51
|
Ning M, Wang Y, Wu L, Yang L, Chen Z, Song S, Yao Y, Bao J, Chen S, Ren Z. Hierarchical Interconnected NiMoN with Large Specific Surface Area and High Mechanical Strength for Efficient and Stable Alkaline Water/Seawater Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:157. [PMID: 37336833 PMCID: PMC10279610 DOI: 10.1007/s40820-023-01129-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/13/2023] [Indexed: 06/21/2023]
Abstract
NiMo-based nanostructures are among the most active hydrogen evolution reaction (HER) catalysts under an alkaline environment due to their strong water dissociation ability. However, these nanostructures are vulnerable to the destructive effects of H2 production, especially at industry-standard current densities. Therefore, developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities. Here, a hierarchical interconnected NiMoN (HW-NiMoN-2h) with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes. HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology, in which nanowires connect free-standing nanorods, concurrently strengthening its structural stability to withstand H2 production at 1 A cm-2. Seawater is an attractive feedstock for water electrolysis since H2 generation and water desalination can be addressed simultaneously in a single process. The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ ions interferes with the reation kinetics, thus lowering its activity slightly. However, benefiting from its hierarchical and interconnected characteristics, HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm-2 at 130 mV overpotential and to exhibit excellent stability at 1 A cm-2 over 70 h in 1 M KOH seawater.
Collapse
Affiliation(s)
- Minghui Ning
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yu Wang
- Cullen College of Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Libo Wu
- Cullen College of Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Lun Yang
- School of Materials Science and Engineering, Hubei Normal University, Huangshi, 435002, Hubei, People's Republic of China
| | - Zhaoyang Chen
- Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Shaowei Song
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yan Yao
- Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Jiming Bao
- Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Shuo Chen
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA.
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
52
|
Kim H, Seo JW, Chung W, Narejo GM, Koo SW, Han JS, Yang J, Kim JY, In SI. Thermal Effect on Photoelectrochemical Water Splitting Toward Highly Solar to Hydrogen Efficiency. CHEMSUSCHEM 2023; 16:e202202017. [PMID: 36840941 DOI: 10.1002/cssc.202202017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/07/2023] [Indexed: 06/10/2023]
Abstract
Photoelectrochemical (PEC) hydrogen production is an emerging technology that uses renewable solar light aimed to establish a sustainable carbon-neutral society. The barriers to commercialization are low efficiency and high cost. To date, researchers have focused on materials and systems. However, recent studies have been conducted to utilize thermal effects in PEC hydrogen production. This Review provides a fresh perspective to utilize the thermal effects for PEC performance enhancement while delineating the underlying principles and equations associated with efficiency. The fundamentals of the thermal effect on the PEC system are summarized from various perspectives: kinetics, thermodynamics, and empirical equations. Based on this, materials are classified as plasmonic metals, quantum dot-based semiconductors, and photothermal organic materials, which have an inherent response to photothermal irradiation. Finally, the economic viability and challenges of these strategies for PEC are explained, which can pave the way for the future progress in the field.
Collapse
Affiliation(s)
- Hwapyong Kim
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Joo Won Seo
- Department of Chemical Engineering, Dankook University (DKU), Yongin-si, 16890 (Republic of, Korea
| | - Wookjin Chung
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Ghulam Mustafa Narejo
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Sung Wook Koo
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Ji Su Han
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Jiwoong Yang
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University (DKU), Yongin-si, 16890 (Republic of, Korea
| | - Su-Il In
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| |
Collapse
|
53
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
54
|
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Collapse
Affiliation(s)
- Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ming Yan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Esther Marie JieRong Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
55
|
Morales-García Á, Viñes F, Sousa C, Illas F. Toward a Rigorous Theoretical Description of Photocatalysis Using Realistic Models. J Phys Chem Lett 2023; 14:3712-3720. [PMID: 37042213 PMCID: PMC10123813 DOI: 10.1021/acs.jpclett.3c00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
This Perspective aims at providing a road map to computational heterogeneous photocatalysis highlighting the knowledge needed to boost the design of efficient photocatalysts. A plausible computational framework is suggested focusing on static and dynamic properties of the relevant excited states as well of the involved chemistry for the reactions of interest. This road map calls for explicitly exploring the nature of the charge carriers, the excited-state potential energy surface, and its time evolution. Excited-state descriptors are introduced to locate and characterize the electrons and holes generated upon excitation. Nonadiabatic molecular dynamics simulations are proposed as a convenient tool to describe the time evolution of the photogenerated species and their propagation through the crystalline structure of photoactive material, ultimately providing information about the charge carrier lifetime. Finally, it is claimed that a detailed understanding of the mechanisms of heterogeneously photocatalyzed reactions demands the analysis of the excited-state potential energy surface.
Collapse
|
56
|
Liu G, Cheng Y, Qiu M, Li C, Bao A, Sun Z, Yang C, Liu D. Facilitating interface charge transfer via constructing NiO/NiCo 2O 4 heterostructure for oxygen evolution reaction under alkaline conditions. J Colloid Interface Sci 2023; 643:214-222. [PMID: 37058896 DOI: 10.1016/j.jcis.2023.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Designing high-activity electrocatalysts to enhance the slow multielectron-transfer process of the oxygen evolution reaction (OER) is of great importance for hydrogen generation. Here, we employ hydrothermal and subsequent heat-treatment strategies to acquire nanoarrays-structured NiO/NiCo2O4 heterojunction anchored Ni foam (NiO/NiCo2O4/NF) as efficient materials for catalyzing the OER in an alkaline electrolyte. Density functional theory (DFT) results demonstrate that NiO/NiCo2O4/NF exhibits a smaller overpotential than those of single NiO/NF and NiCo2O4/NF owing to interface-triggered numerous interface charge transfer. Moreover, the superior metallic characteristics of NiO/NiCo2O4/NF further enhance its electrochemical activity toward OER. Specifically, NiO/NiCo2O4/NF delivered a current density of 50 mA cm-2 at an overpotential of 336 mV with a Tafel slope of 93.2 mV dec-1 for the OER, which are comparable with those of commercial RuO2 (310 mV and 68.8 mV dec-1). Further, an overall water splitting system is preliminarily constructed via using a Pt net as cathode and NiO/NiCo2O4/NF as anode. The water electrolysis cell performs an operating voltage of 1.670 V at 20 mA cm-2, which outperform the Pt net||IrO2 couple assembled two-electrode electrolyzer (1.725 V at 20 mA cm-2). This study proposes an efficient route to acquire multicomponent catalysts with rich interfaces for water electrolysis.
Collapse
Affiliation(s)
- Guoqiang Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yuwen Cheng
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maoqin Qiu
- College of Electromechanical Engineering, Hefei Technology College, Hefei, Anhui 238000, PR China
| | - Chengcheng Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Anyang Bao
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Cuizhen Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Dongming Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
57
|
Kim M, Kim Y, Ha MY, Shin E, Kwak SJ, Park M, Kim ID, Jung WB, Lee WB, Kim Y, Jung HT. Exploring Optimal Water Splitting Bifunctional Alloy Catalyst by Pareto Active Learning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211497. [PMID: 36762586 DOI: 10.1002/adma.202211497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Indexed: 05/17/2023]
Abstract
Design of bifunctional multimetallic alloy catalysts, which are one of the most promising candidates for water splitting, is a significant issue for the efficient production of renewable energy. Owing to large dimensions of the components and composition of multimetallic alloys, as well as the trade-off behavior in terms of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials for bifunctional catalysts, it is difficult to search for high-performance bifunctional catalysts with multimetallic alloys using conventional trial-and-error experiments. Here, an optimal bifunctional catalyst for water splitting is obtained by combining Pareto active learning and experiments, where 110 experimental data points out of 77946 possible points lead to effective model development. The as-obtained bifunctional catalysts for HER and OER exhibit high performance, which is revealed by model development using Pareto active learning; among the catalysts, an optimal catalyst (Pt0.15 Pd0.30 Ru0.30 Cu0.25 ) exhibits a water splitting behavior of 1.56 V at a current density of 10 mA cm-2 . This study opens avenues for the efficient exploration of multimetallic alloys, which can be applied in multifunctional catalysts as well as in other applications.
Collapse
Affiliation(s)
- Minki Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, South Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Minhee Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Woo-Bin Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, South Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
58
|
Cho G, Grinenval E, Gabriel JCP, Lebental B. Intense pH Sensitivity Modulation in Carbon Nanotube-Based Field-Effect Transistor by Non-Covalent Polyfluorene Functionalization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1157. [PMID: 37049251 PMCID: PMC10096590 DOI: 10.3390/nano13071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate (PBS) and borate (BBS) buffer solutions, the p-CNTFETs exhibit a p-type operation while f-CNTFETs exhibit p-type behavior in BBS and ambipolarity in PBS. The sensitivity to pH is evaluated by measuring the drain current at a gate and drain voltage of -0.8 V. In PBS, p-CNTFETs show a linear, reversible pH response between pH 3 and pH 9 with a sensitivity of 26 ± 2.2%/pH unit; while f-CNTFETs have a much stronger, reversible pH response (373%/pH unit), but only over the range of pH 7 to pH 9. In BBS, both p-CNTFET and f-CNTFET show a linear pH response between pH 5 and 9, with sensitivities of 56%/pH and 96%/pH, respectively. Analysis of the I-V curves as a function of pH suggests that the increased pH sensitivity of f-CNTFET is consistent with interactions of FF-UR with phosphate ions in PBS and boric acid in BBS, with the ratio and charge of the complexed species depending on pH. The complexation affects the efficiency of electrolyte gating and the surface charge around the CNT, both of which modify the I-V response of the CNTFET, leading to the observed current sensitivity as a function of pH. The performances of p-CNTFET in PBS are comparable to the best results in the literature, while the performances of the f-CNTFET far exceed the current state-of-the-art by a factor of four in BBS and more than 10 over a limited range of pH in BBS. This is the first time that a functionalization other than carboxylate moieties has significantly improved the state-of-the-art of pH sensing with CNTFET or CNT chemistors. On the other hand, this study also highlights the challenge of transferring this performance to a real water matrix, where many different species may compete for interactions with FF-UR.
Collapse
Affiliation(s)
- Gookbin Cho
- Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique Paris, 91128 Palaiseau, France
| | - Eva Grinenval
- Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique Paris, 91128 Palaiseau, France
| | | | - Bérengère Lebental
- IMSE, COSYS, Université Gustave Eiffel, Marne-la-Vallée Campus, 77447 Marne-La-Vallée, France
| |
Collapse
|
59
|
Huang P, Han WQ. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. NANO-MICRO LETTERS 2023; 15:68. [PMID: 36918453 PMCID: PMC10014646 DOI: 10.1007/s40820-023-01039-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/31/2023]
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
60
|
Humayun M, Ullah H, Hu C, Tian M, Pi W, Zhang Y, Luo W, Wang C. Enhanced Photocatalytic H 2 Evolution Performance of the Type-II FeTPPCl/Porous g-C 3N 4 Heterojunction: Experimental and Density Functional Theory Studies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892209 DOI: 10.1021/acsami.3c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is of great significance to improve the photocatalytic performance of g-C3N4 by promoting its surface-active sites and engineering more suitable and stable redox couples. Herein, first of all, we fabricated porous g-C3N4 (PCN) via the sulfuric acid-assisted chemical exfoliation method. Then, we modified the porous g-C3N4 with iron(III) meso-tetraphenylporphine chloride (FeTPPCl) porphyrin via the wet-chemical method. The as-fabricated FeTPPCl-PCN composite revealed exceptional performance for photocatalytic water reduction by evolving 253.36 and 8301 μmol g-1 of H2 after visible and UV-visible irradiation for 4 h, respectively. The performance of the FeTPPCl-PCN composite is ∼2.45 and 4.75-fold improved compared to that of the pristine PCN photocatalyst under the same experimental conditions. The calculated quantum efficiencies of the FeTPPCl-PCN composite for H2 evolution at 365 and 420 nm wavelengths are 4.81 and 2.68%, respectively. This exceptional H2 evolution performance is because of improved surface-active sites due to porous architecture and remarkably improved charge carrier separation via the well-aligned type-II band heterostructure. Besides, we also reported the correct theoretical model of our catalyst through density functional theory (DFT) simulations. It is found that the hydrogen evolution reaction (HER) activity of FeTPPCl-PCN arises from the electron transfer from PCN via Cl atom(s) to Fe of the FeTPPCl, which forms a strong electrostatic interaction, leading to a decreased local work function on the surface of the catalyst. We suggest that the resultant composite would be a perfect model for the design and fabrication of high-efficiency heterostructure photocatalysts for energy applications.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Habib Ullah
- Department of Renewable Energy, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Chao Hu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Mi Tian
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Wenbo Pi
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yi Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
61
|
Thermally constructed stable Zn-doped NiCoO x-z alloy structures on stainless steel mesh for efficient hydrogen production via overall hydrazine splitting in alkaline electrolyte. J Colloid Interface Sci 2023; 640:737-749. [PMID: 36898180 DOI: 10.1016/j.jcis.2023.02.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Hydrogen has a high energy density of approximately 120 to 140 MJ kg-1, which is very high compared to other natural energy sources. However, hydrogen generation through electrocatalytic water splitting is a high electricity consumption process due to the sluggish oxygen evolution reaction (OER). As a result, hydrogen generation through hydrazine-assisted water electrolysis has recently been intensively investigated. The hydrazine electrolysis process requires a low potential compared to the water electrolysis process. Despite this, the utilization of direct hydrazine fuel cells (DHFCs) as portable or vehicle power sources necessitates the development of inexpensive and effective anodic hydrazine oxidation catalysts. Here, we prepared oxygen-deficient zinc-doped nickel cobalt oxide (Zn-NiCoOx-z) alloy nanoarrays on stainless steel mesh (SSM) using a hydrothermal synthesis method followed by thermal treatment. Furthermore, the prepared thin films were used as electrocatalysts, and the OER and hydrazine oxidation reaction (HzOR) activities were investigated in three- and two-electrode systems. In a three-electrode system, Zn-NiCoOx-z/SSM HzOR requires -0.116 V (vs RHE) potential to achieve a 50 mA cm-2 current density, which is dramatically lower than the OER potential (1.493 V vs RHE). In a two-electrode system (Zn-NiCoOx-z/SSM(-)∥Zn-NiCoOx-z/SSM(+)), the overall hydrazine splitting potential (OHzS) required to reach 50 mA cm-2 is only 0.700 V, which is dramatically less than the required potential for overall water splitting (OWS). These excellent HzOR results are due to the binder-free oxygen-deficient Zn-NiCoOx-z/SSM alloy nanoarray, which provides a large number of active sites and improves the wettability of catalysts after Zn doping.
Collapse
|
62
|
Jia H, Yao N, Zhu J, Luo W. Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry 2023; 29:e202203073. [PMID: 36367365 DOI: 10.1002/chem.202203073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
The development of electrocatalysts with high-efficiency and clear structure-activity relationship towards the sluggish oxygen evolution reaction (OER) is essential for the wide application of water electrolyzers. Recently, the dynamic reconstruction phenomenon of the catalysts' surface structures during the OER process has been discovered. With the help of various advanced ex situ and in situ characterization, it is demonstrated that such surface reconstruction could yield actual active species to catalyze the water oxidation process. However, the attention and studies of potential interaction between reconstructed species and substrate are lacking. This review summarizes the recent development of typical reconstructed electrocatalysts and the substrate effect. First, the advanced characterization for electrocatalytic reconstruction is briefly discussed. Then, typical reconstructed electrocatalysts are comprehensively summarized and the key role of substrate effects during the OER process is emphasized. Finally, the future challenges and perspectives of surface reconstructed catalysts for water electrolysis are discussed.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
63
|
Wang Z, Zhou T, Chen Z, Gu R, Tao J, Fan Z, Guo L, Liu Y. Three-Dimensional Strawlike MoSe 2-Ni(Fe)Se Electrocatalysts for Overall Water Splitting. Inorg Chem 2023; 62:2894-2904. [PMID: 36729485 DOI: 10.1021/acs.inorgchem.2c04354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of efficient and low-cost transition-metal electrocatalysts is of great significance for hydrogen production from water splitting. Herein, we synthesized three-dimensional strawlike MoSe2-NiSe composed of microrods on nickel foam (NF) by a one-step hydrothermal reaction. The as-prepared MoSe2-NiSe/NF exhibited effective hydrogen evolution reaction (HER) activity (low overpotential of 79 mV at 10 mA cm-2 and stability of 21 h in 1 M KOH), benefiting from the large electrochemically active area provided by strawlike structures, proper Se content, and synergistic effect of active phases. The enhanced oxygen evolution reaction (OER) activity (the low overpotential of 217 mV at 10 mA cm-2 and maintaining stability for 47 h in 1 M KOH) was further observed for Fe-doped MoSe2-NiSe/NF (MoSe2-NiFeSe/NF) prepared by facile soaking, which can be mainly ascribed to optimized active phases formed on the OER process after Fe doping. The two-electrode system (MoSe2-NiSe/NF||MoSe2-NiFeSe/NF) requires a low cell voltage of 1.54 V to obtain a current density of 10 mA cm-2 in 1 M KOH, which provides an interesting idea for constructing an effective overall water splitting system.
Collapse
Affiliation(s)
- Zihao Wang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Tao Zhou
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Zheng Chen
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Ruizhe Gu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Junwen Tao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Zhewei Fan
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Lingyun Guo
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Yongsheng Liu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| |
Collapse
|
64
|
Devi Y, Huang PJ, Chen WT, Jhang RH, Chen CH. Roll-to-Roll Production of Electrocatalysts Achieving High-Current Alkaline Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9231-9239. [PMID: 36753291 PMCID: PMC9951216 DOI: 10.1021/acsami.2c19710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Scalable production of electrocatalysts capable of performing high-current water splitting is crucial to support green energy utilization. We adopted acidic redox-assisted deposition (ARD) to realize the continuous roll-to-roll fabrication of a strongly adherent cobalt manganese oxyhydroxide (CMOH) film on Ni foam under ambient conditions in water. The as-fabricated products show uniform CMOH coverage and oxygen evolution activities with dimensions as large as 5 m length by 0.25 m width. Also, we converted CMOH into a metallic form (denoted as CM) with the preserved high adhesion to serve as a high-current hydrogen evolution electrocatalyst. Our results reveal that the insufficient adhesion of powder forms electrocatalysts (i.e., Pt and RuO2 as benchmarks), even with the binder, at high-current electrolysis (>1000 mA) can be solved using the fabricated CM||CMOH cell. With an active area of 1 cm × 1 cm assembly in anion exchange membrane (AEM) electrolyzers, we observed the remarkable record of alkaline electrolysis stably at 5000 mA. This result established a new benchmark record on the high-current water splitting research.
Collapse
Affiliation(s)
- Yanita Devi
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Po-Jen Huang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wen-Tai Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ren-Huai Jhang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
65
|
Mohamed MJS, Slimani Y, Gondal MA, Almessiere MA, Baykal A, Hassan M, Khan AZ, Roy A. Role of vanadium ions substitution on spinel MnCo 2O 4 towards enhanced electrocatalytic activity for hydrogen generation. Sci Rep 2023; 13:2120. [PMID: 36747062 PMCID: PMC9902437 DOI: 10.1038/s41598-023-29081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Improving efficient electrocatalysts (ECs) for hydrogen generation through water splitting is of significant interest in tackling the upcoming energy crisis. Sustainable hydrogen generation is the primary prerequisite to realizing the future hydrogen economy. This work examines the electrocatalytic activity of hydrothermally prepared vanadium doped MnCo spinel oxide microspheres (MC), MnVxCo2-xO4 (Vx-MnCo MC, where x ≤ 0.4) in the HER (hydrogen evolution reaction) process. Magnetization measurements demonstrated a paramagnetic (at high temperatures) to a ferrimagnetic (at low temperatures) transition below the Curie temperature (Tc) in all the samples. The magnetization is found to intensify with the rising vanadium content of MCs. The optimized catalyst Vx-MnCo MCs (x = 0.3) outperformed other prepared ECs with a Tafel slope of 84 mV/dec, a low onset potential of 78.9 mV, and a low overpotential of 85.9 mV at a current density of 10 mA/cm2, respectively. The significantly improved HER performance of hydrothermally synthesized Vx-MnCo MCs (x = 0.3) is principally attributable to many exposed active sites, accelerated electron transport at the EC/electrolyte interface, and remarkable electron spectroscopy for chemical analysis (ECSA) value was found ~ 11.4 cm2. Moreover, the Vx-MnCo MCs (x = 0.3) electrode exhibited outstanding electrocatalytic stability after exposure to 1000 cyclic voltametric cycles and 36 h of chronoamperometric testing. Our results suggest a feasible route for developing earth-abundant transition metal oxide-based EC as a superior electrode for future water electrolysis applications.
Collapse
Affiliation(s)
- M. J. S. Mohamed
- grid.412135.00000 0001 1091 0356Laser Research Group, Physics Department, IRC-Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261 Saudi Arabia
| | - Y. Slimani
- grid.411975.f0000 0004 0607 035XDepartment of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - M. A. Gondal
- grid.412135.00000 0001 1091 0356Laser Research Group, Physics Department, IRC-Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261 Saudi Arabia ,grid.412135.00000 0001 1091 0356K.A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - M. A. Almessiere
- grid.411975.f0000 0004 0607 035XDepartment of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia ,grid.411975.f0000 0004 0607 035XDepartment of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - A. Baykal
- grid.411975.f0000 0004 0607 035XDepartment of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - M. Hassan
- grid.444930.e0000 0004 0603 536XSchool of Physics, Minhaj University Lahore, Punjab 54770, Pakistan
| | - A. Z. Khan
- grid.444905.80000 0004 0608 7004Department of Chemistry, Forman Christian College, Lahore, 54600 Pakistan
| | - Anurag Roy
- Solar Energy Research Group, Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, TR10 9FE, UK.
| |
Collapse
|
66
|
Yi M, Xiong B, Li Y, Guo W, Huang Y, Lu B. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur J Med Chem 2023; 247:115084. [PMID: 36599230 DOI: 10.1016/j.ejmech.2022.115084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Due to its low adverse effects, minimal invasiveness, and outstanding patient compliance, photodynamic therapy (PDT) has drawn a great deal of interest, which is achieved through incomplete reduction of O2 by a photosensitizer under light illumination that produces amounts of reactive oxygen species (ROS). However, tumor hypoxia significantly hinders the therapeutic effect of PDT so that tumor cells cannot be eliminated, which results in tumor cells proliferating, invading, and metastasizing. Additionally, O2 consumption during PDT exacerbates hypoxia in tumors, leading to several adverse events after PDT treatment. In recent years, various investigations have focused on conquering or using tumor hypoxia by nanomaterials to amplify PDT efficacy, which is summarized in this review. This comprehensive review's objective is to present novel viewpoints on the advancement of oxygenation nanomaterials in this promising field, which is motivated by hypoxia-associated anti-tumor therapy.
Collapse
Affiliation(s)
- Mengqi Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuyang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
67
|
Dung DT, Lam DV, Roh E, Ji S, Yuk JM, Kim JH, Kim H, Lee SM. Ni/Co/Co 3O 4@C nanorods derived from a MOF@MOF hybrid for efficient overall water splitting. NANOSCALE 2023; 15:1794-1805. [PMID: 36602000 DOI: 10.1039/d2nr05686k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The design of nanostructured materials for efficient bifunctional electrocatalysts has gained tremendous attention, yet developing a fast and effective synthesis strategy remains a challenge. Here, we present a fast and scalable synthetic method of Ni/Co/Co3O4@C nanorods for efficient overall water splitting. Using microwave synthesis, we first produced a unique Ni-MOF@Co-MOF in a few minutes. Subsequently, we transformed the MOF@MOF into hybrid Ni/Co/Co3O4 nanoparticles covered with graphitic carbon in a few seconds using laser-scribing. The prepared bimetallic catalysts showed remarkably low overpotentials of 246 mV for the oxygen evolution reaction (OER) and 143 mV for the hydrogen evolution reaction (HER) at a current density of 30 mA cm-2. An electrolyzer assembled with the bimetallic catalysts delivered a high current density of 20 mA cm-2 at a voltage of 1.6 V and exhibited good durability (nearly 91.6% retention even after a long-running operation of 24 h at a voltage of 1.52 V). Our proposed method could serve as a powerful method for creating various multimetallic hybrid nanocatalysts with unique hierarchical structures from diverse MOFs.
Collapse
Affiliation(s)
- Dao Thi Dung
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Do Van Lam
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
| | - Euijin Roh
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea
| | - Sanghyeon Ji
- Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Deajeon, 34141, South Korea
| | - Jong Min Yuk
- Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Deajeon, 34141, South Korea
| | - Jae-Hyun Kim
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Hyunuk Kim
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea
| | - Seung-Mo Lee
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
68
|
Seif R, Salem FZ, Allam NK. E-waste recycled materials as efficient catalysts for renewable energy technologies and better environmental sustainability. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-36. [PMID: 36691418 PMCID: PMC9848041 DOI: 10.1007/s10668-023-02925-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Waste from electrical and electronic equipment exponentially increased due to the innovation and the ever-increasing demand for electronic products in our life. The quantities of electronic waste (e-waste) produced are expected to reach 44.4 million metric tons over the next five years. Consequently, the global market for electronics recycling is expected to reach $65.8 billion by 2026. However, electronic waste management in developing countries is not appropriately handled, as only 17.4% has been collected and recycled. The inadequate electronic waste treatment causes significant environmental and health issues and a systematic depletion of natural resources in secondary material recycling and extracting valuable materials. Electronic waste contains numerous valuable materials that can be recovered and reused to create renewable energy technologies to overcome the shortage of raw materials and the adverse effects of using non-renewable energy resources. Several approaches were devoted to mitigate the impact of climate change. The cooperate social responsibilities supported integrating informal collection and recycling agencies into a well-structured management program. Moreover, the emission reductions resulting from recycling and proper management systems significantly impact climate change solutions. This emission reduction will create a channel in carbon market mechanisms by trading the CO2 emission reductions. This review provides an up-to-date overview and discussion of the different categories of electronic waste, the recycling methods, and the use of high recycled value-added (HAV) materials from various e-waste components in green renewable energy technologies.
Collapse
Affiliation(s)
- Rania Seif
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| | - Fatma Zakaria Salem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| |
Collapse
|
69
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Tiwari S, Yadav P, Ganguli AK. Enhancing the activity and stability of Cu 2O nanorods via coupling with a NaNbO 3/SnS 2 heterostructure for photoelectrochemical water-splitting. NEW J CHEM 2023. [DOI: 10.1039/d3nj00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
We synthesized a stable copper-based heterostructure catalyst, NaNbO3/SnS2/Cu2O for photoelectrochemical water-splitting applications with improved activity, stability, and inhibited photocorrosion in Cu2O.
Collapse
Affiliation(s)
- Shalini Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Priyanka Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok K. Ganguli
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
71
|
Xing J, Wang X, Zhang Y, Fu X. Preparation of N
x
−Fe/Fe
3
C/KVO
3
composites by heat treatment for high‐performance electrocatalytic oxygen evolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202203656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junjie Xing
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Xiaohan Wang
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Yu Zhang
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Xiuli Fu
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| |
Collapse
|
72
|
Rashidi M, Ghasemi F. Thermally oxidized MoS2-based hybrids as superior electrodes for supercapacitor and photoelectrochemical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Deshmukh MA, Park SJ, Thorat HN, Bodkhe GA, Ramanavicius A, Ramanavicius S, Shirsat MD, Ha TJ. Advanced Energy Materials: Current Trends and Challenges in Electro- and Photo-Catalysts for H2O Splitting. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
74
|
Liu Y, Wang F, Jiao Z, Bai S, Qiu H, Guo L. Photochemical Systems for Solar-to-Fuel Production. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
75
|
Jiang T, Xie W, Geng S, Li R, Song S, Wang Y. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64137-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Jangid DK, Dastider SG, Biswas R, Khirid S, Meena S, Kumar P, Sahoo SC, Verma VP, Makde RD, Kumar A, Jangir R, Mondal K, Haldar KK, Dhayal RS. Dithiophosphonate Anchored Heterometallic (Ag(I)/Fe(II)) Molecular Catalysts for Electrochemical Hydrogen Evolution Reaction. Inorg Chem 2022; 61:13342-13354. [PMID: 35959970 DOI: 10.1021/acs.inorgchem.2c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dichalcogenide ligated molecules in catalysis to produce molecular hydrogen through electroreduction of water are rarely explored. Here, a series of heterometallic [Ag4(S2PFc(OR)4] [where Fc = Fe(η5-C5H4)(η5-C5H5), R = Me, 1; Et, 2; nPr, 3; isoAmyl, 4] clusters were synthesized and characterized by IR, absorption spectroscopy, NMR (1H, 31P), and electrospray ionization mass spectrometry. The molecular structures of 1, 2, and 3 clusters were established by single-crystal X-ray crystallographic analysis. The structural elucidation shows that each triangular face of a tetrahedral silver(I) core is capped by a ferrocenyl dithiophosphonate ligand in a trimetallic triconnective (η3; μ2, μ1) pattern. A comparative electrocatalytic hydrogen evolution reaction of 1-5 (R = iPr, 5) was studied in order to demonstrate the potential of these clusters in water splitting activity. The experimental results reveal that catalytic performance decreases with increases in the length of the carbon chain and branching within the alkoxy (-OR) group of these clusters. Catalytic durability was found effective even after 8 h of a chronoamperometric stability test along with 1500 cycles of linear sweep voltammetry performance, and only 15 mV overpotential was increased at 5 mA/cm2 current density for cluster 1. A catalytic mechanism was proposed by applying density functional theory (DFT) on clusters 1 and 2 as a representative. Here, a μ1 coordinated S-site between Ag4 core and ligand was found a reaction center. The experimental results are also in good accordance with the DFT analysis.
Collapse
Affiliation(s)
- Dilip Kumar Jangid
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Saptarshi G Dastider
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India.,Department of Physics, Central University of Punjab, Bathinda 151401, India
| | | | - Samreet Khirid
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Sangeeta Meena
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Pankaj Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali 304022, India
| | - Ravindra D Makde
- Beamline of Protein Crystallography, Raja Ramanna Centre for Advance Technology, Indore 452013, M.P., India
| | - Ashwani Kumar
- Beamline of Protein Crystallography, Raja Ramanna Centre for Advance Technology, Indore 452013, M.P., India
| | - Ravindra Jangir
- Beamline of Protein Crystallography, Raja Ramanna Centre for Advance Technology, Indore 452013, M.P., India
| | | | | | - Rajendra S Dhayal
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
77
|
F, N neutralizing effect induced Co-P-O cleaving endows CoP nanosheets with superior HER and OER performances. J Colloid Interface Sci 2022; 619:298-306. [DOI: 10.1016/j.jcis.2022.03.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/26/2022]
|
78
|
Duraivel M, Nagappan S, Park KH, Ha CS, Prabakar K. Transition metal oxy/hydroxides functionalized flexible halloysite nanotubes for hydrogen evolution reaction. J Colloid Interface Sci 2022; 618:518-528. [PMID: 35366479 DOI: 10.1016/j.jcis.2022.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The hierarchical halloysite nanotubes (HNT) have alumina containing positive Al-OH groups on its inner surface and silica-containing negative siloxane groups of Si-O-Si on its outer surface. The silicate laminate consists of silicon-oxygen at tetrahedral sites and aluminum-oxygen at octahedral sites. Since HNT has an abundant hydroxyl group on the surface with exceptional cation/anion exchange capacity, the surface-functionalized HNT could boost electrocatalytic activity. Hence, we have synthesized Ni, Co, and Cu metal oxy/hydroxides functionalized HNT by a facile hydrothermal method for HER. Among them, Co(OH)2@HNT on flexible carbon cloth displays an ultra-low overpotential of 65 mV at 10 mA cm-2 current density and Tafel slope of 181 mV dec-1 and also exhibited a larger exchange current density of 3.98 mA cm-2 in alkaline 1 M KOH electrolyte due to superior electrostatic affinity between OH- and Co2+. The electrolyzers with anion exchange membrane consisting of RuO2||Co(OH)2@HNT show remarkable stability of over 50 h at 10 mA cm-2 in alkaline electrolyte. The post stability sample retains the same surface oxidation state which confirms the robustness of the electrocatalyst. The reported results are far better than many of the transition metal oxides/chalcogenides electrocatalysts and hence it is expected that HNT could act as a potential alternative candidate to replace the benchmark platinum catalyst.
Collapse
Affiliation(s)
- Malarkodi Duraivel
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Saravanan Nagappan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
79
|
Manivelan N, Karuppanan S, Prabakar K. Djurleite Copper Sulfide-Coupled Cobalt Sulfide Interface for a Stable and Efficient Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30812-30823. [PMID: 35762731 DOI: 10.1021/acsami.2c06010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal sulfides (TMS) exhibit proliferated edge sites, facile electrode kinetics, and improved intrinsic electrical conductivity, which demand low potential requirements for total water splitting application. Here, we have propounded copper sulfide-coupled cobalt sulfide nanosheets grown on 3D nickel as an electrocatalyst for hydrogen (HER) and oxygen evolution (OER) reactions. The formation of djurleite copper sulfide with a Cu vacancy enables faster H+ ion transport and shows improved HER activity with a remarkably lower overpotential of 164 mV at 10 mA/cm2, whereas cobalt-incorporated copper sulfide undergoes cation exchange during synthesis and shows elevated OER activity with a lower overpotential of 240 mV at 10 mA/cm2 for the OER. Moreover, Cu2-xS/Co is said to have a hybrid CoS-CoS2 interface and provide Co2+ active sites on the surface and enable the fast adsorption of intermediate species (OH*, O*, and OOH*), which lowers the potential requirement. The copper vacancy and cation exchange with a hybrid CoS-CoS2 structure are helpful in supplying more surface reactive species and faster ion transport for the HER and OER, respectively. The full-cell electrolyzer requires a very low potential of 1.58 V to attain a current density of 10 mA/cm2, and it shows excellent stability for 50 h at 100 mA/cm2 as confirmed by the chronopotentiometry test.
Collapse
Affiliation(s)
- Nandapriya Manivelan
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Senthil Karuppanan
- Department of Physics, School of Advanced Sciences, VIT-AP University, Amaravati 522 237, Andhra Pradesh, India
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
80
|
Li M, Xi X, Wang H, Lyu X, Li Z, Zhu R, Ren X, Yang D, Dong A. A universal, green, and self-reliant electrolytic approach to high-entropy layered (oxy)hydroxide nanosheets for efficient electrocatalytic water oxidation. J Colloid Interface Sci 2022; 617:500-510. [DOI: 10.1016/j.jcis.2022.02.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/23/2022]
|
81
|
Deng Y, Fu X, Zhang Y, Zhu Y, Wei Y. Efficient Oxygen Evolution Reaction on Polyethylene Glycol-Modified BiVO 4 Photoanode by Speeding up Proton Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201410. [PMID: 35708149 DOI: 10.1002/smll.202201410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The rate-determining step of the oxygen evolution reaction based on a semiconductor photoanode is the formation of the OO bond. Herein, polyethylene glycol (PEG)-modified BiVO4 photoanodes are reported, in which protons can be transferred quickly due to the high proton conductivity of PEG, resulting in the acceleration of the OO bond formation rate. These are fully demonstrated by different kinetic isotope effect values. Moreover, the open-circuit voltage (Uoc ) further illustrates that PEG passivates the surface states and surface charge recombination is reduced. The composite photoanode can achieve a maximum photocurrent density of 3.64 mA cm-2 at 1.23 V compared to 1.04 mA cm-2 for pure BiVO4 , and an onset potential of 170 mV, which is a 230 mV negative shift compared to pure BiVO4 . This work provides a new strategy to accelerate water oxidation kinetics for photoanodes by speeding up the transfer of the proton and the OO bond formation rate.
Collapse
Affiliation(s)
- Yuqiong Deng
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xionghui Fu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuanming Zhang
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yi Zhu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular, Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
82
|
Scandurra A, Censabella M, Gulino A, Grimaldi MG, Ruffino F. Electro-Sorption of Hydrogen by Platinum, Palladium and Bimetallic Pt-Pd Nanoelectrode Arrays Synthesized by Pulsed Laser Ablation. MICROMACHINES 2022; 13:mi13060963. [PMID: 35744577 PMCID: PMC9228338 DOI: 10.3390/mi13060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Sustainable and renewable production of hydrogen by water electrolysers is expected to be one of the most promising methods to satisfy the ever-growing demand for renewable energy production and storage. Hydrogen evolution reaction in alkaline electrolyte is still challenging due to its slow kinetic properties. This study proposes new nanoelectrode arrays for high Faradaic efficiency of the electro-sorption reaction of hydrogen in an alkaline electrolyte. A comparative study of the nanoelectrode arrays, consisting of platinum or palladium or bimetallic nanoparticles (NPs) Pt80Pd20 (wt.%), obtained by nanosecond pulsed laser ablation in aqueous environment, casted onto graphene paper, is proposed. The effects of thin films of perfluoro-sulfonic ionomer on the material morphology, nanoparticles dispersion, and electrochemical performance have been investigated. The NPs-GP systems have been characterized by field emission scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge cycles. Faradaic efficiency up to 86.6% and hydrogen storage capacity up to 6 wt.% have been obtained by the Pt-ionomer and Pd/Pt80Pd20 systems, respectively.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
- Correspondence:
| | - Maria Censabella
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonino Gulino
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
| |
Collapse
|
83
|
Fratilescu I, Lascu A, Taranu BO, Epuran C, Birdeanu M, Macsim AM, Tanasa E, Vasile E, Fagadar-Cosma E. One A 3B Porphyrin Structure-Three Successful Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1930. [PMID: 35683785 PMCID: PMC9182125 DOI: 10.3390/nano12111930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Porphyrins are versatile structures capable of acting in multiple ways. A mixed substituted A3B porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by 1H- and 13C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.039-6.71 µM and a detection limit of 0.013 µM and, secondly, as corrosion inhibitors for carbon-steel (OL) in an acid medium giving a best performance of 88% in the case of coverings with Pt-porphyrin. Finally, the electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER) of the free-base and Pt-metalated A3B porphyrins was evaluated in strong alkaline and acidic electrolyte solutions. The best results were obtained for the electrode modified with the metalated porphyrin, drop-casted on a graphite substrate from an N,N-dimethylformamide solution. In the strong acidic medium, the electrode displayed an HER overpotential of 108 mV, at i = -10 mA/cm2 and a Tafel slope value of 205 mV/dec.
Collapse
Affiliation(s)
- Ion Fratilescu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Anca Lascu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Bogdan Ovidiu Taranu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania
| | - Camelia Epuran
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania
| | - Ana-Maria Macsim
- Institute of Macromolecular Chemistry "Petru Poni", Grigore Ghica Vodă Alley, No. 41A, 700487 Iasi, Romania
| | - Eugenia Tanasa
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, Sector 6, 060042 Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, Sector 6, 060042 Bucharest, Romania
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| |
Collapse
|
84
|
Development of Core-Shell Rh@Pt and Rh@Ir Nanoparticle Thin Film Using Atomic Layer Deposition for HER Electrocatalysis Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The efficiency of hydrogen gas generation via electrochemical water splitting has been mostly limited by the availability of electrocatalyst materials that require lower overpotentials during the redox reaction. Noble metals have been used extensively as electrocatalysts due to their high activity and low overpotentials. However, the use of single noble metal electrocatalyst is limited due to atomic aggregation caused by its inherent high surface energy, which results in poor structural stability, and, hence, poor electrocatalytic performance and long-term stability. In addition, using noble metals as electrocatalysts also causes the cost to be unnecessarily high. These limitations in noble metal electrocatalysts could be enhanced by combining two noble metals in a core-shell structure (e.g., Rh@Ir) as a thin film over a base substrate. This could significantly enhance electrocatalytic activity due to the following: (1) the modification of the electronic structure, which increases electrical conductivity; (2) the optimization of the adsorption energy; and (3) the introduction of new active sites in the core-shell noble metal structure. The current state-of-the-art employs physical vapor deposition (PVD) or other deposition techniques to fabricate core-shell noble metals on flat 2D substrates. This method does not allow 3D substrates with high surface areas to be used. In the present work, atomic layer deposition (ALD) was used to fabricate nanoparticle thin films of Rh@Ir and Rh@Pt in a core-shell structure on glassy carbon electrodes. ALD enables the fabrication of nanoparticle thin film on three-dimensional substrates (a 2D functional film on a 3D substrate), resulting in a significantly increased surface area for a catalytic reaction to take place; hence, improving the performance of electrocatalysis. The Rh@Pt (with an overpotential of 139 mV and a Tafel slope of 84.8 mV/dec) and Rh@Ir (with an overpotential of 169 mV and a Tafel slope of 112 mV/dec) core-shell electrocatalyst exhibited a better electrocatalytic performances compared to the single metal Rh electrocatalyst (with an overpotential of 300 mV and a Tafel slope of 190 mV/dec). These represented a 54% and a 44% improvement in performance, respectively, illustrating the advantages of core-shell thin film nanostructures in enhancing the catalytic performance of an electrocatalyst. Both electrocatalysts also exhibited good long-term stability in the harsh acidic electrolyte conditions when subjected to chronopotentiometry studies.
Collapse
|
85
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
86
|
Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production. J Colloid Interface Sci 2022; 614:267-276. [DOI: 10.1016/j.jcis.2022.01.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
|
87
|
Qian Q, Wang W, Wang G, He X, Feng Y, Li Z, Zhu Y, Zhang Y, Zhang G. Phase-Selective Synthesis of Ruthenium Phosphide in Hybrid Structure Enables Efficient Hybrid Water Electrolysis Under pH-Universal Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200242. [PMID: 35434924 DOI: 10.1002/smll.202200242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Hydrazine-assisted hybrid water electrolysis is an energy-saving approach to produce high-purity hydrogen, whereas the development of pH-universal bifunctional catalysts encounters a grand challenge. Herein, a phase-selective synthesis of ruthenium phosphide compounds hybrid with carbon forming pancake-like particles (denoted as Rux P/C-PAN, x = 1 or 2) is presented. The obtained RuP/C-PAN exhibits the highest catalytic activity among the control samples, delivering ultralow cell voltages of 0.03, 0.27, and 0.65 V to drive 10 mA cm-2 using hybrid water electrolysis corresponding to pH values of 14, 7, and 0, respectively. Theoretical calculation deciphers that the RuP phase displays optimized free energy for hydrogen adsorption and reduced energy barrier for hydrazine dehydrogenation. This work may not only open up a new avenue in exploring universally compatible catalyst to transcend the limitation on the pH value of electrolytes, but also push forward the development of an energy-saving hydrogen generation technique based on emerging hybrid water electrolysis.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science Guizhou Education University, Guiyang, 550018, China
| | - Gongrui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoyue He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziyun Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yangyang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
88
|
Bodhankar PM, Sarawade PB, Kumar P, Vinu A, Kulkarni AP, Lokhande CD, Dhawale DS. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107572. [PMID: 35285140 DOI: 10.1002/smll.202107572] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.
Collapse
Affiliation(s)
- Pradnya M Bodhankar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Pradip B Sarawade
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Aniruddha P Kulkarni
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Chandrakant D Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| | - Dattatray S Dhawale
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| |
Collapse
|
89
|
Novel rGO@Fe3O4 nanostructures: An active electrocatalyst for hydrogen evolution reaction in alkaline media. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
90
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
91
|
Abstract
Nanoporous carbon texture makes fundamental understanding of the electrochemical processes challenging. Based on density functional theory (DFT) results, the proposed atomistic approach takes into account topological and chemical defects of the electrodes and attributes to them a partial charge that depends on the applied voltage. Using a realistic carbon nanotexture, a model is developed to simulate the ionic charge both at the surface and in the subnanometric pores of the electrodes of a supercapacitor. Before entering the smallest pores, ions dehydrate at the external surface of the electrodes, leading to asymmetric adsorption behavior. Ions in subnanometric pores are mostly fully dehydrated. The simulated capacitance is in qualitative agreement with experiments. Part of these ions remain irreversibly trapped upon discharge. Ion desolvation and confinement are key physical processes in porous carbon-based supercapacitors undergoing charging and discharging cycles. We investigate electrolyte interactions between polarized porous carbon with subnanometer pore sizes and aqueous sodium chloride electrolyte, using molecular dynamics. Inspired by recent first-principles calculations, we develop a scheme accounting for chemical defects in electrodes where only the non-sp2 carbons species carry an extra negative charge (on the anode) and an extra positive charge (on the cathode) due to voltage polarization. This drives electrolyte species (ions and solvent molecules; water, in this work) to adsorb at the electrode surface and in subnanometric pores upon polarization. First, we observe an asymmetrical desolvation process of sodium and chloride ions at the external surface of the electrodes. The ionic distribution at the external surface of the electrodes is consistent with the Debye–Hückel electric potential equation and empirical trends observed for nonporous electrodes. In a second stage, we demonstrate that the nanoporosity of the electrodes is filled with ions and scarce water molecules and contributes to about 20% of the overall capacitance. A fraction of desolvated ions are irreversibly trapped in the core of electrodes during discharge. While maintaining the overall electroneutrality of the simulation cell, we find that anodes and cathodes do not carry the same amount of ions at all time steps, leading to charge imbalance.
Collapse
|
92
|
Moreno-Jimenez DA, Kim KY. Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2022; 350:126881. [PMID: 35217164 DOI: 10.1016/j.biortech.2022.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
A nickel-functionalized activated carbon (AC/Ni) was recently developed for microbial electrolysis cells (MECs) and showed a great potential for large-scale applications. In this study, the electroactivity of the AC/Ni cathode was significantly improved by increasing the oxygen (16.9%) and nitrogen (124%) containing species on the AC using nitric acid oxidation. The acid-treated AC (t-AC) showed 21% enhanced wettability that consequently reduced the ohmic resistance (6.7%) and the charge transfer resistance (33.3%). As a result, t-AC/Ni achieved peak values of hydrogen production rate (0.35 ± 0.02 L-H2/L-d), energy yield (129 ± 8%), and cathodic hydrogen recovery (93 ± 6%) in MECs. The hydrogen production rate was 84% higher using t-AC/Ni cathode than the control, likely due to the enhanced wettability and a higher fraction of N on the t-AC. Also, the increases in polyvinylidene fluoride (PVDF) binder loadings (from 4.6 mg-PVDF/cm2 to 7.3 mg-PVDF/cm2) demonstrated 47% higher hydrogen productions rates in MECs.
Collapse
Affiliation(s)
- Daniel A Moreno-Jimenez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
93
|
Duraivel M, Nagappan S, Park KH, Prabakar K. Hierarchical 3D flower like cobalt hydroxide as an efficient bifunctional electrocatalyst for water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Cao Y, Takasaki T, Yamashita S, Mizutani Y, Harada A, Yamaguchi H. Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone. Polymers (Basel) 2022; 14:1191. [PMID: 35335524 PMCID: PMC8949476 DOI: 10.3390/polym14061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Inspired by the natural photosynthetic system in which proteins control the electron transfer from electron donors to acceptors, in this research, artificial polymers were tried to achieve this control effect. Polyvinylpyrrolidone (PVP) was found to form complex with pigments 5,10,15,20-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS) and its zinc complex (ZnTPPS) quantitatively through different interactions (hydrogen bonds and coordination bonds, respectively). These complex formations hinder the interaction between ground-state TPPS or ZnTPPS and an electron acceptor (methyl viologen, MV2+) and could control the photoinduced electron transfer from TPPS or ZnTPPS to MV2+, giving more electron transfer products methyl viologen cationic radical (MV+•). Other polymers such as PEG did not show similar results, indicating that PVP plays an important role in controlling the photoinduced electron transfer.
Collapse
Affiliation(s)
- Yilin Cao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan; (Y.C.); (T.T.)
| | - Tomoe Takasaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan; (Y.C.); (T.T.)
| | - Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan;
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan;
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan; (Y.C.); (T.T.)
- Graduate School of Science and Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
95
|
Wang M, Zhao H, Long Y, Zhang W, Wang L, Zhou D, Wang H, Wang X. AlP-regulated phosphorus vacancies over Ni-P compounds promoting efficient and durable hydrogen generation in acidic media. Dalton Trans 2022; 51:4033-4042. [PMID: 35174844 DOI: 10.1039/d1dt04346c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Engineered anion vacancy catalysts exhibit speedy activity in the field of electrocatalysis due to their tunable electronic structure and moderate free energy of adsorbed intermediates. Herein, we demonstrate a facile process of preparing multiphase phosphides with abundant phosphorus vacancies (PV) supported on nanoporous Ni(Al). X-ray diffraction (XRD), electron paramagnetic resonance (EPR) and high-resolution transmission electron microscopy (HRTEM) reveal that the as-obtained material has ample PV induced by the AlP phase. The optimized catalyst also equips with aligned nanoflakes grown in situ on np-Ni(Al) skeletons/ligaments, thereby exposing a large specific surface area for hydrogen evolution reactions (HERs) in acidic media. Benefitting from its unique hierarchical structure and sufficient PV, the PV-np-Ni(Al)-40 electrode displays a low overpotential of 36 mV at a cathodic current density of 10 mA cm-2 and an outstanding long-term operational stability for up to 94 h with a slight decay. Density functional theory (DFT) calculations confirm that PV could induce the redistribution of electrons and significantly reduce the Gibbs free energy (ΔGH*) of 2PV-NiP2 on the P site close to PV (-0.055 eV). Moreover, the PV is beneficial for enriching the electronic states nearby the Fermi level, thereby improving the conductivity of NiP2 to achieve superior HER activity. This finding skillfully utilizes Al elements to not only create porous structures but also regulate the PV concentration, opening up an accessible route to obtain PVvia dealloying-phosphorization, and boosting the development of high-performance HER electrocatalyst.
Collapse
Affiliation(s)
- Mei Wang
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Huifang Zhao
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Yi Long
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Wenjuan Zhang
- Department de Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Liyong Wang
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Diaoyu Zhou
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Huiqi Wang
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
96
|
Wang J, Yang H, Li F, Li L, Wu J, Liu S, Cheng T, Xu Y, Shao Q, Huang X. Single-site Pt-doped RuO 2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. SCIENCE ADVANCES 2022; 8:eabl9271. [PMID: 35235348 PMCID: PMC8890715 DOI: 10.1126/sciadv.abl9271] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Realizing stable and efficient overall water splitting is highly desirable for sustainable and efficient hydrogen production yet challenging because of the rapid deactivation of electrocatalysts during the acidic oxygen evolution process. Here, we report that the single-site Pt-doped RuO2 hollow nanospheres (SS Pt-RuO2 HNSs) with interstitial C can serve as highly active and stable electrocatalysts for overall water splitting in 0.5 M H2SO4. The performance toward overall water splitting have surpassed most of the reported catalysts. Impressively, the SS Pt-RuO2 HNSs exhibit promising stability in polymer electrolyte membrane electrolyzer at 100 mA cm-2 during continuous operation for 100 hours. Detailed experiments reveal that the interstitial C can elongate Ru-O and Pt-O bonds, and the presence of SS Pt can readily vary the electronic properties of RuO2 and improve the OER activity by reducing the energy barriers and enhancing the dissociation energy of *O species.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Corresponding author. (Y.X.); (X.H.)
| | - Qi Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Corresponding author. (Y.X.); (X.H.)
| |
Collapse
|
97
|
Li G, Feng S, Wang C, Deng P, Li J. Co-NiSe2/NF nanosheet for efficient hydrogen evolution reaction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
98
|
PANI coated NiMoOP nanoarrays as efficient electrocatalyst for oxygen evolution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
99
|
Tong X, Li Y, Ruan Q, Pang N, Zhou Y, Wu D, Xiong D, Xu S, Wang L, Chu PK. Plasma Engineering of Basal Sulfur Sites on MoS 2 @Ni 3 S 2 Nanorods for the Alkaline Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104774. [PMID: 34939374 PMCID: PMC8867165 DOI: 10.1002/advs.202104774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Indexed: 05/22/2023]
Abstract
Inexpensive and efficient catalysts are crucial to industrial adoption of the electrochemical hydrogen evolution reaction (HER) to produce hydrogen. Although two-dimensional (2D) MoS2 materials have large specific surface areas, the catalytic efficiency is normally low. In this work, Ag and other dopants are plasma-implanted into MoS2 to tailor the surface and interface to enhance the HER activity. The HER activty increases initially and then decreases with increasing dopant concentrations and implantation of Ag is observed to produce better results than Ti, Zr, Cr, N, and C. At a current density of 400 mA cm-2 , the overpotential of Ag500-MoS2 @Ni3 S2 /NF is 150 mV and the Tafel slope is 41.7 mV dec-1 . First-principles calculation and experimental results reveal that Ag has higher hydrogen adsorption activity than the other dopants and the recovered S sites on the basal plane caused by plasma doping facilitate water splitting. In the two-electrode overall water splitting system with Ag500-MoS2 @Ni3 S2 /NF, a small cell voltage of 1.47 V yields 10 mA cm-2 and very little degradation is observed after operation for 70 hours. The results reveal a flexible and controllable strategy to optimize the surface and interface of MoS2 boding well for hydrogen production by commercial water splitting.
Collapse
Affiliation(s)
- Xin Tong
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- Jiangsu Laboratory of Advanced Functional MaterialsSchool of Electronic and Information EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yun Li
- School of Physics and Electronic EngineeringHanshan Normal UniversityChaozhou521041P. R. China
| | - Qingdong Ruan
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Ning Pang
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Yang Zhou
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Dajun Wu
- Jiangsu Laboratory of Advanced Functional MaterialsSchool of Electronic and Information EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
| | - Dayuan Xiong
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Shaohui Xu
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Lianwei Wang
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| |
Collapse
|
100
|
Kas A, Yilmazel YD. High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80 °C. Bioelectrochemistry 2022; 145:108072. [PMID: 35144167 DOI: 10.1016/j.bioelechem.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
Utilization of hyperthermophilic electro-active microorganisms in microbial electrolysis cells (MECs) that are used for hydrogen production from organic wastes offers significant advantages, such as increased reaction rate and enhanced degradation of insoluble materials. However, only a limited number of hyperthermophilic bioelectrochemical systems have been investigated so far. This study is the first to illustrate hydrogen production in hyperthermophilic MECs with a maximum rate of 0.57 ± 0.06 m3 H2/m3d, where an iron reducing archaeon, Geoglobus acetivorans, was used as inoculum. In fact, this is the first study to report that G. acetivorans, as the fourth hyperthermophilic electro-active archaeon. In single chamber MECs operated at 80 °C with a set potential of 0.7 V, a peak current density of 1.53 ± 0.24 A/m2 has been attained and this is the highest record of current produced by pure culture hyperthermophilic microorganisms. Turnover cyclic voltammetry curve illustrated a sigmoidal shape (midpoint of -0.40 V vs. Ag/AgCl), and together with linear relation of scan rate and peak anodic current, proves the biofilm attachment to the anode and its capability of direct electron transfer. Along with simple substrate (acetate), G. acetivorans effectively utilized dark fermentation effluent for hydrogen production in MECs.
Collapse
Affiliation(s)
- Aykut Kas
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Yasemin Dilsad Yilmazel
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|