51
|
Reduction of serum level of interleukin-2 and pruritus severity after acupuncture at Quchi (LI11) in hemodialysis patients: a placebo-controlled randomized clinical trial. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Namgung U, Kim KJ, Jo BG, Park JM. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. J Neuroinflammation 2022; 19:33. [PMID: 35109857 PMCID: PMC8812005 DOI: 10.1186/s12974-022-02396-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have shown that vagus nerve stimulation (VNS) can attenuate inflammatory responses in peripheral tissues and also improve some neurological disorders and cognitive function in the brain. However, it is not clear how VNS is involved in neuropathological processes in brain tissues. Here, we investigated the regulatory effects of VNS on the production of proinflammatory cytokines in the hippocampus of an animal model of continuous stress (CS). Methods CS was induced by placing rats in cages immersed with water, and acute or chronic electrical stimulation was applied to the cervical vagus nerve of CS animals. Protein levels in the gastric and hippocampal tissues were measured by western blotting and protein signals analyzed by immunofluorescence staining. von Frey test and forced swimming test were performed to assess pain sensitivity and depressive-like behavior in rats, respectively. Results Levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues were significantly increased in CS animals compared to the untreated control and downregulated by acute VNS (aVNS). Iba-1-labeled microglial cells in the hippocampus of CS animals revealed morphological features of activated inflammatory cells and then changed to a normal shape by VNS. VNS elevated hippocampal expression of α7 nicotinic acetylcholine receptors (α7 nAChR) in CS animals, and pharmacological blockade of α7 nAChR increased the production of TNF-α, IL-1β, and IL-6, thus suppressing cholinergic anti-inflammatory activity that was mediated by VNS. Chronic VNS (cVNS) down-regulated the hippocampal production of active form of caspase 3 and 5-HT1A receptors and also decreased levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues of CS animals. Pain sensitivity and depressive-like behavior, which were increased by CS, were improved by cVNS. Conclusions Our data suggest that VNS may be involved in modulating pathophysiological processes caused by CS in the brain.
Collapse
Affiliation(s)
- Uk Namgung
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea.
| | - Ki-Joong Kim
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Byung-Gon Jo
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Jong Min Park
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| |
Collapse
|
53
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
54
|
Stavrakis S, Elkholey K, Morris L, Niewiadomska M, Asad ZUA, Humphrey MB. Neuromodulation of Inflammation to Treat Heart Failure With Preserved Ejection Fraction: A Pilot Randomized Clinical Trial. J Am Heart Assoc 2022; 11:e023582. [PMID: 35023349 PMCID: PMC9238491 DOI: 10.1161/jaha.121.023582] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background A systemic proinflammatory state plays a central role in the development of heart failure with preserved ejection fraction. Low‐level transcutaneous vagus nerve stimulation suppresses inflammation in humans. We conducted a sham‐controlled, double‐blind, randomized clinical trial to examine the effect of chronic low‐level transcutaneous vagus nerve stimulation on cardiac function, exercise capacity, and inflammation in patients with heart failure with preserved ejection fraction. Methods and Results Patients with heart failure with preserved ejection fraction and at least 2 additional comorbidities (obesity, diabetes, hypertension, or age ≥65 years) were randomized to either active (tragus) or sham (earlobe) low‐level transcutaneous vagus nerve stimulation (20 Hz, 1 mA below discomfort threshold), for 1 hour daily for 3 months. Echocardiography, 6‐minute walk test, quality of life, and serum cytokines were assessed at baseline and 3 months. Fifty‐two patients (mean age 70.4±9.2 years; 70% female) were included (active, n=26; sham, n=26). Baseline characteristics were balanced between the 2 arms. Adherence to the protocol of daily stimulation was >90% in both arms (P>0.05). While the early mitral inflow Doppler velocity to the early diastolic mitral annulus velocity ratio did not differ between groups, global longitudinal strain and tumor necrosis factor‐α levels at 3 months were significantly improved in the active compared with the sham arm (−18.6%±2.5% versus −16.0%±2.4%, P=0.002; 8.9±2.8 pg/mL versus 11.3±2.9 pg/mL, P=0.007, respectively). The reduction in tumor necrosis factor‐α levels correlated with global longitudinal strain improvement (r=−0.73, P=0.001). Quality of life was better in the active arm. No device‐related side effects were observed. Conclusions Neuromodulation with low‐level transcutaneous vagus nerve stimulation over 3 months resulted in a significant improvement in global longitudinal strain, inflammatory cytokines, and quality of life in patients with heart failure with preserved ejection fraction. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03327649.
Collapse
Affiliation(s)
| | - Khaled Elkholey
- University of Oklahoma Health Science Center Oklahoma City OK
| | - Lynsie Morris
- University of Oklahoma Health Science Center Oklahoma City OK
| | | | | | | |
Collapse
|
55
|
Powell K, White TG, Nash C, Rebeiz T, Woo HH, Narayan RK, Li C. The Potential Role of Neuromodulation in Subarachnoid Hemorrhage. Neuromodulation 2022; 25:1215-1226. [PMID: 35088724 DOI: 10.1016/j.neurom.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. MATERIALS AND METHODS We conducted a comprehensive review of preclinical and clinical studies demonstrating the use of neuromodulation for SAH. The literature search was performed using PubMed, Embase, and ClinicalTrials.gov. A total of 21 articles published from 1992 to 2021 and eight clinical trials were chosen. RESULTS The studies reviewed provide a compelling demonstration that neuromodulation is a potentially useful strategy to target multiple mechanisms of DCI and thus to potentially improve functional outcomes from SAH. There are several types of neuromodulation that have been tested to treat CV and DCI, including the trigeminal/vagus/facial nerve stimulation, sphenopalatine ganglion and spinal cord stimulation, transcranial direct electrical stimulation, transcutaneous electrical neurostimulation, and electroacupuncture. Most of them are in the preclinical or early phases of clinical application; however, they show promising results. CONCLUSIONS DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tania Rebeiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
56
|
Li N, Guo Y, Gong Y, Zhang Y, Fan W, Yao K, Chen Z, Dou B, Lin X, Chen B, Chen Z, Xu Z, Lyu Z. The Anti-Inflammatory Actions and Mechanisms of Acupuncture from Acupoint to Target Organs via Neuro-Immune Regulation. J Inflamm Res 2022; 14:7191-7224. [PMID: 34992414 PMCID: PMC8710088 DOI: 10.2147/jir.s341581] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation plays a significant role in the occurrence and development of multiple diseases. This study comprehensively reviews and presents literature from the last five years, showing that acupuncture indeed exerts strong anti-inflammatory effects in multiple biological systems, namely, the immune, digestive, respiratory, nervous, locomotory, circulatory, endocrine, and genitourinary systems. It is well known that localized acupuncture-mediated anti-inflammatory effects involve the regulation of multiple populations and functions of immune cells, including macrophages, granulocytes, mast cells, and T cells. In acupuncture stimulation, macrophages transform from the M1 to the M2 phenotype and the negative TLR4 regulator PPARγ is activated to inhibit the intracellular TLR/MyD88 and NOD signaling pathways. The downstream IκBα/NF-κB and P38 MAPK pathways are subsequently inhibited by acupuncture, followed by suppressed production of inflammasome and proinflammatory mediators. Acupuncture also modulates the balance of helper T cell populations. Furthermore, it inhibits oxidative stress by enhancing SOD activity via the Nrf2/HO-1 pathway and eliminates the generation of oxygen free radicals, thereby preventing inflammatory cell infiltration. The anti-inflammatory effects of acupuncture on different biological systems are also specific to individual organ microenvironments. As part of its anti-inflammatory action, acupuncture deforms connective tissue and upregulates the secretion of various molecules in acupoints, further activating the NF-κB, MAPK, and ERK pathways in mast cells, fibroblasts, keratinocytes, and monocytes/macrophages. The somatic afferents present in acupuncture-activated acupoints also convey sensory signals to the spinal cord, brainstem, and hypothalamic neurons. Upon information integration in the brain, acupuncture further stimulates multiple neuro-immune pathways, including the cholinergic anti-inflammatory, vagus-adrenal medulla-dopamine, and sympathetic pathways, as well as the hypothalamus-pituitary-adrenal axis, ultimately acting immune cells via the release of crucial neurotransmitters and hormones. This review provides a scientific and reliable basis and viewpoints for the clinical application of acupuncture in various inflammatory conditions.
Collapse
Affiliation(s)
- Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Wen Fan
- Suzuka University of Medical Science, Suzuka City, Japan
| | - Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| |
Collapse
|
57
|
Li Y, Wu B, Hu C, Hu J, Lian Q, Li J, Ma D. The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats. Eur J Pharmacol 2022; 914:174668. [PMID: 34863997 DOI: 10.1016/j.ejphar.2021.174668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sepsis often results in acute lung injury (ALI). Dexmedetomidine (Dex) was reported to protect cells and organs due to its direct cellular effects. This study aims to investigate the role of vagus nerves on Dex induced lung protection in lipopolysaccharide (LPS)-induced ALI rats. METHODS The bilateral cervical vagus nerve of male Sprague-Dawley rats was sectioned or just exposed as sham surgery. After LPS administration, Dex antagonist yohimbine (YOH) and/or Dex was injected intraperitoneally to rats with or without vagotomy. The severity of ALI was determined with survival curve analysis and lung pathological scores. The plasma concentrations of interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), catecholamine and acetylcholine were measured with enzyme-linked immunosorbent assay. RESULTS The median survival time of LPS-induced ALI rats was prolonged by Dex (22 h, 95% CI, [24.46, 92.20]) vs. 14 h, 95% CI, [14.60, 89.57] of the LPS control group, P < 0.05), and the ALI score was reduced by Dex (6.5, 95% CI, [5.23, 8.10] vs. 11.5, 95% CI, [10.23, 13.10] in the LPS group, P < 0.01). However, these protective effects were significantly decreased by either YOH administration or vagotomy. Dex decreased LPS-induced IL-1β, TNF-α, and catecholamine but increased acetylcholine in blood serum; these effects of Dex was partially abolished by vagotomy. CONCLUSIONS Our data suggested that Dex increased vagal nerve tone that partially contributed to its anti-inflammatory and lung-protective effects. The indirect anti-inflammation and direct cytoprotection of Dex are likely through high vagal nerve tone and α2-adrenoceptor activation, respectively.
Collapse
Affiliation(s)
- Yumo Li
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Cong Hu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Jie Hu
- Department of Anesthesiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Li
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom.
| |
Collapse
|
58
|
Qi R, Wang M, Zhong Q, Wang L, Yang X, Huang B, yang Z, Zhang C, Geng X, Luo C, Wang W, Li J, Yu H, Wei J. Chronic vagus nerve stimulation (VNS) altered IL-6, IL-1β, CXCL-1 and IL-13 levels in the hippocampus of rats with LiCl-pilocarpine-induced epilepsy. Brain Res 2022; 1780:147800. [DOI: 10.1016/j.brainres.2022.147800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2023]
|
59
|
Fischer L, Barop H, Ludin SM, Schaible HG. Regulation of acute reflectory hyperinflammation in viral and other diseases by means of stellate ganglion block. A conceptual view with a focus on Covid-19. Auton Neurosci 2022; 237:102903. [PMID: 34894589 PMCID: PMC9761017 DOI: 10.1016/j.autneu.2021.102903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Whereas the autonomic nervous system (ANS) and the immune system used to be assigned separate functions, it has now become clear that the ANS and the immune system (and thereby inflammatory cascades) work closely together. During an acute immune response (e. g., in viral infection like Covid-19) the ANS and the immune system establish a fast interaction resulting in "physiological" inflammation. Based on our knowledge of the modulation of inflammation by the ANS we propose that a reflectory malfunction of the ANS with hyperactivity of the sympathetic nervous system (SNS) may be involved in the generation of acute hyperinflammation. We believe that sympathetic hyperactivity triggers a hyperresponsiveness of the immune system ("cytokine storm") with consecutive tissue damage. These reflectory neuroimmunological and inflammatory cascades constitute a general reaction principle of the organism under the leadership of the ANS and does not only occur in viral infections, although Covid-19 is a typical current example therefore. Within the overreaction several interdependent pathological positive feedback loops can be detected in which the SNS plays an important part. Consequently, there is a chance to regulate the hyperinflammation by influencing the SNS. This can be achieved by a stellate ganglion block (SGB) with local anesthetics, temporarily disrupting the pathological positive feedback loops. Thereafter, the complex neuroimmune system has the chance to reorganize itself. Previous clinical and experimental data have confirmed a favorable outcome in hyperinflammation (including pneumonia) after SGB (measurable e. g. by a reduction in proinflammatory cytokines).
Collapse
Affiliation(s)
- Lorenz Fischer
- University of Bern, Interventional Pain Management, General Internal Medicine, Schwanengasse 5/7, 3011 Bern, Switzerland.
| | - Hans Barop
- Neural Therapy, Friedrich-Legahn-Str. 2, 22587 Hamburg, Germany
| | | | - Hans-Georg Schaible
- University Hospital Jena, Institute of Physiology1/Neurophysiology, Teichgraben 8, 07743 Jena, Germany.
| |
Collapse
|
60
|
Mravec B. Neurobiology of cancer: Definition, historical overview, and clinical implications. Cancer Med 2021; 11:903-921. [PMID: 34953048 PMCID: PMC8855902 DOI: 10.1002/cam4.4488] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Studies published in the last two decades have clearly demonstrated that the nervous system plays a significant role in carcinogenesis, the progression of cancer, and the development of metastases. These studies, combining oncological and neuroscientific approaches, created the basis for the emergence of a new field in oncology research, the so‐called “neurobiology of cancer.” The concept of the neurobiology of cancer is based on several facts: (a) psychosocial factors influence the incidence and progression of cancer diseases; (b) the nervous system affects DNA mutations and oncogene‐related signaling; (c) the nervous system modulates tumor‐related immune responses; (d) tumor tissues are innervated; (e) neurotransmitters released from nerves innervating tumor tissues affect tumor growth and metastasis; (f) alterations or modulation of nervous system activity affects the incidence and progression of cancers; (g) tumor tissue affects the nervous system. The aim of this review is to characterize the pillars that create the basis of cancer neurobiology, to describe recent research advances of the nervous system's role in cancer diseases, and to depict potential clinical implications for oncology.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
61
|
Wang JY, Zhang Y, Chen Y, Wang Y, Li SY, Wang YF, Zhang ZX, Zhang J, Rong P. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway. J Neuroinflammation 2021; 18:291. [PMID: 34920740 PMCID: PMC8680337 DOI: 10.1186/s12974-021-02341-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background Stress-induced neuroinflammation was considered to play a critical role in the pathogenesis of depression. Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively non-invasive alternative treatment for patients suffering from major depressive disorder. The anti-inflammatory signal of vagus nerve is mediated by α7 nicotinic acetylcholine receptor (α7nAchR), and the hippocampus, the region with the most distribution of α7nAchR, regulates emotions. Here, we investigated the role of α7nAchR mediating hippocampal neuroinflammation in taVNS antidepressant effect though homozygous α7nAChR (−/−) gene knockout and α7nAchR antagonist (methyllycaconitine, MLA). Methods There were control, model, taVNS, α7nAChR(−/−) + taVNS, hippocampus (Hi) MLA + taVNS and Hi saline + taVNS groups. We used the chronic unpredicted mild stress (CUMS) method to establish depressive model rats for 42 days, excepting control group. After the successful modeling, except the control and model, the rats in the other groups were given taVNS, which was applied through an electroacupuncture apparatus at the auricular concha (2/15 Hz, 2 mA, 30 min/days) for 21 days. Behavioral tests were conducted at baseline, after modeling and after taVNS intervention, including sucrose preference test (SPT), open field test (OFT) and forced swimming test (FST). These tests are widely used to evaluate depression-like behavior in rats. The samples were taken after experiment, the expressions of α7nAchR, NF-κB p65, IL-1β and the morphology of microglia were detected. Results Depression-like behavior and hippocampal neuroinflammation in CUMS model rats were manifested by down-regulated expression of α7nAchR, up-regulated expression of NF-κB p65 and IL-1β, and the morphology of microglia was in amoebic-like activated state. TaVNS could significantly reverse the above-mentioned phenomena, but had rare improvement effect for α7nAChR(−/−) rats and Hi MLA rats. Conclusion The antidepressant effect of taVNS is related to hippocampal α7nAchR/NF-κB signal pathway.
Collapse
Affiliation(s)
- Jun-Ying Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Yue Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Yu Chen
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Yu Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Shao-Yuan Li
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Yi-Fei Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Zi-Xuan Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Jinling Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China
| | - Peijing Rong
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Dongcheng District, No.16 Dongzhimen Nan Xiao Street, Beijing, 100700, China.
| |
Collapse
|
62
|
Yang X, Zhou R, Di W, He Q, Huo Q. Clinical therapeutic effects of probiotics in patients with constipation associated with Parkinson disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27705. [PMID: 34871259 PMCID: PMC8568397 DOI: 10.1097/md.0000000000027705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Constipation is the most predominant symptom of Parkinson disease (PD), preceding the occurrence of motor symptoms in some patients, leading to reduced quality of life (QOL). The general approaches for the treatment have some side effects, but probiotics are live or attenuated microorganisms attributed to ameliorating constipation effects. Moreover, as treatments are generally well tolerated and side effects are scarce, there is room for further research. Therefore this work aims at investigating the clinical effectiveness and safety of probiotics for constipation in PD. METHODS Published RCTs will be retrieved by searching Medline, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), VIP, Wan Fang database, and China Biology Medicine Database (complete bowel movement), which will be searched from establishment of the database to October 10, 2021. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines are used to design this protocol. RevMan V.5.3 software will be used for meta-analysis, risk of bias will be assessed by the Cochrane Collaboration tool and the collected evidence will be narratively synthesized. We will also perform a meta-analysis to pool estimates from studies considered to be homogenous. Subgroup analyses will be based on intervention or overall bias. CONCLUSION The meta-analysis will assess the effectiveness and safety of using probiotics to treat and heal the constipation of PD. ETHICS AND DISSEMINATION Ethics approval is unrequired. REGISTRATION NUMBER CRD42021276215.
Collapse
|
63
|
Sigurdsson HP, Raw R, Hunter H, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Noninvasive vagus nerve stimulation in Parkinson's disease: current status and future prospects. Expert Rev Med Devices 2021; 18:971-984. [PMID: 34461787 DOI: 10.1080/17434440.2021.1969913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a common progressive neurodegenerative disorder with multifactorial etiology. While dopaminergic medication is the standard therapy in PD, it provides limited symptomatic treatment and non-pharmacological interventions are currently being trialed. AREAS COVERED Recent pathophysiological theories of Parkinson's suggest that aggregated α-synuclein form in the gut and spread to nuclei in the brainstem via autonomic connections. In this paper, we review the novel hypothesis that noninvasive vagus nerve stimulation (nVNS), targeting efferent and afferent vagal projections, is a promising therapeutic tool to improve gait and cognitive control and ameliorate non-motor symptoms in people with Parkinson's. We conducted an unstructured search of the literature for any studies employing nVNS in PD as well as for studies examining the efficacy of nVNS on improving cognitive function and where nVNS has been applied to co-occurring conditions in PD. EXPERT OPINION Evidence of nVNS as a novel therapeutic to improve gait in PD is preliminary, but early signs indicate the possibility that nVNS may be useful to target dopa-resistant gait characteristics in early PD. The evidence for nVNS as a therapeutic tool is, however, limited and further studies are needed in both brain health and disease.
Collapse
Affiliation(s)
- Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael Raw
- Department of General Internal Medicine, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Heather Hunter
- Department of Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark R Baker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurophysiology, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurosciences, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Older People's Medicine, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
64
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
65
|
Walsh CP, Bovbjerg DH, Marsland AL. Glucocorticoid resistance and β2-adrenergic receptor signaling pathways promote peripheral pro-inflammatory conditions associated with chronic psychological stress: A systematic review across species. Neurosci Biobehav Rev 2021; 128:117-135. [PMID: 34116126 PMCID: PMC8556675 DOI: 10.1016/j.neubiorev.2021.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Activation of the HPA-axis and SNS are widely accepted to link chronic stress with elevated levels of peripheral pro-inflammatory markers in blood. Yet, empirical evidence showing that peripheral levels of glucocorticoids and/or catecholamines mediate this effect is equivocal. Recent attention has turned to the possibility that cellular sensitivity to these ligands may contribute to inflammatory mediators that accompany chronic stress. We review current evidence for the association of chronic stress with glucocorticoid receptor (GR) and β-adrenergic receptor (β-AR) signaling sensitivity. Across 15 mouse, 7 primate, and 19 human studies, we found that chronic stress reliably associates with downregulation in cellular GR sensitivity, alterations in intracellular β-AR signaling, and upregulation in pro-inflammatory biomarkers in peripheral blood. We also present evidence that alterations in GR and β-AR signaling may be specific to myeloid progenitor cells such that stress-related signaling promotes release of cells that are inherently less sensitive to glucocorticoids and differentially sensitive to catecholamines. Our findings have broad implications for understanding mechanisms by which chronic stress may contribute to pro-inflammatory phenotypes.
Collapse
Affiliation(s)
| | - Dana H Bovbjerg
- Department of Psychology, University of Pittsburgh, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, United States.
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, United States.
| |
Collapse
|
66
|
Zhao Z, Li F, Ning J, Peng R, Shang J, Liu H, Shang M, Bao XQ, Zhang D. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF- κB pathway through microbiota-gut-brain axis. Acta Pharm Sin B 2021; 11:2859-2879. [PMID: 34589401 PMCID: PMC8463266 DOI: 10.1016/j.apsb.2021.03.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.
Collapse
Key Words
- ANOSIM, adonis and analysis of similarity
- BBB, blood–brain barrier
- CFU, colony-forming units
- CMC-Na, sodium carboxymethyl cellulose
- CNS, central nerve system
- ELISA, enzyme-linked immunosorbent assay
- FD4, FITC-dextran (MW: 4 kDa)
- FITC, fluorescein isothiocyanate
- FLZ
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Gastrointestinal dysfunction
- Hp, Helicobacter pylori
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Iba-1, ionized calcium-binding adapter molecule 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LBP, lipopolysaccharide binding protein
- LDA, linear discriminant analysis
- LPS, lipopolysaccharide
- MLNs, mesenteric lymph nodes
- Microbiota–gut–brain axis
- Neuroinflammation
- OTU, operational taxonomic unit
- PBS, phosphate-buffered saline
- PCoA, principal coordinate analysis
- PD, Parkinson's disease
- Parkinson's disease
- Rotenone mouse model
- SD, standard deviation
- SN, substantia nigra
- Systemic inflammation
- TEM, transmission electron microscopy
- TH, tyrosine hydroxylase
- TLR4, toll-like receptor 4
- TLR4/MyD88/NF-κB pathway
- TNF-α, tumor necrosis factor-α
- qPCR, quantitative polymerase chain reaction assay
- α-Syn, α-synuclein
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
67
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
68
|
Lin WC, Lee PL, Lu CH, Lin CP, Chou KH. Linking Stage-Specific Plasma Biomarkers to Gray Matter Atrophy in Parkinson Disease. AJNR Am J Neuroradiol 2021; 42:1444-1451. [PMID: 34045303 DOI: 10.3174/ajnr.a7171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/17/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The shortcomings of synucleinopathy-based Parkinson disease staging highlight the need for systematic clinicopathologic elucidation and biomarkers. In this study, we investigated associations of proteinopathy and inflammation markers with changes in gray matter volume that accompany Parkinson disease progression. MATERIALS AND METHODS We prospectively enrolled 42 patients with idiopathic Parkinson disease, subdivided into early-/late-stage groups and 27 healthy controls. Parkinson disease severity and participants' functional and cognitive performance were evaluated. Peripheral plasma α-synuclein, β-amyloid42, and tau were quantified with immunomagnetic reduction assays, and nuclear DNA by polymerase chain reaction, and regional gray matter volumes were determined by MR imaging. Statistical tests identified stage-specific biomarkers and gray matter volume patterns in the early-stage Parkinson disease, late-stage Parkinson disease, and control groups. Correlations between gray matter volume atrophy, plasma biomarkers, Parkinson disease severity, and cognitive performance were analyzed. RESULTS Patients with Parkinson disease had significantly elevated α-synuclein, tau, and β-amyloid42 levels compared with controls; nuclear DNA levels were similar in early-stage Parkinson disease and controls, but higher in late-stage Parkinson disease (all P < .01). We identified 3 stage-specific gray matter volume atrophy patterns: 1) control > early-stage Parkinson disease = late-stage Parkinson disease: right midfrontal, left lingual, and fusiform gyri, left hippocampus, and cerebellum; 2) control > early-stage Parkinson disease > late-stage Parkinson disease: precentral, postcentral, parahippocampal, left superior-temporal, right temporal, right superior-frontal, and left cingulate gyri, occipital lobe, and bilateral parts of the cerebellum; 3) control = early-stage Parkinson disease > late-stage Parkinson disease: left midfrontal, superior-frontal and temporal, amygdala, and posterior cingulate gyri, caudate nucleus, and putamen. We discovered stage-specific correlations among proteinopathy, inflammation makers, topographic gray matter volume patterns, and cognitive performance that accompanied Parkinson disease progression. CONCLUSIONS Identifying associations linking peripheral plasma biomarkers, gray matter volume, and clinical status in Parkinson disease may facilitate earlier diagnosis and improve prognostic accuracy.
Collapse
Affiliation(s)
- W-C Lin
- From the Department of Diagnostic Radiology (W.-C.L.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - P-L Lee
- Institute of Neuroscience (P.-L.L., C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
| | - C-H Lu
- Department of Neurology (C.-H.L.), Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - C-P Lin
- Institute of Neuroscience (P.-L.L., C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences (C.-P.L.), National Yang-Ming University, Taipei, Taiwan
- Brain Research Center (C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
| | - K-H Chou
- Institute of Neuroscience (P.-L.L., C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
- Brain Research Center (C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
69
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
70
|
Recording and manipulation of vagus nerve electrical activity in chronically instrumented unanesthetized near term fetal sheep. J Neurosci Methods 2021; 360:109257. [PMID: 34139266 DOI: 10.1016/j.jneumeth.2021.109257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli. This is due to the unique amenability of the unanesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation, and in vivo organ imaging. Recently, there has been growing interest in the pleiotropic effects of vagus nerve stimulation (VNS) on various organ systems such as innate immunity and inflammation, and metabolism. There is no approach to study this in utero and corresponding physiological understanding is scarce. NEW METHOD Based on our previous presentation of a stable chronically instrumented unanesthetized fetal sheep model, here we describe the surgical instrumentation procedure allowing successful implantation of a cervical uni- or bilateral VNS probe with or without vagotomy. RESULTS In a cohort of 68 animals, we present the changes in blood gas, metabolic, and inflammatory markers during the postoperative period. We detail the design of a VNS probe which also allows recording from the fetal nerve. We also present an example of fetal vagus electroneurogram (VENG) recorded from the VNS probe and an analytical approach to the data. COMPARISON WITH EXISTING METHODS This method represents the first implementation of fetal VENG/VNS in a large pregnant mammalian organism. CONCLUSIONS This study describes a new surgical procedure allowing to record and manipulate chronically fetal vagus nerve activity in an animal model of human pregnancy.
Collapse
|
71
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
72
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:ph14060514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
73
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021. [DOI: 10.3390/ph14060514
expr 938544256 + 801362328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
74
|
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, Meissner C. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514&set/a 947965394+957477086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug's pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients' drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior-both clinically relevant in psychiatry-that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
- Correspondence: ; Tel.: +49-511-532-3656
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany;
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Nussbaum-Str. 7, 80336 Munich, Germany;
| | - Gabriel Eckermann
- Department of Forensic Psychiatry and Psychotherapy, Hospital Kaufbeuren, Kemnater-Str. 16, 87600 Kaufbeuren, Germany;
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Flverly Francis
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Catharina Meissner
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| |
Collapse
|
75
|
Bandoni RL, Bricher Choque PN, Dellê H, de Moraes TL, Porter MHM, da Silva BD, Neves GA, Irigoyen MC, De Angelis K, Pavlov VA, Ulloa L, Consolim-Colombo FM. Cholinergic stimulation with pyridostigmine modulates a heart-spleen axis after acute myocardial infarction in spontaneous hypertensive rats. Sci Rep 2021; 11:9563. [PMID: 33953291 PMCID: PMC8099899 DOI: 10.1038/s41598-021-89104-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
The mechanisms regulating immune cells recruitment into the heart during healing after an acute myocardial infarction (AMI) have major clinical implications. We investigated whether cholinergic stimulation with pyridostigmine, a cholinesterase inhibitor, modulates heart and spleen immune responses and cardiac remodeling after AMI in spontaneous hypertensive rats (SHRs). Male adult SHRs underwent sham surgery or ligation of the left coronary artery and were randomly allocated to remain untreated or to pyridostigmine treatment (40 mg/kg once a day by gavage). Blood pressure and heart rate variability were determined, and echocardiography was performed at day six after MI. The heart and spleen were processed for immunohistochemistry cellular analyses (CD3+ and CD4+ lymphocytes, and CD68+ and CD206+ macrophages), and TNF levels were determined at day seven after MI. Pyridostigmine treatment increased the parasympathetic tone and T CD4+ lymphocytes in the myocardium, but lowered M1/M2 macrophage ratio towards an anti-inflammatory profile that was associated with decreased TNF levels in the heart and spleen. Treatment with this cholinergic agent improved heart remodeling manifested by lower ventricular diameters and better functional parameters. In summary, cholinergic stimulation by pyridostigmine enhances the parasympathetic tone and induces anti-inflammatory responses in the heart and spleen fostering cardiac recovery after AMI in SHRs.
Collapse
Affiliation(s)
- Robson Luiz Bandoni
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Pamela Nithzi Bricher Choque
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Humberto Dellê
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Tercio Lemos de Moraes
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Maria Helena Mattos Porter
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Bruno Durante da Silva
- grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| | - Gizele Alves Neves
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Maria-Claudia Irigoyen
- grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| | - Kátia De Angelis
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil ,grid.411249.b0000 0001 0514 7202Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Valentin A. Pavlov
- grid.416477.70000 0001 2168 3646Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Luis Ulloa
- grid.189509.c0000000100241216Department of Anesthesiology, Duke University Medical Center, Durham, NC USA
| | - Fernanda Marciano Consolim-Colombo
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil ,grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
76
|
Bricher Choque PN, Vieira RP, Ulloa L, Grabulosa C, Irigoyen MC, De Angelis K, Ligeiro De Oliveira AP, Tracey KJ, Pavlov VA, Consolim-Colombo FM. The Cholinergic Drug Pyridostigmine Alleviates Inflammation During LPS-Induced Acute Respiratory Distress Syndrome. Front Pharmacol 2021; 12:624895. [PMID: 34017249 PMCID: PMC8129580 DOI: 10.3389/fphar.2021.624895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness complication that is associated with high mortality. ARDS is documented in severe cases of COVID-19. No effective pharmacological treatments for ARDS are currently available. Dysfunctional immune responses and pulmonary and systemic inflammation are characteristic features of ARDS pathogenesis. Recent advances in our understanding of the regulation of inflammation point to an important role of the vagus-nerve-mediated inflammatory reflex and neural cholinergic signaling. We examined whether pharmacological cholinergic activation using a clinically approved (for myasthenia gravis) cholinergic drug, the acetylcholinesterase inhibitor pyridostigmine alters pulmonary and systemic inflammation in mice with lipopolysaccharide (LPS)-induced ARDS. Male C57Bl/6 mice received one intratracheal instillation of LPS or were sham manipulated (control). Both groups were treated with either vehicle or pyridostigmine (1.5 mg/kg twice daily, 3 mg/day) administered by oral gavage starting at 1 h post-LPS and euthanized 24 h after LPS administration. Other groups were either sham manipulated or received LPS for 3 days and were treated with vehicle or pyridostigmine and euthanized at 72 h. Pyridostigmine treatment reduced the increased total number of cells and neutrophils in the bronchoalveolar lavage fluid (BALF) in mice with ARDS at 24 and 72 h. Pyridostigmine also reduced the number of macrophages and lymphocytes at 72 h. In addition, pyridostigmine suppressed the levels of TNF, IL-1β, IL-6, and IFN-γ in BALF and plasma at 24 and 72 h. However, this cholinergic agent did not significantly altered BALF and plasma levels of the anti-inflammatory cytokine IL-10. Neither LPS nor pyridostigmine affected BALF IFN-γ and IL-10 levels at 24 h post-LPS. In conclusion, treatments with the cholinergic agent pyridostigmine ameliorate pulmonary and systemic inflammatory responses in mice with endotoxin-induced ARDS. Considering that pyridostigmine is a clinically approved drug, these findings are of substantial interest for implementing pyridostigmine in therapeutic strategies for ARDS.
Collapse
Affiliation(s)
- Pamela Nithzi Bricher Choque
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Rodolfo P. Vieira
- Post-graduation Program in Bioengineering and in Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
- Federal University of São Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, São Paulo, Brazil
- Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Caren Grabulosa
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Maria Claudia Irigoyen
- Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, Brazil
| | - Katia De Angelis
- Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Paula Ligeiro De Oliveira
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim-Colombo
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
77
|
Dasari TW, Csipo T, Amil F, Lipecz A, Fulop GA, Jiang Y, Samannan R, Johnston S, Zhao YD, Silva-Palacios F, Stavrakis S, Yabluchanskiy A, Po SS. Effects of Low-Level Tragus Stimulation on Endothelial Function in Heart Failure With Reduced Ejection Fraction. J Card Fail 2021; 27:568-576. [PMID: 33387632 PMCID: PMC9473302 DOI: 10.1016/j.cardfail.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Autonomic dysregulation in heart failure with reduced ejection fraction plays a major role in endothelial dysfunction. Low-level tragus stimulation (LLTS) is a novel, noninvasive method of autonomic modulation. METHODS AND RESULTS We enrolled 50 patients with heart failure with reduced ejection fraction (left ventricular ejection fraction of ≤40%) in a randomized, double-blinded, crossover study. On day 1, patients underwent 60 minutes of LLTS with a transcutaneous stimulator (20 Hz, 200 μs pulse width) or sham (ear lobule) stimulation. Macrovascular function was assessed using flow-mediated dilatation in the brachial artery and cutaneous microcirculation with laser speckle contrast imaging in the hand and nail bed. On day 2, patients were crossed over to the other study arm and underwent sham or LLTS; vascular tests were repeated before and after stimulation. Compared with the sham, LLTS improved flow-mediated dilatation by increasing the percent change in the brachial artery diameter (from 5.0 to 7.5, LLTS on day 1, P = .02; and from 4.9 to 7.1, LLTS on day 2, P = .003), compared with no significant change in the sham group (from 4.6 to 4.7, P = .84 on day 1; and from 5.6 to 5.9 on day 2, P = .65). Cutaneous microcirculation in the hand showed no improvement and perfusion of the nail bed showed a trend toward improvement. CONCLUSIONS Our study demonstrated the beneficial effects of acute neuromodulation on macrovascular function. Larger studies to validate these findings and understand mechanistic links are warranted.
Collapse
Affiliation(s)
- Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine; Heart Rhythm Institute.
| | - Tamas Csipo
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | - Faris Amil
- Cardiovascular Section, Department of Internal Medicine
| | - Agnes Lipecz
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | - Gabor A Fulop
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | | | | | - Sarah Johnston
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Stavros Stavrakis
- Cardiovascular Section, Department of Internal Medicine; Heart Rhythm Institute
| | - Andriy Yabluchanskiy
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine; Heart Rhythm Institute
| |
Collapse
|
78
|
Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:642960. [PMID: 33928103 PMCID: PMC8076522 DOI: 10.3389/fmed.2021.642960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
79
|
TRPV2 interacts with actin and reorganizes submembranous actin cytoskeleton. Biosci Rep 2021; 40:226528. [PMID: 32985655 PMCID: PMC7560523 DOI: 10.1042/bsr20200118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022] Open
Abstract
The understanding of molecules and their role in neurite initiation and/or extension is not only helpful to prevent different neurodegenerative diseases but also can be important in neuronal damage repair. In this work, we explored the role of transient receptor potential vanilloid 2 (TRPV2), a non-selective cation channel in the context of neurite functions. We confirm that functional TRPV2 is endogenously present in F11 cell line, a model system mimicking peripheral neuron. In F11 cells, TRPV2 localizes in specific subcellular regions enriched with filamentous actin, such as in growth cone, filopodia, lamellipodia and in neurites. TRPV2 regulates actin cytoskeleton and also interacts with soluble actin. Ectopic expression of TRPV2-GFP in F11 cell induces more primary and secondary neurites, confirming its role in neurite initiation, extension and branching events. TRPV2-mediated neuritogenesis is dependent on wildtype TRPV2 as cells expressing TRPV2 mutants reveal no neuritogenesis. These findings are relevant to understand the sprouting of new neurites, neuroregeneration and neuronal plasticity at the cellular, subcellular and molecular levels. Such understanding may have further implications in neurodegeneration and peripheral neuropathy.
Collapse
|
80
|
Ardinata D, Zain-Hamid R, Roesyanto-Mahadi ID, Mihardja H. Interleukin-31 Serum And Pruritus Dimension After Acupuncture Treatment In Hemodialysis Patients: A Randomized Clinical Trial. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Interleukin (IL)-31 serum levels were significantly higher in hemodialysis patients with pruritus, whereas acupuncture in LI11 was shown to improve symptoms of pruritus. However, there is limited information that IL-31 serum levels that correlate with decreased dimensions of the pruritus after acupuncture in LI11 in a hemodialysis patient.
AIM: The aim of the study was to demonstrate the impact of acupuncture in LI11 and IL-31 serum level and its correlation with dimensions of the pruritus in hemodialysis patients.
METHODS: A randomized clinical trial has been carried out from August 2019 to December 2019 at H. Adam Malik General Hospital, Medan, Indonesia. Sixty patients underwent hemodialysis who were randomly allocated to two groups, one group got acupuncture in Quchi LI11 (intervention group), and the other group got a placebo (control group). IL-31 serum levels and pruritus were measured before and after 6 weeks of acupuncture in both groups.
RESULTS: Acupuncture did not significantly reduce IL-31 (p = 0.931) and decreased dimensions: Degree, duration, disability, and distribution of the pruritus between the intervention group and the control group after 6 weeks of acupuncture in LI11. It can be shown that there is no significant correlation between IL-31 serum levels and dimensions of the pruritus.
CONCLUSION: This study demonstrates the effect of acupuncture on reducing dimensions of the pruritus not related to IL-31 serum levels. Identifying the action mechanism of acupuncture to minimize pruritus considerably enhances knowledge of the impacts of acupuncture on reducing pruritus in hemodialysis patients.
Collapse
|
81
|
Banerjee A, Pradhan LK, Sahoo PK, Jena KK, Chauhan NR, Chauhan S, Das SK. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Arch Microbiol 2021; 203:2895-2910. [PMID: 33763767 DOI: 10.1007/s00203-021-02276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.
Collapse
Affiliation(s)
- Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Kautilya Kumar Jena
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Nishant Ranjan Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
82
|
Lorente-Picón M, Laguna A. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules 2021; 11:433. [PMID: 33804226 PMCID: PMC7998286 DOI: 10.3390/biom11030433] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut-brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
Collapse
Affiliation(s)
- Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
83
|
Sangaleti CT, Katayama KY, De Angelis K, Lemos de Moraes T, Araújo AA, Lopes HF, Camacho C, Bortolotto LA, Michelini LC, Irigoyen MC, Olofsson PS, Barnaby DP, Tracey KJ, Pavlov VA, Consolim Colombo FM. The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Front Immunol 2021; 12:613979. [PMID: 33776997 PMCID: PMC7991724 DOI: 10.3389/fimmu.2021.613979] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The metabolic syndrome (MetS) is an obesity-associated disorder of pandemic proportions and limited treatment options. Oxidative stress, low-grade inflammation and altered neural autonomic regulation, are important components and drivers of pathogenesis. Galantamine, an acetylcholinesterase inhibitor and a cholinergic drug that is clinically-approved (for Alzheimer's disease) has been implicated in neural cholinergic regulation of inflammation in several conditions characterized with immune and metabolic derangements. Here we examined the effects of galantamine on oxidative stress in parallel with inflammatory and cardio-metabolic parameters in subjects with MetS. Trial Design and Methods: The effects of galantamine treatment, 8 mg daily for 4 weeks or placebo, followed by 16 mg daily for 8 weeks or placebo were studied in randomly assigned subjects with MetS (n = 22 per group) of both genders. Oxidative stress, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities, lipid and protein peroxidation, and nitrite levels were analyzed before and at the end of the treatment. In addition, plasma cytokine and adipokine levels, insulin resistance (HOMA-IR) and other relevant cardio-metabolic indices were analyzed. Autonomic regulation was also examined by heart rate variability (HRV) before treatment, and at every 4 weeks of treatment. Results: Galantamine treatment significantly increased antioxidant enzyme activities, including SOD [+1.65 USOD/mg protein, [95% CI 0.39-2.92], P = 0.004] and CAT [+0.93 nmol/mg, [95% CI 0.34-1.51], P = 0.01], decreased lipid peroxidation [thiobarbituric acid reactive substances [log scale 0.72 pmol/mg, [95% CI 0.46-1.07], P = 0.05], and systemic nitrite levels [log scale 0.83 μmol/mg protein, [95% CI 0.57-1.20], P = 0.04] compared with placebo. In addition, galantamine significantly alleviated the inflammatory state and insulin resistance, and decreased the low frequency/high frequency ratio of HRV, following 8 and 12 weeks of drug treatment. Conclusion: Low-dose galantamine alleviates oxidative stress, alongside beneficial anti-inflammatory, and metabolic effects, and modulates neural autonomic regulation in subjects with MetS. These findings are of considerable interest for further studies with the cholinergic drug galantamine to ameliorate MetS.
Collapse
Affiliation(s)
- Carine Teles Sangaleti
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Postgraduate Program in Health Science, Midwestern State University (UNICENTRO), Paraná, Brazil
| | - Keyla Yukari Katayama
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Kátia De Angelis
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tércio Lemos de Moraes
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Heno F. Lopes
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Cleber Camacho
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Lisete Compagno Michelini
- Biomedical Sciences Institute Department of Physiology and Biophysics, University of São Paulo (USP), São Paulo, Brazil
| | | | - Peder S. Olofsson
- Laboratory of Immunobiology, Department of Medicine, Center for Bioelectronic Medicine, Karolinska Institutet, Stockholm, Sweden
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Douglas P. Barnaby
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim Colombo
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| |
Collapse
|
84
|
Gaidhani N, Tucci FC, Kem WR, Beaton G, Uteshev VV. Therapeutic efficacy of α7 ligands after acute ischaemic stroke is linked to conductive states of α7 nicotinic ACh receptors. Br J Pharmacol 2021; 178:1684-1704. [PMID: 33496352 DOI: 10.1111/bph.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting α7 nicotinic ACh receptors (nAChRs) in neuroinflammatory disorders including acute ischaemic stroke holds significant therapeutic promise. However, therapeutically relevant signalling mechanisms remain unidentified. Activation of neuronal α7 nAChRs triggers ionotropic signalling, but there is limited evidence for it in immunoglial tissues. The α7 ligands which are effective in reducing acute ischaemic stroke damage promote α7 ionotropic activity, suggesting a link between their therapeutic effects for treating acute ischaemic stroke and activation of α7 conductive states. EXPERIMENTAL APPROACH This hypothesis was tested using a transient middle cerebral artery occlusion (MCAO) model of acute ischaemic stroke, NS6740, a known selective non-ionotropic agonist of α7 nAChRs and 4OH-GTS-21, a partial α7 agonist. NS6740-like ligands exhibiting low efficacy/potency for ionotropic activity will be referred to as non-ionotropic agonists or "metagonists". KEY RESULTS 4OH-GTS-21, used as a positive control, significantly reduced neurological deficits and brain injury after MCAO as compared to vehicle and NS6740. By contrast, NS6740 was ineffective in identical assays and reversed the effects of 4OH-GTS-21 when these compounds were co-applied. Electrophysiological recordings from acute hippocampal slices obtained from NS6740-injected animals demonstrated its remarkable brain availability and protracted effects on α7 nAChRs as evidenced by sustained (>8 h) alterations in α7 ionotropic responsiveness. CONCLUSION AND IMPLICATIONS These results suggest that α7 ionotropic activity may be obligatory for therapeutic efficacy of α7 ligands after acute ischaemic stroke yet, highlight the potential for selective application of α7 ligands to disease states based on their mode of receptor activation.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Fabio C Tucci
- Epigen Biosciences, Inc., San Diego, California, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Graham Beaton
- Epigen Biosciences, Inc., San Diego, California, USA
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
85
|
Zhang L, Wu Z, Tong Z, Yao Q, Wang Z, Li W. Vagus Nerve Stimulation Decreases Pancreatitis Severity in Mice. Front Immunol 2021; 11:595957. [PMID: 33519809 PMCID: PMC7840568 DOI: 10.3389/fimmu.2020.595957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Vagus nerve stimulation (VNS) is effective in reducing inflammation in various diseases, such as rheumatoid arthritis, colitis and acute kidney injury. The anti-inflammatory effect of vagus nerve in these diseases necessitates the interactions of neural activation and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. In this study, we aimed to investigate the effect of VNS on severity in experimental acute pancreatitis (AP). Methods Two independent AP models were used, which induced in ICR mice with caerulein or pancreatic duct ligation (PDL). Thirty minutes after modeling, the left cervical carotid sheath containing the vagus nerve was electrically stimulated for 2 min. Plasma lipase and amylase activities, TNF-α levels and pancreas histologic damage were evaluated. In caerulein mice, the percentages of α7nAChR+ macrophage in pancreas and spleen were assessed by flow cytometry. Furthermore, splenectomy and adoptive transfer of VNS-conditioned α7nAChR splenocytes were performed in caerulein mice to evaluate the role of spleen in the protective effect of VNS. Results VNS reduced plasma lipase and amylase activities, blunted the concentrations of TNF-α and protected against pancreas histologic damage in two AP models. Survival rates were improved in the PDL model after VNS. In caerulein AP mice, VNS increased the percentages of α7nAChR+ macrophages in pancreas and spleen. Adoptive transfer of VNS-treated α7nAChR splenocytes provided protection against pancreatitis in recipient mice. However, splenectomy did not abolish the protective effect of VNS. Conclusions VNS reduces disease severity and attenuates inflammation in AP mice. This effect is independent of spleen and is probably related to α7nAChR on macrophage.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yao
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
86
|
Kaur G, Behl T, Bungau S, Kumar A, Uddin MS, Mehta V, Zengin G, Mathew B, Shah MA, Arora S. Dysregulation of the Gut-Brain Axis, Dysbiosis and Influence of Numerous Factors on Gut Microbiota Associated Parkinson's Disease. Curr Neuropharmacol 2021; 19:233-247. [PMID: 32504503 PMCID: PMC8033978 DOI: 10.2174/1570159x18666200606233050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) has been one of the substantial social, medical concerns and, burdens of the present time. PD is a gradually devastating neurodegenerative disorder of the neurological function marked with α-synucleinopathy affecting numerous regions of the brain-gut axis, as well as the central, enteric, and autonomic nervous system. Its etiology is a widely disputed topic. OBJECTIVE This review emphasizes to find out the correlation among the microbial composition and the observable disturbances in the metabolites of the microbial species and its impact on the immune response, which may have a concrete implication on the occurrence, persistence and, pathophysiology of PD via the gut-brain axis. METHODS An in-depth research and the database was developed from the available peer-reviewed articles to date (March 2020) utilizing numerous search engines like PubMed, MEDLINE and, other internet sources. RESULTS Progressively increasing shreds of evidence have proved the fact that dysbiosis in the gut microbiome plays a central role in many neurological disorders, such as PD. Indeed, a disordered microbiome-gut-brain axis in PD could be focused on gastrointestinal afflictions that manifest primarily several years prior to the diagnosis, authenticating a concept wherein the pathological pathway progresses from the intestine reaching the brain. CONCLUSION The microbiota greatly affects the bidirectional interaction between the brain and the gut via synchronized neurological, immunological, and neuroendocrine mechanisms. It can be concluded that a multitude of factors discussed in this review steadily induce the onset of dysbacteriosis that may exacerbate the etiologic mechanism of Parkinson's disease.
Collapse
Affiliation(s)
| | - Tapan Behl
- Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; Tel: +91-8527517931;, E-mails: ;
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
88
|
Horkowitz AP, Schwartz AV, Alvarez CA, Herrera EB, Thoman ML, Chatfield DA, Osborn KG, Feuer R, George UZ, Phillips JA. Acetylcholine Regulates Pulmonary Pathology During Viral Infection and Recovery. Immunotargets Ther 2020; 9:333-350. [PMID: 33365281 PMCID: PMC7751717 DOI: 10.2147/itt.s279228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction This study was designed to explore the role of acetylcholine (ACh) in pulmonary viral infection and recovery. Inflammatory control is critical to recovery from respiratory viral infection. ACh secreted from non-neuronal sources, including lymphocytes, plays an important, albeit underappreciated, role in regulating immune-mediated inflammation. Methods ACh and lymphocyte cholinergic status in the lungs were measured over the course of influenza infection and recovery. The role of ACh was examined by inhibiting ACh synthesis in vivo. Pulmonary inflammation was monitored by Iba1 immunofluorescence, using a novel automated algorithm. Tissue repair was monitored histologically. Results Pulmonary ACh remained constant through the early stage of infection and increased during the peak of the acquired immune response. As the concentration of ACh increased, cholinergic lymphocytes appeared in the BAL and lungs. Cholinergic capacity was found primarily in CD4 T cells, but also in B cells and CD8 T cells. The cholinergic CD4+ T cells bound to influenza-specific tetramers and were retained in the resident memory regions of the lung up to 2 months after infection. Histologically, cholinergic lymphocytes were found in direct physical contact with activated macrophages throughout the lung. Inflammation was monitored by ionized calcium-binding adapter molecule 1 (Iba1) immunofluorescence, using a novel automated algorithm. When ACh production was inhibited, mice exhibited increased tissue inflammation and delayed recovery. Histologic examination revealed abnormal tissue repair when ACh was limited. Conclusion These findings point to a previously unrecognized role for ACh in the transition from active immunity to recovery and pulmonary repair following respiratory viral infection.
Collapse
Affiliation(s)
- Alexander P Horkowitz
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Ashley V Schwartz
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Carlos A Alvarez
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Edgar B Herrera
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Marilyn L Thoman
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Dale A Chatfield
- Department of Chemistry, San Diego State University, San Diego, California, USA
| | - Kent G Osborn
- Office of Animal Research, University of California San Diego, San Diego, California, USA
| | - Ralph Feuer
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Joy A Phillips
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| |
Collapse
|
89
|
Gaidhani N, Kem WR, Uteshev VV. Spleen is not required for therapeutic effects of 4OH-GTS-21, a selective α7 nAChR agonist, in the sub-acute phase of ischemic stroke in rats. Brain Res 2020; 1751:147196. [PMID: 33159972 DOI: 10.1016/j.brainres.2020.147196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/15/2022]
Abstract
Acute ischemic stroke (AIS) causes both central and peripheral inflammation, while activation of α7 nicotinic acetylcholine receptors (nAChRs) provides both central and peripheral anti-inflammatory and anti-apoptotic effects. Here, we provide evidence that 4OH-GTS-21, a selective α7 agonist, produces its therapeutic effects via primarily central sites of action because 4OH-GTS-21 was found equally effective in splenectomized and non-spenectomized rats in the sub-acute phase of ischemic stroke (≤1 week). However, the spleen may boost the therapeutic efficacy of 4OH-GTS-21 in certain behavioral tasks as our data also indicated. In our tests, AIS was modeled by transient middle cerebral artery occlusion (tMCAO). Splenectomy was done 2 weeks before tMCAO. We determined that: 1) Daily 4OH-GTS-21 treatments for 7 days after tMCAO significantly reduced neurological deficits and brain injury in both splenectomized and non-spelenectomized rats demonstrating that the spleen is not required for therapeutic benefits of 4OH-GTS-21; 2) The effects of 4OH-GTS-21 in the adhesive sticker removal test were significantly weaker in splenectomized animals suggesting that the spleen boosts the efficacy of 4OH-GTS-21 in the first week after tMCAO; and 3) Ischemic brain injury was not significantly affected by splenectomy in both vehicle-treated and 4OH-GTS-21-treated animals. These data support the hypothesis that the therapeutic efficacy of sub-chronic (≤1 week) 4OH-GTS-21 primarily originates from central sites of action. These results validate brain availability as a critical factor for developing novel α7 ligands for AIS.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
90
|
Ylikoski J, Markkanen M. COVID-19 deaths can be reduced - simply and safely! Med Gas Res 2020; 10:139. [PMID: 33004713 PMCID: PMC8086625 DOI: 10.4103/2045-9912.288477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Jukka Ylikoski
- Department of Otolaryngology-Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
91
|
Ylikoski J, Markkanen M, Mäkitie A. Pathophysiology of the COVID-19 - entry to the CNS through the nose. Acta Otolaryngol 2020; 140:886-889. [PMID: 32597276 DOI: 10.1080/00016489.2020.1773533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jukka Ylikoski
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
92
|
Binning W, Hogan-Cann AE, Yae Sakae D, Maksoud M, Ostapchenko V, Al-Onaizi M, Matovic S, Lu WY, Prado MAM, Inoue W, Prado VF. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain Behav Immun 2020; 88:791-801. [PMID: 32434046 DOI: 10.1016/j.bbi.2020.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Microglia express muscarinic G protein-coupled receptors (GPCRs) that sense cholinergic activity and are activated by acetylcholine to potentially regulate microglial functions. Knowledge about how distinct types of muscarinic GPCR signaling regulate microglia function in vivo is still poor, partly due to the fact that some of these receptors are also present in astrocytes and neurons. We generated mice expressing the hM3Dq Designer Receptor Exclusively Activated by Designer Drugs (DREADD) selectively in microglia to investigate the role of muscarinic M3Gq-linked signaling. We show that activation of hM3Dq using clozapine N-oxide (CNO) elevated intracellular calcium levels and increased phagocytosis of FluoSpheres by microglia in vitro. Interestingly, whereas acute treatment with CNO increased synthesis of cytokine mRNA, chronic treatment attenuated LPS-induced cytokine mRNA changes in the brain. No effect of CNO on cytokine expression was observed in DREADD-negative mice. Interestingly, CNO activation of M3Dq in microglia was able to attenuate LPS-mediated decrease in social interactions. These results suggest that chronic activation of M3 muscarinic receptors (the hM3Dq progenitor) in microglia, and potentially other Gq-coupled GPCRs, can trigger an inflammatory-like response that preconditions microglia to decrease their response to further immunological challenges. Our results indicate that hM3Dq can be a useful tool to modulate neuroinflammation and study microglial immunological memory in vivo, which may be applicable for manipulations of neuroinflammation in neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- William Binning
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Aja E Hogan-Cann
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Diana Yae Sakae
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Matthew Maksoud
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Valeriy Ostapchenko
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Mohammed Al-Onaizi
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Sara Matovic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Wei-Yang Lu
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Marco A M Prado
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | - Wataru Inoue
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | - Vania F Prado
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| |
Collapse
|
93
|
Yang H, Yang H, Wang L, Shi H, Liu B, Lin X, Chang Q, Chen JDZ, Duan Z. Transcutaneous Neuromodulation improved inflammation and sympathovagal ratio in patients with primary biliary ssscholangitis and inadequate response to Ursodeoxycholic acid: a pilot study. BMC Complement Med Ther 2020; 20:242. [PMID: 32738911 PMCID: PMC7395375 DOI: 10.1186/s12906-020-03036-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background At present, ursodeoxycholic acid (UDCA) is internationally recognized as a therapeutic drug in clinic. However, about 40% Primary Biliary Cholangitis (PBC) patients are poor responders to UDCA. It has been demonstrated that Transcutaneous Neuromodulation (TN) can be involved in gut motility, metabolism of bile acids, immune inflammation, and autonomic nerve. Therefore, this study aimed to explore the effect of TN combined with UDCA on PBC and related mechanisms. Methods According to inclusion and exclusion criteria, 10 healthy volunteers and 15 PBC patients were recruited to control group and TN group, respectively. PBC patients were alternately but blindly assigned to group A (TN combined with UDCA) and group B (sham-TN combined with UDCA), and a crossover design was used. The TN treatment was performed via the posterior tibial nerve and acupoint ST36 (Zusanli) 1 h twice/day for 2 weeks. T test and nonparametric test were used to analyze the data. Results 1. TN combined with UDCA improved the liver function of PBC patients shown by a significant decrease of alkaline phosphatase and gamma-glutamyltransferase (γ-GT) (P < 0.05). 2. The treatment also decreased serum IL-6 levels (P < 0.05), but not the level of Tumor Necrosis Factor-α, IL-1β or IL-10. 3. TN combined with UDCA regulated autonomic function, enhanced vagal activity, and decreased the sympathovagal ratio assessed by the spectral analysis of heart rate variability (P < 0.05). 4. There was no change in 13 bile acids in serum or stool after TN or sham-TN. Conclusions TN cssombined with UDCA can significantly improve the liver function of PBC patients. It is possibly via the cholinergic anti-inflammatory pathway. TN might be a new non-drug therapy for PBC. Further studies are required. Trial registration The study protocol was registered in Chinese Clinical Trial Registry (number ChiCTR1800014633) on 25 January 2018.
Collapse
Affiliation(s)
- Hui Yang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Wu Hou District, Chengdu, 610041, China
| | - Lixia Wang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Honggang Shi
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Bojia Liu
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Xue Lin
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Qingyong Chang
- The Second Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning, China.
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, 21224, USA.
| | - Zhijun Duan
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
94
|
Gerdle B, Wåhlén K, Ghafouri B. Plasma protein patterns are strongly correlated with pressure pain thresholds in women with chronic widespread pain and in healthy controls-an exploratory case-control study. Medicine (Baltimore) 2020; 99:e20497. [PMID: 32481465 DOI: 10.1097/md.0000000000020497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic widespread pain (CWP) is a complex pain condition characterized by generalized musculoskeletal pain and often associated with other symptoms. An important clinical feature is widespread increased pain sensitivity such as lowered pain thresholds for mechanical stimuli (pressure pain thresholds [PPT]). There is a growing interest in investigating the activated neurobiological mechanisms in CWP, which includes fibromyalgia. In CWP, strong significant correlations have been found between muscle protein patterns and PPT. This explorative proteomic study investigates the multivariate correlation pattern between plasma proteins and PPT in CWP and in healthy controls (CON). In addition, this study analyses whether the important proteins for PPT differ between the 2 groups.Using 2-dimensional gel electrophoresis, we analyzed the plasma proteome of the CWP (n = 15) and the CON (n = 23) and proteins were identified using mass spectrometry. For both the CWP and the CON, the associations between the identified proteins and PPT were analyzed using orthogonal partial least square in 2 steps.Significant associations between certain plasma proteins and PPT existed both in CWP (R = 0.95; P = .006) and in CON (R = 0.89; P < .001). For both groups of subjects, we found several proteins involved in PPT that reflect different biological processes. The plasma proteins as well as the biological processes involved in PPT differed markedly between the 2 groups of subjects.This study suggests that plasma protein patterns are associated with pain thresholds in CWP. Using the plasma proteome profile of CWP to study potential biomarker candidates could provide a snapshot of ongoing systemic mechanisms in CWP.
Collapse
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
95
|
Amorim MR, de Deus JL, Pereira CA, da Silva LEV, Borges GS, Ferreira NS, Batalhão ME, Antunes-Rodrigues J, Carnio EC, Tostes RC, Branco LGS. Baroreceptor denervation reduces inflammatory status but worsens cardiovascular collapse during systemic inflammation. Sci Rep 2020; 10:6990. [PMID: 32332859 PMCID: PMC7181760 DOI: 10.1038/s41598-020-63949-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Beyond the regulation of cardiovascular function, baroreceptor afferents play polymodal roles in health and disease. Sepsis is a life-threatening condition characterized by systemic inflammation (SI) and hemodynamic dysfunction. We hypothesized that baroreceptor denervation worsens lipopolysaccharide (LPS) induced-hemodynamic collapse and SI in conscious rats. We combined: (a) hemodynamic and thermoregulatory recordings after LPS administration at a septic-like non-lethal dose (b) analysis of the cardiovascular complexity, (c) evaluation of vascular function in mesenteric resistance vessels, and (d) measurements of inflammatory cytokines (plasma and spleen). LPS-induced drop in blood pressure was higher in sino-aortic denervated (SAD) rats. LPS-induced hemodynamic collapse was associated with SAD-dependent autonomic disbalance. LPS-induced vascular dysfunction was not affected by SAD. Surprisingly, SAD blunted LPS-induced surges of plasma and spleen cytokines. These data indicate that baroreceptor afferents are key to alleviate LPS-induced hemodynamic collapse, affecting the autonomic control of cardiovascular function, without affecting resistance blood vessels. Moreover, baroreflex modulation of the LPS-induced SI and hemodynamic collapse are not dependent of each other given that baroreceptor denervation worsened hypotension and reduced SI.
Collapse
Affiliation(s)
- Mateus R Amorim
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, São Paulo, Brazil.
| | - Júnia L de Deus
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz E V da Silva
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela S Borges
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathanne S Ferreira
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo E Batalhão
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evelin C Carnio
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rita C Tostes
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, São Paulo, Brazil. .,Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
96
|
Molecular Aspects of Regional Pain Syndrome. Pain Res Manag 2020; 2020:7697214. [PMID: 32351641 PMCID: PMC7171689 DOI: 10.1155/2020/7697214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
The purpose of this review is to summarize the pathophysiology of complex regional pain syndrome (CRPS), the underlying molecular mechanisms, and potential treatment options for its management. CRPS is a multifactorial pain condition. CRPS is characterized by prolonged or excessive pain and changes in skin color and temperature, and/or swelling in the affected area, and is generally caused by stimuli that lead to tissue damage. An inflammatory response involving various cytokines and autoantibodies is generated in response to acute trauma/stress. Chronic phase pathophysiology is more complex, involving the central and peripheral nervous systems. Various genetic factors involved in the chronicity of pain have been identified in CRPS patients. As with other diseases of complex pathology, CRPS is difficult to treat and no single treatment regimen is the same for two patients. Stimulation of the vagus nerve is a promising technique being tested for different gastrointestinal and inflammatory diseases. CRPS is more frequent in individuals of 61–70 years of age with a female to male ratio of 3 : 1. Menopause, migraine, osteoporosis, and asthma all represent risk factors for CRPS and in smokers the prognosis appears to be more severe. The pathophysiological mechanisms underlying CRPS involve both inflammatory and neurological pathways. Understanding the molecular basis of CRPS is important for its diagnosis, management, and treatment. For instance, vagal nerve stimulation might have the potential for treating CRPS through the cholinergic anti-inflammatory pathway.
Collapse
|
97
|
Ma X, Asif H, Dai L, He Y, Zheng W, Wang D, Ren H, Tang J, Li C, Jin K, Li Z, Chen X. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J Psychiatr Res 2020; 123:136-144. [PMID: 32065949 DOI: 10.1016/j.jpsychires.2020.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome plays an important role in the basic neurodevelopmental processes of the central nervous system and has been implicated in several neuropsychiatric disorders. However, the connection between the gut microbiome and the underlying pathogenesis of schizophrenia (SCZ) is poorly defined. Here we analyzed the faecal samples from 40 first-episode drug-naïve SCZ (FSCZ) patients, 85 chronically antipsychotic-treated SCZ (TSCZ) patients and 69 healthy controls (HCs) using 16S rRNA gene sequence to determine whether the alterations of the gut microbiome were associated with SCZ or antipsychotic treatment. In addition, we acquired the T1-weighted brain imaging data by using structural magnetic resonance imaging to test whether microbial composition correlated with structural brain signatures. Our analyses revealed low microbiome alpha-diversity indexes in TSCZ patients but not in FSCZ patients as compared to HCs. Importantly, both FSCZ and TSCZ patients had distinct changes in gut microbial composition at certain taxa including Christensenellaceae, Enterobacteriaceae, Pasteurellaceae, Turicibacteraceae at the family level and Escherichia at genus level as compared to HCs. We also found significant disturbances of gut microbial composition in TSCZ versus FSCZ patients (eg. Enterococcaceae and Lactobacillaceae). Most interestingly, our exploratory analyses found specific SCZ-associated microbiota to be correlated with the right middle frontal gyrus (rMFG) volume which was aberrant in SCZ patients. Our findings extend prior work and suggest a possible link between the gut microbiome and brain structure which may be implicated in the pathology of SCZ.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huma Asif
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, USA
| | - Lulin Dai
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Japan
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenxiao Zheng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
98
|
MPTP-Induced Impairment of Cardiovascular Function. Neurotox Res 2020; 38:27-37. [PMID: 32198706 DOI: 10.1007/s12640-020-00182-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpC). MPTP is widely used to generate murine PD model. In addition to classical motor disorders, PD patients usually have non-motor symptoms related to autonomic impairment, which precedes decades before the motor dysfunction. This study's objective is to examine the effects of MPTP on noradrenergic neurons in the hindbrain, thereby on the cardiovascular function in mice. Adult mice received 10 mg/kg/day of MPTP (4 consecutive days) to generate PD model. Systolic blood pressure was measured by tail cuff system in conscious mice, and baroreflex sensitivity was evaluated by heart rate alteration in response to a transient increase or decrease in blood pressure induced by intravenous infusion of phenylalanine (PE) or sodium nitroprusside (SNP) in anesthetized condition, respectively. Baseline heart rate and heart rate variability were analyzed in both sham and MPTP-treated mice. Dopamine, norepinephrine, and related metabolites in the plasma and brain tissues including SNpC, locus coeruleus (LC), rostroventrolateral medulla (RVLM), and nucleus tractus solitarii (NTS) were measured by liquid chromatography-mass spectrometry (LC-MS). Tyrosine hydroxylase-positive (TH+) neurons in above nuclei were quantified by immunoreactivities. We found that in addition to the loss of TH+ neurons in SNpC, MPTP treatment induced a dramatic reduction of TH+ cell counts in the LC, RVLM, and NTS. These are associated with significant decreases of dopamine, norepinephrine, and epinephrine in above nuclei. Meanwhile, MPTP induced a lasting effect of baroreflex desensitization, tachycardia, and decreased heart rate variability compared to the sham mice. Notably, MPTP treatment elevated sympathetic outflow and suppressed parasympathetic tonicity according to the heart rate power spectrum analysis. Our results indicate that the loss of TH+ neurons in the brainstem by MPTP treatment led to impaired autonomic cardiovascular function. These results suggest that MPTP treatment can be used to study the autonomic dysfunction in murine model.
Collapse
|
99
|
Pavlov VA, Chavan SS, Tracey KJ. Bioelectronic Medicine: From Preclinical Studies on the Inflammatory Reflex to New Approaches in Disease Diagnosis and Treatment. Cold Spring Harb Perspect Med 2020; 10:a034140. [PMID: 31138538 PMCID: PMC7050582 DOI: 10.1101/cshperspect.a034140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine is an evolving field in which new insights into the regulatory role of the nervous system and new developments in bioelectronic technology result in novel approaches in disease diagnosis and treatment. Studies on the immunoregulatory function of the vagus nerve and the inflammatory reflex have a specific place in bioelectronic medicine. These studies recently led to clinical trials with bioelectronic vagus nerve stimulation in inflammatory diseases and other conditions. Here, we outline key findings from this preclinical and clinical research. We also point to other aspects and pillars of interdisciplinary research and technological developments in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Sangeeta S Chavan
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| |
Collapse
|
100
|
Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020; 6:e03611. [PMID: 32215331 PMCID: PMC7090353 DOI: 10.1016/j.heliyon.2020.e03611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the main subtypes of nAChRs that modulates various cancer-related properties including proliferative, anti-apoptotic, pro-angiogenic and pro-metastatic activities in most of the cancers. It also plays a crucial role in inflammation control through the cholinergic anti-inflammatory pathway in numerous pathophysiological contexts. Such diverse physiological and pathological functions that initiate from this receptor may have significant impacts in determining the outcome of different cancers. Various tissues of gastrointestinal (GI) cancers such as gastric, colorectal, pancreatic and liver cancers have shown the up-regulated expression of α7nAChR as compared to normal adjacent tissues. According to the well-established connection between inflammation and tumorigenesis in the digestive system, there are mounting studies demonstrated either stimulatory or inhibitory effects of α7nAChR signaling in the development of GI cancers. To date, the precise underlying mechanisms related to this receptor in patients with GI cancers have not been fully elucidated. Regarding the paradoxical modulatory effects of this receptor in carcinogenesis, in this review, we aim to summarize the accumulated evidence about the involvement of α7nAChR in inflammation-associated GI cancers. It seems that the complex influences of α7nAChR may be a promising target in designing novel strategies in the treatment of such pathologic conditions.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|