51
|
Ratnala VRP. New tools for G-protein coupled receptor (GPCR) drug discovery: combination of baculoviral expression system and solid state NMR. Biotechnol Lett 2006; 28:767-78. [PMID: 16786240 DOI: 10.1007/s10529-006-9005-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Biotechnology using molecular biology, biochemistry, biophysics, and computational approaches provides an alternative approach for classical pharmacological screening to look at ligand-receptor interactions and receptor specificity, which should support the design of selective drugs based on detailed structural principles. This review addresses specific approaches to study function, structure and relevance of a major pharmaceutical target, namely the G-Protein Coupled Receptors (GPCRs). The main aim of this review has been to exploit and combine GPCR over-expression in a baculoviral expression system with solid-state MAS NMR (ssNMR) approaches for the elucidation of electronic structures of the coordinating ligands/drugs and their modes of interactions with the GPCRs. This review summarizes the approaches, possible future experiments and developments using the above combination of tools for GPCR drug discovery.
Collapse
Affiliation(s)
- Venkata R P Ratnala
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RALeiden, The Netherlands.
| |
Collapse
|
52
|
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45:295-333. [PMID: 16616960 DOI: 10.1016/j.plipres.2006.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
53
|
Thongboonkerd V, Songtawee N, Kanlaya R, Chutipongtanate S. Quantitative analysis and evaluation of the solubility of hydrophobic proteins recovered from brain, heart and urine using UV-visible spectrophotometry. Anal Bioanal Chem 2006; 384:964-71. [PMID: 16402178 DOI: 10.1007/s00216-005-0235-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/05/2005] [Accepted: 11/11/2005] [Indexed: 11/30/2022]
Abstract
There is a need for a simple method that can directly quantify hydrophobic proteins. UV-visible spectrophotometry was applied in the present study for this purpose. Absorbance at lambda = 280 nm (A280) was detected for both Escherichia coli membrane proteins and bovine serum albumin, whereas absorbance at lambda = 620 nm (A620) was only detected for E. coli membrane proteins. The A620 values of the brain samples were greater than those of heart samples when equal concentrations were used, regardless of the type of solubilizing agent employed. Because hydrophobic proteins tend to form colloidal microparticles in solution, we also applied UV-visible spectrophotometry to evaluate the efficacies of different extraction protocols for solubilizing hydrophobic proteins. For brain protein extraction, the highest A620 was observed in samples recovered using Tris, whereas the lowest was from samples recovered using SDS. Solubilizing brain tissue with 0.25% SDS (above the CMC) gave a lower A620 than extraction with 0.025% SDS (below the CMC). Addition of 0.25% SDS to samples recovered with Triton caused A620 to drop. A620 could also be used to distinguish between the hydrophobic fractions (pellets) of brain and urine proteins and their hydrophilic fractions (supernatants) prefractionated using high-speed centrifugation. Additionally, an A620/A280 ratio exceeding 0.12 appears to denote highly hydrophobic samples. Our data suggest that direct UV-visible spectrophotometry can be used as a simple method to quantify and evaluate the solubilities of hydrophobic proteins.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | | | | | | |
Collapse
|
54
|
Gielen E, Baron W, Vandeven M, Steels P, Hoekstra D, Ameloot M. Rafts in oligodendrocytes: Evidence and structure–function relationship. Glia 2006; 54:499-512. [PMID: 16927294 DOI: 10.1002/glia.20406] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plasma membrane of eukaryotic cells exhibits lateral inhomogeneities, mainly containing cholesterol and sphingomyelin, which provide liquid-ordered microdomains (lipid "rafts") that segregate membrane components. Rafts are thought to modulate the biological functions of molecules that become associated with them, and as such, they appear to be involved in a variety of processes, including signal transduction, membrane sorting, cell adhesion and pathogen entry. Although still a matter of ongoing debate, evidence in favor of the presence of these microdomains is gradually accumulating but a consensus on issues like their size, lifetime, composition, and biological significance has yet to be reached. Here, we provide an overview of the evidence supporting the presence of rafts in oligodendrocytes, the myelin-producing cells of the central nervous system, and discuss their functional significance. The myelin membrane differs fundamentally from the plasma membrane, both in lipid and protein composition. Moreover, since myelin membranes are unusually enriched in glycosphingolipids, questions concerning the biogenesis and functional relevance of microdomains thus appear of special interest in oligodendrocytes. The current picture of rafts in oligodendrocytes is mainly based on detergent methods. The robustness of such data is discussed and alternative methods that may provide complementary data are indicated.
Collapse
Affiliation(s)
- Ellen Gielen
- Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
55
|
Klare JP, Bordignon E, Doebber M, Fitter J, Kriegsmann J, Chizhov I, Steinhoff HJ, Engelhard M. Effects of solubilization on the structure and function of the sensory rhodopsin II/transducer complex. J Mol Biol 2005; 356:1207-21. [PMID: 16410012 DOI: 10.1016/j.jmb.2005.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 10/25/2022]
Abstract
Lipid-protein interactions are known to play a crucial role in structure and physiological activity of integral membrane proteins. However, current technology for membrane protein purification necessitates extraction from the membrane into detergent micelles. Also, due to experimental protocols, most of the data available for membrane proteins is obtained using detergent-solubilized samples. Stable solubilization of membrane proteins is therefore an important issue in biotechnology as well as in biochemistry and structural biology. An understanding of solubilization effects on structural and functional properties of specific proteins is of utmost relevance for the evaluation and interpretation of experimental results. In this study, a comparison of structural and kinetic data obtained for the archaebacterial photoreceptor/transducer complex from Natronomonas pharaonis (NpSRII/NpHtrII) in detergent-solubilized and lipid-reconstituted states is presented. Laser flash photolysis, fluorescence spectroscopy, and electron paramagnetic resonance spectroscopy data reveal considerable influence of solubilization on the photocycle kinetics of the receptor protein and on the structure of the transducer protein. Especially the protein-membrane proximal region and the protein-protein interfacial domains are sensitive towards non-native conditions. These data demonstrate that relevance of biochemical and structural information obtained from solubilized membrane proteins or membrane protein complexes has to be evaluated carefully.
Collapse
Affiliation(s)
- Johann P Klare
- Max-Planck-Institut für Molekulare Physiologie Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Rotunda AM, Ablon G, Kolodney MS. Lipomas treated with subcutaneous deoxycholate injections. J Am Acad Dermatol 2005; 53:973-8. [PMID: 16310057 DOI: 10.1016/j.jaad.2005.07.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 07/22/2005] [Accepted: 07/30/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Lipomas are benign neoplasms of mature fat cells. Current treatments are invasive and carry the risk of scarring. Injections of phosphatidylcholine solubilized with deoxycholate, a bile salt, have been used to reduce unwanted accumulations of fat. Recent in vitro and ex vivo investigations indicate that deoxycholate alone causes adipocyte lysis. OBJECTIVE We sought to report our experience treating lipomas using subcutaneous deoxycholate injections. METHODS A total of 6 patients presenting with 12 lipomas were treated with intralesional injections of sodium deoxycholate (1.0%, 2.5%, and 5.0%) at intervals of 2 to 20 weeks. Tumor size, cutaneous reactions, and patients' subjective responses were recorded before and after treatment. RESULTS All lipomas decreased in size (mean area reduction, 75%; range, 37%-100%) as determined by clinical measurement (with ultrasound confirmation in one lipoma) after an average of 2.2 treatments. Several lipomas fragmented or became softer in addition to decreasing in volume. Adverse effects, including transient burning, erythema, and local swelling, were associated with higher deoxycholate concentrations but resolved without intervention. There was no clear association between deoxycholate concentration and efficacy. CONCLUSIONS Our clinical experience supports our laboratory investigations demonstrating that deoxycholate, rather than phosphatidylcholine, is the active ingredient in subcutaneously injected formulas used to treat adipose tissue. This small series suggests that low concentration deoxycholate may be a relatively safe and effective treatment for small collections of fat. However, controlled clinical trials will be necessary to substantiate these observations.
Collapse
Affiliation(s)
- Adam M Rotunda
- Division of Dermatology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA.
| | | | | |
Collapse
|
57
|
Lai CW, Chung YC, Lai YK, Chang MDT, Hu YC. Expression and purification of N and E proteins from severe acute respiratory syndrome (SARS)-associated coronavirus: a comparative study. Biotechnol Lett 2005; 27:883-91. [PMID: 16091881 PMCID: PMC7087856 DOI: 10.1007/s10529-005-7176-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 05/05/2005] [Indexed: 11/29/2022]
Abstract
Histidine-tagged N (rNH) and E (rEH) proteins of Severe Acute Respiratory Syndrome (SARS)-coronovirus were expressed in the baculovirus/insect cell system and purified by immobilized metal affinity chromatography. rNH and rEH proteins differed markedly with respect to expression levels, cell death kinetics and subcellular localizations that led to different extraction and purification schemes. The features of both proteins are compared and the potential applications of purified rNH and rEH are discussed.
Collapse
Affiliation(s)
- Chia-Wei Lai
- Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan
| | - Yao-Chi Chung
- Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan
| | - Yiu-Kay Lai
- Institute of Biotechnology, National Tsing Hua University, 300 Hsinchu, Taiwan
| | | | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan
| |
Collapse
|
58
|
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. Membrane Organization and Dynamics of the G-Protein-Coupled Serotonin1A Receptor Monitored Using Fluorescence-Based Approaches. J Fluoresc 2005; 15:785-96. [PMID: 16341798 DOI: 10.1007/s10895-005-2988-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The G-protein-coupled receptor (GPCR) superfamily represents one of the largest classes of molecules involved in signal transduction across the plasma membrane. Fluorescence-based approaches have provided valuable insights into GPCR functions such as receptor-receptor and receptor-ligand interactions, real-time assessment of signal transduction, receptor dynamics on the plasma membrane, and intracellular trafficking of receptors. This has largely been possible with the use of fluorescent probes such as the green fluorescent protein (GFP) from the jellyfish Aequoria victoria and its variants. We discuss the potential of fluorescence-based approaches in providing novel information on the membrane organization and dynamics of the G-protein-coupled serotonin1A receptor tagged to the enhanced yellow fluorescent protein (EYFP).
Collapse
|
59
|
Kalipatnapu S, Chattopadhyay A. Membrane Protein Solubilization: Recent Advances and Challenges in Solubilization of Serotonin1A Receptors. IUBMB Life 2005; 57:505-12. [PMID: 16081372 DOI: 10.1080/15216540500167237] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Solubilization of integral membrane proteins is a process in which the proteins and lipids that are held together in native membranes are suitably dissociated in a buffered detergent solution. The controlled dissociation of the membrane results in formation of small protein and lipid clusters that remain dissolved in the aqueous solution. Effective solubilization and purification of membrane proteins, especially heterologously-expressed proteins in mammalian cells in culture, in functionally active forms represent important steps in understanding structure-function relationship of membrane proteins. In this review, critical factors determining functional solubilization of membrane proteins are highlighted with the solubilization of the serotonin 1A receptor taken as a specific example.
Collapse
|
60
|
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 2005; 25:553-80. [PMID: 16075379 PMCID: PMC11529526 DOI: 10.1007/s10571-005-3969-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/03/2004] [Indexed: 12/14/2022]
Abstract
1. Serotonin is an intrinsically fluorescent biogenic amine that acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous system. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions. 2. Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups. The serotonin1A (5-HT1A) receptor is the most extensively studied of the serotonin receptors and belongs to the large family of seven transmembrane domain G-protein coupled receptors. 3. The tissue and sub-cellular distribution, structural characteristics, signaling of the serotonin1A receptor and its interaction with G-proteins are discussed. 4. The pharmacology of serotonin1A receptors is reviewed in terms of binding of agonists and antagonists and sensitivity of their binding to guanine nucleotides. 5. Membrane biology of 5-HT1A receptors is presented using the bovine hippocampal serotonin1A receptor as a model system. The ligand binding activity and G-protein coupling of the receptor is modulated by membrane cholesterol thereby indicating the requirement of cholesterol in maintaining the receptor organization and function. This, along with the reported detergent resistance characteristics of the receptor, raises important questions on the role of membrane lipids and domains in the function of this receptor.
Collapse
Affiliation(s)
- Thomas J. Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007 India
| | - Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007 India
| | | |
Collapse
|
61
|
Gaus K, Rodriguez M, Ruberu KR, Gelissen I, Sloane TM, Kritharides L, Jessup W. Domain-specific lipid distribution in macrophage plasma membranes. J Lipid Res 2005; 46:1526-38. [PMID: 15863834 DOI: 10.1194/jlr.m500103-jlr200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques.
Collapse
Affiliation(s)
- Katharina Gaus
- Centre for Vascular Research at the School of Medical Sciences, University of New South Wales, and Department of Haematology, Prince of Wales Hospital, Sydney, NSW Australia.
| | | | | | | | | | | | | |
Collapse
|
62
|
Chattopadhyay A, Jafurulla M, Kalipatnapu S, Pucadyil TJ, Harikumar KG. Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem Biophys Res Commun 2005; 327:1036-41. [PMID: 15652500 DOI: 10.1016/j.bbrc.2004.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Indexed: 10/26/2022]
Abstract
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We report here that solubilization of the hippocampal 5-HT(1A) receptor by the zwitterionic detergent CHAPS is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity and extent of G-protein coupling. Importantly, replenishment of cholesterol to solubilized membranes using MbetaCD-cholesterol complex restores the cholesterol content of the membrane and significantly enhances the specific agonist binding activity and G-protein coupling. These novel results provide useful information on the role of cholesterol in solubilization of G-protein-coupled receptors, an important step for molecular characterization of these receptors.
Collapse
|
63
|
Beigi F, Chakir K, Xiao RP, Wainer IW. G-Protein-Coupled Receptor Chromatographic Stationary Phases. 2. Ligand-Induced Conformational Mobility in an Immobilized β2-Adrenergic Receptor. Anal Chem 2004; 76:7187-93. [PMID: 15595859 DOI: 10.1021/ac048910c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membranes from a HEK-293 cell line expressing the beta(2)-adrenergic receptor (beta(2)-AR) have been immobilized on an artificial membrane liquid chromatographic stationary phase. The resulting phase was packed into a glass column (1.8 x 0.5 (i.d.) cm) and used in on-line chromatographic system. Frontal displacement affinity chromatography was used to determine the dissociation constants (K(d)) of CGP 12177A (552.6 nM) and (S)-propranolol (84.3 nM). Zonal displacement chromatography using CGP 12177A as the marker and racemic mixtures of the antagonists nadolol and propranolol demonstrated that the immobilized beta(2)-AR retained its ability to specifically bind these compounds. Similar experiments with (R)- and (S)-propranolol demonstrated that the immobilized receptor retained its enantioselectivity as (S)-propranolol displaced the CGP 12177 marker to a great extent that the (R)-enantiomer. The addition of the agonist butoxamine to the mobile phase increased the retention of the CGP-12177A as did the addition of the agonist fenoterol. These results indicate that the immobilized beta(2)-AR retained its ability to undergo ligand-induced conformational changes. The data from this study suggest that the immobilized beta(2)-AR can be used to screen for ligand binding interactions in both the resting and active states of the receptor.
Collapse
Affiliation(s)
- Farideh Beigi
- Laboratory of Clinical Investigation and Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, Maryland 21224-6825, USA
| | | | | | | |
Collapse
|
64
|
Rotunda AM, Suzuki H, Moy RL, Kolodney MS. Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution. Dermatol Surg 2004; 30:1001-8. [PMID: 15209790 DOI: 10.1111/j.1524-4725.2004.30305.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphatidylcholine injections are becoming an increasingly popular technique to treat localized fat accumulation. This formula is composed primarily of phosphatidylcholine and sodium deoxycholate, a bile salt used to solubilize the natural phospholipid in water. The mechanism through which this injectable phosphatidylcholine formulation causes localized fat reduction is unknown. OBJECTIVE To investigate the active component and mechanism of action of an injectable phosphatidylcholine formulation in clinical use. METHODS Cell viability and cell membrane lysis assays were performed on cell cultures and porcine skin after treatment with the phosphatidylcholine formula, isolated sodium deoxycholate, or common laboratory detergents Triton-X 100 and Empigen BB. In addition, we described the histologic changes after injection of these substances into porcine tissue. RESULTS A significant and comparable loss of cell viability, cell membrane lysis, and disruption of fat and muscle architecture was seen in cell cultures and tissue specimens treated with the phosphatidylcholine formula and isolated sodium deoxycholate. These findings were similar to the effects produced after treatment with laboratory detergents. CONCLUSIONS The phosphatidylcholine formula popularly used in subcutaneous injections for fat dissolution works primarily as a detergent causing nonspecific lysis of cell membranes. Our findings suggest that sodium deoxycholate is the major active component responsible for cell lysis. Detergent substances may have a role in eliminating unwanted adipose tissue. It is advised that physicians use caution until adequate safety data are available.
Collapse
Affiliation(s)
- Adam M Rotunda
- Division of Dermatology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| | | | | | | |
Collapse
|
65
|
Kalipatnapu S, Chattopadhyay A. A GFP fluorescence-based approach to determine detergent insolubility of the human serotonin1A
receptor. FEBS Lett 2004; 576:455-60. [PMID: 15498580 DOI: 10.1016/j.febslet.2004.09.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/23/2022]
Abstract
Insolubility in non-ionic detergents such as Triton X-100 is a widely used biochemical criterion for characterization of membrane domains. We report here a novel green fluorescent protein fluorescence-based approach to directly determine detergent insolubility of specific membrane proteins. We have applied this method to explore the detergent resistance of an important G-protein coupled receptor, the serotonin1A (5-HT1A) receptor. Our results show, for the first time, that a small yet significant fraction of the 5-HT1A receptor exhibits detergent insolubility. These results are validated by control experiments involving fluorescent lipid probes and protein markers. Our results assume relevance in the context of localization of the 5-HT1A receptor in membrane domains and its significance in receptor function and signaling.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
66
|
Detergent Effects of Sodium Deoxycholate Are a Major Feature of an Injectable Phosphatidylcholine Formulation Used for Localized Fat Dissolution. Dermatol Surg 2004. [DOI: 10.1097/00042728-200407000-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Ratnala VRP, Swarts HGP, VanOostrum J, Leurs R, DeGroot HJM, Bakker RA, DeGrip WJ. Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor. ACTA ACUST UNITED AC 2004; 271:2636-46. [PMID: 15206929 DOI: 10.1111/j.1432-1033.2004.04192.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report describes an efficient strategy for amplified functional purification of the human H1 receptor after heterologous expression in Sf9 cells. The cDNA encoding a C-terminally histidine-tagged (10xHis) human histamine H1 receptor was used to generate recombinant baculovirus in a Spodoptera frugiperda-derived cell line (IPLB-Sf9). As judged from its ligand affinity profile, functional receptor could be expressed at high levels (30-40 pmol per 10(6) cells). Rapid proteolysis in the cell culture led to limited fragmentation, without loss of ligand binding, but could be efficiently suppressed by including the protease inhibitor leupeptin during cell culture and all subsequent manipulations. Effective solubilization of functional receptor with optimal recovery and stability required the use of dodecylmaltoside as a detergent in the presence of a high concentration of NaCl and of a suitable inverse agonist. Efficient purification of solubilized receptor could be achieved by affinity chromatography over nickel(II) nitrilotriacetic acid resin. Functional membrane reconstitution of purified H1 receptor was accomplished in mixed soybean lipids (asolectin). The final proteoliposomic H1 receptor preparation has a purity greater than 90% on a protein basis and displays a ligand binding affinity profile very similar to the untagged receptor expressed in COS-7 cells. In conclusion, we are able to produce pharmacologically viable H1 receptor in a stable membrane environment allowing economic large-batch operation. This opens the way to detailed studies of structure-function relationships of this medically and biologically important receptor protein by 3D-crystallography, FT-IR spectroscopy and solid-state NMR spectroscopy.
Collapse
|
68
|
Pucadyil TJ, Chattopadhyay A. Exploring detergent insolubility in bovine hippocampal membranes: a critical assessment of the requirement for cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1661:9-17. [PMID: 14967470 DOI: 10.1016/j.bbamem.2003.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 09/10/2003] [Accepted: 11/19/2003] [Indexed: 11/18/2022]
Abstract
The phenomenon of detergent insolubility of bovine hippocampal membranes in Triton X-100 was monitored by estimating the presence of phospholipids in the insoluble pellet. This represents a convenient and unambiguous assay and reports the dependence of the extent of phospholipid solubilization on detergent concentration. The advantage of this approach is its ability to accurately determine the extent of detergent insolubility in natural membranes. Importantly, our results show that when suboptimal concentrations of Triton X-100 are used for solubilization, interpretations of the mechanism and extent of detergent insolubility should be made with adequate caution. At concentrations of Triton X-100 that leads to no further solubilization, approximately 44% of phospholipids are left insoluble at 4 degrees C in bovine hippocampal membranes. Cholesterol depletion using methyl-beta-cyclodextrin enhanced phospholipid solubilization at low detergent concentrations but produced no significant change in the amount of insoluble phospholipids at saturating detergent concentration. Progressive solubilization by the detergent resulted in insoluble membranes that contained lipids with higher fatty acyl chain order as reported by fluorescence polarization studies using 1,6-diphenyl-1,3,5-hexatriene (DPH). These results suggest that it is the presence of such lipids rather than their association with cholesterol that determines detergent insolubility in membranes.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
69
|
Edidin M. The state of lipid rafts: from model membranes to cells. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:257-83. [PMID: 12543707 DOI: 10.1146/annurev.biophys.32.110601.142439] [Citation(s) in RCA: 1000] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid raft microdomains were conceived as part of a mechanism for the intracellular trafficking of lipids and lipid-anchored proteins. The raft hypothesis is based on the behavior of defined lipid mixtures in liposomes and other model membranes. Experiments in these well-characterized systems led to operational definitions for lipid rafts in cell membranes. These definitions, detergent solubility to define components of rafts, and sensitivity to cholesterol deprivation to define raft functions implicated sphingolipid- and cholesterol-rich lipid rafts in many cell functions. Despite extensive work, the basis for raft formation in cell membranes and the size of rafts and their stability are all uncertain. Recent work converges on very small rafts <10 nm in diameter that may enlarge and stabilize when their constituents are cross-linked.
Collapse
Affiliation(s)
- Michael Edidin
- Biology Department, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
70
|
Beigi F, Wainer IW. Syntheses of Immobilized G Protein-Coupled Receptor Chromatographic Stationary Phases: Characterization of Immobilized μ and κ Opioid Receptors. Anal Chem 2003; 75:4480-5. [PMID: 14632053 DOI: 10.1021/ac034385q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opioid receptors are members of the superfamily of G protein-coupled receptors (GPCRs). Liquid chromatographic stationary phases containing either the human mu or kappa opioid receptor subtypes have been developed to study the binding between the opioid receptors and their ligands. The receptors were obtained from Chinese hamster ovary cells stably transfected with human mu or kappa receptor subtypes. The receptors were isolated through partial solubilization with sodium cholate detergent, and the partially purified receptor complex was immobilized in the phospholipid analogue monolayer of an immobilized artificial membrane liquid chromatographic stationary phase. The resulting phase was packed into a glass column (1.8 x 0.5 (i.d.) cm) and used in the on-line chromatographic determination of drug/ligand binding affinities to the immobilized opioid receptors. Preliminary on-line binding studies employing frontal chromatographic techniques were conducted with the known mu antagonist (naloxone) and a kappa agonist (U69593). The calculated dissociation constants (Kd) were 110 nM for naloxone and 84 nM for U69593. The results indicate that the immobilized receptors retained their ability to specifically bind ligands and were active for 1200 column volumes applied over two weeks. Zonal chromatographic experiments were also conducted, and competitive displacements of the marker ligands were observed. The results suggest that the immobilized opioid receptor stationary phases can be used to qualitatively assess the binding affinities of compounds to the immobilized receptors and represent the first example of the use of immobilized GPCRs in a chromatographic system.
Collapse
MESH Headings
- Animals
- Binding Sites
- CHO Cells
- Chromatography, Affinity/methods
- Cricetinae
- Female
- Gene Expression Regulation
- Humans
- Ligands
- Naloxone/pharmacology
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Solubility
Collapse
Affiliation(s)
- Farideh Beigi
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
71
|
Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 2003; 67:226-37, table of contents. [PMID: 12794191 PMCID: PMC156468 DOI: 10.1128/mmbr.67.2.226-237.2003] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As intracellular parasites, viruses rely heavily on the use of numerous cellular machineries for completion of their replication cycle. The recent discovery of the heterogeneous distribution of the various lipids within cell membranes has led to the proposal that sphingolipids and cholesterol tend to segregate in microdomains called membrane rafts. The involvement of membrane rafts in biosynthetic traffic, signal transduction, and endocytosis has suggested that viruses may also take advantage of rafts for completion of some steps of their replication cycle, such as entry into their cell host, assembly, and budding. In this review, we have attempted to delineate all the reliable data sustaining this hypothesis and to build some models of how rafts are used as platforms for assembly of some viruses. Indeed, if in many cases a formal proof of raft involvement in a virus replication cycle is still lacking, one can reasonably suggest that, owing to their ability to specifically attract some proteins, lipid microdomains provide a particular milieu suitable for increasing the efficiency of many protein-protein interactions which are crucial for virus infection and growth.
Collapse
Affiliation(s)
- Nathalie Chazal
- Immunologie-Virologie, EA 3038, Université Paul Sabatier, 31062 Toulouse, France.
| | | |
Collapse
|
72
|
Charrin S, Manié S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 2003; 304:107-12. [PMID: 12705892 DOI: 10.1016/s0006-291x(03)00545-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tetraspanin web refers to a network of molecular interactions involving tetraspanins and other molecules. Inside the tetraspanin web, small primary complexes containing only one tetraspanin and one specific partner molecule such as CD151/alpha3beta1 integrin and CD9/CD9P-1 (FPRP) can be observed under particular conditions. Here we demonstrate that when cells are lysed with Brij97, the tetraspanins CD151 and CD9 allow and/or stabilize the interaction of their partner molecules with other tetraspanins and that their two partners associate under conditions maintaining tetraspanin/tetraspanin interactions. The tetraspanins were also found to partition into a detergent-resistant membrane environment to which the integrin alpha3beta1 was relocalized upon expression of CD151.
Collapse
Affiliation(s)
- Stéphanie Charrin
- INSERM U268, Institut André Lwoff, Hôpital Paul Brousse, 94807, Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
73
|
Shlyonsky VG, Mies F, Sariban-Sohraby S. Epithelial sodium channel activity in detergent-resistant membrane microdomains. Am J Physiol Renal Physiol 2003; 284:F182-8. [PMID: 12388391 DOI: 10.1152/ajprenal.00216.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of epithelial Na(+) selective channels is modulated by various factors, with growing evidence that membrane lipids also participate in the regulation. In the present study, Triton X-100 extracts of whole cells and of apical membrane-enriched preparations from cultured A6 renal epithelial cells were floated on continuous-sucrose-density gradients. Na(+) channel protein, probed by immunostaining of Western blots, was detected in the high-density fractions of the gradients (between 18 and 30% sucrose), which contain the detergent-soluble material but also in the lighter, detergent-resistant 16% sucrose fraction. Single amiloride-sensitive Na(+) channel activity, recorded after incorporation of reconstituted proteoliposomes into lipid bilayers, was exclusively localized in the 16% sucrose fraction. In accordance with other studies, high- and low-density fractions of sucrose gradients likely represent membrane domains with different lipid contents. However, exposure of the cells to cholesterol-depleting or sphingomyelin-depleting agents did not affect transepithelial Na(+) current, single-Na(+) channel activity, or the expression of Na(+) channel protein. This is the first reconstitution study of native epithelial Na(+) channels, which suggests that functional channels are compartmentalized in discrete domains within the plane of the apical cell membrane.
Collapse
Affiliation(s)
- Vadim G Shlyonsky
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
74
|
|
75
|
Park PSH, Sum CS, Pawagi AB, Wells JW. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry 2002; 41:5588-604. [PMID: 11969420 DOI: 10.1021/bi011746s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscarinic cholinergic receptors can appear to be more numerous when labeled by [(3)H]quinuclidinylbenzilate (QNB) than by N-[(3)H]methylscopolamine (NMS). The nature of the implied heterogeneity has been studied with M(2) receptors in detergent-solubilized extracts of porcine atria. The relative capacity for [(3)H]NMS and [(3)H]QNB was about 1 in digitonin-cholate, 0.56 in cholate-NaCl, and 0.44 in Lubrol-PX. Adding digitonin to extracts in cholate-NaCl increased the absolute capacity for both radioligands, and the relative capacity increased to near 1. The latency cannot be attributed to a chemically impure radioligand, instability of the receptor, an irreversible effect of NMS, or a failure to reach equilibrium. Binding at near-saturating concentrations of [(3)H]QNB in cholate-NaCl or Lubrol-PX was blocked fully by unlabeled NMS, which therefore appeared to inhibit noncompetitively at sites inaccessible to radiolabeled NMS. Such an effect is inconsistent with the notion of functionally distinct, noninterconverting, and mutually independent sites. Both the noncompetitive effect of NMS on [(3)H]QNB and the shortfall in capacity for [(3)H]NMS can be described quantitatively in terms of cooperative interactions within a receptor that is at least tetravalent; no comparable agreement is possible with a receptor that is only di- or trivalent. The M(2) muscarinic receptor therefore appears to comprise at least four interacting sites, presumably within a tetramer or larger array, and ligands appear to bind in a cooperative manner under at least some conditions.
Collapse
Affiliation(s)
- Paul S-H Park
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada M5S 2S2
| | | | | | | |
Collapse
|
76
|
Abstract
Detergents are invaluable tools for studying membrane proteins. However, these deceptively simple, amphipathic molecules exhibit complex behavior when they self-associate and interact with other molecules. The phase behavior and assembled structures of detergents are markedly influenced not only by their unique chemical and physical properties but also by concentration, ionic conditions, and the presence of other lipids and proteins. In this minireview, we discuss the various aggregate forms detergents assume and some misconceptions about their structure. The distinction between detergents and the membrane lipids that they may (or may not) replace is emphasized in the most recent high resolution structures of membrane proteins. Detergents are clearly friends and foes, but with the knowledge of how they work, we can use the increasing variety of detergents to our advantage.
Collapse
Affiliation(s)
- R M Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | |
Collapse
|
77
|
Abstract
Two-dimensional crystallogenesis is a crucial step in the long road that leads to the determination of macromolecules structure via electron crystallography. The necessity of having large and highly ordered samples can hold back the resolution of structural works for a long time, and this, despite improvements made in electron microscopes or image processing. Today, finding good conditions for growing two-dimensional crystals still rely on either "biocrystallo-cooks" or on lucky ones. The present review presents the field by first describing the different crystals that one can encounter and the different crystallisation methods used. Then, the effects of different components (such as protein, lipids, detergent, buffer, and temperature) and the different methods (dialysis, hydrophobic adsorption) are discussed. This discussion is punctuated by correspondences made to the world of three-dimensional crystallogenesis. Finally, a guide for setting up 2D crystallogenesis experiments, built on the discussion mentioned before, is proposed to the reader. More than giving recipes, this review is meant to open up the discussions in this field.
Collapse
Affiliation(s)
- G Mosser
- LPCC, UMR168-CNRS, Institut Curie-Section de Recherche, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
78
|
Schneider MJ, Feller SE. Molecular Dynamics Simulations of a Phospholipid−Detergent Mixture. J Phys Chem B 2001. [DOI: 10.1021/jp003299g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933
| |
Collapse
|
79
|
Sanders CR, Oxenoid K. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:129-45. [PMID: 11090822 DOI: 10.1016/s0005-2736(00)00308-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.
Collapse
Affiliation(s)
- C R Sanders
- Department of Physiology and Biophysics, Case Western Reserve University, 44106-4970, Cleveland, OH, USA.
| | | |
Collapse
|
80
|
Fricke B. Quantitative determination of zwitterionic detergents using salt-induced phase separation of Triton X-100. Anal Biochem 2000; 281:144-50. [PMID: 10870829 DOI: 10.1006/abio.2000.4552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zwitterionic detergents interfere with the salt-induced phase separation for nonionic detergents in a concentration-dependent manner by shifting the normal cloud point of nonionic detergents to a higher ionic strength at room temperature. This phenomenon was used to determine the concentration of the zwitterionic detergents CHAPS, CHAPSO, and sulfobetaine SB-12 in solution by titration with ammonium sulfate in the presence of Triton X-100. Among the ionic detergents tested, the method was only applicable to sodium cholate. The assay can be used to control the removal of zwitterionic detergents during the reconstitution of membrane proteins in liposomes. However, it cannot be used to determine the specific binding of zwitterionic detergents to highly diluted, pure membrane proteins because of the limited sensitivity. Neither proteins nor phospholipids interfered with this method at concentrations up to 20 mg/ml of test solution (human serum albumin) or 10 mg/ml (phospholipids), respectively. Since the assay is based on the competition between salts and nonionic detergents for water molecules, it is important to equalize the ionic strength of samples and calibration standards.
Collapse
Affiliation(s)
- B Fricke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University, Halle, Germany.
| |
Collapse
|
81
|
Heerklotz H, Seelig J. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J 2000; 78:2435-40. [PMID: 10777739 PMCID: PMC1300832 DOI: 10.1016/s0006-3495(00)76787-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The membrane/water partition coefficients, K, of 15 electrically neutral (non-charged or zwitterionic) detergents were measured with phospholipid vesicles by using isothermal titration calorimetry, and were compared to the corresponding critical micellar concentrations, cmc. The detergents measured were oligo(ethylene oxide) alkyl ethers (C(m)EO(n) with m = 10/n = 3, 7 and m = 12/n = 3.8); alkylglucosides (octyl, decyl); alkylmaltosides (octyl, decyl, dodecyl); diheptanoylphosphatidylcholine; Tritons (X-100, X-114) and CHAPS. A linear relation between the free energies of partitioning into the membrane and micelle formation was found such that K. CMC approximately 1. The identity K. CMC = 1 was used to classify detergents with respect to their membrane disruption potency. "Strong" detergents are characterized by K. CMC < 1 and solubilize lipid membranes at detergent-to-lipid ratios X(b) < 1 (alkylmaltosides, tritons, heptaethylene glycol alkyl ethers). "Weak" detergents are characterized by K. CMC > 1 and accumulate in the membrane- to detergent-to-lipid ratios X(b) > 1 before the bilayer disintegrates (alkylglucosides, pentaethylene glycol dodecyl ether).
Collapse
Affiliation(s)
- H Heerklotz
- Department of Biophysical Chemistry, Biocenter of the University of Basel, Basel, Switzerland
| | | |
Collapse
|
82
|
Ponimaskin E, Bareesel KK, Markgraf K, Reszka R, Lehmann K, Gelderblom HR, Gawaz M, Schmidt MF. Sendai virosomes revisited: reconstitution with exogenous lipids leads to potent vehicles for gene transfer. Virology 2000; 269:391-403. [PMID: 10753718 DOI: 10.1006/viro.2000.0233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A reliable new procedure is described for the reconstitution of Sendai viral envelopes suitable for gene transfer. Both fusion and hemagglutinin-neuraminidase glycoproteins were extracted from purified Sendai virus and reconstituted together with DNA in the presence of cholesterol:sphingomyelin:phosphatidylcholine:phosphatidylethanolamin e (Chol:SM:PC:PE) in a molar ratio of 3.5:3.5:2:1. Before reconstitution, the DNA to be transferred was condensed by pretreatment with polylysine. Exogenous lipid addition and the DNA-condensation step were essential for maximal size as well as for fusogenic activity of the resulting virosomes, the analysis of which revealed (1) the absence of any genomic material originating from Sendai virus, (2) the presence of fusogenic spikes in a functional orientation, (3) the encapsulation of reporter genes, and (4) high-transfer activity for plasmids carrying the green fluorescent protein (GFP) gene and double-stranded nucleotides into different mammalian cells. Transfer rates were up to 10-fold higher than those obtained with different cationic lipids. Gene delivery by means of our lipid-enriched Sendai virosomes extends the known gene transfer strategies, including those based on Sendai virus previously published.
Collapse
Affiliation(s)
- E Ponimaskin
- Institut für Immunologie und Molekularbiologie, City Campus VetMed, Frei-Universität Berlin, Luisenstrasse 56, Berlin, D-10117, Germany
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Potter MD, Nicchitta CV. Ribosome-independent regulation of translocon composition and Sec61alpha conformation. J Biol Chem 2000; 275:2037-45. [PMID: 10636907 DOI: 10.1074/jbc.275.3.2037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contributions of membrane-bound ribosomes to the regulation of endoplasmic reticulum translocon composition and Sec61alpha conformation were examined. Following solubilization of rough microsomes (RM) with digitonin, ribosomes co-sedimented in complexes containing the translocon proteins Sec61alpha, ribophorin I, and TRAPalpha, and endoplasmic reticulum phospholipids. Complexes of similar composition were identified in digitonin extracts of ribosome-free membranes, indicating that the ribosome does not define the composition of the digitonin-soluble translocon. Whereas in digitonin solution a highly electrostatic ribosome-translocon junction is observed, no stable interactions between ribosomes and Sec61alpha, ribophorin I, or TRAPalpha were observed following solubilization of RM with lipid-derived detergents at physiological salt concentrations. Sec61alpha was found to exist in at least two conformational states, as defined by mild proteolysis. A protease-resistant form was observed in RM and detergent-solubilized RM. Removal of peripheral proteins and ribosomes markedly enhanced the sensitivity of Sec61alpha to proteolysis, yet the readdition of inactive ribosomes to salt-washed membranes yielded only modest reductions in protease sensitivity. Addition of sublytic concentrations of detergents to salt-washed RM markedly decreased the protease sensitivity of Sec61alpha, indicating that a protease-resistant conformation of Sec61alpha can be conferred in a ribosome-independent manner.
Collapse
Affiliation(s)
- M D Potter
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
84
|
Menzies GS, Howland K, Rae MT, Bramley TA. Stimulation of specific binding of [3H]-progesterone to bovine luteal cell-surface membranes: specificity of digitonin. Mol Cell Endocrinol 1999; 153:57-69. [PMID: 10459854 DOI: 10.1016/s0303-7207(99)00091-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-genomic actions of progesterone have been described in the ovary, and luteal membranes of several species have been shown to possess specific binding sites for [3H]-progesterone. However, binding of radiolabelled progesterone to luteal membranes was demonstrable only in the presence of digitonin. Digitonin is a non-ionic detergent which is thought to act by forming one-to-one complexes with certain sterols. It is also a cardiotonic agent, inhibiting (Na+-K+) ATPase activity by interaction with the extracellular (ouabain/K+) binding site. We therefore investigated which properties of digitonin were responsible for its stimulatory actions on progesterone binding to bovine luteal membranes. A range of compounds with detergent, cardiotonic and or cholesterol-complexing activities were tested for their effects on [3H]-progesterone binding to bovine luteal membrane fractions, and on haemolysis of rat erythrocytes. Stimulation of progesterone binding to luteal membranes was highly specific for digitonin, and a number of ionic and non-ionic detergents, cardenolides, saponins and cholesterol-complexing reagents tested failed either to stimulate [3H]-progesterone binding to bovine luteal membranes in the absence of digitonin, or to inhibit binding specifically in the presence of digitonin. When digitonin was first reacted with excess cholesterol or pregnenolone to form the respective digitonides, stimulatory activity was greatly reduced, suggesting that the ability of digitonin to interact with (an) endogenous steroid(s) may be important in its action. High performance liquid chromatography (HPLC)-mass spectrometry of commercially available digitonin preparations indicated the presence of numerous minor impurities in most commercial digitonin preparations. Three major UV-absorbing peaks were isolated and characterised by mass spectrometry: all stimulated progesterone binding to bovine luteal membrane receptors in a dose-dependent manner, though to differing extents. Our data suggest that the unique action of digitonin on luteal membrane progesterone receptors is not related to its detergent or cardiotonic properties, but appears to be related to its ability to complex with membrane sterols.
Collapse
Affiliation(s)
- G S Menzies
- Department of Obstetrics and Gynaecology, The University of Edinburgh, Centre for Reproductive Biology, Scotland, UK
| | | | | | | |
Collapse
|