51
|
Tas J, Czosnyka M, van der Horst ICC, Park S, van Heugten C, Sekhon M, Robba C, Menon DK, Zeiler FA, Aries MJH. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: A narrative review. Front Physiol 2022; 13:1071161. [PMID: 36531179 PMCID: PMC9751622 DOI: 10.3389/fphys.2022.1071161] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 07/27/2023] Open
Abstract
Cerebral multimodality monitoring (MMM) is, even with a general lack of Class I evidence, increasingly recognized as a tool to support clinical decision-making in the neuroscience intensive care unit (NICU). However, literature and guidelines have focused on unimodal signals in a specific form of acute brain injury. Integrating unimodal signals in multiple signal monitoring is the next step for clinical studies and patient care. As such, we aimed to investigate the recent application of MMM in studies of adult patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), acute ischemic stroke (AIS), and hypoxic ischemic brain injury following cardiac arrest (HIBI). We identified continuous or daily updated monitoring modalities and summarized the monitoring setting, study setting, and clinical characteristics. In addition, we discussed clinical outcome in intervention studies. We identified 112 MMM studies, including 11 modalities, over the last 7 years (2015-2022). Fifty-eight studies (52%) applied only two modalities. Most frequently combined were ICP monitoring (92 studies (82%)) together with PbtO2 (63 studies (56%). Most studies included patients with TBI (59 studies) or SAH (53 studies). The enrollment period of 34 studies (30%) took more than 5 years, whereas the median sample size was only 36 patients (q1- q3, 20-74). We classified studies as either observational (68 studies) or interventional (44 studies). The interventions were subclassified as systemic (24 studies), cerebral (10 studies), and interventions guided by MMM (11 studies). We identified 20 different systemic or cerebral interventions. Nine (9/11, 82%) of the MMM-guided studies included clinical outcome as an endpoint. In 78% (7/9) of these MMM-guided intervention studies, a significant improvement in outcome was demonstrated in favor of interventions guided by MMM. Clinical outcome may be improved with interventions guided by MMM. This strengthens the belief in this application, but further interdisciplinary collaborations are needed to overcome the heterogeneity, as illustrated in the present review. Future research should focus on increasing sample sizes, improved data collection, refining definitions of secondary injuries, and standardized interventions. Only then can we proceed with complex outcome studies with MMM-guided treatment.
Collapse
Affiliation(s)
- Jeanette Tas
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Iwan C. C. van der Horst
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY, United States
| | - Caroline van Heugten
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico Santino IRCCS for Oncology and Neuroscience, Dipartimento di Scienze Chirurgiche Diagnostiche Integrate, University of Genova, Genova, Italy
| | - David K. Menon
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederick A. Zeiler
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcel J. H. Aries
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
52
|
Sarigul B, De Macêdo Filho LJM, Hawryluk GWJ. Invasive Monitoring in Traumatic Brain Injury. CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
54
|
Alanazi AH, Adil MS, Lin X, Chastain DB, Henao-Martínez AF, Franco-Paredes C, Somanath PR. Elevated Intracranial Pressure in Cryptococcal Meningoencephalitis: Examining Old, New, and Promising Drug Therapies. Pathogens 2022; 11:783. [PMID: 35890028 PMCID: PMC9321092 DOI: 10.3390/pathogens11070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Despite the availability of effective antifungal therapy, cryptococcal meningoencephalitis (CM) remains associated with elevated mortality. The spectrum of symptoms associated with the central nervous system (CNS) cryptococcosis is directly caused by the high fungal burden in the subarachnoid space and the peri-endothelial space of the CNS vasculature, which results in intracranial hypertension (ICH). Management of intracranial pressure (ICP) through aggressive drainage of cerebrospinal fluid by lumbar puncture is associated with increased survival. Unfortunately, these procedures are invasive and require specialized skills and supplies that are not readily available in resource-limited settings that carry the highest burden of CM. The institution of pharmacologic therapies to reduce the production or increase the resorption of cerebrospinal fluid would likely improve clinical outcomes associated with ICH in patients with CM. Here, we discuss the potential role of multiple pharmacologic drug classes such as diuretics, corticosteroids, and antiepileptic agents used to decrease ICP in various neurological conditions as potential future therapies for CM.
Collapse
Affiliation(s)
- Abdulaziz H. Alanazi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30902, USA; (A.H.A.); (M.S.A.)
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30902, USA; (A.H.A.); (M.S.A.)
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA;
| | - Daniel B. Chastain
- Department of Clinical and Administrative Pharmacy, UGA College of Pharmacy, SWGA Clinical Campus, Phoebe Putney Memorial Hospital, Albany, GA 31701, USA;
| | - Andrés F. Henao-Martínez
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.F.H.-M.); (C.F.-P.)
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.F.H.-M.); (C.F.-P.)
- Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30902, USA; (A.H.A.); (M.S.A.)
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
55
|
Chang N, Rasmussen L. Exploring Trends in Neuromonitoring Use in a General Pediatric ICU: The Need for Standardized Guidance. CHILDREN (BASEL, SWITZERLAND) 2022; 9:934. [PMID: 35883918 PMCID: PMC9324621 DOI: 10.3390/children9070934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Neuromonitoring has become more standardized in adult neurocritical care, but the utility of different neuromonitoring modalities in children remains debated. We aimed to describe the use of neuromonitoring in critically ill children with and without primary neurological diseases. We conducted a retrospective review of patients admitted to a 32-bed, non-cardiac PICU during a 12-month period. Neuro-imaging, electroencephalogram (EEG), cerebral oximetry (NIRS), automated pupillometry, transcranial doppler (TCD), intracranial pressure (ICP) monitoring, brain tissue oxygenation (PbtO2), primary diagnosis, and outcome were extracted. Neuromonitoring use by primary diagnosis and associations with outcome were observed. Of 1946 patients, 420 received neuro-imaging or neuromonitoring. Primary non-neurological diagnoses most frequently receiving neuromonitoring were respiratory, hematologic/oncologic, gastrointestinal/liver, and infectious/inflammatory. The most frequently used technologies among non-neurological diagnoses were neuro-imaging, EEG, pupillometry, and NIRS. In the multivariate analysis, pupillometry use was associated with mortality, and EEG, NIRS, and neuro-imaging use were associated with disability. Frequencies of TCD and PbtO2 use were too small for analysis. Neuromonitoring is prevalent among various diagnoses in the PICU, without clear benefit on outcomes when used in an ad hoc fashion. We need standard guidance around who, when, and how neuromonitoring should be applied to improve the care of critically ill children.
Collapse
Affiliation(s)
- Nathan Chang
- Pediatric Critical Care Medicine and Neurocritical Care, Lucile Packard Children’s Hospital Stanford, Palo Alto, CA 94304, USA;
| | | |
Collapse
|
56
|
Francoeur CL, Lauzier F, Brassard P, Turgeon AF. Near Infrared Spectroscopy for Poor Grade Aneurysmal Subarachnoid Hemorrhage-A Concise Review. Front Neurol 2022; 13:874393. [PMID: 35518206 PMCID: PMC9062216 DOI: 10.3389/fneur.2022.874393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Delayed cerebral ischemia (DCI) disproportionately affects poor grade aneurysmal subarachnoid hemorrhage (aSAH) patients. An unreliable neurological exam and the lack of appropriate monitoring leads to unrecognized DCI, which in turn is associated with severe long-term deficits and higher mortality. Near Infrared Spectroscopy (NIRS) offers simple, continuous, real time, non-invasive cerebral monitoring. It provides regional cerebral oxygen saturation (c-rSO2), which reflects the balance between cerebral oxygen consumption and supply. Reports have demonstrated a good correlation with other cerebral oxygen and blood flow monitoring, and credible cerebrovascular reactivity indices were also derived from NIRS signals. Multiple critical c-rSO2 values have been reported in aSAH patients, based on various thresholds, duration, variation from baseline or cerebrovascular reactivity indices. Some were associated with vasospasm, some with DCI and others with clinical outcomes. However, the poor grade aSAH population has not been specifically studied and no randomized clinical trial has been published. The available literature does not support a specific NIRS-based intervention threshold to guide diagnostic or treatment in aSAH patients. We review herein the fundamental basic concepts behind NIRS technology, relationship of c-rSO2 to other brain monitoring values and their potential clinical interpretation. We follow with a critical evaluation of the use of NIRS in the aSAH population, more specifically its ability to diagnose vasospasm, to predict DCI and its association to outcome. In summary, NIRS might offer significant potential for poor grade aSAH in the future. However, current evidence does not support its use in clinical decision-making, and proper technology evaluation is required.
Collapse
Affiliation(s)
- Charles L. Francoeur
- Population Health and Optimal Health Practices Research Unit (Trauma—Emergency—Critical Care Medicine), Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Centre, Université Laval, Québec City, QC, Canada
- Department of Anesthesiology and Critical Care, CHU de Québec—Université Laval, Critical Care Division, Québec City, QC, Canada
- Critical Care Medicine Service, CHU de Québec—Université Laval, Québec City, QC, Canada
| | - François Lauzier
- Population Health and Optimal Health Practices Research Unit (Trauma—Emergency—Critical Care Medicine), Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Centre, Université Laval, Québec City, QC, Canada
- Department of Anesthesiology and Critical Care, CHU de Québec—Université Laval, Critical Care Division, Québec City, QC, Canada
- Critical Care Medicine Service, CHU de Québec—Université Laval, Québec City, QC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC, Canada
| | - Alexis F. Turgeon
- Population Health and Optimal Health Practices Research Unit (Trauma—Emergency—Critical Care Medicine), Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Centre, Université Laval, Québec City, QC, Canada
- Department of Anesthesiology and Critical Care, CHU de Québec—Université Laval, Critical Care Division, Québec City, QC, Canada
- Critical Care Medicine Service, CHU de Québec—Université Laval, Québec City, QC, Canada
| |
Collapse
|
57
|
Mainali S, Cardim D, Sarwal A, Merck LH, Yeatts SD, Czosnyka M, Shutter L. Prolonged Automated Robotic TCD Monitoring in Acute Severe TBI: Study Design and Rationale. Neurocrit Care 2022; 37:267-275. [PMID: 35381966 DOI: 10.1007/s12028-022-01483-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transcranial Doppler ultrasonography (TCD) is a portable, bedside, noninvasive diagnostic tool used for the real-time assessment of cerebral hemodynamics. Despite the evident utility of TCD and the ability of this technique to function as a stethoscope to the brain, its use has been limited to specialized centers because of the dearth of technical and clinical expertise required to acquire and interpret the cerebrovascular parameters. Additionally, the conventional pragmatic episodic TCD monitoring protocols lack dynamic real-time feedback to guide time-critical clinical interventions. Fortunately, with the recent advent of automated robotic TCD technology in conjunction with the automated software for TCD data processing, we now have the technology to automatically acquire TCD data and obtain clinically relevant information in real-time. By obviating the need for highly trained clinical personnel, this technology shows great promise toward a future of widespread noninvasive monitoring to guide clinical care in patients with acute brain injury. METHODS Here, we describe a proposal for a prospective observational multicenter clinical trial to evaluate the safety and feasibility of prolonged automated robotic TCD monitoring in patients with severe acute traumatic brain injury (TBI). We will enroll patients with severe non-penetrating TBI with concomitant invasive multimodal monitoring including, intracranial pressure, brain tissue oxygenation, and brain temperature monitoring as part of standard of care in centers with varying degrees of TCD availability and experience. Additionally, we propose to evaluate the correlation of pertinent TCD-based cerebral autoregulation indices such as the critical closing pressure, and the pressure reactivity index with the brain tissue oxygenation values obtained invasively. CONCLUSIONS The overarching goal of this study is to establish safety and feasibility of prolonged automated TCD monitoring for patients with TBI in the intensive care unit and identify clinically meaningful and pragmatic noninvasive targets for future interventions.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, Virginial Commonwealth University, Richmond, VA, USA.
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aarti Sarwal
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lisa H Merck
- Departments of Emergency Medicine and Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sharon D Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Neurosurgical Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lori Shutter
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW Severe traumatic brain injury (TBI) is an extremely serious health problem, especially in low-middle income countries (LMICs). The prevalence of severe TBI continues to increase in LMICs. Major limitations in the chain of care for TBI patients are common in LMICs including suboptimal or nonexistent prehospital care, overburdened emergency services, lack of trained human resources and limited availability of ICUs. Basic neuromonitoring, such as intracranial pressure, are unavailable or underutilized and advanced techniques are not available. RECENT FINDINGS Attention to fundamental principles of TBI care in LMICs, including early categorization, prevention and treatment of secondary insults, use of low-cost technology for evaluation of intracranial bleeding and neuromonitoring, and emphasis on education of human resources and multidisciplinary work, are particularly important in LMICs. Institutional collaborations between high-income and LMICs have developed evidence focused on available resources. Accordingly, an expert group have proposed consensus recommendations for centers without availability of invasive brain monitoring. SUMMARY Severe TBI is very prevalent in LMIC and neuromonitoring is often not available in these environments. When intracranial pressure monitors are not available, careful attention to changes on clinical examination, serial imaging and noninvasive monitoring techniques can help recognize intracranial hypertension and effectively guide treatment decisions.
Collapse
|
59
|
Cruz Navarro J, Ponce Mejia LL, Robertson C. A Precision Medicine Agenda in Traumatic Brain Injury. Front Pharmacol 2022; 13:713100. [PMID: 35370671 PMCID: PMC8966615 DOI: 10.3389/fphar.2022.713100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury remains a leading cause of death and disability across the globe. Substantial uncertainty in outcome prediction continues to be the rule notwithstanding the existing prediction models. Additionally, despite very promising preclinical data, randomized clinical trials (RCTs) of neuroprotective strategies in moderate and severe TBI have failed to demonstrate significant treatment effects. Better predictive models are needed, as the existing validated ones are more useful in prognosticating poor outcome and do not include biomarkers, genomics, proteonomics, metabolomics, etc. Invasive neuromonitoring long believed to be a "game changer" in the care of TBI patients have shown mixed results, and the level of evidence to support its widespread use remains insufficient. This is due in part to the extremely heterogenous nature of the disease regarding its etiology, pathology and severity. Currently, the diagnosis of traumatic brain injury (TBI) in the acute setting is centered on neurological examination and neuroimaging tools such as CT scanning and MRI, and its treatment has been largely confronted using a "one-size-fits-all" approach, that has left us with many unanswered questions. Precision medicine is an innovative approach for TBI treatment that considers individual variability in genes, environment, and lifestyle and has expanded across the medical fields. In this article, we briefly explore the field of precision medicine in TBI including biomarkers for therapeutic decision-making, multimodal neuromonitoring, and genomics.
Collapse
Affiliation(s)
- Jovany Cruz Navarro
- Departments of Anesthesiology and Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Lucido L. Ponce Mejia
- Departments of Neurosurgery and Neurology, LSU Health Science Center, New Orleans, LA, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
60
|
Neuromonitoring in Severe Traumatic Brain Injury: A Bibliometric Analysis. Neurocrit Care 2022; 36:1044-1052. [PMID: 35075580 DOI: 10.1007/s12028-021-01428-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of mortality and disability among trauma-related injuries. Neuromonitoring plays an essential role in the management and prognosis of patients with severe TBI. Our bibliometric study aimed to identify the knowledge base, define the research front, and outline the social networks on neuromonitoring in severe TBI. We conducted an electronic search for articles related to neuromonitoring in severe TBI in Scopus. A descriptive analysis retrieved evidence on the most productive authors and countries, the most cited articles, the most frequently publishing journals, and the most common author's keywords. Through a three-step network extraction process, we performed a collaboration analysis among universities and countries, a cocitation analysis, and a word cooccurrence analysis. A total of 1884 records formed the basis of our bibliometric study. We recorded an increasing scientific interest in the use of neuromonitoring in severe TBI. Czosnyka, Hutchinson, Menon, Smielewski, and Stocchetti were the most productive authors. The most cited document was a review study by Maas et al. There was an extensive collaboration among universities. The most common keywords were "intracranial pressure," with an increasing interest in magnetic resonance imaging and cerebral perfusion pressure monitoring. Neuromonitoring constitutes an area of active research. The present findings indicate that intracranial pressure monitoring plays a pivotal role in the management of severe TBI. Scientific interest shifts to magnetic resonance imaging and individualized patient care on the basis of optimal cerebral perfusion pressure.
Collapse
|
61
|
Kirschen MP, LaRovere K, Balakrishnan B, Erklauer J, Francoeur C, Ganesan SL, Jayakar A, Lovett M, Luchette M, Press CA, Wolf M, Ferrazzano P, Wainwright MS, Appavu B. A Survey of Neuromonitoring Practices in North American Pediatric Intensive Care Units. Pediatr Neurol 2022; 126:125-130. [PMID: 34864306 PMCID: PMC9135309 DOI: 10.1016/j.pediatrneurol.2021.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuromonitoring is the use of continuous measures of brain physiology to detect clinically important events in real-time. Neuromonitoring devices can be invasive or non-invasive and are typically used on patients with acute brain injury or at high risk for brain injury. The goal of this study was to characterize neuromonitoring infrastructure and practices in North American pediatric intensive care units (PICUs). METHODS An electronic, web-based survey was distributed to 70 North American institutions participating in the Pediatric Neurocritical Care Research Group. Questions related to the clinical use of neuromonitoring devices, integrative multimodality neuromonitoring capabilities, and neuromonitoring infrastructure were included. Survey results were presented using descriptive statistics. RESULTS The survey was completed by faculty at 74% (52 of 70) of institutions. All 52 institutions measure intracranial pressure and have electroencephalography capability, whereas 87% (45 of 52) use near-infrared spectroscopy and 40% (21/52) use transcranial Doppler. Individual patient monitoring decisions were driven by institutional protocols and collaboration between critical care, neurology, and neurosurgery attendings. Reported device utilization varied by brain injury etiology. Only 15% (eight of 52) of institutions utilized a multimodality neuromonitoring platform to integrate and synchronize data from multiple devices. A database of neuromonitoring patients was maintained at 35% (18 of 52) of institutions. Funding for neuromonitoring programs was variable with contributions from hospitals (19%, 10 of 52), private donations (12%, six of 52), and research funds (12%, six of 52), although 73% (40 of 52) have no dedicated funds. CONCLUSIONS Neuromonitoring indications, devices, and infrastructure vary by institution in North American pediatric critical care units. Noninvasive modalities were utilized more liberally, although not uniformly, than invasive monitoring. Further studies are needed to standardize the acquisition, interpretation, and reporting of clinical neuromonitoring data, and to determine whether neuromonitoring systems impact neurological outcomes.
Collapse
Affiliation(s)
- Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Kerri LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Binod Balakrishnan
- Division of Pediatric Critical Care Medicine, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer Erklauer
- Departments of Critical Care Medicine and Neurology, Texas Children's Hospital, Houston, Texas
| | - Conall Francoeur
- Department of Pediatrics, CHU de Québec - Université Laval Research Center, Quebec City, Quebec, Canada
| | - Saptharishi Lalgudi Ganesan
- Department of Paediatrics, Children's Hospital of Western Ontario, Schulich School of Medicine & Dentistry at the Western University, London, Ontario, Canada
| | - Anuj Jayakar
- Department of Neurology, Nicklaus Children's Hospital, Miami, Florida
| | - Marlina Lovett
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew Luchette
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig A Press
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Wolf
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Peter Ferrazzano
- Division of Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mark S Wainwright
- Division of Pediatric Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Brian Appavu
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine - Phoenix, Phoenix, UK
| |
Collapse
|
62
|
Picard JM, Schmidt C, Sheth KN, Bösel J. Critical Care of the Patient With Acute Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Rass V, Bogossian EG, Ianosi BA, Peluso L, Kofler M, Lindner A, Schiefecker AJ, Putnina L, Gaasch M, Hackl WO, Beer R, Pfausler B, Taccone FS, Helbok R. The effect of the volemic and cardiac status on brain oxygenation in patients with subarachnoid hemorrhage: a bi-center cohort study. Ann Intensive Care 2021; 11:176. [PMID: 34914011 PMCID: PMC8677880 DOI: 10.1186/s13613-021-00960-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background Fluid management in patients after subarachnoid hemorrhage (SAH) aims at the optimization of cerebral blood flow and brain oxygenation. In this study, we investigated the effects of hemodynamic management on brain oxygenation by integrating advanced hemodynamic and invasive neuromonitoring. Methods This observational cohort bi-center study included data of consecutive poor-grade SAH patients who underwent pulse contour cardiac output (PiCCO) monitoring and invasive neuromonitoring. Fluid management was guided by the transpulmonary thermodilution system and aimed at euvolemia (cardiac index, CI ≥ 3.0 L/min/m2; global end-diastolic index, GEDI 680–800 mL/m2; stroke volume variation, SVV < 10%). Patients were managed using a brain tissue oxygenation (PbtO2) targeted protocol to prevent brain tissue hypoxia (BTH, PbtO2 < 20 mmHg). To assess the association between CI and PbtO2 and the effect of fluid challenges on CI and PbtO2, we used generalized estimating equations to account for repeated measurements. Results Among a total of 60 included patients (median age 56 [IQRs 47–65] years), BTH occurred in 23% of the monitoring time during the first 10 days since admission. Overall, mean CI was within normal ranges (ranging from 3.1 ± 1.3 on day 0 to 4.1 ± 1.1 L/min/m2 on day 4). Higher CI levels were associated with higher PbtO2 levels (Wald = 14.2; p < 0.001). Neither daily fluid input nor fluid balance was associated with absolute PbtO2 levels (p = 0.94 and p = 0.85, respectively) or the occurrence of BTH (p = 0.68 and p = 0.71, respectively). PbtO2 levels were not significantly different in preload dependent patients compared to episodes of euvolemia. PbtO2 increased as a response to fluid boluses only if BTH was present at baseline (from 13 ± 6 to 16 ± 11 mmHg, OR = 13.3 [95% CI 2.6–67.4], p = 0.002), but not when all boluses were considered (p = 0.154). Conclusions In this study a moderate association between increased cardiac output and brain oxygenation was observed. Fluid challenges may improve PbtO2 only in the presence of baseline BTH. Individualized hemodynamic management requires advanced cardiac and brain monitoring in critically ill SAH patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00960-z.
Collapse
Affiliation(s)
- Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Bogdan-Andrei Ianosi
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Eduard Wallnoefer-Zentrum 1, 6060, Hall, Austria
| | - Lorenzo Peluso
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Lindner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alois J Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lauma Putnina
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Max Gaasch
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Werner O Hackl
- Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Eduard Wallnoefer-Zentrum 1, 6060, Hall, Austria
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
64
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
65
|
Gomez A, Sainbhi AS, Froese L, Batson C, Alizadeh A, Mendelson AA, Zeiler FA. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front Pharmacol 2021; 12:719501. [PMID: 34803673 PMCID: PMC8602694 DOI: 10.3389/fphar.2021.719501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Asher A Mendelson
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
66
|
Madsen FA, Andreasen TH, Lindschou J, Gluud C, Møller K. Ketamine for critically ill patients with severe acute brain injury: Protocol for a systematic review with meta-analysis and Trial Sequential Analysis of randomised clinical trials. PLoS One 2021; 16:e0259899. [PMID: 34780543 PMCID: PMC8592463 DOI: 10.1371/journal.pone.0259899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Intensive care for patients with severe acute brain injury aims both to treat the immediate consequences of the injury and to prevent and treat secondary brain injury to ensure a good functional outcome. Sedation may be used to facilitate mechanical ventilation, for treating agitation, and for controlling intracranial pressure. Ketamine is an N-methyl-D-aspartate receptor antagonist with sedative, analgesic, and potentially neuroprotective properties. We describe a protocol for a systematic review of randomised clinical trials assessing the beneficial and harmful effects of ketamine for patients with severe acute brain injury. METHODS AND ANALYSIS We will systematically search international databases for randomised clinical trials, including CENTRAL, MEDLINE, Embase, and trial registries. Two authors will independently review and select trials for inclusion, and extract data. We will compare ketamine by any regimen versus placebo, no intervention, or other sedatives or analgesics for patients with severe acute brain injury. The primary outcomes will be functional outcome at maximal follow up, quality of life, and serious adverse events. We will also assess secondary and exploratory outcomes. The extracted data will be analysed using Review Manager and Trials Sequential Analysis. Evidence certainty will be graded using GRADE. ETHICS AND DISSEMINATION The results of the systematic review will be disseminated through peer-reviewed publication. With the review, we hope to inform future randomised clinical trials and improve clinical practice. PROSPERO NO CRD42021210447.
Collapse
Affiliation(s)
- Frederik Andreas Madsen
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Trine Hjorslev Andreasen
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jane Lindschou
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
67
|
Batson C, Froese L, Gomez A, Sainbhi AS, Stein KY, Alizadeh A, Zeiler FA. Impact of Age and Biological Sex on Cerebrovascular Reactivity in Adult Moderate/Severe Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Rep 2021; 2:488-501. [PMID: 34901944 PMCID: PMC8655816 DOI: 10.1089/neur.2021.0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Age and biological sex are two potential important modifiers of cerebrovascular reactivity post-traumatic brain injury (TBI) requiring close evaluation for potential subgroup responses. The goal of this study was to provide a preliminary exploratory analysis of the impact of age and biological sex on measures of cerebrovascular function in moderate/severe TBI. Forty-nine patients from the prospectively maintained TBI database at the University of Manitoba with archived high-frequency digital cerebral physiology were evaluated. Cerebrovascular reactivity indices were derived as follows: PRx (correlation between intracranial pressure [ICP] and mean arterial pressure [MAP]), PAx (correlation between pulse amplitude of ICP [AMP] and MAP), and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). Time above clinically significant thresholds for each index was calculated over different periods of the acute intensive care unit stay. The association between PRx, PAx, and RAC measures with age was assessed using linear regression, and an age trichotomization scheme (<40, 40-60, >60) using Kruskal-Wallis testing. Similarly, association with biological sex was tested using Mann-Whitney U testing. Biological sex did not demonstrate an impact on any measures of cerebrovascular reactivity. Linear regression between age and PAx and RAC demonstrated a statistically significant positive linear relationship. Median PAx and RAC measures between trichotomized age categories demonstrated statistically significant increases with advancing age. The PRx failed to demonstrate any statistically significant relationship with age in this cohort, suggesting that in elderly patients with controlled ICP, PAx and RAC may be better metrics for detecting impaired cerebrovascular reactivity. Biological sex appears to not be associated with differences in cerebrovascular reactivity in this cohort. The PRx performed the worst in detecting impaired cerebrovascular reactivity in those with advanced age, where PAx and RAC appear to have excelled. Future work is required to validate these findings and explore the utility of different cerebrovascular reactivity indices.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
68
|
Colomina MJ, Contreras L, Guilabert P, Koo M, Méndez E, Sabate A. Clinical use of tranexamic acid: evidences and controversies. Braz J Anesthesiol 2021; 72:795-812. [PMID: 34626756 DOI: 10.1016/j.bjane.2021.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022] Open
Abstract
Tranexamic acid (TXA) significantly reduces blood loss in a wide range of surgical procedures and improves survival rates in obstetric and trauma patients with severe bleeding. Although it mainly acts as a fibrinolysis inhibitor, it also has an anti-inflammatory effect, and may help attenuate the systemic inflammatory response syndrome found in some cardiac surgery patients. However, the administration of high doses of TXA has been associated with seizures and other adverse effects that increase the cost of care, and the administration of TXA to reduce perioperative bleeding needs to be standardized. Tranexamic acid is generally well tolerated, and most adverse reactions are considered mild or moderate. Severe events are rare in clinical trials, and literature reviews have shown tranexamic acid to be safe in several different surgical procedures. However, after many years of experience with TXA in various fields, such as orthopedic surgery, clinicians are now querying whether the dosage, route and interval of administration currently used and the methods used to control and analyze the antifibrinolytic mechanism of TXA are really optimal. These issues need to be evaluated and reviewed using the latest evidence to improve the safety and effectiveness of TXA in treating intracranial hemorrhage and bleeding in procedures such as liver transplantation, and cardiac, trauma and obstetric surgery.
Collapse
Affiliation(s)
- Maria J Colomina
- Bellvitge University Hospital, Department of Anaesthesia, Critical Care & Pain, Barcelona, Spain; Barcelona University, Barcelona, Spain.
| | - Laura Contreras
- Bellvitge University Hospital, Department of Anaesthesia, Critical Care & Pain, Barcelona, Spain
| | - Patricia Guilabert
- Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Department of Anaesthesia, Critical Care & Pain, Barcelona, Spain
| | - Maylin Koo
- Bellvitge University Hospital, Department of Anaesthesia, Critical Care & Pain, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Esther Méndez
- Bellvitge University Hospital, Department of Anaesthesia, Critical Care & Pain, Barcelona, Spain
| | - Antoni Sabate
- Bellvitge University Hospital, Department of Anaesthesia, Critical Care & Pain, Barcelona, Spain; Barcelona University, Barcelona, Spain
| |
Collapse
|
69
|
Marini CP, McNelis J, Petrone P. Multimodality Monitoring and Goal-Directed Therapy for the Treatment of Patients with Severe Traumatic Brain Injury: A Review for the General and Trauma Surgeon. Curr Probl Surg 2021; 59:101070. [DOI: 10.1016/j.cpsurg.2021.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
|
70
|
Marini CP, McNelis J, Petrone P. In Brief. Curr Probl Surg 2021. [DOI: 10.1016/j.cpsurg.2021.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Poon CS, Rinehart B, Langri DS, Rambo TM, Miller AJ, Foreman B, Sunar U. Noninvasive Optical Monitoring of Cerebral Blood Flow and EEG Spectral Responses after Severe Traumatic Brain Injury: A Case Report. Brain Sci 2021; 11:1093. [PMID: 34439712 PMCID: PMC8394546 DOI: 10.3390/brainsci11081093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Survivors of severe brain injury may require care in a neurointensive care unit (neuro-ICU), where the brain is vulnerable to secondary brain injury. Thus, there is a need for noninvasive, bedside, continuous cerebral blood flow monitoring approaches in the neuro-ICU. Our goal is to address this need through combined measurements of EEG and functional optical spectroscopy (EEG-Optical) instrumentation and analysis to provide a complementary fusion of data about brain activity and function. We utilized the diffuse correlation spectroscopy method for assessing cerebral blood flow at the neuro-ICU in a patient with traumatic brain injury. The present case demonstrates the feasibility of continuous recording of noninvasive cerebral blood flow transients that correlated well with the gold-standard invasive measurements and with the frequency content changes in the EEG data.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Benjamin Rinehart
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Dharminder S. Langri
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | | | | | - Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Ulas Sunar
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| |
Collapse
|
72
|
Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK. Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Karthikeya P. Deshmukh
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
| | - Savas Tasoglu
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
- Boğaziçi Institute of Biomedical Engineering Boğaziçi University Istanbul 34684 Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| |
Collapse
|
73
|
Robba C, Iannuzzi F, Taccone FS. Tier-three therapies for refractory intracranial hypertension in adult head trauma. Minerva Anestesiol 2021; 87:1359-1366. [PMID: 34337922 DOI: 10.23736/s0375-9393.21.15827-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Refractory intracranial hypertension after traumatic brain injury (TBI) is defined as recurrent increase of intracranial pressure (ICP) above 20-22 mmHg for sustained period of time (10-15 min), despite conventional therapies, such as osmotic therapy, cerebral spinal fluid drainage and mild hyperventilation. As such, more aggressive treatments should be taken into consideration. In particular, therapeutic hypothermia, barbiturates administration and decompressive craniectomy are considered as tier-three or "salvage" interventions, as they have shown to be able to control refractory hypertension, but are also associated with an increased risk of significant side effects. The aim of this review is therefore to describe the evidence supporting the use of these tier-three therapies in the management of refractory intracranial hypertension in TBI patients.
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy - .,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy -
| | - Francesca Iannuzzi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio S Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
74
|
Robba C, Graziano F, Rebora P, Elli F, Giussani C, Oddo M, Meyfroidt G, Helbok R, Taccone FS, Prisco L, Vincent JL, Suarez JI, Stocchetti N, Citerio G. Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study. Lancet Neurol 2021; 20:548-558. [PMID: 34146513 DOI: 10.1016/s1474-4422(21)00138-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients' outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes. METHODS We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic stroke (including intracranial haemorrhage or subarachnoid haemorrhage) or traumatic brain injury. We included patients with altered levels of consciousness at ICU admission or within the first 48 h after the brain injury, as defined by the Glasgow Coma Scale (GCS) eye response score of 1 (no eye opening) and a GCS motor response score of at least 5 (not obeying commands). Patients not admitted to the ICU or with other forms of acute brain injury were excluded from the study. Between-centre differences in use of ICP monitoring were quantified by using the median odds ratio (MOR). We used the therapy intensity level (TIL) to quantify practice variations in ICP interventions. Primary endpoints were 6 month mortality and 6 month Glasgow Outcome Scale Extended (GOSE) score. A propensity score method with inverse probability of treatment weighting was used to estimate the association between use of ICP monitoring and these 6 month outcomes, independently of measured baseline covariates. This study is registered with ClinicalTrial.gov, NCT03257904. FINDINGS Between March 15, 2018, and April 30, 2019, 4776 patients were assessed for eligibility and 2395 patients were included in the study, including 1287 (54%) with traumatic brain injury, 587 (25%) with intracranial haemorrhage, and 521 (22%) with subarachnoid haemorrhage. The median age of patients was 55 years (IQR 39-69) and 1567 (65%) patients were male. Considerable variability was recorded in the use of ICP monitoring across centres (MOR 4·5, 95% CI 3·8-4·9 between two randomly selected centres for patients with similar covariates). 6 month mortality was lower in patients who had ICP monitoring (441/1318 [34%]) than in those who were not monitored (517/1049 [49%]; p<0·0001). ICP monitoring was associated with significantly lower 6 month mortality in patients with at least one unreactive pupil (hazard ratio [HR] 0·35, 95% CI 0·26-0·47; p<0·0001), and better neurological outcome at 6 months (odds ratio 0·38, 95% CI 0·26-0·56; p=0·0025). Median TIL was higher in patients with ICP monitoring (9 [IQR 7-12]) than in those who were not monitored (5 [3-8]; p<0·0001) and an increment of one point in TIL was associated with a reduction in mortality (HR 0·94, 95% CI 0·91-0·98; p=0·0011). INTERPRETATION The use of ICP monitoring and ICP management varies greatly across centres and countries. The use of ICP monitoring might be associated with a more intensive therapeutic approach and with lower 6-month mortality in more severe cases. Intracranial hypertension treatment guided by monitoring might be considered in severe cases due to the potential associated improvement in long-term clinical results. FUNDING University of Milano-Bicocca and the European Society of Intensive Care Medicine.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Science and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Francesca Graziano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Paola Rebora
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesca Elli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Neurosurgery, Ospedale San Gerardo, Azienda Socio-Sanitaria Territoriale di Monza, Monza, Italy
| | - Mauro Oddo
- Department of Intensive Care Medicine, CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | - Geert Meyfroidt
- Department of Intensive Care Medicine, University Hospitals, Leuven, Belgium
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lara Prisco
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals Trust, Oxford, UK
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jose I Suarez
- Division of Neurosciences Critical Care, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nino Stocchetti
- Department of Physiopathology and Transplant, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Neurointensive Care Unit, Ospedale San Gerardo, Azienda Socio-Sanitaria Territoriale di Monza, Monza, Italy.
| |
Collapse
|
75
|
|
76
|
Lee HY, Shamsiev K, Mamadjonov N, Jung YH, Jeung KW, Kim JW, Heo T, Min YI. Effect of Epinephrine Administered during Cardiopulmonary Resuscitation on Cerebral Oxygenation after Restoration of Spontaneous Circulation in a Swine Model with a Clinically Relevant Duration of Untreated Cardiac Arrest. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5896. [PMID: 34072754 PMCID: PMC8198967 DOI: 10.3390/ijerph18115896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/13/2023]
Abstract
Severe neurological impairment was more prevalent in cardiac arrest survivors who were administered epinephrine than in those administered placebo in a randomized clinical trial; short-term reduction of brain tissue O2 tension (PbtO2) after epinephrine administration in swine following a short duration of untreated cardiac arrest has also been reported. We investigated the effects of epinephrine administered during cardiopulmonary resuscitation (CPR) on cerebral oxygenation after restoration of spontaneous circulation (ROSC) in a swine model with a clinically relevant duration of untreated cardiac arrest. After 7 min of ventricular fibrillation, 24 pigs randomly received either epinephrine or saline placebo during CPR. Parietal cortex measurements during 60-min post-resuscitation period showed that the area under the curve (AUC) for PbtO2 was smaller in the epinephrine group than in the placebo group during the initial 10-min period and subsequent 50-min period (both p < 0.05). The AUC for number of perfused cerebral capillaries was smaller in the epinephrine group during the initial 10-min period (p = 0.005), but not during the subsequent 50-min period. In conclusion, epinephrine administered during CPR reduced PbtO2 for longer than 10 min following ROSC in a swine model with a clinically relevant duration of untreated cardiac arrest.
Collapse
Affiliation(s)
- Hyoung Youn Lee
- Trauma Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea;
| | - Kamoljon Shamsiev
- Department of Medical Science, Chonnam National University Graduate School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea; (K.S.); (N.M.)
| | - Najmiddin Mamadjonov
- Department of Medical Science, Chonnam National University Graduate School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea; (K.S.); (N.M.)
| | - Yong Hun Jung
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| | - Jin Woong Kim
- Department of Radiology, Chosun University Hospital, 365 Pilmun-daero, Dong-gu, Gwangju 61453, Korea;
| | - Tag Heo
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| | - Yong Il Min
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| |
Collapse
|
77
|
Albanna W, Weiss M, Veldeman M, Conzen C, Schmidt T, Blume C, Zayat R, Clusmann H, Stoppe C, Schubert GA. Urea-Creatinine Ratio (UCR) After Aneurysmal Subarachnoid Hemorrhage: Association of Protein Catabolism with Complication Rate and Outcome. World Neurosurg 2021; 151:e961-e971. [PMID: 34020058 DOI: 10.1016/j.wneu.2021.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The urea-creatinine ratio (UCR) has been proposed as potential biomarker for critical illness-associated catabolism. Its role in the context of aneurysmal subarachnoid hemorrhage (aSAH) remains to be elucidated, which was the aim of the present study. METHODS We enrolled 66 patients with aSAH with normal renal function and 36 patients undergoing elective cardiac surgery as a control group for the effects of surgery. In patients with aSAH, the predictive or diagnostic value of early (day 0-2) and critical (day 5-7) UCRs was assessed with regard to delayed cerebral ischemia (DCI), DCI-related infarction, and clinical outcome after 12 months. RESULTS Preoperatively, UCR was similar both groups. Within 2 days postoperatively, UCRs increased significantly in patients in the elective cardiac surgery group (P < 0.001) but decreased back to baseline on day 5-7 (P = 0.245), whereas UCRs in patients with aSAH increased to significantly greater levels on day 5-7 (P = 0.028). Greater early or critical UCRs were associated with poor clinical outcomes (P = 0.015) or DCI (P = 0.011), DCI-related infarction (P = 0.006), and poor clinical outcomes (P < 0.001) respectively. In multivariate analysis, there was an independent association between greater early UCRs and poor clinical outcomes (P = 0.026). CONCLUSIONS In this exploratory study of UCR in the context of aSAH, greater early values were predictive for a poor clinical outcome after 12 months, whereas greater critical values were associated with DCI, DCI-related infarctions, and poor clinical outcomes. The clinical implications as well as the pathophysiologic relevance of protein catabolism should be explored further in the context of aSAH.
Collapse
Affiliation(s)
- Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Tobias Schmidt
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Rachad Zayat
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
78
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
79
|
Rass V, Helbok R. How to diagnose delayed cerebral ischaemia and symptomatic vasospasm and prevent cerebral infarction in patients with subarachnoid haemorrhage. Curr Opin Crit Care 2021; 27:103-114. [PMID: 33405414 DOI: 10.1097/mcc.0000000000000798] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Delayed cerebral ischaemia (DCI) complicates the clinical course of patients with subarachnoid haemorrhage (SAH) in 20--30% and substantially worsens outcome. In this review, we describe a multimodal diagnostic approach based on underlying mechanisms of DCI and provide treatment options with a special focus on the most recently published literature. RECENT FINDINGS Symptomatic vasospasm refers to clinical deterioration in the presence of vasospasm whereas DCI constitutes multiple causes. Pathophysiologic mechanisms underlying DCI range beyond large vessel vasospasm from neuroinflammation, to microthromboembolism, impaired cerebral autoregulation, cortical spreading depolarizations and many others. The current definition of DCI can be challenged by these mechanisms. We propose a pragmatic approach using a combination of clinical examination, cerebral ultrasonography, neuroimaging modalities and multimodal neuromonitoring to trigger therapeutic interventions in the presence of DCI. In addition to prophylactic nimodipine and management principles to improve oxygen delivery and decrease the brain metabolic demand, other specific interventions include permissive hypertension, intra-arterial application of calcium channel blockers and in selected patients angioplasty. SUMMARY The complex pathophysiology underlying DCI urges for a multimodal diagnostic approach triggering targeted interventions. Novel treatment concepts still have to be proven in large trials.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Anichstrasse, Innsbruck, Austria
| | | |
Collapse
|
80
|
Neuromonitoring After Cardiac Arrest: Can Twenty-First Century Medicine Personalize Post Cardiac Arrest Care? Neurol Clin 2021; 39:273-292. [PMID: 33896519 DOI: 10.1016/j.ncl.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac arrest survivors comprise a heterogeneous population, in which the etiology of arrest, systemic and neurologic comorbidities, and sequelae of post-cardiac arrest syndrome influence the severity of secondary brain injury. The degree of secondary neurologic injury can be modifiable and is influenced by factors that alter cerebral physiology. Neuromonitoring techniques provide tools for evaluating the evolution of physiologic variables over time. This article reviews the pathophysiology of hypoxic-ischemic brain injury, provides an overview of the neuromonitoring tools available to identify risk profiles for secondary brain injury, and highlights the importance of an individualized approach to post cardiac arrest care.
Collapse
|
81
|
Abstract
This article introduces the basic concepts of intracranial physiology and pressure dynamics. It also includes discussion of signs and symptoms and examination and radiographic findings of patients with acute cerebral herniation as a result of increased as well as decreased intracranial pressure. Current best practices regarding medical and surgical treatments and approaches to management of intracranial hypertension as well as future directions are reviewed. Lastly, there is discussion of some of the implications of critical medical illness (sepsis, liver failure, and renal failure) and treatments thereof on causation or worsening of cerebral edema, intracranial hypertension, and cerebral herniation.
Collapse
Affiliation(s)
- Aleksey Tadevosyan
- Department of Neurology, Tufts University School of Medicine, Beth Israel Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA.
| | - Joshua Kornbluth
- Department of Neurology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Box#314, Boston, MA 02111, USA
| |
Collapse
|
82
|
Sallam A, Abdelaal Ahmed Mahmoud M Alkhatip A, Kamel MG, Hamza MK, Yassin HM, Hosny H, Younis MI, Ramadan E, Algameel HZ, Abdelhaq M, Abdelkader M, Mills KE, Mohamed H. The Diagnostic Accuracy of Noninvasive Methods to Measure the Intracranial Pressure: A Systematic Review and Meta-analysis. Anesth Analg 2021; 132:686-695. [PMID: 32991330 DOI: 10.1213/ane.0000000000005189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although invasive monitoring is the standard method for intracranial pressure (ICP) measurement, it is not without potential for serious complications. Noninvasive methods have been proposed as alternatives to invasive ICP monitoring. The study aimed to investigate the diagnostic accuracy of the currently available noninvasive methods for intracranial hypertension (ICH) monitoring. METHODS We searched 5 databases for articles evaluating the diagnostic accuracy of noninvasive methods in diagnosing ICH in PubMed, Institute of Science Index, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and Embase. The quantitative analysis was conducted if there were at least 2 studies evaluating a specific method. The accuracy measures included the sensitivity, specificity, likelihood ratios, and diagnostic odds ratio. RESULTS We included 134 articles. Ultrasonographic optic nerve sheath diameter (US ONSD) had high diagnostic accuracy (estimated sensitivity of 90%; 95% confidence interval [CI], 87-92, estimated specificity of 88%; 95% CI, 84-91) while the magnetic resonance imaging (MRI) ONSD had estimated sensitivity of 77%; 95% CI, 64-87 and estimated specificity of 89%; 95% CI, 84-93, and computed tomography (CT) ONSD had estimated sensitivity of 93%; 95% CI, 90-96 and estimated specificity of 79%; 95% CI, 56-92. All MRI signs had a very high estimated specificity ranging from 90% to 99% but a low estimated sensitivity except for sinus stenosis which had high estimated sensitivity as well as specificity (90%; 95% CI, 75-96 and 96%; 95% CI, 91-99, respectively). Among the physical examination signs, pupillary dilation had a high estimated specificity (86%; 95% CI, 76-93). Other diagnostic tests to be considered included pulsatility index, papilledema, transcranial Doppler, compression or absence of basal cisterns, and ≥10 mm midline shift. Setting the cutoff value of ICH to ≥20 mm Hg instead of values <20 mm Hg was associated with higher sensitivity. Moreover, if the delay between invasive and noninvasive methods was within 1 hour, the MRI ONSD and papilledema had a significantly higher diagnostic accuracy compared to the >1 hour subgroup. CONCLUSIONS Our study showed several promising tools for diagnosing ICH. Moreover, we demonstrated that using multiple, readily available, noninvasive methods is better than depending on a single sign such as physical examination or CT alone.
Collapse
Affiliation(s)
- Amr Sallam
- From the Department of Anaesthesia, Beaumont Hospital, Dublin, Ireland.,Department of Anaesthesia, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed Abdelaal Ahmed Mahmoud M Alkhatip
- Department of Anaesthesia, Birmingham Children's Hospital, Birmingham, United Kingdom.,Department of Anaesthesia, Beni-Suef University Hospital and Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | | | - Hany Mahmoud Yassin
- Department of Anesthesia, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hisham Hosny
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Anaesthesia, Essex Cardiothoracic Center, Basildon and Thurrock University Hospital, Basildon, United Kingdom
| | - Mohamed I Younis
- Department of Anaesthesia, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Eslam Ramadan
- From the Department of Anaesthesia, Beaumont Hospital, Dublin, Ireland.,Department of Anaesthesia, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Haytham Zien Algameel
- Department of Anaesthesia, Aberdeen Royal Infirmary Hospital, Aberdeen, United Kingdom
| | - Mohamed Abdelhaq
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Abdelkader
- Department of Anaesthesia, Beni-Suef University Hospital and Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Kerry E Mills
- Department of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Hassan Mohamed
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Anaesthesia and Intensive Care, Cork University Hospital, Cork, Ireland
| |
Collapse
|
83
|
Chen K, Yang YL, Li HL, Xiao D, Wang Y, Zhang L, Zhou JX. A gap existed between physicians' perceptions and performance of pain, agitation-sedation and delirium assessments in Chinese intensive care units. BMC Anesthesiol 2021; 21:61. [PMID: 33627067 PMCID: PMC7905610 DOI: 10.1186/s12871-021-01286-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain, agitation-sedation and delirium management are crucial elements in the care of critically ill patients. In the present study, we aimed to present the current practice of pain, agitation-sedation and delirium assessments in Chinese intensive care units (ICUs) and investigate the gap between physicians' perception and actual clinical performance. METHODS We sent invitations to the 33 members of the Neuro-Critical Care Committee affiliated with the Chinese Association of Critical Care Physicians. Finally, 24 ICUs (14 general-, 5 neuroscience-, 3 surgical-, and 2 emergency-ICUs) from 20 hospitals participated in this one-day point prevalence study combined with an on-site questionnaire survey. We enrolled adult ICU admitted patients with a length of stay ≥24 h, who were divided into the brain-injured group or non-brain-injured group. The hospital records and nursing records during the 24-h period prior to enrollment were reviewed. Actual evaluations of pain, agitation-sedation and delirium were documented. We invited physicians on-duty during the 24 h prior to the patients' enrollment to complete a survey questionnaire, which contained attitude for importance of pain, agitation-sedation and delirium assessments. RESULTS We enrolled 387 patients including 261 (67.4%) brain-injured and 126 (32.6%) non-brain-injured patients. There were 19.9% (95% confidence interval [CI]: 15.9-23.9%) and 25.6% (95% CI: 21.2-29.9%) patients receiving the pain and agitation-sedation scale assessment, respectively. The rates of these two types of assessments were significantly lower in brain-injured patients than non-brain-injured patients (p = 0.003 and < 0.001). Delirium assessment was only performed in three patients (0.8, 95% CI: 0.1-1.7%). In questionnaires collected from 91 physicians, 70.3% (95% CI: 60.8-79.9%) and 82.4% (95% CI: 74.4-90.4%) reported routine use of pain and agitation-sedation scale assessments, respectively. More than half of the physicians (52.7, 95% CI: 42.3-63.2%) reported daily screening for delirium using an assessment scale. CONCLUSIONS The actual prevalence of pain, agitation-sedation and delirium assessment, especially delirium screening, was suboptimal in Chinese ICUs. There is a gap between physicians' perceptions and actual clinical practice in pain, agitation-sedation and delirium assessments. Our results will prompt further quality improvement projects to optimize the practice of pain, agitation-sedation and delirium management in China. TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT03975751 . Retrospectively registered on 2 June 2019.
Collapse
Affiliation(s)
- Kai Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Dan Xiao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yang Wang
- Medical Research & Biometrics Center, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
84
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
85
|
Nacoti M, Fazzi F, Biroli F, Zangari R, Barbui T, Kochanek PM. Addressing Key Clinical Care and Clinical Research Needs in Severe Pediatric Traumatic Brain Injury: Perspectives From a Focused International Conference. Front Pediatr 2021; 8:594425. [PMID: 33537259 PMCID: PMC7849211 DOI: 10.3389/fped.2020.594425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children and adolescents. Survivors of severe TBI are more prone to functional deficits, resulting in poorer school performance, poor health-related quality of life (HRQoL), and increased risk of mental health problems. Critical gaps in knowledge of pathophysiological differences between children and adults concerning TBI outcomes, the paucity of pediatric trials and prognostic models and the uncertain extrapolation of adult data to pediatrics pose significant challenges and demand global efforts. Here, we explore the clinical and research unmet needs focusing on severe pediatric TBI to identify best practices in pathways of care and optimize both inpatient and outpatient management of children following TBI.
Collapse
Affiliation(s)
- Mirco Nacoti
- Pediatric Intensive Care Unit, Department of Anesthesia and Intensive Care, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Fazzi
- Pediatric Intensive Care Unit, Department of Anesthesia and Intensive Care, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Biroli
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Tiziano Barbui
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
86
|
Montgomery LD, Montgomery RW, Bodo M, Mahon RT, Pearce FJ. Thoracic, Peripheral, and Cerebral Volume, Circulatory and Pressure Responses To PEEP During Simulated Hemorrhage in a Pig Model: a Case Study. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:103-116. [PMID: 35069946 PMCID: PMC8713386 DOI: 10.2478/joeb-2021-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 06/14/2023]
Abstract
Positive end-expiratory pressure (PEEP) is a respiratory/ventilation procedure that is used to maintain or improve breathing in clinical and experimental cases that exhibit impaired lung function. Body fluid shift movement is not monitored during PEEP application in intensive care units (ICU), which would be interesting specifically in hypotensive patients. Brain injured and hypotensive patients are known to have compromised cerebral blood flow (CBF) autoregulation (AR) but currently, there is no non-invasive way to assess the risk of implementing a hypotensive resuscitation strategy and PEEP use in these patients. The advantage of electrical bioimpedance measurement is that it is noninvasive, continuous, and convenient. Since it has good time resolution, it is ideal for monitoring in intensive care units (ICU). The basis of its future use is to establish physiological correlates. In this study, we demonstrate the use of electrical bioimpedance measurement during bleeding and the use of PEEP in pig measurement. In an anesthetized pig, we performed multimodal recording on the torso and head involving electrical bioimpedance spectroscopy (EIS), fixed frequency impedance plethysmography (IPG), and bipolar (rheoencephalography - REG) measurements and processed data offline. Challenges (n=16) were PEEP, bleeding, change of SAP, and CO2 inhalation. The total measurement time was 4.12 hours. Systemic circulatory results: Bleeding caused a continuous decrease of SAP, cardiac output (CO), and increase of heart rate, temperature, shock index (SI), vegetative - Kerdo index (KI). Pulse pressure (PP) decreased only after second bleeding which coincided with loss of CBF AR. Pulmonary arterial pressure (PAP) increased during PEEP challenges as a function of time and bleeding. EIS/IPG results: Body fluid shift change was characterized by EIS-related variables. Electrical Impedance Spectroscopy was used to quantify the intravascular, interstitial, and intracellular volume changes during the application of PEEP and simulated hemorrhage. The intravascular fluid compartment was the primary source of blood during hemorrhage. PEEP produced a large fluid shift out of the intravascular compartment during the first bleeding period and continued to lose more blood following the second and third bleeding. Fixed frequency IPG was used to quantify the circulatory responses of the calf during PEEP and simulated hemorrhage. PEEP reduced the arterial blood flow into the calf and venous outflow from the calf. Head results: CBF AR was evaluated as a function of SAP change. Before bleeding, and after moderate bleeding, intracranial pressure (ICP), REG, and carotid flow pulse amplitudes (CFa) increased. This change reflected vasodilatation and active CBF AR. After additional hemorrhaging during PEEP, SAP, ICP, REG, CFa signal amplitudes decreased, indicating passive CBF AR. 1) The indicators of active AR status by modalities was the following: REG (n=9, 56 %), CFa (n=7, 44 %), and ICP (n=6, 38 %); 2) CBF reactivity was better for REG than ICP; 3) REG and ICP correlation coefficient were high (R2 = 0.81) during CBF AR active status; 4) PRx and REGx reflected active CBF AR status. CBF AR monitoring with REG offers safety for patients by preventing decreased CBF and secondary brain injury. We used different types of bioimpedance instrumentation to identify physiologic responses in the different parts of the body (that have not been discussed before) and how the peripheral responses ultimately lead to decreased cardiac output and changes in the head. These bioimpedance methods can improve ICU monitoring, increase the adequacy of therapy, and decrease mortality and morbidity.
Collapse
Affiliation(s)
| | | | - Michael Bodo
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Current position: Ochsner Medical Center, New Orleans, LA, USA
| | | | | |
Collapse
|
87
|
Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting. Brain Sci 2020; 10:brainsci10121005. [PMID: 33352857 PMCID: PMC7765929 DOI: 10.3390/brainsci10121005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Collapse
|
88
|
Abstract
After convulsive status epilepticus, patients of all ages may have ongoing EEG seizures identified by continuous EEG monitoring. Furthermore, high EEG seizure exposure has been associated with unfavorable neurobehavioral outcomes. Thus, recent guidelines and consensus statements recommend many patients with persisting altered mental status after convulsive status epilepticus undergo continuous EEG monitoring. This review summarizes the available epidemiologic data and related recommendations provided by recent guidelines and consensus statements.
Collapse
|
89
|
|
90
|
Rass V, Huber L, Ianosi BA, Kofler M, Lindner A, Picetti E, Ortolano F, Beer R, Rossi S, Smielewski P, Stocchetti N, Helbok R. The Effect of Temperature Increases on Brain Tissue Oxygen Tension in Patients with Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Substudy. Ther Hypothermia Temp Manag 2020; 11:122-131. [PMID: 33202157 DOI: 10.1089/ther.2020.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fever may aggravate secondary brain injury after traumatic brain injury (TBI). The aim of this study was to identify episodes of temperature increases through visual plot analysis and algorithm supported detection, and to describe associated patterns of changes in on brain tissue oxygen tension (PbtO2). Data derive from the high-resolution cohort of the multicenter prospective Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Temperature increases (≥0.5°C) were visually identified in 33 patients within the first 11 days of monitoring. Generalized estimating equations were used to detect significant changes of systemic and neuromonitoring parameters from baseline to the highest temperature. Patients were median 50 (interquartile range [IQR], 35-62) years old, and presented with a Glasgow Coma Scale (GCS) of 8 (IQR, 4-10). In 202 episodes of temperature increases, mean temperature rose by 1.0°C ± 0.5°C within 4 hours. Overall, PbtO2 slightly increased (ΔPbtO2 = 0.9 ± 6.1 mmHg, p = 0.022) during temperature increases. PbtO2 increased in 35% (p < 0.001), was stable in 49% (p = 0.852), and decreased in 16% (p < 0.001) of episodes. During episodes of temperature increases and simultaneous drops in PbtO2, cerebral perfusion pressure (CPP) decreased (ΔCPP -6.3 ± 11.5 mmHg; p < 0.001). Brain tissue hypoxia (PbtO2 <20 mmHg) developed during 27/164 (17%) episodes of effervescences, in the remaining 38/202 episodes baseline PbtO2 was already <20 mmHg. Comparable results were found when using algorithm-supported detection of temperature increases. In conclusion, during effervescences, PbtO2 was mostly stable or slightly increased. A decrease of PbtO2 was observed in every sixth episode, where it was associated with a decrease in CPP. Our data highlight the need for special attention to CPP monitoring and maintenance during episodes of fever.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Huber
- Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Bogdan-Andrei Ianosi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Mario Kofler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Fabrizio Ortolano
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandra Rossi
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
91
|
Schizodimos T, Soulountsi V, Iasonidou C, Kapravelos N. An overview of management of intracranial hypertension in the intensive care unit. J Anesth 2020; 34:741-757. [PMID: 32440802 PMCID: PMC7241587 DOI: 10.1007/s00540-020-02795-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/09/2020] [Indexed: 12/29/2022]
Abstract
Intracranial hypertension (IH) is a clinical condition commonly encountered in the intensive care unit, which requires immediate treatment. The maintenance of normal intracranial pressure (ICP) and cerebral perfusion pressure in order to prevent secondary brain injury (SBI) is the central focus of management. SBI can be detected through clinical examination and invasive and non-invasive ICP monitoring. Progress in monitoring and understanding the pathophysiological mechanisms of IH allows the implementation of targeted interventions in order to improve the outcome of these patients. Initially, general prophylactic measures such as patient's head elevation, fever control, adequate analgesia and sedation depth should be applied immediately to all patients with suspected IH. Based on specific indications and conditions, surgical resection of mass lesions and cerebrospinal fluid drainage should be considered as an initial treatment for lowering ICP. Hyperosmolar therapy (mannitol or hypertonic saline) represents the cornerstone of medical treatment of acute IH while hyperventilation should be limited to emergency management of life-threatening raised ICP. Therapeutic hypothermia could have a possible benefit on outcome. To control elevated ICP refractory to maximum standard medical and surgical treatment, at first, high-dose barbiturate administration and then decompressive craniectomy as a last step are recommended with unclear and probable benefit on outcomes, respectively. The therapeutic strategy should be based on a staircase approach and be individualized for each patient. Since most therapeutic interventions have an uncertain effect on neurological outcome and mortality, future research should focus on both studying the long-term benefits of current strategies and developing new ones.
Collapse
Affiliation(s)
- Theodoros Schizodimos
- 2nd Department of Intensive Care Medicine, George Papanikolaou General Hospital, G. Papanikolaou Avenue, 57010, Exochi, Thessaloniki, Greece.
| | - Vasiliki Soulountsi
- 1st Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece
| | - Christina Iasonidou
- 2nd Department of Intensive Care Medicine, George Papanikolaou General Hospital, G. Papanikolaou Avenue, 57010, Exochi, Thessaloniki, Greece
| | - Nikos Kapravelos
- 2nd Department of Intensive Care Medicine, George Papanikolaou General Hospital, G. Papanikolaou Avenue, 57010, Exochi, Thessaloniki, Greece
| |
Collapse
|
92
|
Kobata H, Tucker A, Sarapuddin G, Negoro T, Kawakami M. Continuous amplitude-integrated electroencephalography for prognostication of cardiac arrest patients undergoing extracorporeal cardiopulmonary resuscitation with targeted temperature management. Resuscitation 2020; 156:107-113. [PMID: 32918986 DOI: 10.1016/j.resuscitation.2020.08.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Extracorporeal cardiopulmonary resuscitation (ECPR) has been increasingly used for adult cardiac arrest (CA) patients refractory to conventional CPR. However, data on early prognosticators of neurological outcome are lacking. METHODS CA patients undergoing ECPR were prospectively monitored via amplitude-integrated EEG (aEEG). Targeted temperature management (TTM) was induced using an extracorporeal membrane oxygenation system. aEEG background patterns were classified into continuous normal voltage (CNV), discontinuous normal voltage (DNV), low voltage (LV), flat trace (FT), burst suppression (BS), and status epilepticus (SE). The Cerebral Performance Category (CPC) scale scores at hospital discharge and at 6 months after discharge were assessed, as was wakefulness after TTM. Good neurological outcome was defined as a CPC score of 1 or 2. RESULTS Twenty-two patients were studied. Six patients who showed CNV within 24 hours after arrival, including one with initial FT and two with initial LV, regained consciousness and had good neurological outcome except for one who died of haemorrhagic complication. Patients with persistent FT or BS at any time did not regain consciousness. Regarding 19 patients in whom aEEG data were obtained within 24 hours, CNV background predicted good outcome at 6 months with 100% sensitivity, 93% specificity, 83% positive predictive values, and 100% negative predictive values. All these indices were 100% concerning wakefulness after TTM. CONCLUSION aEEG monitoring was feasible and practical in adult CA patients undergoing ECPR and TTM. Evolution of aEEG background within 24 hours provides early accurate information for neurological prognostication.
Collapse
Affiliation(s)
- Hitoshi Kobata
- Osaka Mishima Emergency Critical Care Center, Takatsuki, Japan.
| | - Adam Tucker
- Osaka Mishima Emergency Critical Care Center, Takatsuki, Japan; Department of Neurosurgery, Japanese Red Cross Kitami Hospital, Kitami, Japan
| | - Gemmalynn Sarapuddin
- Osaka Mishima Emergency Critical Care Center, Takatsuki, Japan; Neurology Department, Institute of Neurosciences, The Medical City, Pasig, Philippines
| | | | - Makiko Kawakami
- Osaka Mishima Emergency Critical Care Center, Takatsuki, Japan
| |
Collapse
|
93
|
Outin H, Gueye P, Alvarez V, Auvin S, Clair B, Convers P, Crespel A, Demeret S, Dupont S, Engels JC, Engrand N, Freund Y, Gelisse P, Girot M, Marcoux MO, Navarro V, Rossetti A, Santoli F, Sonneville R, Szurhaj W, Thomas P, Titomanlio L, Villega F, Lefort H, Peigne V. Recommandations Formalisées d’Experts SRLF/SFMU : Prise en charge des états de mal épileptiques en préhospitalier, en structure d’urgence et en réanimation dans les 48 premières heures (A l’exclusion du nouveau-né et du nourrisson). ANNALES FRANCAISES DE MEDECINE D URGENCE 2020. [DOI: 10.3166/afmu-2020-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
La Société de réanimation de langue française et la Société française de médecine d’urgence ont décidé d’élaborer de nouvelles recommandations sur la prise en charge de l’état mal épileptique (EME) avec l’ambition de répondre le plus possible aux nombreuses questions pratiques que soulèvent les EME : diagnostic, enquête étiologique, traitement non spécifique et spécifique. Vingt-cinq experts ont analysé la littérature scientifique et formulé des recommandations selon la méthodologie GRADE. Les experts se sont accordés sur 96 recommandations. Les recommandations avec le niveau de preuve le plus fort ne concernent que l’EME tonico-clonique généralisé (EMTCG) : l’usage des benzodiazépines en première ligne (clonazépam en intraveineux direct ou midazolam en intramusculaire) est recommandé, répété 5 min après la première injection (à l’exception du midazolam) en cas de persistance clinique. En cas de persistance 5 min après cette seconde injection, il est proposé d’administrer la seconde ligne thérapeutique : valproate de sodium, (fos-)phénytoïne, phénobarbital ou lévétiracétam. La persistance avérée de convulsions 30 min après le début de l’administration du traitement de deuxième ligne signe l’EMETCG réfractaire. Il est alors proposé de recourir à un coma thérapeutique au moyen d’un agent anesthésique intraveineux de type midazolam ou propofol. Des recommandations spécifiques à l’enfant et aux autres EME sont aussi énoncées.
Collapse
|
94
|
Canac N, Jalaleddini K, Thorpe SG, Thibeault CM, Hamilton RB. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS 2020; 17:40. [PMID: 32576216 PMCID: PMC7310456 DOI: 10.1186/s12987-020-00201-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Measurement of intracranial pressure (ICP) is crucial in the management of many neurological conditions. However, due to the invasiveness, high cost, and required expertise of available ICP monitoring techniques, many patients who could benefit from ICP monitoring do not receive it. As a result, there has been a substantial effort to explore and develop novel noninvasive ICP monitoring techniques to improve the overall clinical care of patients who may be suffering from ICP disorders. This review attempts to summarize the general pathophysiology of ICP, discuss the importance and current state of ICP monitoring, and describe the many methods that have been proposed for noninvasive ICP monitoring. These noninvasive methods can be broken down into four major categories: fluid dynamic, otic, ophthalmic, and electrophysiologic. Each category is discussed in detail along with its associated techniques and their advantages, disadvantages, and reported accuracy. A particular emphasis in this review will be dedicated to methods based on the use of transcranial Doppler ultrasound. At present, it appears that the available noninvasive methods are either not sufficiently accurate, reliable, or robust enough for widespread clinical adoption or require additional independent validation. However, several methods appear promising and through additional study and clinical validation, could eventually make their way into clinical practice.
Collapse
|
95
|
Lang SS, Paden W, Steenhoff AP, Hines K, Storm PB, Huh J. Intracranial Pressure and Brain Tissue Oxygen Neuromonitoring in Pediatric Cerebral Malaria. World Neurosurg 2020; 141:115-118. [PMID: 32526359 DOI: 10.1016/j.wneu.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pediatric cerebral malaria (CM) is a severe complication of Plasmodium falciparum that often leaves survivors with severe neurologic impairment. Increased intracranial pressure (ICP) as a result of cerebral edema has been identified as a major predictor of morbidity and mortality in CM. Past studies have demonstrated that survivors are more likely to have resolution of elevated ICP and that efficient management of ICP crises may lead to better outcomes. However, data on invasive brain tissue oxygen monitoring are unknown. CASE DESCRIPTION We report a case of a pediatric patient with cerebral malaria who developed encephalopathy and cerebral edema and describe the pathophysiology of this disease process with invasive ICP and brain tissue oxygen multimodality neuromonitoring. The utilization of both ICP and brain tissue oxygen monitoring allowed prompt diagnosis and successful treatment of severe intracranial hypertension and low brain tissue oxygenation crisis. The patient was discharged to home in good neurologic condition. CONCLUSIONS Multimodality neuromonitoring may be considered in pediatric patients who have cerebral edema and encephalopathy from CM.
Collapse
Affiliation(s)
- Shih-Shan Lang
- Division of Neurosurgery, Department of Neurosurgery, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - William Paden
- Drexel University, College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew P Steenhoff
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin Hines
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Division of Neurosurgery, Department of Neurosurgery, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jimmy Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
96
|
Implementation and Early Evaluation of a Quantitative Electroencephalography Program for Seizure Detection in the PICU. Pediatr Crit Care Med 2020; 21:543-549. [PMID: 32343109 DOI: 10.1097/pcc.0000000000002278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To describe implementation and early evaluation of using quantitative electroencephalography for electrographic seizure detection by PICU clinician staff. DESIGN Prospective observational study of electrographic seizure detection by PICU clinicians in patients monitored with quantitative electroencephalography. Quantitative electroencephalography program implementation included a continuous education and training package. Continuous quantitative electroencephalography monitoring consisted of two-channel amplitude-integrated electroencephalography, color density spectral array, and raw-electroencephalography. SETTING PICU. PATIENTS Children less than 18 years old admitted to the PICU during the 14-month study period and deemed at risk of electrographic seizure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Real time electrographic seizure detection by a PICU team was analyzed for diagnostic accuracy and promptness, against electrographic seizure identification by a trained neurophysiologist, retrospectively reading the same quantitative electroencephalography and blinded to patient details. One-hundred one of 1,510 consecutive admissions (6.7%) during the study period underwent quantitative electroencephalography monitoring. Status epilepticus (35%) and suspected hypoxic-ischemic injury (32%) were the most common indications for quantitative electroencephalography. Electrographic seizure was diagnosed by the neurophysiologist in 12% (n = 12) of the cohort. PICU clinicians correctly diagnosed all 12 patients (100% sensitivity and negative predictive value). An additional eleven patients had a false-positive diagnosis of electrographic seizure (false-positive rate = 52% [31-73%]) leading to a specificity of 88% (79-94%). Median time to detect seizures was 25 minutes (5-218 min). Delayed recognition of electrographic seizure (> 1 hr from onset) occurred in five patients (5/12, 42%). CONCLUSIONS Early evaluation of quantitative electroencephalography program to detect electrographic seizure by PICU clinicians suggested good sensitivity for electrographic seizure detection. However, the high false-positive rate is a challenge. Ongoing work is needed to reduce the false positive diagnoses and avoid electrographic seizure detection delays. A comprehensive training program and regular refresher updates for clinical staff are key components of the program.
Collapse
|
97
|
Yang MT. Multimodal neurocritical monitoring. Biomed J 2020; 43:226-230. [PMID: 32651135 PMCID: PMC7424082 DOI: 10.1016/j.bj.2020.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/11/2023] Open
Abstract
Neurocritical monitoring is important in caring for patients in the neurological intensive care unit. Although clinical neurologic examination is standard for neurocritical monitoring, changes found during the examination are often late signs and insufficient to detect and prevent secondary brain injury. Therefore, various neuromonitoring tools have been developed to monitor different physiologic parameters, such as cerebral oxygenation, cerebral blood flow, cerebral pressure, cerebral autoregulation, cerebral electric activity, and cerebral metabolism. In this review, we have discussed current commonly used neurocritical monitoring tools. No single monitor is sufficient and perfect for neurocritical monitoring. Multimodal neurocritical monitoring is the current trend. However, the lack of common formatting standards and uncertainty of improvement in patients' outcomes warrant further studies of multimodal neurocritical monitoring. Nevertheless, multimodal neurocritical monitoring considers individual pathophysiological variations in patients or their injuries and allows clinicians to tailor individualized management decisions.
Collapse
Affiliation(s)
- Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
98
|
Phillips SS, Mueller CM, Nogueira RG, Khalifa YM. A Systematic Review Assessing the Current State of Automated Pupillometry in the NeuroICU. Neurocrit Care 2020; 31:142-161. [PMID: 30484008 DOI: 10.1007/s12028-018-0645-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to assess the current state of automated pupillometry technology and its application in the neurointensive care unit (neuroICU). We performed a literature search using the PubMed, MEDLINE, and EMBASE databases from database inception through a search end date of October 18, 2018, to identify studies reporting on the use of automated pupillometry in the care of critically ill patients with neurological impairment. Two independent reviewers reviewed all titles and abstracts in two filtering phases. Data were extracted independently. One hundred and forty-one articles/abstracts have been published on the use of automated pupillometry in critical care since inception of the PubMed, MEDLINE, and EMBASE databases. We selected and reviewed 22 full-text articles and 8 abstracts, of which 26 were prospective, 2 were retrospective, and 2 were larger case series. Automated pupillometry increased precision, reliability, and reproducibility compared with the manual pupillary examination; detected subtle and early pupillary changes; detected pupillary changes that indicate a rise, or impending rise, in intracranial pressure detected level of analgesia and depth of sedation; served as a prognostic indicator; estimated the clinical severity of aneurysmal subarachnoid hemorrhage; and served as a noninvasive monitor of response to osmotic therapy. At present, no consensus guidelines exist endorsing routine use of automated pupillometry in the neuroICU. However, an increasing quantity of research supports the usefulness of automated pupillometry in this setting. Further large-scale prospective studies are needed before updated consensus guidelines recommending widespread adoption of automated pupillometry are produced.
Collapse
Affiliation(s)
| | | | - Raul G Nogueira
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA, USA
| | - Yousuf M Khalifa
- Department of Ophthalmology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, GA, 30307, USA.
- Department of Ophthalmology, Grady Memorial Hospital, Atlanta, GA, USA.
| |
Collapse
|
99
|
Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 2020; 17:34. [PMID: 32375853 PMCID: PMC7201553 DOI: 10.1186/s12987-020-00195-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
100
|
Kleffmann J, Pahl R, Ferbert A, Roth C. Factors influencing intracranial pressure (ICP) during percutaneous tracheostomy. Clin Neurol Neurosurg 2020; 195:105869. [PMID: 32353664 DOI: 10.1016/j.clineuro.2020.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Percutaneous tracheostomy (PT) is common on ICUs. An increase of intracranial pressure (ICP) can be observed in patients with acute cerebral diseases. Factors determining ICP increase remain unclear. PATIENTS AND METHODS Data for all PTs were collected prospectively. ICP, cerebral perfusion pressure (CPP), mean arterial pressure (MAP), peripheral oxygen saturation (SpO2), and heart rate (HR) were monitored continuously every minute. Primary outcome parameter was an increase of ICP during PT (ICP > 20 mmHg). Influencing factors were evaluated by the means of logistic regression analysis: Body mass index (BMI), age, gender, physician performing the procedure (neurologist vs. neurosurgeon), duration of the procedure, underlying disease, duration of mechanical ventilation, and baseline ICP value before the procedure. RESULTS A total of 175 PTs were performed during the observation period between 2010 and 2013. Of these, 54 received ICP monitoring and were included into this study. Median initial ICP value was 10.4 mmHg and rose significantly to a median value of 18.4 mmHg (p < 0.05). In 21 patients (38,9%) an increase of median ICP above 20 mmHg was seen during at least one interval. Comparing patients with and without pathological ICP increase a significant difference between the two groups was only observed for patients with an increased baseline ICP above 15 mmHg. All other factors had no significant influence on the development of a pathological ICP peaks during PT. CONCLUSION Percutaneous tracheostomies in patients with cerebral injury leads to a significant increase of ICP during the procedure. Patients with a baseline ICP > 15 mmHg are at risk to develop harmful ICP crises.
Collapse
Affiliation(s)
- Jens Kleffmann
- Neurocenter Kassel, Marburger Str. 85, 34127 Kassel, Germany; Department of Neurosurgery, Klinikum Kassel, Mönchebergstraße 41-43, 34125 Kassel, Germany
| | - Roman Pahl
- Institute of Medical Biometry and Epidemiology (IMBE), Philipps University Marburg, Bunsenstraße 3, 35037 Marburg, Germany
| | - Andreas Ferbert
- Department of Neurology, DRK-Kliniken Nordhessen, Hansteinstraße 29, 34121 Kassel, Germany
| | - Christian Roth
- Department of Neurology, DRK-Kliniken Nordhessen, Hansteinstraße 29, 34121 Kassel, Germany; Department of Neurology, Philipps University Marburg, Baldingerstraße, 35037 Marburg, Germany.
| |
Collapse
|