51
|
Ermakov EA, Nevinsky GA, Buneva VN. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J Mol Sci 2020; 21:ijms21155392. [PMID: 32751323 PMCID: PMC7432551 DOI: 10.3390/ijms21155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Antibodies, Catalytic/chemistry
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- Humans
- Immunity, Innate
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Isotypes/chemistry
- Immunoglobulin Isotypes/classification
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Isotypes/metabolism
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Tests
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/therapy
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-27; Fax: +7-(383)-363-51-53
| |
Collapse
|
52
|
Wang K, Du H, Chen Z, Lu H, Xu R, Xue D. ACTH 4-10 protects the ADR-injured podocytes by stimulating B lymphocytes to secrete interleukin-10. Int Immunopharmacol 2020; 87:106769. [PMID: 32682256 DOI: 10.1016/j.intimp.2020.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES In the present study, we aimed to assess whether adrenocorticotropic hormone (ACTH) could protect the podocytes from adriamycin (ADR)-induced injury by stimulating B lymphocytes to secrete the associated cytokines. METHODS Proliferation assay was used to assess the proliferation and activity of podocytes. Enzyme-linked immunosorbent assay was used to examine the secretion of IL-10 and IL-4. TUNEL apoptosis detection kit was used to detect the apoptosis of podocytes. Real-time PCR and Western blotting analysis were used to examine the expressions of nephrin and podocin at the mRNA and protein levels. RESULTS Compared with the normal control group, the podocyte proliferation of ADR group was significantly inhibited. However, compared with the ADR group, the podocyte proliferation of the supernatant (1 µg/L, 10 µg/L or 100 µg/L ACTH4-10) + ADR groups was generally increased, and the pro-proliferative effect of the supernatant containing 10 µg/L ACTH4-10 was the highest. Moreover, we found that after B lymphocytes were intervened by 10 µg/L ACTH4-10, the IL-10 level in the cell supernatant was significantly elevated (p < 0.05). When anti-IL-10R was added, the podocyte proliferation of the supernatant (10 µg/L ACTH4-10) + ADR group was significantly inhibited. Furthermore, the supernatant of B cells stimulated with 10 µg/L ACTH4-10 could better decrease the apoptosis rate of injured podocytes and increase the expressions of nephrin and podocin at the mRNA and protein levels by elevating the secretion of IL-10. CONCLUSION Compared with ACTH4-10, the supernatant of B cells stimulated with ACTH4-10 could better protect the podocytes from ADR-induced injury by elevating the secretion of IL-10.
Collapse
Affiliation(s)
- Kun Wang
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Huaping Du
- Suzhou Ninth People's Hospital, Suzhou, Jiangsu, China
| | - Zhen Chen
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Hao Lu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Renfang Xu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Dong Xue
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
53
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
54
|
Wang X, Singh AK, Zhang X, Sun W. Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis. Infect Immun 2020; 88:e00081-20. [PMID: 32152195 PMCID: PMC7171232 DOI: 10.1128/iai.00081-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 × 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 × 103 CFU (50 LD50) of virulent Y. pestis This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development.
Collapse
Affiliation(s)
- Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
55
|
Frew JW, Grand D, Navrazhina K, Krueger JG. Beyond antibodies: B cells in Hidradenitis Suppurativa: Bystanders, contributors or therapeutic targets? Exp Dermatol 2020; 29:509-515. [PMID: 32145106 DOI: 10.1111/exd.14092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022]
Abstract
Hidradenitis Suppurativa (HS) is a chronic inflammatory dermatosis in which B cells play a prominent but unclear role. Our understanding of the role of B cells in innate and adaptive immunity (including antibody production, antigen presentation and effector functions) is rapidly evolving; and these novel findings require integration into the pathophysiologic model of HS. B cells are transiently present in normal human skin and have functions in the maintenance of innate cutaneous immunity. Recruitment and trafficking of B cells in significant numbers to skin is mediated via B cell-specific chemokines as well as shared signalling with T-cells. The evidence suggests that the presence of antibody-secreting B cells is not sufficient to induce clinical disease and T-cell interaction is required to induce clinical disease. Such interactions can occur in secondary lymphoid organs adjacent to involved tissue or in tertiary lymphoid organs which develop in response to the HS inflammatory milieu. This milieu directly mediates the types of antibodies produced by B cells, given the role of cytokines in B-cell class switching. Identified antibodies in HS (IgG, IgM, ASCA, ACPA) currently demonstrate no evidence of pathogenicity, but may be novel biomarkers for disease severity. B cells also have anti-inflammatory properties through production of IL-10 and IL-35 which require experimental validation. Overall, B cells in HS are likely to be involved in amplification of a pre-existing inflammatory response; but it remains unclear whether they may be directly pathogenic.
Collapse
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, New York, NY, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
56
|
LaMarca B. Letter to the Editor: Importance of B cells in response to placental ischemia. Am J Physiol Heart Circ Physiol 2020; 318:H723-H725. [PMID: 32141769 DOI: 10.1152/ajpheart.00033.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Babbette LaMarca
- Departments of Pharmacology, OB/GYN, and Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
57
|
Xu Y, Lee JG, Yan JJ, Ryu JH, Xu S, Yang J. Human B1 Cells are the Main Blood Group A-Specific B Cells That Have a Moderate Correlation With Anti-A Antibody Titer. Ann Lab Med 2020; 40:48-56. [PMID: 31432639 PMCID: PMC6713656 DOI: 10.3343/alm.2020.40.1.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Background Anti-carbohydrate antibody responses, including those of anti-blood group ABO antibodies, are yet to be thoroughly studied in humans. Because anti-ABO antibody-mediated rejection is a key hurdle in ABO-incompatible transplantation, it is important to understand the cellular mechanism of anti-ABO responses. We aimed to identify the main human B cell subsets that produce anti-ABO antibodies by analyzing the correlation between B cell subsets and anti-ABO antibody titers. Methods Blood group A-binding B cells were analyzed in peritoneal fluid and peripheral blood samples from 43 patients undergoing peritoneal dialysis and 18 healthy volunteers with blood group B or O. The correlation between each blood group A-specific B cell subset and anti-A antibody titer was then analyzed using Pearson's correlation analysis. Results Blood group A-binding B cells were enriched in CD27+CD43+CD1c− B1, CD5+ B1, CD11b+ B1, and CD27+CD43+CD1c+ marginal zone-B1 cells in peripheral blood. Blood group A-specific B1 cells (P=0.029 and R=0.356 for IgM; P=0.049 and R=0.325 for IgG) and marginal zone-B1 cells (P=0.011 and R=0.410 for IgM) were positively correlated with anti-A antibody titer. Further analysis of peritoneal B cells confirmed B1 cell enrichment in the peritoneal cavity but showed no difference in blood group A-specific B1 cell enrichment between the peritoneal cavity and peripheral blood. Conclusions Human B1 cells are the key blood group A-specific B cells that have a moderate correlation with anti-A antibody titer and therefore constitute a potential therapeutic target for successful ABO-incompatible transplantation.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Preventive Medicine, Yanbian University College of Medicine, Yanji, Jilin, People's Republic of China.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae Ghi Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung Hwa Ryu
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Songji Xu
- Department of Preventive Medicine, Yanbian University College of Medicine, Yanji, Jilin, People's Republic of China.
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
58
|
Ramani S, Chauhan N, Khatri V, Vitali C, Kalyanasundaram R. Wuchereria bancrofti macrophage migration inhibitory factor-2 (rWbaMIF-2) ameliorates experimental colitis. Parasite Immunol 2020; 42:e12698. [PMID: 31976564 DOI: 10.1111/pim.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Immunomodulatory molecules produced by helminth parasites are receiving much attention recently as novel therapeutic agents for inflammation and autoimmune diseases. In this study, we show that macrophage migration inhibitory factor (MIF) homologue from the filarial parasite, Wuchereria bancrofti (rWbaMIF-2), can suppress inflammation in a dextran sulphate sodium salt (DSS)-induced colitis model. The disease activity index (DAI) in DSS given mice showed loss of body weight and bloody diarrhoea. At autopsy, colon of these mice showed severe inflammation and reduced length. Administration of rWbaMIF-2 significantly reduced the DAI in DSS-induced colitis mice. rWbaMIF-2-treated mice had no blood in the stools, and their colon length was similar to the normal colon with minimal inflammation and histological changes. Pro-inflammatory cytokine genes (TNF-α, IL-6, IFN-γ, IL-1β, IL-17A and NOS2) were downregulated in the colon tissue and peritoneal macrophages of rWbaMIF-2-treated mice. However, there were significant increases in IL-10-producing Treg and B1 cells in the colon and peritoneal cavity of rWbaMIF-2-treated mice. These findings suggested that rWbaMIF-2 treatment significantly ameliorated the clinical symptoms, inflammation and colon pathology in DSS given mice. This immunomodulatory effect of rWbaMIF-2 appeared to be by promoting the infiltration of Treg cells into the colon.
Collapse
Affiliation(s)
- Shriram Ramani
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Connie Vitali
- Department of Health Sciences Education, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
59
|
Heinonen T, Ciarlo E, Rigoni E, Regina J, Le Roy D, Roger T. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Front Immunol 2019; 10:2713. [PMID: 31849939 PMCID: PMC6901967 DOI: 10.3389/fimmu.2019.02713] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Sirtuin 2 (SIRT2) and SIRT3 are cytoplasmic and mitochondrial NAD-dependent deacetylases. SIRT2 and SIRT3 target proteins involved in metabolic, proliferation and inflammation pathways and have been implicated in the pathogenesis of neurodegenerative, metabolic and oncologic disorders. Both pro- and anti-inflammatory effects have been attributed to SIRT2 and SIRT3, and single deficiency in SIRT2 or SIRT3 had minor or no impact on antimicrobial innate immune responses. Here, we generated a SIRT2/3 double deficient mouse line to study the interactions between SIRT2 and SIRT3. SIRT2/3−/− mice developed normally and showed subtle alterations of immune cell populations in the bone marrow, thymus, spleen, blood and peritoneal cavity that contained notably more anti-inflammatory B-1a cells and less NK cells. In vitro, SIRT2/3−/− macrophages favored fatty acid oxidation (FAO) over glycolysis and produced increased levels of both proinflammatory and anti-inflammatory cytokines. In line with metabolic adaptation and increased numbers of peritoneal B-1a cells, SIRT2/3−/− mice were robustly protected from endotoxemia. Yet, SIRT2/3 double deficiency did not modify endotoxin tolerance. Overall, these data suggest that sirtuins can act in concert or compensate each other for certain immune functions, a parameter to be considered for drug development. Moreover, inhibitors targeting multiple sirtuins developed for clinical purposes may be useful to treat inflammatory diseases.
Collapse
Affiliation(s)
- Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersilia Rigoni
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Regina
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
60
|
Maes M, Vojdani A, Geffard M, Moreira EG, Barbosa DS, Michelin AP, Semeão LDO, Sirivichayakul S, Kanchanatawan B. Schizophrenia phenomenology comprises a bifactorial general severity and a single-group factor, which are differently associated with neurotoxic immune and immune-regulatory pathways. Biomol Concepts 2019; 10:209-225. [PMID: 31734647 DOI: 10.1515/bmc-2019-0023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
In schizophrenia, a single latent trait underlies psychosis, hostility, excitation, mannerism, negative (PHEMN) symptoms, formal thought disorders (FTD) and psychomotor retardation (PMR). Schizophrenia is accompanied by a breakdown of gut and blood-brain-barrier (BBB) pathways, increased tryptophan catabolite (TRYCAT) levels, bacterial translocation, and lowered natural IgM and paraoxonase (PON)1 activity. The aim of this study was to examine the factor structure of schizophrenia symptom domains and the biomarker correlates of these factors. We recruited 80 patients with schizophrenia and 40 healthy subjects and assessed the IgA/IgM responses to paracellular/transcellular (PARA/TRANS) ratios, IgA responses to TRYCATs, natural IgM to malondialdehyde and Gram-negative bacteria, and PON1 enzymatic activity. Direct Hierarchical Exploratory Factor Analysis showed a bifactorial oblique model with a) a general factor which loaded highly on all symptom domains, named overall severity of schizophrenia ("OSOS"); and b) a single-group factor (SGF) loading on negative symptoms and PMR. We found that 40% of the variance in OSOS score was explained by IgA/IgM to PARA/TRANS ratio, male sex and education while 36.9% of the variance in SGF score was explained by IgA to PARA/TRANS, IgM to Gram-negative bacteria, female sex (positively associated) and IgM to MDA, and PON1 activity (negatively associated). Schizophrenia phenomenology comprises two biologically-validated dimensions, namely a general OSOS dimension and a single-group negative symptom dimension, which are associated with a breakdown of gut/BBB barriers, increased bacterial translocation and lowered protection against oxidation, inflammation and bacterial infections through lowered PON1 and natural IgM.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Aristo Vojdani
- Immunosciences Lab., Inc, Los Angeles, CA, USA, Cyrex Labs, LLC, Phoenix, AZ,USA.,Department of Preventive Medicine, Loma Linda University, Loma Linda, CA,USA
| | - Michel Geffard
- IDRPHT, Research Department, Talence, France.,GEMAC, Lieu-Dit Berganton, Saint Jean d'Illac, Saint Jean d'Illac France
| | - Estefania G Moreira
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR,Brazil
| | - Decio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR,Brazil
| | - Ana Paula Michelin
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR,Brazil
| | - Laura de Oliveira Semeão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR,Brazil
| | - Sunee Sirivichayakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
61
|
Guo B, Ludlow AV, Brightwell AS, Rothstein TL. Impairment of PD-L2 positive B1a cells enhances susceptibility to sepsis in RasGRP1-deficient mice. Cell Immunol 2019; 346:103993. [PMID: 31679751 DOI: 10.1016/j.cellimm.2019.103993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
RasGRP1 is a key molecule that mediates antigen-initiated signaling for activation of the RAS-MAPK pathway in lymphocytes. Patients with aberrant RasGRP1 expression experience lymphocyte dysfunction and are afflicted with recurrent microbial infections. Yet, the underlying mechanism that accounts for microbial infection remains unknown. We previously reported that B1a cells are heterogeneous with respect to PD-L2 expression and that RasGRP1 deficiency preferentially impairs PD-L2+ B1a cell development. In the present study, we show that PD-L2+ B1a cells exhibit increased capacity for differentiation to CD138+ plasma cells that secrete natural IgM antibody, as well as IL-10 and GM-CSF, in response to TLR stimulation. In keeping with this, we show here that RasGRP1-deficent mice are much more susceptible to septic infection triggered by cecalligation and puncture than wild type mice, and that reconstitution of RasGRP1-deficient mice with wild type PD-L2+ B1a cells greatly rescues RasGRP1-deficient mice from sepsis. Thus, this study indicates a mechanism for the association of RasGRP1 deficiency with predispostion to infection in the loss of a particular B1a subpopulation.
Collapse
Affiliation(s)
- Benchang Guo
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| | - Alexander V Ludlow
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Angela S Brightwell
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA; Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
62
|
Cystatin from Filarial Parasites Suppress the Clinical Symptoms and Pathology of Experimentally Induced Colitis in Mice by Inducing T-Regulatory Cells, B1-Cells, and Alternatively Activated Macrophages. Biomedicines 2019; 7:biomedicines7040085. [PMID: 31683524 PMCID: PMC6966632 DOI: 10.3390/biomedicines7040085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 01/14/2023] Open
Abstract
Potential alternative therapeutic strategies for immune-mediated disorders are being increasingly recognized and are studied extensively. We previously reported the therapeutic potential of Brugia malayi derived recombinant cystatin (rBmaCys) in attenuating clinical symptoms of experimental colitis. The aim of this study was to elucidate the mechanisms involved in the rBmaCys-induced suppression of inflammation in the colon. Our results show that, the frequency of CD4+CD25+FoxP3+ regulatory T-cells was elevated in the colon and mesenteric lymph nodes. Similarly, the peritoneal macrophages recovered from the rBmaCys-treated colitis mice were alternatively activated and displayed reduced expression of TNF-α and IL-6. Another finding was significant increases in IgM+B1a-cells in the peritoneal cavity of mice following rBmaCys-treatment. These findings suggested that the regulatory cell network promoted by the rBmaCys in the colon and associated lymphoid tissues is important for its anti-inflammatory activity in the dextran sulfate sodium (DSS)-induced colitis mice.
Collapse
|
63
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
64
|
Pereira A, Alvares-Saraiva AM, Konno FTDC, Spadacci-Morena DD, Perez EC, Mariano M, Lallo MA. B-1 cell-mediated modulation of M1 macrophage profile ameliorates microbicidal functions and disrupt the evasion mechanisms of Encephalitozoon cuniculi. PLoS Negl Trop Dis 2019; 13:e0007674. [PMID: 31536488 PMCID: PMC6779274 DOI: 10.1371/journal.pntd.0007674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/07/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Here, we have investigated the possible effect of B-1 cells on the activity of peritoneal macrophages in E. cuniculi infection. In the presence of B-1 cells, peritoneal macrophages had an M1 profile with showed increased phagocytic capacity and index, associated with the intense microbicidal activity and a higher percentage of apoptotic death. The absence of B-1 cells was associated with a predominance of the M2 macrophages, reduced phagocytic capacity and index and microbicidal activity, increased pro-inflammatory and anti-inflammatory cytokines production, and higher percentual of necrosis death. In addition, in the M2 macrophages, spore of phagocytic E. cuniculi with polar tubular extrusion was observed, which is an important mechanism of evasion of the immune response. The results showed the importance of B-1 cells in the modulation of macrophage function against E. cuniculi infection, increasing microbicidal activity, and reducing the fungal mechanisms involved in the evasion of the immune response. The adaptive immune response plays a key role against Encephalitozoon cuniculi, an opportunistic fungus for T cells immunodeficient patients. The role of B cells and antibody play in natural resistance to Encephalitozoon cuniculi remains unknown. Previously, we demonstrated that B-1 deficient mice (XID), an important component of innate immunity, were more susceptible to encephalitozoonosis, despite the increase in the number of CD4+ and CD8+ T lymphocytes. Here we observed that the absence of B-1 cells was associated with a larger population of M2 macrophages, a balance between anti-inflammatory and pro-inflammatory cytokines profile, which had lower microbicidal activity against E. cuniculi infection. However, in the presence of B-1 cells, peritoneal macrophages had a M1 profile with showed increased microbicidal activity and a higher percentage of apoptotic death.
Collapse
Affiliation(s)
- Adriano Pereira
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Curso de Biomedicina, Centro Universitário São Camilo, São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, Rua Galvão Bueno, São Paulo, SP, Brazil.,Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, SP, Brasil
| | | | | | - Elizabeth Cristina Perez
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil
| | - Mario Mariano
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil
| | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Curso de Biomedicina, Centro Universitário São Camilo, São Paulo, SP, Brazil
| |
Collapse
|
65
|
Laule CF, Odean EJ, Wing CR, Root KM, Towner KJ, Hamm CM, Gilbert JS, Fleming SD, Regal JF. Role of B1 and B2 lymphocytes in placental ischemia-induced hypertension. Am J Physiol Heart Circ Physiol 2019; 317:H732-H742. [PMID: 31397167 DOI: 10.1152/ajpheart.00132.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preeclampsia is a prevalent pregnancy complication characterized by new-onset maternal hypertension and inflammation, with placental ischemia as the initiating event. Studies of others have provided evidence for the importance of lymphocytes in placental ischemia-induced hypertension; however, the contributions of B1 versus B2 lymphocytes are unknown. We hypothesized that peritoneal B1 lymphocytes are important for placental ischemia-induced hypertension. As an initial test of this hypothesis, the effect of anti-CD20 depletion on both B-cell populations was determined in a reduced utero-placental perfusion pressure (RUPP) model of preeclampsia. Anti-murine CD20 monoclonal antibody (5 mg/kg, Clone 5D2) or corresponding mu IgG2a isotype control was administered intraperitoneally to timed pregnant Sprague-Dawley rats on gestation day (GD)10 and 13. RUPP or sham control surgeries were performed on GD14, and mean arterial pressure (MAP) was measured on GD19 from a carotid catheter. As anticipated, RUPP surgery increased MAP and heart rate and decreased mean fetal and placental weight. However, anti-CD20 treatment did not affect these responses. On GD19, B-cell populations were enumerated in the blood, peritoneal cavity, spleen, and placenta with flow cytometry. B1 and B2 cells were not significantly increased following RUPP. Anti-CD20 depleted B1 and B2 cells in peritoneum and circulation but depleted only B2 lymphocytes in spleen and placenta, with no effect on circulating or peritoneal IgM. Overall, these data do not exclude a role for antibodies produced by B cells before depletion but indicate the presence of B lymphocytes in the last trimester of pregnancy is not critical for placental ischemia-induced hypertension.NEW & NOTEWORTHY The adaptive and innate immune systems are implicated in hypertension, including the pregnancy-specific hypertensive condition preeclampsia. However, the mechanism of immune system dysfunction leading to pregnancy-induced hypertension is unresolved. In contrast to previous reports, this study reveals that the presence of classic B2 lymphocytes and peritoneal and circulating B1 lymphocytes is not required for development of hypertension following third trimester placental ischemia in a rat model of pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Connor F Laule
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Evan J Odean
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Cameron R Wing
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Kate M Root
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Kendra J Towner
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Cassandra M Hamm
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | | | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| |
Collapse
|
66
|
B1 cells protect against Schistosoma japonicum-induced liver inflammation and fibrosis by controlling monocyte infiltration. PLoS Negl Trop Dis 2019; 13:e0007474. [PMID: 31194740 PMCID: PMC6592576 DOI: 10.1371/journal.pntd.0007474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/25/2019] [Accepted: 05/19/2019] [Indexed: 12/21/2022] Open
Abstract
During Schistosoma infection, lack of B cells results in more severe granulomas, inflammation, and fibrosis in the liver, but the mechanisms underlying this pathology remain unclear. This study was to clarify the mechanisms underpinning the immunomodulation of B cells in mice infected with Schistosoma japonicum (S. japonicum). We found that B cell deficiency led to aggravated liver pathology, as demonstrated by increases in the size of the egg-associated granulomas, alanine transaminase levels, and collagen deposition. Compared with infected wild-type (WT) mice, infected B cell-deficient (μMT) mice showed increased infiltration of Ly6Chi monocytes and higher levels of proinflammatory cytokines and chemokines. Furthermore, B1 cells were increased significantly in the liver of WT mice following S. japonicum infection. Adoptively transferring B1 cells, but not B2 cells, to μMT mice significantly reduced liver pathology and liver infiltration of Ly6Chi monocytes. Additionally, secretion of IL-10 from hepatic B cells increased significantly in infected WT mice and this IL-10 was mainly derived from B1 cells. Adoptively transferring B1 cells purified from WT mice, but not from IL-10-deficient mice, to μMT mice significantly reduced liver pathology and liver infiltration of Ly6Chi monocytes. These reductions were accompanied by decreases in the expression levels of chemokines and inflammatory cytokines. Taken together, these data indicated that after S. japonicum infection, an increased number of hepatic B1 cells secrete IL-10, which inhibits the expression of chemokines and cytokines and suppresses the infiltration of Ly6Chi monocytes into the liver thereby alleviating liver early inflammation and late fibrosis. Infection with Schistosoma results in strong granulomatous inflammation caused by parasite eggs deposited in the liver. Granuloma is defined as a significant number of immune cell infiltration around the eggs intermixed with hepatocytes, which can protect the host against liver damage. But excessive infiltration and inflammation lead to severe liver injury and fibrosis. Here we found that B1 cells accumulated in the liver after infection and released IL-10 to regulate inflammation. B1 cell-derived IL-10 inhibited the expression of chemokines and then restrained excessive infiltration of Ly6Chi monocytes into the liver thereby alleviating early inflammation and later fibrosis in the liver. Our study provides insight into the immunomodulation of B1 cells in schistosomiasis and an important step towards the development of therapeutic strategies for Schistosoma-induced liver diseases.
Collapse
|
67
|
Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A. Upregulation of the Intestinal Paracellular Pathway with Breakdown of Tight and Adherens Junctions in Deficit Schizophrenia. Mol Neurobiol 2019; 56:7056-7073. [PMID: 30972627 DOI: 10.1007/s12035-019-1578-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
In 2001, the first author of this paper reported that schizophrenia is associated with an increased frequency of the haptoglobin (Hp)-2 gene. The precursor of Hp-2 is zonulin, a molecule that affects intercellular tight junction integrity. Recently, we reported increased plasma IgA/IgM responses to Gram-negative bacteria in deficit schizophrenia indicating leaky gut and gut dysbiosis. The current study was performed to examine the integrity of the paracellular (tight and adherens junctions) and transcellular (cytoskeletal proteins) pathways in deficit versus non-deficit schizophrenia. We measured IgM responses to zonulin, occludin, E-cadherin, talin, actin, and vinculin in association with IgA responses to Gram-negative bacteria, CCL-11, IgA responses to tryptophan catabolites (TRYCATs), immune activation and IgM to malondialdehyde (MDA), and NO-cysteinyl in 78 schizophrenia patients and 40 controls. We found that the ratio of IgM to zonulin + occludin/talin + actin + viculin (PARA/TRANS) was significantly greater in deficit than those in non-deficit schizophrenia and higher in schizophrenia than those in controls and was significantly associated with increased IgA responses to Gram-negative bacteria. IgM responses to zonulin were positively associated with schizophrenia (versus controls), while IgM to occludin was significantly associated with deficit schizophrenia (versus non-deficit schizophrenia and controls). A large part of the variance (90.8%) in negative and PHEM (psychosis, hostility, excitation, and mannerism) symptoms was explained by PARA/TRANS ratio, IgA to Gram-negative bacteria, IgM to E-cadherin and MDA, and memory dysfunctions, while 53.3% of the variance in the latter was explained by PARA/TRANS ratio, IgA to Gram-negative bacteria, CCL-11, TRYCATs, and immune activation. The results show an upregulated paracellular pathway with breakdown of the tight and adherens junctions and increased bacterial translocation in deficit schizophrenia. These dysfunctions in the intestinal paracellular route together with lowered natural IgM, immune activation, and production of CCL-11 and TRYCATs contribute to the phenomenology of deficit schizophrenia.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria. .,IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, Vic, Australia.
| | | | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aristo Vodjani
- Immunosciences Laboratory, Inc., Los Angeles, CA, USA.,Cyrex Laboratories, LLC, Phoenix, AZ, USA.,Department of Preventive Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
68
|
Glenn MJ, Madsen MJ, Davis E, Garner CD, Curtin K, Jones B, Williams JA, Tomasson MH, Camp NJ. Elevated IgM and abnormal free light chain ratio are increased in relatives from high-risk chronic lymphocytic leukemia pedigrees. Blood Cancer J 2019; 9:25. [PMID: 30808891 PMCID: PMC6391432 DOI: 10.1038/s41408-019-0186-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Abnormal serum immunoglobulin (Ig) free light chains (FLC) are established biomarkers of early disease in multiple B-cell lymphoid malignancies, including chronic lymphocytic leukemia (CLL). Heavy chains have also been shown to be biomarkers in plasma cell disorders. An unanswered question is whether these Ig biomarkers are heritable, i.e., influenced by germline factors. CLL is heritable but highly heterogeneous. Heritable biomarkers could elucidate steps of disease pathogenesis that are affected by germline factors, and may help partition heterogeneity and identify genetic pleiotropies across malignancies. Relatives in CLL pedigrees present an opportunity to identify heritable biomarkers. We compared FLCs and heavy chains between relatives in 23 high-risk CLL pedigrees and population controls. Elevated IgM (eIgM) and abnormal FLC (aFLC) ratio was significantly increased in relatives, suggesting that these Ig biomarkers are heritable and could offer risk stratification in pedigree relatives. Within high-risk CLL pedigrees, B-cell lymphoid malignancies were five times more prevalent in close relatives of individuals with eIgM, prostate cancer was three times more prevalent in relatives of individuals with aFLC, and monoclonal B-cell lymphocytosis increased surrounding individuals with normal Ig levels. These different clustering patterns suggest Ig biomarkers have the potential to partition genetic heterogeneity in CLL and provide insight into distinct heritable pleiotropies associated with CLL.
Collapse
Affiliation(s)
- Martha J Glenn
- University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ethan Davis
- University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | | | - Karen Curtin
- University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Brandt Jones
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Justin A Williams
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michael H Tomasson
- Carver College of Medicine, University ofIowa, Iowa City, IA, 52242, USA
| | - Nicola J Camp
- University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
69
|
The immunoglobulin heavy chain 3' regulatory region superenhancer controls mouse B1 B-cell fate and late VDJ repertoire diversity. Blood Adv 2019; 2:252-262. [PMID: 29437640 DOI: 10.1182/bloodadvances.2017014423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Abstract
The immunoglobulin heavy chain (IgH) 3' regulatory region (3'RR) superenhancer controls B2 B-cell IgH transcription and cell fate at the mature stage but not early repertoire diversity. B1 B cells represent a small percentage of total B cells differing from B2 B cells by several points such as precursors, development, functions, and regulation. B1 B cells act at the steady state to maintain homeostasis in the organism and during the earliest phases of an immune response, setting them at the interface between innate and acquired immunity. We investigated the role of the 3'RR superenhancer on B1 B-cell fate. Similar to B2 B cells, the 3'RR controls μ transcription and cell fate in B1 B cells. In contrast to B2 B cells, 3'RR deletion affects B1 B-cell late repertoire diversity. Thus, differences exist for B1 and B2 B-cell 3'RR control during B-cell maturation. For the first time, these results highlight the contribution of the 3'RR superenhancer at this interface between innate and acquired immunity.
Collapse
|
70
|
CD3+ B-1a Cells as a Mediator of Disease Progression in Autoimmune-Prone Mice. Mediators Inflamm 2018; 2018:9289417. [PMID: 30670930 PMCID: PMC6323491 DOI: 10.1155/2018/9289417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
B-1a cells are distinguishable from conventional B cells, which are designated B-2 cells, on the basis of their developmental origin, surface marker expression, and functions. In addition to the unique expression of the CD5 antigen, B-1a cells are characterized by the expression level of CD23. Although B-1a cells are considered to be independent of T cells and produce natural autoantibodies that induce the clinical manifestations of autoimmune diseases, there is much debate on the role of B-1a cells in the development of autoimmune diseases. We examined the involvement of B-1a cells in autoimmune-prone mice with the lpr gene. MRL/lpr and B6/lpr mice exhibited lupus and lymphoproliferative syndromes because of the massive accumulation of CD3+CD4-CD8-B220+ T cells. Interestingly, the B220+CD23-CD5+ (B-1a) cell population in the peripheral blood and peritoneal cavity increased with age and disease progression. Ninety percent of B-1a cells were CD3 positive (CD3+ B-1a cells) and did not produce tumor necrosis factor alpha, interferon gamma, or interleukin-10. To test the possible involvement of CD3+ B-1a cells in autoimmune disease, we tried to eliminate the peripheral cells by hypotonic shock through repeated intraperitoneal injections of distilled water. The fraction of peritoneal CD3+ B-1a cells decreased, and symptoms of the autoimmune disease were much milder in the distilled water-treated MRL/lpr mice. These results suggest that CD3+ B-1a cells could be mediators of disease progression in autoimmune-prone mice.
Collapse
|
71
|
Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF. In Schizophrenia, Increased Plasma IgM/IgA Responses to Gut Commensal Bacteria Are Associated with Negative Symptoms, Neurocognitive Impairments, and the Deficit Phenotype. Neurotox Res 2018; 35:684-698. [DOI: 10.1007/s12640-018-9987-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
|
72
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM, Maravillas-Montero JL. Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol 2018; 105:843-856. [PMID: 30457676 DOI: 10.1002/jlb.mr0618-227r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ari Kleinberg-Bild
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación de la Facultad de Medicina, Universidad Nacional Autónoma de México y Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
73
|
Han Y, Jin Y, Miao Y, Shi T, Lin X. Improved RANKL production by memory B cells: A way for B cells promote alveolar bone destruction during periodontitis. Int Immunopharmacol 2018; 64:232-237. [DOI: 10.1016/j.intimp.2018.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
|
74
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
75
|
Deletion of the immunoglobulin heavy chain 3' regulatory region super-enhancer affects somatic hypermutation in B1 B cells. Cell Mol Immunol 2018; 16:195-197. [PMID: 30127379 DOI: 10.1038/s41423-018-0091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023] Open
|
76
|
Aziz M, Ode Y, Zhou M, Ochani M, Holodick NE, Rothstein TL, Wang P. B-1a cells protect mice from sepsis-induced acute lung injury. Mol Med 2018; 24:26. [PMID: 30134811 PMCID: PMC6016888 DOI: 10.1186/s10020-018-0029-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sepsis morbidity and mortality are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Mouse B-1a cells are a phenotypically and functionally unique sub-population of B cells, providing immediate protection against infection by releasing natural antibodies and immunomodulatory molecules. We hypothesize that B-1a cells ameliorate sepsis-induced ALI. METHODS Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). PBS or B-1a cells were adoptively transferred into the septic mice intraperitoneally. After 20 h of CLP, lungs were harvested and assessed by PCR and ELISA for pro-inflammatory cytokines (IL-6, IL-1β) and chemokine (MIP-2) expression, by histology for injury, by TUNEL and cleaved caspase-3 for apoptosis, and by myeloperoxidase (MPO) assay for neutrophil infiltration. RESULTS We found that septic mice adoptively transferred with B-1a cells significantly decreased the mRNA and protein levels of IL-6, IL-1β and MIP-2 in the lungs compared to PBS-treated mice. Mice treated with B-1a cells showed dramatic improvement in lung injury compared to PBS-treated mice after sepsis. We found apoptosis in the lungs was significantly inhibited in B-1a cell injected mice compared to PBS-treated mice after sepsis. B-1a cell treatment significantly down-regulated MPO levels in the lungs compared to PBS-treated mice in sepsis. The protective outcomes of B-1a cells in ALI was further confirmed by using B-1a cell deficient CD19-/- mice, which showed significant increase in the lung injury scores following sepsis as compared to WT mice. CONCLUSIONS Our results demonstrate a novel therapeutic potential of B-1a cells to treat sepsis-induced ALI.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Yasumasa Ode
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Nichol E. Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
- Present Address: Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008 USA
| | - Thomas L. Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
- Present Address: Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008 USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, 11030 USA
| |
Collapse
|
77
|
Issaoui H, Ghazzaui N, Saintamand A, Carrion C, Oblet C, Denizot Y. The IgH 3' regulatory region super-enhancer does not control IgA class switch recombination in the B1 lineage. Cell Mol Immunol 2018; 15:289-291. [PMID: 28990584 PMCID: PMC5843615 DOI: 10.1038/cmi.2017.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- Hussein Issaoui
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | - Nour Ghazzaui
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | | | - Claire Carrion
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | | | - Yves Denizot
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| |
Collapse
|
78
|
Abstract
B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1−/− mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2−/− mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1−/− and C5aR2−/− mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.
Collapse
Affiliation(s)
- Katharina Bröker
- Brandenburg Medical School, University Hospital Brandenburg, Center of Internal Medicine II, Brandenburg a. d. Havel, Germany
| | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Albert F Magnusen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
79
|
Gil-Borras R, García-Ballesteros C, Benet-Campos C, Catalán-Serra I, López-Chuliá F, Cuéllar C, Andreu-Ballester JC. B1a Lymphocytes (CD19+CD5+) Deficiency in Patients with Crohn's Disease and Its Relation with Disease Severity. Dig Dis 2018; 36:194-201. [PMID: 29421816 DOI: 10.1159/000486893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND/AIMS B1a cells (CD19+CD5+) are considered elements of the innate immune system. The aim of this study was to evaluate the frequency of B1a cells in the peripheral blood of patients with Crohn's disease (CD) and its relation with disease severity. METHODS In this prospective study, a total of 128 subjects (64 CD patients and 64 healthy controls) were studied. B1a cells in peripheral blood, CD Activity Index, and Simple Endoscopic Score of B1a cells were studied. RESULTS A significant decrease of B1a cells in peripheral blood was observed in patients with CD versus controls (p = 0.002), especially in perforating or penetrating patterns (p = 0.017). A lower frequency of B1a cells is related to increased endoscopic severity (Spearman's Rho: -0.559, p = 0.004). The mean frequency of B1a cells in patients with pre- and post-study surgery was significantly lower than that in patients who did not undergo surgery (p = 0.050 and p = 0.026, respectively). CONCLUSIONS The B1a cell count in peripheral blood is lower in CD patients. This decrease is directly related to the severity of the disease (penetrating or perforating, Simple Endoscopy Score and surgery complication). These results pointed to the fact that B1a cells play an important role in immune protection in CD.
Collapse
Affiliation(s)
- Rafael Gil-Borras
- Department of Digestive, Arnau de Vilanova Hospital, Valencia, Spain
| | | | | | - Ignacio Catalán-Serra
- Department of Gastroenterology, Internal Medicine, Levanger Hospital, Helse Nord-Trondelag, Levanger, Norway.,Centre of Molecular Inflammation Research (CEMIR), Norwegian Science and Technology University (NTNU), Trondheim, Norway
| | | | - Carmen Cuéllar
- Department of Parasitology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | | |
Collapse
|
80
|
S1P Signalling Differentially Affects Migration of Peritoneal B Cell Populations In Vitro and Influences the Production of Intestinal IgA In Vivo. Int J Mol Sci 2018; 19:ijms19020391. [PMID: 29382132 PMCID: PMC5855613 DOI: 10.3390/ijms19020391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sphingosine-1-phosphate (S1P) regulates the migration of follicular B cells (B2 cells) and directs the positioning of Marginal zone B cells (MZ B cells) within the spleen. The function of S1P signalling in the third B cell lineage, B1 B cells, mainly present in the pleural and peritoneal cavity, has not yet been determined. Methods: S1P receptor expression was analysed in peritoneal B cells by real-time polymerase chain reaction (qPCR). The chemotactic response to S1P was studied in vitro. The role of S1P signalling was further explored in a s1p4−/− mouse strain. Results: Peritoneal B cells expressed considerable amounts of the S1P receptors 1 and 4 (S1P1 and S1P4, respectively). S1P1 showed differential expression between the distinct peritoneal B cell lineages. While B2 cells showed no chemotactic response to S1P, B1 B cells showed a migration response to S1P. s1p4−/− mice displayed significant alterations in the composition of peritoneal B cell populations, as well as a significant reduction of mucosal immunoglobulin A (IgA) in the gut. Discussion: S1P signalling influences peritoneal B1 B cell migration. S1P4 deficiency alters the composition of peritoneal B cell populations and reduces secretory IgA levels. These findings suggest that S1P signalling may be a target to modulate B cell function in inflammatory intestinal pathologies.
Collapse
|
81
|
Perez EC, Xander P, Laurindo MFL, Novaes e Brito RR, Vivanco BC, Mortara RA, Mariano M, Lopes JD, Keller AC. The axis IL-10/claudin-10 is implicated in the modulation of aggressiveness of melanoma cells by B-1 lymphocytes. PLoS One 2017; 12:e0187333. [PMID: 29145406 PMCID: PMC5690663 DOI: 10.1371/journal.pone.0187333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
B-1 lymphocytes are known to increase the metastatic potential of B16F10 melanoma cells via the extracellular signal-regulated kinase (ERK) pathway. Since IL-10 is associated with B-1 cells performance, we hypothesized that IL-10 could be implicated in the progression of melanoma. In the present work, we found that the C57BL/6 mice, inoculated with B16F10 cells that were co-cultivated with B-1 lymphocytes from IL-10 knockout mice, developed fewer metastatic nodules than the ones which were injected with the melanoma cells that were cultivated in the presence of wild-type B-1 cells. The impairment of metastatic potential of the B16F10 cells was correlated with low activation of the ERK signaling pathway, supporting the idea that the production of IL-10 by B-1 cells influences the behavior of the tumor. A microarray analysis of the B-1 lymphocytes revealed that IL-10 deficiency is associated with down-regulation of the genes that code for claudin-10, a protein that is involved in cell-to-cell contact and that has been linked to lung adenocarcinoma. In order to determine the impact of claudin-10 in the cross-talk between B-1 lymphocytes and the B16F10 tumor cells, we took advantage of small interfering RNA. The silencing of claudin-10 gene in B-1 lymphocytes inhibited activation of the ERK pathway and abrogated the B-1-induced aggressive behavior of the B16F10 cells. Thus, our findings suggest that the axis IL-10/claudin-10 is a promising target for the development of therapeutic agents against aggressive melanoma.
Collapse
Affiliation(s)
- Elizabeth Cristina Perez
- Environmental and Experimental Pathology Program, Universidade Paulista, São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Patricia Xander
- Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Campus Diadema, Diadema São Paulo, Brazil
| | - Maria Fernanda Lucatelli Laurindo
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | | | - Bruno Camolese Vivanco
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Mario Mariano
- Environmental and Experimental Pathology Program, Universidade Paulista, São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - José Daniel Lopes
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Alexandre Castro Keller
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo–Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
82
|
Aziz M, Holodick NE, Rothstein TL, Wang P. B-1a Cells Protect Mice from Sepsis: Critical Role of CREB. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28630091 DOI: 10.4049/jimmunol.1602056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial sepsis is a serious life-threatening condition caused by an excessive immune response to infection. B-1 cells differ from conventional B-2 cells by their distinct phenotype and function. A subset of B-1 cells expressing CD5, known as B-1a cells, exhibits innate immune activity. Here we report that B-1a cells play a beneficial role in sepsis by mitigating exaggerated inflammation through a novel mechanism. Using a mouse model of bacterial sepsis, we found that the numbers of B-1a cells in various anatomical locations were significantly decreased. Adoptive transfer of B-1a cells into septic mice significantly attenuated systemic inflammation and improved survival, whereas B-1a cell-deficient CD19-/- mice were more susceptible to infectious inflammation and mortality. We also demonstrated B-1a cells produced ample amounts of IL-10 which controlled excessive inflammation and the mice treated with IL-10-deficient B-1a cells were not protected against sepsis. Moreover, we identified a novel intracellular signaling molecule, cAMP-response element binding protein (CREB), which serves as a pivotal transcription factor for upregulating IL-10 production by B-1a cells in sepsis through its nuclear translocation and binding to putative responsive elements on IL-10 promoter. Thus, the benefit of B-1a cells in bacterial sepsis is mediated by CREB and the identification of CREB in B-1a cells reveals a potential avenue for treatment in bacterial sepsis.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| | - Nichol E Holodick
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas L Rothstein
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| |
Collapse
|
83
|
Arcanjo AF, Nico D, de Castro GMM, da Silva Fontes Y, Saltarelli P, Decote-Ricardo D, Nunes MP, Ferreira-Pereira A, Palatnik-de-Sousa CB, Freire-de-Lima CG, Morrot A. Dependency of B-1 Cells in the Maintenance of Splenic Interleukin-10 Producing Cells and Impairment of Macrophage Resistance in Visceral Leishmaniasis. Front Microbiol 2017. [PMID: 28626451 PMCID: PMC5454060 DOI: 10.3389/fmicb.2017.00978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis is a neglected disease caused by Leishmania protozoa parasites transmitted by infected sand fly vectors. This disease represents the second in mortality among tropical infections and is associated to a profound immunosuppression state of the host. The hallmark of this infection-induced host immunodeviation is the characteristic high levels of the regulatory interleukin-10 (IL-10) cytokine. In the present study, we investigated the role of B-1 cells in the maintenance of splenic IL-10 levels that could interfere with resistance to parasite infection. Using an experimental murine infection model with Leishmania (L.) infantum chagasi we demonstrated an improved resistance of B-1 deficient BALB/XID mice to infection. BALB/XID mice developed a reduced splenomegaly with diminished splenic parasite burden and lower levels of IL-10 secretion of purified splenocytes at 30 days post-infection, as compared to BALB/c wild-type control mice. Interestingly, we found that resident peritoneal macrophages isolated from BALB/XID mice were more effective to control the parasite load in comparison to cells isolated from BALB/c wild-type mice. Our findings point to a role of B-1 cells in the host susceptibility to visceral leishmaniasis.
Collapse
Affiliation(s)
- Angélica Fernandes Arcanjo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | | | - Yasmin da Silva Fontes
- Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Paula Saltarelli
- Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de JaneiroRio de Janeiro, Brazil
| | | | - Antônio Ferreira-Pereira
- Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | | | - Célio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FiocruzRio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|