and heart fibrosis of heart failure. FGF12 attenuates oxidative stress to suppress the cardiac fibrosis.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
62
|
Ouyang C, Huang L, Ye X, Ren M, Han Z. HDAC1 Promotes Myocardial Fibrosis in Diabetic Cardiomyopathy by Inhibiting BMP-7 Transcription Through Histone Deacetylation. Exp Clin Endocrinol Diabetes 2022; 130:660-670. [PMID: 35760306 DOI: 10.1055/a-1780-8768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) constitutes a primary cause of mortality in diabetic patients. Histone deacetylase (HDAC) inhibition can alleviate diabetes-associated myocardial injury. This study investigated the mechanism of HDAC1 on myocardial fibrosis (MF) in DCM. METHODS A murine model of DCM was established by a high-fat diet and streptozotocin injection. The bodyweight, blood glucose, serum insulin, and cardiac function of mice were analyzed. Lentivirus-packaged sh-HDAC1 was injected into DCM mice and high glucose (HG)-induced cardiac fibroblasts (CFs). The pathological structure of the myocardium and the level of myocardial fibrosis were observed by histological staining. HDAC1 expression in mouse myocardial tissues and CFs was determined. Collagen I, collagen III, alpha-smooth muscle actin (α-SMA), and vimentin levels in CFs were detected, and CF proliferation was tested. HDAC activity and histone acetylation levels in tissues and cells were measured. Bone morphogenetic protein-7 (BMP-7) expression in myocardial tissues and CFs was determined. Functional rescue experiments were conducted to confirm the effects of histone acetylation and BMP-7 on myocardial fibrosis. RESULTS DCM mice showed decreased bodyweight, elevated blood glucose and serum insulin, and cardiac dysfunction. Elevated HDAC1 and reduced BMP-7 expressions were detected in DCM mice and HG-induced CFs. HDAC1 repressed BMP-7 transcription through deacetylation. HDAC1 silencing alleviated MF, reduced CF proliferation and decreased collagen I, -III, α-SMA, and vimentin levels. However, reducing histone acetylation level or BMP-7 downregulation reversed the effects of HDAC1 silencing on CF fibrosis. CONCLUSION HDAC1 repressed BMP-7 transcription by enhancing histone deacetylation, thereby promoting MF and aggravating DCM.
Collapse
Affiliation(s)
- Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| |
Collapse
|
63
|
Ren C, Liu K, Zhao X, Guo H, Luo Y, Chang J, Gao X, Lv X, Zhi X, Wu X, Jiang H, Chen Q, Li Y. Research Progress of Traditional Chinese Medicine in Treatment of Myocardial fibrosis. Front Pharmacol 2022; 13:853289. [PMID: 35754495 PMCID: PMC9213783 DOI: 10.3389/fphar.2022.853289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective drugs for the treatment of myocardial fibrosis (MF) are lacking. Traditional Chinese medicine (TCM) has garnered increasing attention in recent years for the prevention and treatment of myocardial fibrosis. This Article describes the pathogenesis of myocardial fibrosis from the modern medicine, along with the research progress. Reports suggest that Chinese medicine may play a role in ameliorating myocardial fibrosis through different regulatory mechanisms such as reduction of inflammatory reaction and oxidative stress, inhibition of cardiac fibroblast activation, reduction in extracellular matrix, renin-angiotensin-aldosterone system regulation, transforming growth Factor-β1 (TGF-β1) expression downregulation, TGF-β1/Smad signalling pathway regulation, and microRNA expression regulation. Therefore, traditional Chinese medicine serves as a valuable source of candidate drugs for exploration of the mechanism of occurrence and development, along with clinical prevention and treatment of MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Huan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Chang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
64
|
Wu JJ, Sun ZL, Liu SY, Chen ZH, Yuan ZD, Zou ML, Teng YY, Li YY, Guo DY, Yuan FL. The ASIC3-M-CSF-M2 macrophage-positive feedback loop modulates fibroblast-to-myofibroblast differentiation in skin fibrosis pathogenesis. Cell Death Dis 2022; 13:527. [PMID: 35661105 PMCID: PMC9167818 DOI: 10.1038/s41419-022-04981-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH. The molecular mechanisms by which skin fibroblasts are regulated by acid-sensing ion channel 3 (ASIC3) remain unknown. This study investigated whether ASIC3 is related to inflammation and skin fibrosis and explored the underlying mechanisms. We demonstrate that macrophage colony-stimulating factor (M-CSF) is a direct target of ASIC3, and ASIC3 activation promotes M-CSF transcriptional regulation of macrophages for M2 polarization. The polarization of M2 macrophages transduced by the ASIC3-M-CSF signal promotes the differentiation of fibroblasts into myofibroblasts through transforming growth factor β1 (TGF-β1), thereby producing an ASIC3-M-CSF-TGF-β1 positive feedback loop. Targeting ASIC3 may be a new treatment strategy for skin fibrosis.
Collapse
Affiliation(s)
- Jun-Jie Wu
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Zi-Li Sun
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Si-Yu Liu
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Zhong-Hua Chen
- grid.260483.b0000 0000 9530 8833The Nantong University, Nantong, Jiangsu 226000 China
| | - Zheng-Dong Yuan
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Ming-Li Zou
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Ying-Ying Teng
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Yue-Yue Li
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Dan-Yang Guo
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Feng-Lai Yuan
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| |
Collapse
|
65
|
Avolio E, Katare R, Thomas AC, Caporali A, Schwenke D, Carrabba M, Meloni M, Caputo M, Madeddu P. Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. J Clin Invest 2022; 132:e152308. [PMID: 35349488 PMCID: PMC9106362 DOI: 10.1172/jci152308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes (PCs) are abundant yet remain the most enigmatic and ill-defined cell population in the heart. Here, we investigated whether PCs can be reprogrammed to aid neovascularization. Primary PCs from human and mouse hearts acquired cytoskeletal proteins typical of vascular smooth muscle cells (VSMCs) upon exclusion of EGF/bFGF, which signal through ERK1/2, or upon exposure to the MEK inhibitor PD0325901. Differentiated PCs became more proangiogenic, more responsive to vasoactive agents, and insensitive to chemoattractants. RNA sequencing revealed transcripts marking the PD0325901-induced transition into proangiogenic, stationary VSMC-like cells, including the unique expression of 2 angiogenesis-related markers, aquaporin 1 (AQP1) and cellular retinoic acid-binding protein 2 (CRABP2), which were further verified at the protein level. This enabled us to trace PCs during in vivo studies. In mice, implantation of Matrigel plugs containing human PCs plus PD0325901 promoted the formation of αSMA+ neovessels compared with PC only. Two-week oral administration of PD0325901 to mice increased the heart arteriolar density, total vascular area, arteriole coverage by PDGFRβ+AQP1+CRABP2+ PCs, and myocardial perfusion. Short-duration PD0325901 treatment of mice after myocardial infarction enhanced the peri-infarct vascularization, reduced the scar, and improved systolic function. In conclusion, myocardial PCs have intrinsic plasticity that can be pharmacologically modulated to promote reparative vascularization of the ischemic heart.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anita C. Thomas
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Daryl Schwenke
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michele Carrabba
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Marco Meloni
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
66
|
Behl T, Gupta A, Sehgal A, Singh S, Sharma N, Garg M, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Exploring the multifaceted role of TGF-β signaling in diabetic complications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35643-35656. [PMID: 35247177 DOI: 10.1007/s11356-022-19499-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the most comprehensive metabolic disorders and is spread across the globe. The data from IDF Diabetes Atlas and National Diabetes Statistics mentions that the number of patients with diabetes is increasing at an exponential rate which is challenging the current therapeutics used for the management of diabetes. However, current therapies used for the treatment may provide symptomatic relief but lack in preventing the progression of the disease and thereby limiting the treatment of diabetes-associated complications. A thorough review and analysis were conducted using various databases including EMBASE, MEDLINE, and Google Scholar to extract the available information on challenges faced by current therapies which have triggered the development of novel molecules or drugs. From the analysis, it was analyzed that transforming growth factor βs (TGF-βs) have been shown to exhibit pleiotropic activity and are responsible for maintaining homeostasis and its overexpression is convoluted in the pathogenesis of various disorders. Therefore, developing drugs that block TGF-β signaling may provide therapeutic benefits. This extensive review concluded that drugs targeting TGF-β signaling pathway and its subsequent blockade have shown promising results and hold the potential to become drugs of choice in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Adjunct Professor, Amity Institute of Pharmacy, Amity University, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Bourgogne Franche-Comté, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
67
|
Zhuang Y, Yang D, Shi S, Wang L, Yu M, Meng X, Fan Y, Zhou R, Wang F. MiR-375-3p Promotes Cardiac Fibrosis by Regulating the Ferroptosis Mediated by GPX4. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9629158. [PMID: 35498204 PMCID: PMC9054412 DOI: 10.1155/2022/9629158] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Although coronary artery recanalization after myocardial infarction improves patient outcomes, inadequate ventricular remodeling following ischemia-reperfusion (IR) injury and secondary cardiac fibrosis (CF) are common and can lead to heart failure. MicroRNAs (miRNAs) play an important role in cardiovascular disorders. However, the underlying molecular mechanism of miRNAs in the occurrence and progression of CF has not been fully elucidated. Herein, through the construction of an I/R rat model and an angiotensin II-induced CF cell model, we evaluated the role of miR-375-3p in the progression of CF. In the I/R rat model and CF cell model, miR-375-3p promoted fibrosis by accelerating the ferroptosis of cardiomyocytes through mediating glutathione peroxidase 4 (GPX4). Furthermore, we treated the rats or cell model with miR-375-3p antagomir (or inhibitor) and ferroptosis inhibitor Ferrostatin-1 (Fer-1). The results showed that miR-375-3p antagomir (or inhibitor) and Fer-1 promoted the antioxidant capacity of cardiac fibroblasts, reduced GPX4-mediated ferroptosis process and alleviated I/R-induced CF. In conclusion, this study revealed that miR-375-3p directly targeted GPX4-an inhibitor of the ferroptosis pathway. Meanwhile, miR-375-3p can be a new potential biomarker for the prevention and treatment of CF.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dicheng Yang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Sheng Shi
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Limin Wang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangdong Meng
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yongliang Fan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ren Zhou
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Feng Wang
- Department of Cardiothoracic Surgery, Shanghai Ninth Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
68
|
A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022; 23:ijms23084302. [PMID: 35457114 PMCID: PMC9027193 DOI: 10.3390/ijms23084302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.
Collapse
|
69
|
Naserzadeh P, Razmi A, Yesildal R, Ashtari B. Investigation of toxicity effect of TiCN coated on 304 SS and 410 SS substrates in rat fibroblasts and B-lymphocytes. Toxicol Res (Camb) 2022; 11:286-298. [PMID: 35510235 PMCID: PMC9052322 DOI: 10.1093/toxres/tfac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/27/2021] [Indexed: 11/14/2022] Open
Abstract
In the present study, TiCN thin films were coated on AISI 304 and AISI 410 stainless steel (SS) substrates by Cathodic Arc Physical Vapor Deposition method. TiCN-coated substrates were confirmed by the XRD analysis results. Dense morphology and fine-grained surface of TiCN film were established by SEM images. Cellular toxicity of the coated 304 SS and 410 SS substrates was investigated in the fibroblasts and B-lymphocyte. In respect to that, we have shown coated substrates cytotoxicity, oxidative stress as well as cell viability, reactive oxygen species (ROS), lipid peroxidation (MDA), protein carbonyl, glutathione oxidase (GSSG), and glutathione reductase (GSH) assessment, releasing cytochrome c (Cytc), lysosomal membrane destabilization (AO) may lead to cell death signaling. Our results showed that the coated 304 SS and 410 SS substrates induced cells dysfunction via a significant increase in ROS production, MDA (P < 0.01 and P < 0.001), protein carbonyl (P < 0.05), and GSSG (P < 0.05 and P < 0.01) that correlated to cytochrome c release (P < 0.01). In addition, increased disturbance in oxidative phosphorylation was also shown by the decrease in cell viability (P < 0.001) and GSH (P < 0.01 and P < 0.001) in the coated 304 SS and 410 SS substrates-treated fibroblast and B-lymphocytes. The coated 304 SS and 410 SS substrates contacted cells and trafficked to the lysosomes and this is followed by lysosomal damage, leading to apoptosis/Necrosis. Our results indicated that these materials cause cellular dysfunction and subsequent oxidative stress leading to cognitive impairment in the rat fibroblasts and B-lymphocytes cells.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Abbas Razmi
- Faculty of Engineering, Mechanical Engineering Department, Construction and Manufacturing Division, Ataturk University, Erzurum 25240, Turkey
| | - Ruhi Yesildal
- Faculty of Engineering, Mechanical Engineering Department, Construction and Manufacturing Division, Ataturk University, Erzurum 25240, Turkey
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
70
|
Chimenti I, Picchio V, Pagano F, Schirone L, Schiavon S, D'Ambrosio L, Valenti V, Forte M, di Nonno F, Rubattu S, Peruzzi M, Versaci F, Greco E, Calogero A, De Falco E, Frati G, Sciarretta S. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov 2022; 8:149. [PMID: 35365624 PMCID: PMC8975847 DOI: 10.1038/s41420-022-00924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- Mediterranea Cardiocentro, Napoli, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Istitute, CNR, Monterotondo, Italy
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Sonia Schiavon
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Versaci
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
- Department of System Medicine, "Tor Vergata" University, Rome, Italy
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Calogero
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
71
|
Bowers SL, Meng Q, Molkentin JD. Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. NATURE CARDIOVASCULAR RESEARCH 2022; 1:312-321. [PMID: 38765890 PMCID: PMC11101212 DOI: 10.1038/s44161-022-00043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/02/2022] [Indexed: 05/22/2024]
Abstract
Cell communication is needed for organ function and stress responses, especially in the heart. Cardiac fibroblasts, cardiomyocytes, immune cells, and endothelial cells comprise the major cell types in ventricular myocardium that together coordinate all functional processes. Critical to this cellular network is the non-cellular extracellular matrix (ECM) that provides structure and harbors growth factors and other signaling proteins that affect cell behavior. The ECM is not only produced and modified by cells within the myocardium, largely cardiac fibroblasts, it also acts as an avenue for communication among all myocardial cells. In this Review, we discuss how the development of therapeutics to combat cardiac diseases, specifically fibrosis, relies on a deeper understanding of how the cardiac ECM is intertwined with signaling processes that underlie cellular activation and behavior.
Collapse
Affiliation(s)
| | | | - Jeffery D. Molkentin
- Cincinnati Children’s Hospital, Division of Molecular Cardiovascular Biology; University of Cincinnati, Department of Pediatrics, Cincinnati, OH
| |
Collapse
|
72
|
Fan C, Liao M, Xie L, Huang L, Lv S, Cai S, Su X, Wang Y, Wang H, Wang M, Liu Y, Wang Y, Guo H, Yang H, Liu Y, Wang T, Ma L. Single-Cell Transcriptome Integration Analysis Reveals the Correlation Between Mesenchymal Stromal Cells and Fibroblasts. Front Genet 2022; 13:798331. [PMID: 35360851 PMCID: PMC8961367 DOI: 10.3389/fgene.2022.798331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Mesenchymal stromal cells (MSCs) and fibroblasts show similar morphology, surface marker expression, and proliferation, differentiation, and immunomodulatory capacities. These similarities not only blur their cell identities but also limit their application. Methods: We performed single-cell transcriptome sequencing of the human umbilical cord and foreskin MSCs (HuMSCs and FSMSCs) and extracted the single-cell transcriptome data of the bone marrow and adipose MSCs (BMSCs and ADMSCs) from the Gene Expression Omnibus (GEO) database. Then, we performed quality control, batch effect correction, integration, and clustering analysis of the integrated single-cell transcriptome data from the HuMSCs, FMSCs, BMSCs, and ADMSCs. The cell subsets were annotated based on the surface marker phenotypes for the MSCs (CD105 + , CD90 +, CD73 +, CD45 -, CD34 -, CD19 -, HLA-DRA -, and CD11b -), fibroblasts (VIM +, PECAM1 -, CD34 -, CD45 -, EPCAM -, and MYH11 -), and pericytes (CD146 +, PDGFRB +, PECAM1 -, CD34 -, and CD45 -). The expression levels of common fibroblast markers (ACTA2, FAP, PDGFRA, PDGFRB, S100A4, FN1, COL1A1, POSTN, DCN, COL1A2, FBLN2, COL1A2, DES, and CDH11) were also analyzed in all cell subsets. Finally, the gene expression profiles, differentiation status, and the enrichment status of various gene sets and regulons were compared between the cell subsets. Results: We demonstrated 15 distinct cell subsets in the integrated single-cell transcriptome sequencing data. Surface marker annotation demonstrated the MSC phenotype in 12 of the 15 cell subsets. C10 and C14 subsets demonstrated both the MSC and pericyte phenotypes. All 15 cell subsets demonstrated the fibroblast phenotype. C8, C12, and C13 subsets exclusively demonstrated the fibroblast phenotype. We identified 3,275 differentially expressed genes, 305 enriched gene sets, and 34 enriched regulons between the 15 cell subsets. The cell subsets that exclusively demonstrated the fibroblast phenotype represented less primitive and more differentiated cell types. Conclusion: Cell subsets with the MSC phenotype also demonstrated the fibroblast phenotype, but cell subsets with the fibroblast phenotype did not necessarily demonstrate the MSC phenotype, suggesting that MSCs represented a subclass of fibroblasts. We also demonstrated that the MSCs and fibroblasts represented highly heterogeneous populations with distinct cell subsets, which could be identified based on the differentially enriched gene sets and regulons that specify proliferating, differentiating, metabolic, and/or immunomodulatory functions.
Collapse
Affiliation(s)
- Chuiqin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maochuan Liao
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lichun Xie
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Center of Guangzhou Medical University), Guangzhou, China
| | - Liangping Huang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Siyu Lv
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Siyu Cai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing Su
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yue Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Hongwu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Manna Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Yulin Liu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Huijie Guo
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Hanhua Yang
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Center of Guangzhou Medical University), Guangzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Center of Guangzhou Medical University), Guangzhou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| |
Collapse
|
73
|
Paoletti C, Marcello E, Melis ML, Divieto C, Nurzynska D, Chiono V. Cardiac Tissue-like 3D Microenvironment Enhances Route towards Human Fibroblast Direct Reprogramming into Induced Cardiomyocytes by microRNAs. Cells 2022; 11:800. [PMID: 35269422 PMCID: PMC8909733 DOI: 10.3390/cells11050800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The restoration of cardiac functionality after myocardial infarction represents a major clinical challenge. Recently, we found that transient transfection with microRNA combination (miRcombo: miR-1, miR-133, miR-208 and 499) is able to trigger direct reprogramming of adult human cardiac fibroblasts (AHCFs) into induced cardiomyocytes (iCMs) in vitro. However, achieving efficient direct reprogramming still remains a challenge. The aim of this study was to investigate the influence of cardiac tissue-like biochemical and biophysical stimuli on direct reprogramming efficiency. Biomatrix (BM), a cardiac-like extracellular matrix (ECM), was produced by in vitro culture of AHCFs for 21 days, followed by decellularization. In a set of experiments, AHCFs were transfected with miRcombo and then cultured for 2 weeks on the surface of uncoated and BM-coated polystyrene (PS) dishes and fibrin hydrogels (2D hydrogel) or embedded into 3D fibrin hydrogels (3D hydrogel). Cell culturing on BM-coated PS dishes and in 3D hydrogels significantly improved direct reprogramming outcomes. Biochemical and biophysical cues were then combined in 3D fibrin hydrogels containing BM (3D BM hydrogel), resulting in a synergistic effect, triggering increased CM gene and cardiac troponin T expression in miRcombo-transfected AHCFs. Hence, biomimetic 3D culture environments may improve direct reprogramming of miRcombo-transfected AHCFs into iCMs, deserving further study.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Maria Luna Melis
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca Metrologica, Division of Advanced Materials and Life Sciences, 10135 Turin, Italy;
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84084 Salerno, Italy;
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
74
|
Wu W, Chai Q, Zhang Z. Inhibition of SGLT1 Alleviates the Glycemic Variability-Induced Cardiac Fibrosis via Inhibition of Activation of Macrophage and Cardiac Fibroblasts. Mol Cell Biol 2022; 42:e0028221. [PMID: 34842443 PMCID: PMC8852709 DOI: 10.1128/mcb.00282-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Glycemic variability has been considered one of the predictors of diabetes complications in patients with diabetes mellitus (DM). In this work, we evaluated whether glycemic variability induces cardiac fibrosis through regulating cardiac fibroblast activation and macrophage polarization. Moreover, we determined whether glucose transporter sodium-glucose cotransporter 1 (SGLT1) plays an important role in this process. Glycemic variability-induced mice were established using DM mice (GVDM mice), and intermittent high-glucose (IHG) treatment was used to simulate glycemic variability in RAW264.7 macrophages and cardiac fibroblasts. The short hairpin RNA for SGLT1 was used to knock down SGLT1. The results showed that glycemic variability aggravated the cardiac fibrosis in GVDM mice. Additionally, glycemic variability promoted the expression of fibrogenic cytokine and the extracellular matrix proteins in left ventricular tissues and cardiac fibroblasts. GVDM mice showed a higher incidence of macrophage infiltration and M1 polarization in left ventricular tissues. Moreover, IHG-promoted RAW264.7 macrophages tended to differentiate to M1 phenotype. SGLT1 knockdown alleviated cardiac fibrosis in GVDM mice and inhibited activations of cardiac fibroblast and macrophage M1 polarization. Our results indicated that glycemic variability aggravates cardiac fibrosis through activating cardiac fibroblast and macrophage M1 polarization, which could be partially inhibited by SGLT1 knockdown.
Collapse
Affiliation(s)
- Weihua Wu
- Department of Endocrinology, Third Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Qian Chai
- Department of General Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ziying Zhang
- Department of General Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
75
|
Liu X, Zhou J, Zhang B, Liu G, Hu Q, Chen J. Lysine demethylase 3A is a positive regulator of cardiac myofibroblast transdifferentiation that increases Smad3 phosphorylation following transforming growth factor beta1 stimulation. Mol Biol Rep 2022; 49:3177-3185. [PMID: 35113304 DOI: 10.1007/s11033-022-07150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The epigenetic modifier molecule lysine demethylase 3A (KDM3A) has been shown to help ameliorate cardiovascular diseases, but its effect on cardiac fibroblasts (CFs) remains unclear. METHODS AND RESULTS We designed gain- and loss-of-function experiments to investigate the biological functions of KDM3A in CFs. Moreover, we used SIS3-HCl (a specific inhibitor of p-Smad3) to explore the underlying mechanism. Cell viability and migration were verified by CCK-8 and cell migration experiments, respectively, and the degree of fibrosis was measured by Western blot analysis. Our data revealed that KDM3A enhanced the proliferation and migration of CFs and increased the fibroblast-to-myofibroblast transition while enabling the Smad3 phosphorylation response to transforming growth factor beta1 (TGFβ1) stimulation. However, these effects were abolished by SIS3-HCl. Furthermore, KDM3A inhibition obviously protected against cardiac myofibroblast transdifferentiation under TGFβ1 stimulation. CONCLUSIONS KDM3A may act as a novel regulator of cardiac myofibroblast transdifferentiation through its ability to modulate the phosphorylation of Smad3 following TGFβ1 stimulation.
Collapse
Affiliation(s)
- Xiaopei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Gen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China.
| |
Collapse
|
76
|
Cheng M, Yang Z, Li R, Wu G, Zhang C. Loureirin B alleviates cardiac fibrosis by suppressing Pin1/TGF-β1 signaling. Eur J Pharmacol 2022; 918:174791. [DOI: 10.1016/j.ejphar.2022.174791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
|
77
|
Liang B, Zhang XX, Li R, Gu N. Guanxin V protects against ventricular remodeling after acute myocardial infarction through the interaction of TGF-β1 and Vimentin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153866. [PMID: 34883417 DOI: 10.1016/j.phymed.2021.153866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Our previous study demonstrated that Guanxin V (GXV), a traditional Chinese herbal medicine, has a significant therapeutic effect on ventricular remodeling. However, the mechanistic action of GXV in ventricular remodeling warrants clarification. PURPOSE Here, we aimed to explore the anti-ventricular remodeling contribution of GXV and to provide an experimental basis for clinical generalization. METHODS A ventricular remodeling model after acute myocardial infarction was constructed in Syrian hamsters. The echocardiography and biochemical indices of cardiac function and remodeling were evaluated in different groups. Moreover, we built a remodeling model in cardiomyocytes and further explored the mechanism. Transmission electron microscopy was used to observe the ultrastructure of cardiomyocytes. The vital markers involved in the signaling pathway were detected by RT-qPCR and immunoblotting. Transforming growth factor beta 1 (TGF-β1) was overexpressed with lentivirus to verify the necessity of TGF-β1 in GXV's anti-ventricular remodeling effect. Finally, co-immunoprecipitation was conducted to test the interaction of TGF-β1 and Vimentin. RESULTS In hamster cardiac remodeling induced by acute myocardial infarction, GXV alleviated apoptosis, cardiac hypertrophy, and cardiac remodeling, and even improved cardiac function. Mechanistically, GXV inhibited the remodeling process by directly targeting TGF-β1. Overexpression of TGF-β1 exacerbated the ventricular remodeling, whereas GXV reversed this dysregulation. GXV also decreased the up-regulated Vimentin level in pathological ventricular remodeling. Moreover, the interaction of Vimentin and TGF-β1 was confirmed by co-immunoprecipitation, and GXV impeded this interaction. CONCLUSION We showed that the interaction of Vimentin and TGF-β1 may be a novel target for ventricular remodeling and that GXV might be a new agent to fight against ventricular remodeling by targeting TGF-β1 and impeding its interaction with Vimentin.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
78
|
Syed AM, Kundu S, Ram C, Kulhari U, Kumar A, Mugale MN, Murty US, Sahu BD. Aloin alleviates pathological cardiac hypertrophy via modulation of the oxidative and fibrotic response. Life Sci 2022; 288:120159. [PMID: 34801516 DOI: 10.1016/j.lfs.2021.120159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/28/2022]
Abstract
AIMS Pathological cardiac hypertrophy is a characteristic feature in many cardiovascular diseases (CVDs). Aloin is an anthraquinone glycoside from Aloe species, and the effect of aloin on cardiac hypertrophy and associated fibrotic changes have not been elucidated. This study investigated the effect of aloin against the isoproterenol (ISO)-induced cardiac hypertrophy in rats. MAIN METHODS Cardiac hypertrophy experimental model was induced in rats by subcutaneous injection of ISO for 14 days. Meanwhile, the animals were administered orally with aloin at doses of 25 and 50 mg/kg/day. On the 15th day, cardiac echocardiography was performed, the heart was collected and subjected for histopathological, gene expression, and immunoblot studies. Additionally, the effect of aloin on ISO-induced hypertrophic changes in H9c2 cells was investigated. KEY FINDINGS Aloin markedly alleviated ISO-induced heart injury, reduced cardiac hypertrophy, improved cardiac function, and histological alterations in the heart. Mechanistically, aloin attenuated ISO-induced fibrosis via inhibition of the levels of collagen I, α-smooth muscle actin (α-SMA), fibronectin, transforming growth factor-β (TGF-β) and pSmad2/3 proteins in the heart. Aloin alleviated ISO-induced myocardial oxidative damage and up-regulated the levels of antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Moreover, aloin treatment attenuated ISO-induced hypertrophic changes and the generation of reactive oxygen species (ROS) in H9c2 cells in vitro. SIGNIFICANCE Our findings demonstrated that aloin alleviated ISO-induced cardiac hypertrophy and fibrosis via inhibiting TGF-β/pSmad2/3 signaling and restoring myocardial antioxidants, and therefore has promising therapeutic potential against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Akhilesh Kumar
- Toxicology & Experimental Medicine, CSIR - Central Drug Research Institute (CDRI), Lucknow 226 031, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR - Central Drug Research Institute (CDRI), Lucknow 226 031, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
79
|
Zhang QJ, He Y, Li Y, Shen H, Lin L, Zhu M, Wang Z, Luo X, Hill JA, Cao D, Luo RL, Zou R, McAnally J, Liao J, Bajona P, Zang QS, Yu Y, Liu ZP. Matricellular Protein Cilp1 Promotes Myocardial Fibrosis in Response to Myocardial Infarction. Circ Res 2021; 129:1021-1035. [PMID: 34610755 DOI: 10.1161/circresaha.121.319482] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qing-Jun Zhang
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Yu He
- Department of Clinical Laboratory, First Affiliated hospital of Guangxi Medical University, China (Y.H.)
| | - Yongnan Li
- The Sixth General Surgery, Biliary & Vascular surgery, Shengjing Hospital of China Medical University, China (Y.L.)
| | - Huali Shen
- Institutes of Biochemical Science, Fudan University, China (H.S., L.L.)
| | - Ling Lin
- Institutes of Biochemical Science, Fudan University, China (H.S., L.L.)
| | - Min Zhu
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Zhaoning Wang
- Department of Molecular Biology (Z.W., J.A.H., J.M., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Xiang Luo
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Joseph A Hill
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology (Z.W., J.A.H., J.M., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Dian Cao
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Richard L Luo
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Raymond Zou
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - John McAnally
- Department of Molecular Biology (Z.W., J.A.H., J.M., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington (J.L.)
| | - Pietro Bajona
- Department of Cardiovascular and Thoracic Surgery (P.B.), UT Southwestern Medical Center, Dallas, TX.,Allegheny Health Network-Drexel University College of Medicine, Pittsburgh, PA (P.B.)
| | - Qun S Zang
- Department of Surgery, Stritch School of Medicine, Burn & Shock Trauma Research Institute, Loyola University, Maywood, IL (Q.S.Z.)
| | - Yonghao Yu
- Department of Biochemistry (Y.Y.), UT Southwestern Medical Center, Dallas, TX
| | - Zhi-Ping Liu
- Internal Medicine-Cardiology Division (Q.-J.Z., M.Z., X.L., J.A.H., D.C., R.L.L., R.Z., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology (Z.W., J.A.H., J.M., Z.-P.L.), UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
80
|
Elshafei A, Khidr EG, El-Husseiny AA, Gomaa MH. RAAS, ACE2 and COVID-19; a mechanistic review. Saudi J Biol Sci 2021; 28:6465-6470. [PMID: 34305426 PMCID: PMC8270731 DOI: 10.1016/j.sjbs.2021.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in coronavirus disease 2019 (COVID-19) patients has been claimed as associated with the risk of COVID-19 infection and its subsequent morbidities and mortalities. These claims were resulting from the possibility of upregulating the expression of angiotensin-converting enzyme 2 (ACE2), facilitation of SARS-CoV-2 entry, and increasing the susceptibility of infection in such treated cardiovascular patients. ACE2 and renin-angiotensin-aldosterone system (RAAS) products have a critical function in controlling the severity of lung injury, fibrosis, and failure following the initiation of the disease. This review is to clarify the mechanisms beyond the possible deleterious effects of angiotensin II (Ang II), and the potential protective role of angiotensin 1-7 (Ang 1-7) against pulmonary fibrosis, with a subsequent discussion of the latest updates on ACEIs/ARBs use and COVID-19 susceptibility in the light of these mechanisms and biochemical explanation.
Collapse
Key Words
- ACE1, angiotensin-converting enzyme 1
- ACE2
- ACE2, angiotensin-converting enzyme 2
- ACEIs
- ACEIs, angiotensin-converting enzyme inhibitors
- AEC-II, alveolar epithelial type II cells
- ARBs
- ARBs, angiotensin receptor blockers
- AT1R, angiotensin type 1 receptor
- AT2R, angiotensin type 2 receptor
- Ang 1-7, angiotensin 1-7
- Ang 1-9, angiotensin 1-9
- AngI, angiotensin I
- AngII, angiotensin II
- Angiotensin 1–7
- Angiotensin II
- COVID-19
- COVID-19, coronavirus disease 2019
- CVD, cardiovascular disease
- ERK, extracellular signal-regulated kinase
- ICU, intensive care unit
- MAPK, mitogen-activated protein kinase
- NLRP3, (NOD, LRR, and pyrin domain-containing protein 3)
- RAAS, renin-angiotensin-aldosterone system
- TGF-β, transforming growth factor-beta
- miR-21, microRNA-21
Collapse
Affiliation(s)
- Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maher H. Gomaa
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
81
|
Chen Y, Huang M, Yan Y, He D. Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/ transforming growth factor-β (TGF-β1)/Smad axis. Bioengineered 2021; 12:8447-8456. [PMID: 34663163 PMCID: PMC8806955 DOI: 10.1080/21655979.2021.1982322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tranilast has an ameliorative effect on myocardial fibrosis (MF), but the specific mechanism has not been studied. S100A11 is a key regulator of collagen expression in MF. In this paper, we will study the regulatory roles of Tranilast and S100A11 in MF. After the introduction of angiotensin II (AngII) to Human cardiac fibroblasts (HCF), Tranilast was administered. CCK-8 kit was used to detect cell viability. Wound Healing assay detected cell migration, and Western blot was used to detect the expression of migration-related proteins and proteins related to extracellular matrix synthesis. The expression of α-SMA was detected by immunofluorescence (IF). The expression of S100A11 was detected by qPCR and Western blot, and then S100A11 was overexpressed by cell transfection technology, so as to explore the mechanism by which Tranilast regulated MF. In addition, the expression of TGF-β1/Smad pathway related proteins was detected by Western blot. Tranilast inhibited Ang II–induced over-proliferation, migration and fibrosis of human cardiac fibroblasts (HCF), and simultaneously significantly decreased S100A11 expression was observed. Overexpression of S100A11 reversed the inhibition of Tranilast on AngII–induced over-proliferation, migration, and fibrosis in HCF, accompanied by activation of the TGF-β1/Smad pathway. Overall, Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/TGF-β1/Smad axis.
Collapse
Affiliation(s)
- Youquan Chen
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Ming Huang
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yi Yan
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Dequan He
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
82
|
Ulloa LS, Perissinotto F, Rago I, Goldoni A, Santoro R, Pesce M, Casalis L, Scaini D. Carbon Nanotubes Substrates Alleviate Pro-Calcific Evolution in Porcine Valve Interstitial Cells. NANOMATERIALS 2021; 11:nano11102724. [PMID: 34685165 PMCID: PMC8538037 DOI: 10.3390/nano11102724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023]
Abstract
The quest for surfaces able to interface cells and modulate their functionality has raised, in recent years, the development of biomaterials endowed with nanocues capable of mimicking the natural extracellular matrix (ECM), especially for tissue regeneration purposes. In this context, carbon nanotubes (CNTs) are optimal candidates, showing dimensions and a morphology comparable to fibril ECM constituents. Moreover, when immobilized onto surfaces, they demonstrated outstanding cytocompatibility and ease of chemical modification with ad hoc functionalities. In this study, we interface porcine aortic valve interstitial cells (pVICs) to multi-walled carbon nanotube (MWNT) carpets, investigating the impact of surface nano-morphology on cell properties. The results obtained indicate that CNTs significantly affect cell behavior in terms of cell morphology, cytoskeleton organization, and mechanical properties. We discovered that CNT carpets appear to maintain interfaced pVICs in a sort of “quiescent state”, hampering cell activation into a myofibroblasts-like phenotype morphology, a cellular evolution prodromal to Calcific Aortic Valve Disease (CAVD) and characterized by valve interstitial tissue stiffening. We found that this phenomenon is linked to CNTs’ ability to alter cell tensional homeostasis, interacting with cell plasma membranes, stabilizing focal adhesions and enabling a better strain distribution within cells. Our discovery contributes to shedding new light on the ECM contribution in modulating cell behavior and will open the door to new criteria for designing nanostructured scaffolds to drive cell functionality for tissue engineering applications.
Collapse
Affiliation(s)
- Luisa Severino Ulloa
- Dipartimento di Fisica, Università di Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (L.S.U.); (F.P.); (I.R.)
| | - Fabio Perissinotto
- Dipartimento di Fisica, Università di Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (L.S.U.); (F.P.); (I.R.)
| | - Ilaria Rago
- Dipartimento di Fisica, Università di Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (L.S.U.); (F.P.); (I.R.)
| | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy;
| | - Rosaria Santoro
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (R.S.); (M.P.)
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (R.S.); (M.P.)
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy;
- Correspondence: (L.C.); (D.S.)
| | - Denis Scaini
- Area di Neuroscienze, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
- Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Correspondence: (L.C.); (D.S.)
| |
Collapse
|
83
|
Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG. J Mol Cell Cardiol 2021; 159:105-119. [PMID: 34118218 PMCID: PMC10066715 DOI: 10.1016/j.yjmcc.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Controlling fibrosis is an essential part of regenerating the post-ischemic heart. In the post-ischemic heart, fibroblasts differentiate to myofibroblasts that produce collagen-rich matrix to physically stabilize the infarct area. Infarct models in adult mice result in permanent scarring unlike newborn animals which fully regenerate. Decellularized extracellular matrix (dECM) hydrogels derived from early-aged hearts have been shown to be a transplantable therapy that preserves heart function and stimulates cardiomyocyte proliferation and vascularization. In this study, we investigate the anti-fibrotic effects of injectable dECM hydrogels in a cardiac explant model in the context of age-associated tissue compliance. Treatments with adult and fetal dECM hydrogels were tested for molecular effects on cardiac fibroblast activation and fibrosis. Altered sensitivity of fibroblasts to the mechanosignaling of the remodeling microenvironment was evaluated by manipulating the native extracellular matrix in explants and also with elastomeric substrates in the presence of dECM hydrogels. The injectable fetal dECM hydrogel treatment decreases fibroblast activation and contractility and lowers the stiffness-mediated increases in fibroblast activation observed in stiffened explants. The anti-fibrotic effect of dECM hydrogel is most observable at highest stiffness. Experiments with primary cells on elastomeric substrates with dECM treatment support this phenomenon. Transcriptome analysis indicated that dECM hydrogels affect cytoskeleton related signaling including Macrophage capping protein (CAPG) and Leupaxin (LPXN). CAPG was down-regulated by the fetal dECM hydrogel. LPXN expression was decreased by stiffening the explants; however, this effect was reversed by dECM hydrogel treatment. Pharmacological disruption of cytoskeleton polymerization lowered fibroblast activation and CAPG levels. Knocking down CAPG expression with siRNA inhibited fibroblast activation and collagen deposition. Collectively, fibroblast activation is dependent on cooperative action of extracellular molecular signals and mechanosignaling by cytoskeletal integrity.
Collapse
|
84
|
Perreault LR, Le TT, Oudin MJ, Black LD. RNA sequencing indicates age-dependent shifts in the cardiac fibroblast transcriptome between fetal, neonatal, and adult developmental ages. Physiol Genomics 2021; 53:414-429. [PMID: 34281425 PMCID: PMC8560366 DOI: 10.1152/physiolgenomics.00074.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibroblasts are responsible for extracellular matrix turnover and repair in the cardiac environment and serve to help facilitate immune responses. However, it is well established that they have a significant phenotypic heterogeneity with respect to location, physiological conditions, and developmental age. The goal of this study was to provide an in-depth transcriptomic profile of cardiac fibroblasts derived from rat hearts at fetal, neonatal, and adult developmental ages to ascertain variations in gene expression that may drive functional differences in these cells at these specific stages of development. We performed RNA sequencing (RNA-seq) of cardiac fibroblasts isolated from fetal, neonatal, and adult rats and compared with the rat genome. Principal component analysis of RNA-seq data suggested that data variance was predominantly due to developmental age. Differential expression and gene set enrichment analysis against Gene Ontology and Kyoto Encyclopedia of Genes and Genomes datasets indicated an array of differences across developmental ages, including significant decreases in cardiac development and cardiac function-associated genes with age and a significant increase in immune- and inflammatory-associated functions, particularly immune cell signaling and cytokine and chemokine production, with respect to increasing developmental age. These results reinforce established evidence of diverse phenotypic heterogeneity of fibroblasts with respect to developmental age. Furthermore, based on our analysis of gene expression, age-specific alterations in cardiac fibroblasts may play a crucial role in observed differences in cardiac inflammation and immune response observed across developmental ages.
Collapse
Affiliation(s)
- Luke R Perreault
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Thanh T Le
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
85
|
Feng Y, Zhao G, Xu M, Xing X, Yang L, Ma Y, Qi M, Zhang X, Gao D. rGO/Silk Fibroin-Modified Nanofibrous Patches Prevent Ventricular Remodeling via Yap/Taz-TGFβ1/Smads Signaling After Myocardial Infarction in Rats. Front Cardiovasc Med 2021; 8:718055. [PMID: 34485415 PMCID: PMC8415403 DOI: 10.3389/fcvm.2021.718055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: After acute myocardial infarction (AMI), the loss of cardiomyocytes and dysregulation of extracellular matrix homeostasis results in impaired cardiac function and eventually heart failure. Cardiac patches have emerged as a potential therapeutic strategy for AMI. In this study, we fabricated and produced reduced graphene oxide (rGO)/silk fibroin-modified nanofibrous biomaterials as a cardiac patch to repair rat heart tissue after AMI and investigated the potential role of rGO/silk patch on reducing myocardial fibrosis and improving cardiac function in the infarcted rats. Method: rGO/silk nanofibrous biomaterial was prepared by electrospinning and vacuum filtration. A rat model of AMI was used to investigate the ability of patches with rGO/silk to repair the injured heart in vivo. Echocardiography and stress-strain analysis of the left ventricular papillary muscles was used to assess the cardiac function and mechanical property of injured hearts treated with this cardiac patch. Masson's trichrome staining and immunohistochemical staining for Col1A1 was used to observe the degree of myocardial fibrosis at 28 days after patch implantation. The potential direct mechanism of the new patch to reduce myocardial fibrosis was explored in vitro and in vivo. Results: Both echocardiography and histopathological staining demonstrated improved cardiac systolic function and ventricular remodeling after implantation of the rGO/silk patch. Additionally, cardiac fibrosis and myocardial stiffness of the infarcted area were improved with rGO/silk. On RNA-sequencing, the gene expression of matrix-regulated genes was altered in cardiofibroblasts treated with rGO. Western blot analysis revealed decreased expression of the Yap/Taz-TGFβ1/Smads signaling pathway in heart tissue of the rGO/silk patch group as compared with controls. Furthermore, the rGO directly effect on Col I and Col III expression and Yap/Taz-TGFβ1/Smads signaling was confirmed in isolated cardiofibroblasts in vitro. Conclusion: This study suggested that rGO/silk improved cardiac function and reduced cardiac fibrosis in heart tissue after AMI. The mechanism of the anti-fibrosis effect may involve a direct regulation of rGO on Yap/Taz-TGFβ1/Smads signaling in cardiofibroblasts.
Collapse
Affiliation(s)
- Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Min Xu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xin Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lijun Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Qi
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
86
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
87
|
Cho J, Kim S, Lee H, Rah W, Cho HC, Kim NK, Bae S, Shin DH, Lee MG, Park IH, Tanaka Y, Shin E, Yi H, Han JW, Hwang PTJ, Jun HW, Park HJ, Cho K, Lee SW, Jung JK, Levit RD, Sussman MA, Harvey RP, Yoon YS. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nat Biomed Eng 2021; 5:880-896. [PMID: 34426676 PMCID: PMC8809198 DOI: 10.1038/s41551-021-00783-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyein Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woongchan Rah
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Nam Kyun Kim
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong Hoon Shin
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yoshiaki Tanaka
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eric Shin
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA, USA
| | - Ji Woong Han
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick Tae Joon Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyuwon Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sang Wook Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jae Kyung Jung
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark A Sussman
- San Diego State University Heart Institute, San Diego State University, San Diego, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
88
|
Ploeg MC, Munts C, Prinzen FW, Turner NA, van Bilsen M, van Nieuwenhoven FA. Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts. Cells 2021; 10:cells10071745. [PMID: 34359915 PMCID: PMC8303625 DOI: 10.3390/cells10071745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023] Open
Abstract
In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p < 0.05) increased mRNA expression of Nppb, as well as induction of genes related to myofibroblast differentiation. Moreover, BNP protein secretion was upregulated 5.3-fold in stretched cardiac fibroblasts. Recombinant BNP inhibited TGFβ1-induced Acta2 expression. Nppb expression was >20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts.
Collapse
Affiliation(s)
- Meike C. Ploeg
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
- Correspondence:
| |
Collapse
|
89
|
Ultrafiltration Extract of Radix Angelica Sinensis and Radix Hedysari Attenuates Risk of Low-Dose X-Ray Radiation-Induced Myocardial Fibrosis In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5580828. [PMID: 34007293 PMCID: PMC8102106 DOI: 10.1155/2021/5580828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
The risk of radiation-induced heart damage (RIHD) is a growing concern since recent advances in radiation therapy (RT) for cancer treatments have significantly improved the number of survivors. Radiation-induced myocardial fibrosis (RIMF) is the final pathological condition of RIHD and main change leading to serious cardiovascular complications following RT. The aim of this study was to investigate the effect of ultrafiltration extract of Radix Angelica Sinensis and Radix Hedysari (RAS-RH) on the proliferation, apoptosis, and reactive oxygen species (ROS) of cardiac fibroblasts after X-irradiation in vitro. The RAS-RH extract was from the Danggui Buxue decoction (DBD) in TCM. Primary cardiac fibroblasts were irradiated with 1 Gy X-ray to evaluate the effect of RAS-RH on the expression levels of cell proliferation, apoptosis, ROS, and fibrotic molecules. Our data demonstrated that X-irradiation at 1 Gy resulted in the proliferation of cardiac fibroblasts; RAS-RH attenuated the myocardial fibrosis. Furthermore, X-ray radiation reduced the apoptosis of cardiac fibroblasts; RAS-RH accelerated the apoptosis of these cells after irradiation. In addition, the damage driven by ROS in primary cardiac fibroblasts after irradiation was weakened by RAS-RH and the expression of TGF-β1, Col1, and α-SMA increased after irradiation; RAS-RH decreased the expression of these makers. Overall, these data indicate that low-dose X-ray irradiation boosts myocardial fibrosis, and the effect of RAS-RH protects against fibrosis via attenuating the proliferation and accelerating the apoptosis of myocardial fibroblasts after X-irradiation.
Collapse
|
90
|
Qiao W, Xiao YJ, Wang X, Sun LJ, Chen YX, Ren WD. A novel model of constrictive pericarditis associated with myocardial fibrosis in rats. Clin Exp Pharmacol Physiol 2021; 48:563-574. [PMID: 33349990 DOI: 10.1111/1440-1681.13449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022]
Abstract
An efficient animal model is fundamental for studies on the underlying mechanisms of constrictive pericarditis (CP). A novel CP rat model was established by pericardial injection composing of lipopolysaccharides (LPS) and talcum powder without thoracotomy. Pathological changes were confirmed by histological staining. E-flow Doppler of mitral valve, tissue Doppler E' in the medial mitral annular (E'sep ) and the lateral mitral annular (E'lat ) were measured to assess ventricular filling function. Circumferential, longitudinal, and radial strains (SC, SL and SR) and the respective strain rates (SrC, SrL and SrR) were analyzed in interventricular septum (IVS) and left ventricular free wall (LVFW). Rat cardiac fibroblasts (CFs) were treated with LPS. The activation of transforming growth factor β1 (TGF-β1) was confirmed by Q-PCR and western blot assays. Thickening of pericardium and fibrosis in pericardium and subepicardial myocardium were showed in the model group. Diastolic dysfunction in the CP group was indicated by decreased E'lat and E'lat /E'sep , increased E/E'lat , decreased EFW of SrC and SrL, increased AIVS and decreased E/A of SrC, SrL and SrR. Systolic dysfunction was indicated by decreased SCFW and SLFW in CP rats. The levels of TGF-β1, p-Smad2/3, α-smooth muscle actin (α-SMA), and collagen-I/III (COL-I/III) were increased in the CP group. The increased TGF-β1 that induced by LPS activated and phosphorylated Smad2/3 resulting in the secretion of α-SMA and COL-I/III. This model is of vital importance in studying the pathogenesis of CP.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang-Jie Xiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Juan Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Ultrasound, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yi-Xin Chen
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Dong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
91
|
Characterization of encapsulated porcine cardiosphere-derived cells embedded in 3D alginate matrices. Int J Pharm 2021; 599:120454. [PMID: 33676988 DOI: 10.1016/j.ijpharm.2021.120454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Myocardial infarction is caused by an interruption of coronary blood flow, leading to one of the main death causes worldwide. Current therapeutic approaches are palliative and not able to solve the loss of cardiac tissue. Cardiosphere derived cells (CDCs) reduce scarring, and increase viable myocardium, with safety and adequate biodistribution, but show a low rate engraftment and survival after implantation. In order to solve the low retention, we propose the encapsulation of CDCs within three-dimensional alginate-poly-L-lysine-alginate matrix as therapy for cardiac regeneration. In this work, we demonstrate the encapsulation of CDCs in alginate matrix, with no decrease in viability over a month, and showing the preservation of CDCs phenotype, differentiation potential, gene expression profile and growth factor release after encapsulation, moving a step forward to clinical translation of CDCs therapy in regeneration in heart failure.
Collapse
|
92
|
Sui S, Hou Y. Assessing Doxorubicin-Induced Cardiomyopathy by 99mTc-3PRGD2 Scintigraphy Targeting Integrin αvβ3 in a Rat Model. Nuklearmedizin 2021; 60:289-298. [PMID: 33638136 DOI: 10.1055/a-1331-7138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study evaluated interstitial alterations in doxorubicin-induced cardiomyopathy using a radiolabeled RGD peptide 99mTc-3PRGD2 specific for integrin αvβ3 that targets myofibroblasts.Cardiomyopathy was induced in 20 Sprague-Dawley rats by intraperitoneal doxorubicin injections (2.5 mg/kg/week) for up to six weeks. 99mTc-3PRGD2 scintigraphy was performed in control rats (n = 6) at baseline and three, six, and nine weeks after first doxorubicin administration (n = 6, 6, and 5 for each time point). For another three rats of 6-week modeling, cold c(RGDyK) was co-injected with 99mTc-3PRGD2 to evaluate specific radiotracer binding. Semi-quantitative parameters were acquired to compare radiotracer uptake among all groups. The biodistribution of 99mTc-3PRGD2 was evaluated by a γ-counter after scintigraphy. Haematoxylin and eosin, and Masson's staining were used to evaluate myocardial injury and fibrosis, while western blotting and immunofluorescence co-localization were used to analyze integrin αvβ3 expression in the myocardium.The 99mTc-3PRGD2 half-life in the cardiac region (Heartt 1/2) of the 9-week model and heart radioactivity percentage (%Heart20 min, %Heart40 min and %Heart60 min) of the 6 and 9-week models were significantly increased compared to the control. Heart-to-background ratio (HBR20 min, HBR40 min and HBR60 min) increase began in the third week, continued until the sixth week, and was reversed in the ninth week, which paralleled the changing trend of cardiac integrin αvβ3 expression. The myocardial biodistribution of 99mTc-3PRGD2 was significantly correlated with integrin β3 expression.The 99mTc-3PRGD2 scintigraphy allows for non-invasive visualization of interstitial alterations during doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shi Sui
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
93
|
Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25:2764-2775. [PMID: 33576189 PMCID: PMC7957273 DOI: 10.1111/jcmm.16350] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the commonest arrhythmia, shows associations with various disease conditions. Mounting evidence indicates that atrial fibrosis is an important part of the arrhythmogenic substrate, with an essential function in the generation of conduction abnormalities that underlie the transition from paroxysmal to persistent AF, which in turn contributes to AF perpetuation. Left atrial (LA) fibrosis is considered a possible major factor and predictor in AF treatment. The present review provides insights into LA fibrosis’ association with AF. The information is focused on clinical aspects and mechanisms, clinical evaluating methods that evaluate fibrosis changes and examining possible options for the prevention of atrial fibrosis.
Collapse
Affiliation(s)
- Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuxiong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
94
|
Olivares-Silva F, Espitia-Corredor J, Letelier A, Vivar R, Parra-Flores P, Olmedo I, Montenegro J, Pardo-Jiménez V, Díaz-Araya G. TGF-β1 decreases CHOP expression and prevents cardiac fibroblast apoptosis induced by endoplasmic reticulum stress. Toxicol In Vitro 2021; 70:105041. [PMID: 33127435 DOI: 10.1016/j.tiv.2020.105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a cytokine with marked pro-fibrotic action on cardiac fibroblasts (CF). TGF-β1 induces CF-to-cardiac myofibroblast (CMF) differentiation, defined by an increase in α-smooth muscle cells (α-SMA), collagen secretion and it has a cytoprotective effect against stimuli that induce apoptosis. In the Endoplasmic Reticulum (ER) lumen, misfolded protein accumulation triggers ER stress and induces apoptosis, and this process plays a critical role in cell death mediated by Ischemia/Reperfusion (I/R) injury and by ER stress inducers, such as Tunicamycin (Tn). Here, we studied the regulation of CHOP, a proapoptotic ER-stress-related transcription factor in CF under simulated I/R (sI/R) or exposed to Tn. Even though TGF-β1 has been shown to participate in ER stress, its regulatory effect on CF apoptosis and ER stress-induced by sI/R or TN has not been evaluated yet. CF from neonatal rats were exposed to sI/R, and cell death was evaluated by cell count and apoptosis by flow cytometry. ER stress was assessed by western blot against CHOP. Our results evidenced that sI/R (8/24) h or Tn triggers CF apoptosis and an increase in CHOP protein levels. TGF-β1 pre-treatment partially prevented apoptosis induced by sI/R or Tn. Furthermore, TGF-β1 pre-treatment completely prevented CHOP increase by sI/R or Tn. Additionally, we found a decrease in α-SMA expression induced by sI/R and in collagen secretion induced by Tn, which were not prevented by TGF-β1 treatment. In conclusion, TGF-β1 partially protects CF apoptosis induced by sI/R or Tn, through a mechanism that would involve ER stress.
Collapse
Affiliation(s)
- F Olivares-Silva
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - J Espitia-Corredor
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - A Letelier
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - R Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - P Parra-Flores
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - I Olmedo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - J Montenegro
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - V Pardo-Jiménez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Centro FONDAP Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
95
|
Mighiu AS, Recalde A, Ziberna K, Carnicer R, Tomek J, Bub G, Brewer AC, Verheule S, Shah AM, Simon JN, Casadei B. Inducibility, but not stability, of atrial fibrillation is increased by NOX2 overexpression in mice. Cardiovasc Res 2021; 117:2354-2364. [PMID: 33483749 PMCID: PMC8479801 DOI: 10.1093/cvr/cvab019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023] Open
Abstract
Aims Gp91-containing NADPH oxidases (NOX2) are a significant source of myocardial superoxide production. An increase in NOX2 activity accompanies atrial fibrillation (AF) induction and electrical remodelling in animal models and predicts incident AF in humans; however, a direct causal role for NOX2 in AF has not been demonstrated. Accordingly, we investigated whether myocardial NOX2 overexpression in mice (NOX2-Tg) is sufficient to generate a favourable substrate for AF and further assessed the effects of atorvastatin, an inhibitor of NOX2, on atrial superoxide production and AF susceptibility. Methods and results NOX2-Tg mice showed a 2- to 2.5-fold higher atrial protein content of NOX2 compared with wild-type (WT) controls, which was associated with a significant (twofold) increase in NADPH-stimulated superoxide production (2-hydroxyethidium by HPLC) in left and right atrial tissue homogenates (P = 0.004 and P = 0.019, respectively). AF susceptibility assessed in vivo by transoesophageal atrial burst stimulation was modestly increased in NOX2-Tg compared with WT (probability of AF induction: 88% vs. 69%, respectively; P = 0.037), in the absence of significant alterations in AF duration, surface ECG parameters, and LV mass or function. Mechanistic studies did not support a role for NOX2 in promoting electrical or structural remodelling, as high-resolution optical mapping of atrial tissues showed no differences in action potential duration and conduction velocity between genotypes. In addition, we did not observe any genotype difference in markers of fibrosis and inflammation, including atrial collagen content and Col1a1, Il-1β, Il-6, and Mcp-1 mRNA. Similarly, NOX2 overexpression did not have consistent effects on RyR2 Ca2+ leak nor did it affect PKA or CaMKII-mediated RyR2 phosphorylation. Finally, treatment with atorvastatin significantly inhibited atrial superoxide production in NOX2-Tg but had no effect on AF induction in either genotype. Conclusion Together, these data indicate that while atrial NOX2 overexpression may contribute to atrial arrhythmogenesis, NOX2-derived superoxide production does not affect the electrical and structural properties of the atrial myocardium.
Collapse
Affiliation(s)
| | - Alice Recalde
- Division of Cardiovascular Medicine, University of Oxford, UK
| | - Klemen Ziberna
- Division of Cardiovascular Medicine, University of Oxford, UK
| | | | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Gil Bub
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Alison C Brewer
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, University of Oxford, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, University of Oxford, UK
| |
Collapse
|
96
|
Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A. Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy. Int J Mol Sci 2020; 22:356. [PMID: 33396334 PMCID: PMC7796305 DOI: 10.3390/ijms22010356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Additionally, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.
Collapse
Affiliation(s)
- Moises Rodriguez-Gonzalez
- Pediatric Cardiology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
| | - Manuel Lubian-Gutierrez
- Pediatric Neurology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Division of Doctor Cayetano Roldan Primary Care Center, 11100 San Fernando, Spain
| | | | | | - Ana Castellano-Martinez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Nephrology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| |
Collapse
|
97
|
Shchendrigina AA, Zhbanov KA, Privalova EV, Iusupova AO, Bytdaeva AH, Danilogorskaya YA, Zheleznykh EA, Suvorov AY, Zektser VY, Mnatsakanyan MG, Lyapidevskaya OV, Khabarova NV, Naymann YI, Belenkov YN, Starostina ES. [Circulating Neuregulin-1 and Chronic Heart Failure with Preserved Ejection]. ACTA ACUST UNITED AC 2020; 60:1222. [PMID: 33487159 DOI: 10.18087/cardio.2020.11.n1222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022]
Abstract
Chronic heart failure (CHF) with preserved ejection fraction (CHFpEF) is an unsolved, socially relevant challenge since it is associated with a high level of morbidity and mortality. Early markers for this pathology are unavailable, and therapeutic approaches are undeveloped. This necessitates extensive studying the mechanisms of CHFpEF to identify therapeutic targets. According to current notions, systemic inflammation and endothelial dysfunction play an important role in the pathogenesis of CHFpEF. These processes induce the development of myocardial fibrosis and impairment of cardiomyocyte relaxation, thereby resulting in diastolic dysfunction and increased left ventricular (LV) filling pressure. Neuregulin-1 (NRG-1) is a paracrine growth factor and a natural agonist of ErbB receptor family synthesized in the endothelium of coronary microvessels. The NRG-1 / ErbB4 system of the heart is activated at early stages of CHFpEF to enhance the cardiomyocyte resistance to oxidative stress. Preclinical and clinical (phases II and III) studies have shown that the recombinant NRG-1 therapy results in improvement of myocardial contractility and in LV reverse remodeling. Results of recent studies suggest possible anti-inflammatory and antifibrotic effects of NRG-1, which warrants studying the activity of this system in patients with CHFpEF.
Collapse
Affiliation(s)
- A A Shchendrigina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - K A Zhbanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - E V Privalova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - A O Iusupova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - A H Bytdaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - Yu A Danilogorskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - E A Zheleznykh
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | | | - V Yu Zektser
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - M G Mnatsakanyan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - O V Lyapidevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - N V Khabarova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - Yu I Naymann
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - Yu N Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | | |
Collapse
|
98
|
Zhao H, Yang H, Geng C, Chen Y, Pang J, Shu T, Zhao M, Tang Y, Li Z, Li B, Hou C, Song X, Wu A, Guo X, Chen S, Liu B, Yan C, Wang J. Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction. Circulation 2020; 143:1014-1030. [PMID: 33305586 DOI: 10.1161/circulationaha.120.047852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunoglobulin E (IgE) belongs to a class of immunoglobulins involved in immune response to specific allergens. However, the roles of IgE and IgE receptor (FcεR1) in pathological cardiac remodeling and heart failure are unknown. METHODS Serum IgE levels and cardiac FcεR1 expression were assessed in diseased hearts from human and mouse. The role of FcεR1 signaling in pathological cardiac remodeling was explored in vivo by FcεR1 genetic depletion, anti-IgE antibodies, and bone marrow transplantation. The roles of the IgE-FcεR1 pathway were further evaluated in vitro in primary cultured rat cardiomyocytes and cardiac fibroblasts (CFs). RNA sequencing and bioinformatic analyses were used to identify biochemical changes and signaling pathways that are regulated by IgE/FcεR1. RESULTS Serum IgE levels were significantly elevated in patients with heart failure as well as in 2 mouse cardiac disease models induced by chronic pressure overload via transverse aortic constriction and chronic angiotensin II infusion. Interestingly, FcεR1 expression levels were also significantly upregulated in failing hearts from human and mouse. Blockade of the IgE-FcεR1 pathway by FcεR1 knockout alleviated transverse aortic constriction- or angiotensin II-induced pathological cardiac remodeling or dysfunction. Anti-IgE antibodies (including the clinical drug omalizumab) also significantly alleviated angiotensin II-induced cardiac remodeling. Bone marrow transplantation experiments indicated that IgE-induced cardiac remodeling was mediated through non-bone marrow-derived cells. FcεR1 was found to be expressed in both cardiomyocytes and CFs. In cultured rat cardiomyocytes, IgE-induced cardiomyocyte hypertrophy and hypertrophic marker expression were abolished by depleting FcεR1. In cultured rat CFs, IgE-induced CF activation and matrix protein production were also blocked by FcεR1 deficiency. RNA sequencing and signaling pathway analyses revealed that transforming growth factor-β may be a critical mediator, and blocking transforming growth factor-β indeed alleviated IgE-induced cardiomyocyte hypertrophy and cardiac fibroblast activation in vitro. CONCLUSIONS Our findings suggest that IgE induction plays a causative role in pathological cardiac remodeling, at least partially via the activation of IgE-FcεR1 signaling in cardiomyocytes and CFs. Therapeutic strategies targeting the IgE-FcεR1 axis may be effective for managing IgE-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Yang Chen
- Department of Pharmacology, School of Basic Medical Sciences, Inner Mongolia Medical University, Huhhot, China (Y.C.)
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Meijun Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Baicun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Aoxue Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.)
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.)
| | - Si Chen
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Bin Liu
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| |
Collapse
|
99
|
Jiang C, Xie N, Sun T, Ma W, Zhang B, Li W. Xanthohumol Inhibits TGF-β1-Induced Cardiac Fibroblasts Activation via Mediating PTEN/Akt/mTOR Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5431-5439. [PMID: 33324040 PMCID: PMC7732164 DOI: 10.2147/dddt.s282206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Background Xanthohumol (Xn) is the most abundant prenylated flavonoid in Hops (Humulus lupulus L.), and exhibits a range of pharmacological activities. This study aimed to investigate the effect of Xn on TGF-β1-induced cardiac fibroblasts activation and elucidate the underlying mechanism. Materials and Methods The cellTiter 96® AQueous one solution cell proliferation assay kit was adopted to determine the cell viability of cardiac fibroblasts, and the proliferation was detected through 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. The α-SMA protein expression was measured by using immunofluorescence and Western blotting. Western blotting was conducted to test the protein expressions of collagen I and III, PTEN, p-Akt, Akt, p-mTOR, mTOR, p-Smad3, Smad3 and GAPDH. The mRNA levels of α-SMA, collagen I and III were determined by quantitative real-time polymerase chain reaction (PCR). Results Xn inhibited the TGF-β1-induced proliferation, differentiation and collagen overproduction of cardiac fibroblasts. TGF-β1 induced the down-regulated PTEN expression, Akt and mTOR phosphorylation. These effects of TGF-β1 were suppressed by Xn, while blocking of PTEN reduced Xn-mediated inhibitory effect on cardiac fibroblasts activation induced by TGF-β1. Conclusion Xn inhibits TGF-β1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Taoli Sun
- Key Laboratory Breeding Base of Hu'nan Oriented Fundamental and Applied Research of Innovative Pharmaceutics, College of Pharmacy, Changsha Medical University, Changsha, Hunan 410219, People's Republic of China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| |
Collapse
|
100
|
Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost 2020; 18:3043-3052. [PMID: 32808449 PMCID: PMC7719587 DOI: 10.1111/jth.15066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelets secrete many pro-wound healing molecules such as growth factors and cytokines. We found that releasates from activated human platelets induced the differentiation of cultured murine and human fibroblasts into a myofibroblast phenotype. Surprisingly, most of this differentiation-inducing activity was heat-stable, suggesting it was not due to the protein component of the releasates. Inorganic polyphosphate is a major constituent of platelet-dense granules and promotes blood coagulation and inflammation. OBJECTIVES We aim to investigate the contribution of polyphosphate on myofibroblast differentiating activity of platelet releasates. METHODS Using NIH-3T3 cells and primary human fibroblasts, we examined the effect of human platelet releasates and chemically synthesized polyphosphate on fibroblast differentiation and migration. RESULTS We found that the myofibroblast-inducing activity of platelet releasates was severely attenuated after incubation with a polyphosphate-degrading enzyme, and that fibroblasts responded to platelet-sized polyphosphate by increased levels of α-smooth muscle actin, stress fibers, and collagen. Furthermore, fibroblasts were chemotactic toward polyphosphate. CONCLUSIONS These findings indicate that platelet-derived polyphosphate acts as a cell signaling molecule by inducing murine and human fibroblasts to differentiate into myofibroblasts, a cell type known to drive both wound healing and fibrosing diseases. Polyphosphate therefore not only promotes early wound responses through enhancing fibrin clot formation, but also may play roles in the later stages of wound healing, and, potentially, progression of fibrotic diseases, by recruiting fibroblasts and inducing their differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Patrick M. Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|