51
|
Kaur D, Rajagopalan S, Chinta S, Kumar J, Di Monte D, Cherny RA, Andersen JK. Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegeneration. Brain Res 2006; 1140:188-94. [PMID: 16631136 DOI: 10.1016/j.brainres.2006.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 02/27/2006] [Accepted: 03/07/2006] [Indexed: 11/29/2022]
Abstract
Ferritin elevation has been reported by some laboratories to occur within the substantia nigra (SN), the area of the brain affected in Parkinson's disease (PD), but whether such an increase could be causatively involved in neurodegeneration associated with the disorder is unknown. Here, we report that chronic ferritin elevation in midbrain dopamine-containing neurons results in a progressive age-related neurodegeneration of these cells. This provides strong evidence that chronic ferritin overload could be directly involved in age-related neurodegeneration such as occurs in Parkinson's and other related diseases.
Collapse
Affiliation(s)
- Deepinder Kaur
- Buck Institute for Research in Aging, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Lehmensiek V, Tan EM, Liebau S, Lenk T, Zettlmeisl H, Schwarz J, Storch A. Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson's disease. Neurochem Int 2006; 48:329-40. [PMID: 16406146 DOI: 10.1016/j.neuint.2005.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/27/2005] [Accepted: 11/08/2005] [Indexed: 11/18/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is widely used to produce animal models of Parkinson's disease (PD) by selectively destroying the nigro-striatal dopaminergic systems, but selective toxicity of 6-OHDA towards dopaminergic cells in vitro remains controversial. Mutant (A30P and A53T) alpha-synuclein isoforms cause increased vulnerability of cells towards various toxic insults and enhance dopamine transporter (DAT)-mediated toxicity of the selective dopaminergic neurotoxin and mitochondrial complex I inhibitor MPP(+) in vitro. Here we extend our recent studies on DAT-mediated toxicity to elucidate the mechanisms involved in selective dopaminergic toxicity of 6-OHDA. We studied the cytotoxicity as well as the toxic mechanisms of 6-OHDA in human embryonic kidney HEK-293 cells ectopically co-expressing mutant alpha-synucleins and the human DAT protein. 6-OHDA showed half-maximal toxic concentration (TC(50)) of 88 microM in HEK-hDAT cells without alpha-synuclein expression after 24 h, whereas the TC(50) values significantly decreased to 58 and 39 microM by expression of A30P and A53T alpha-synuclein, respectively. alpha-Synuclein expression did not affect 6-OHDA toxicity in HEK-293 cells not expressing the DAT. Analysis of intracellular parameters of cellular energy metabolism revealed that the co-expression of mutant alpha-synucleins in HEK-hDAT cells accelerates the reduction of intracellular net ATP levels and ATP/ADP ratios induced by 6-OHDA. Uptake function of the DAT was not altered by expression of alpha-synuclein isoforms. Our data suggest a mechanism of 6-OHDA-induced dopaminergic toxicity involving an interaction of mutant alpha-synucleins with the DAT molecule and subsequent acceleration of cellular energy depletion that might be relevant for the pathogenesis of PD.
Collapse
|
53
|
Gerlach M, Double KL, Youdim MBH, Riederer P. Potential sources of increased iron in the substantia nigra of parkinsonian patients. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:133-42. [PMID: 17017520 DOI: 10.1007/978-3-211-45295-0_21] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Histopathological, biochemical and in vivo brain imaging techniques, such as magnetic resonance imaging and transcranial sonography, revealed a consistent increase of substantia nigra (SN) iron in Parkinson's disease (PD). Increased iron deposits in the SN may have genetic and non-genetic causes. There are several rare movement disorders associated with neurodegeneration, and genetic abnormalities in iron regulation resulting in iron deposition in the brain. Non-genetic causes of increased SN iron may be the result of a disturbed or open blood-brain-barrier, local changes in the normal iron-regulatory systems, intraneuronal transportation of iron from iron-rich area into the SN and release of iron from intracellular iron storage molecules. Major iron stores are ferritin and haemosiderin in glial cells as well as neuromelanin in neurons. Age- and disease dependent overload of iron storage proteins may result in iron release upon reduction. Consequently, the low molecular weight chelatable iron complexes may trigger redox reactions leading to damage of biomolecules. Additionally, upon neurodegeneration there is strong microglial activation which can be another source of high iron concentrations in the brain.
Collapse
Affiliation(s)
- M Gerlach
- Laboratory for Clinical Neurochemistry, Department of Child and Adolescence Psychiatry and Psychotherapy, University of Würzburg, Germany.
| | | | | | | |
Collapse
|
54
|
Rojas P, Franco-Pérez JE, Rojas C, Rojas-Castañeda J, Ebadi M, Fernández-Valverde F, Serrano-García N. Reduction of Zinc-Positive Terminal Fields in Striatum of Mouse after 1-Methyl-4-Phenylpyridinium Neurotoxicity. Neurotoxicology 2005; 26:959-68. [PMID: 15950287 DOI: 10.1016/j.neuro.2005.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 04/04/2005] [Indexed: 11/17/2022]
Abstract
Zinc is an essential trace element in the central nervous system and is located in three distinct pools: free zinc, vesicular zinc and protein-bound zinc. Zinc may serve as an endogenous neuromodulator and has been associated with neuropathologies. This study was undertaken to determine whether levels of vesicular zinc in neuronal terminals would decrease in response to the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+). Adult male C-57 black mice were injected with MPP+ (0.72 mg/kg) into their right lateral ventricle. All animals were killed at 1, 2, 24 h and 7 days after MPP+ or saline administration. The brains were stained for zinc sulfides and the density of zinc-positive terminal fields was evaluated after MPP+ administration. The relative optical density analysis of zinc-positive terminal fields showed significant decreases in the striatum at 1, 2 and 24 h (24, 18 and 14%, respectively, versus control) and ventricular epithelium (1, 2, 24 h and 7 days). The hippocampus showed increase in the stratum oriens and stratum radiatum at different times. MPP+ administration reduced dopamine levels at 24h and 7 days (36 and 40%, respectively, versus control) as a result of the neurotoxic action of MPP+. The decrease of zinc-positive neuronal terminal fields in the striatum after MPP+ administration is most likely due to a neuronal release of vesicular zinc in response to its dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, SS, Av. Insurgentes Sur No. 3877, C.P. 14269 México D.F., México.
| | | | | | | | | | | | | |
Collapse
|
55
|
Fredriksson A, Eriksson P, Archer T. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice. J Neural Transm (Vienna) 2005; 113:137-50. [PMID: 16082515 DOI: 10.1007/s00702-005-0307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only clozapine increased the level of rearing. Correlational analyses indicated that both apomorphine-induced locomotion and rearing were highly correlated with the total iron content in the basal ganglia, thereby offering direct evidence of the linear relationship between iron content in the basal ganglia and the behavioural expression of DA D(2)-receptor supersensitivity in mice.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience and Psychiatry, University of Uppsala, Uppsala, Sweden
| | | | | |
Collapse
|
56
|
Izumi Y, Sawada H, Sakka N, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike A. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res 2005; 79:849-60. [PMID: 15712215 DOI: 10.1002/jnr.20382] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). 6-Hydroxydopamine (6-OHDA), a dopaminergic neurotoxin, is detected in human brains and the urine of PD patients. Using SH-SY5Y, a human neuroblastoma cell line, we demonstrated that 6-OHDA toxicity was determined by the amount of p-quinone produced in 6-OHDA auto-oxidation rather than by reactive oxygen species (ROS). Glutathione (GSH), which conjugated with p-quinone, provided significant protection whereas catalase, which detoxified hydrogen peroxide and superoxide anions, failed to block cell death caused by 6-OHDA. Although iron accumulated in the SN of patients with PD can cause dopaminergic neuronal degeneration by enhancing oxidative stress, we found that extracellular ferrous iron promoted the formation of melanin and reduced the amount of p-quinone. The addition of ferrous iron to the culture medium inhibited caspase-3 activation and apoptotic nuclear morphologic changes and blocked 6-OHDA-induced cytotoxicity in SH-SY5Y cells and primary cultured mesencephalic dopaminergic neurons. These data suggested that generation of p-quinone played a pivotal role in 6-OHDA-induced toxicity and extracellular iron in contrast to intracellular iron was protective rather than harmful because it accelerated the conversion of p-quinone into melanin.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Willis GL, Robertson AD. Recovery of experimental Parkinson's disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol Biochem Behav 2005; 79:413-29. [PMID: 15582013 DOI: 10.1016/j.pbb.2004.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 07/16/2004] [Accepted: 08/02/2004] [Indexed: 11/30/2022]
Abstract
Over the past 10 years, there has been a resurgence of interest in examining the role of melatonin in health and disease. While the brunt of research in this area has portrayed melatonin in a favorable light, there is a growing body of evidence suggesting that melatonin may possess adverse effects contributing to the development of various neuropsychiatric disease states. In preclinical models of Parkinson's disease (PD), melatonin has been shown to enhance the severity of this condition while its antagonism, using constant light or pinealectomy, facilitates recovery. To test this hypothesis further, the present study employed the melatonin analogues ML-23 and S-20928 in a post-6-OHDA injection regime to determine whether they may have a favorable effect on the symptoms of this more chronic model of PD. When ML-23 was injected I.P. in a dose of 3 mg/kg twice daily for 3.5 days after 6-OHDA, significant improvement in motor function and regulatory deficits was observed. Similarly, the injection of S-20928 in a 1 mg/kg dose (I.P.), in the same regimen, facilitated modest improvement in motor function and regulatory deficits while the larger dose enhanced the severity of behavioural deficits and produced severe side effects causing deterioration in condition during the course of drug administration. ML-23 administration totally abolished the 6-OHDA-induced mortality, which accompanies dopamine (DA) degeneration, while S-20928 had no effect on this parameter. These results suggest that some melatonin analogues can aid in recovery from DA depleting lesions after DA degeneration has commenced and the recovery is not attributable to the antioxidative properties of this hormone. While the exact mechanism by which ML-23 and S-20928 are exerting their therapeutic effect is unclear, it is possible that antagonism of melatonin receptors may play some role and this should be considered when assessing the potential of melatonin analogues for treatment of human neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Victoria 3444, Australia.
| | | |
Collapse
|
58
|
Liu Y, Simon JD. Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy. ACTA ACUST UNITED AC 2004; 16:606-18. [PMID: 14629718 DOI: 10.1046/j.1600-0749.2003.00098.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major pigments found in the skin, hair, and eyes of humans and other animals are melanins. Despite significant research efforts, the current understanding of the molecular structure of melanins, the assembly of the pigment within its organelle, and the structural consequences of the association of melanins with protein and metal cations is limited. Likewise, a detailed understanding of the photochemical and photophysical properties of melanins has remained elusive. Many types of melanins have been studied to date, including natural and synthetic model pigments. Such studies are often contradictory and to some extent the diversity of systems studied may have detracted from the development of a basic understanding of the structure and function of the natural pigment. Advances in the understanding of the structure and function of melanins require careful characterization of the pigments examined so as to assure the data obtained may be relevant to the properties of the pigment in vivo. To address this issue, herein the influence of isolation procedures on the resulting structure of the pigment is examined. Sections describing the applications of new technologies to the study of melanins follow this. Advanced imaging technologies such as scanning probe microscopies are providing new insights into the morphology of the pigment assembly. Recent photochemical studies on photoreduction of cytochrome c by different mass fraction of sonicated natural melanins reveal that the photogeneration of reactive oxygen species (ROS) depends upon aggregation of melanin. Specifically, aggregation mitigates ROS photoproduction by UV-excitation, suggesting the integrity of melanosomes in tissue may play an important role in the balance between the photoprotective and photodamaging behaviors attributed to melanins. Ultrafast laser spectroscopy studies of melanins are providing insights into the time scales and mechanisms by which melanin dissipates absorbed light energy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
59
|
Abstract
The binding of Mg(II), Ca(II), Zn(II), Cu(II) and Fe(III) to ETDA-washed Sepia melanin is quantified by inductively coupled plasma mass spectrometry. By monitoring the solution pH change associated with metal uptake, it is concluded that Mg(II), Ca(II) and Zn(II) bind to carboxylic acid groups in melanin, Cu(II) binds to hydroxyl (OH) groups and Fe(III) binds to OH or amine groups. The aerobic reactivity of melanins with different metal contents is analyzed by examining their ability to cause strand breaks in supercoiled pUC18 DNA. Cu(II)- and Fe(III)-enriched melanins induce the most damage. Hydroxyl radical, *OH, is proposed to be one of the reactive oxygen species responsible.
Collapse
Affiliation(s)
- Lian Hong
- Department of Chemistry, Duke University, Durham, NC 27708-0346, USA
| | | | | |
Collapse
|
60
|
Martin FL, Williamson SJM, Paleologou KE, Hewitt R, El-Agnaf OMA, Allsop D. Fe(II)-induced DNA damage in alpha-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the Comet assay. J Neurochem 2003; 87:620-30. [PMID: 14535945 DOI: 10.1046/j.1471-4159.2003.02013.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lewy bodies in the brains of patients with Parkinson's disease (PD) contain aggregates of alpha-synuclein (alpha-syn). Missense mutations (A53T or A30P) in the gene encoding alpha-syn are responsible for rare, inherited forms of PD. In this study, we explored the susceptibility of untransfected human dopaminergic BE(2)-M17 neuroblastoma cells, cells transfected with vector only, or cells transfected with wild-type alpha-syn, A30P alpha-syn or A53T alpha-syn to Fe(II)-induced DNA damage in the form of single-strand breaks (SSBs). DNA SSBs were detected following 2-h treatments with various concentrations of Fe(II) (0.01-100.0 microm), using the alkaline single cell-gel electrophoresis ('Comet') assay and quantified by measuring comet tail length (CTL) microm). Fe(II) treatment induced significant increases in CTL in cells transfected with A30P alpha-syn or A53T alpha-syn, even at the lowest concentrations of Fe(II) tested. In comparison, untransfected cells, vector control cells or cells transfected with wild-type alpha-syn exhibited increases in SSBs only when exposed to concentrations of 1.0 microm Fe(II) and above. Even when exposed to higher concentrations (10.0-100.0 microm) of Fe(II), untransfected cells, vector control cells or cells transfected with wild-type alpha-syn were less susceptible to DNA-damage induction than cells transfected with A30P alpha-syn or A53T alpha-syn. Incorporation of DNA-repair inhibitors, hydroxyurea and cytosine arabinoside, enhanced the sensitivity of DNA damage detection. Susceptibility to Fe(II)-induced DNA damage appeared to be dependent on alpha-syn status because cells transfected with wild-type alpha-syn or A53T alpha-syn were equally susceptible to the damaging effects of the mitochondrial respiratory chain inhibitor rotenone. Overall, our data are suggestive of an enhanced susceptibility to the toxic effects of Fe(II) in neuroblastoma cells transfected with mutant alpha-syn associated with inherited forms of PD.
Collapse
Affiliation(s)
- Francis L Martin
- Department of Biological Sciences, I.E.N.S., Lancaster University, Lancaster, UK.
| | | | | | | | | | | |
Collapse
|
61
|
Uversky VN. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 2003; 21:211-34. [PMID: 12956606 DOI: 10.1080/07391102.2003.10506918] [Citation(s) in RCA: 386] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Under the physiological conditions in vitro, alpha-synuclein, a conservative presynaptic protein, the aggregation and fibrillation of which is assumed to be involved into the pathogenesis of Parkinson's disease and several other neurodegenerative disorders, known as synucleinopathies, is characterized by the lack of rigid well-defined structure; i.e., it belongs to the class of intrinsically unstructured proteins. Intriguingly, alpha-synuclein is characterized by a remarkable conformational plasticity, adopting a series of different conformations depending on the environment. For example, this protein may either stay substantially unfolded, or adopt an amyloidogenic partially folded conformation, or fold into alpha-helical or beta-structural species, both monomeric and oligomeric. Furthermore, it might form several morphologically different types of aggregates, including oligomers (spheres or doughnuts), amorphous aggregates, and or amyloid-like fibrils. The peculiarities of this astonishing conformational behavior are analyzed to shed light on structural plasticity of this protein-chameleon.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Biological Instrumentation, Russian Academy of Sciences Pushchino, Moscow Region, Russia.
| |
Collapse
|
62
|
Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease. J Neurochem 2003; 86:1142-8. [PMID: 12911622 DOI: 10.1046/j.1471-4159.2003.01923.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Degeneration of dopaminergic neurones during Parkinson's disease is most extensive in the subpopulation of melanized-neurones located in the substantia nigra pars compacta. Neuromelanin is a dark pigment produced in the dopaminergic neurones of the human substantia nigra and has the ability to bind a variety of metal ions, especially iron. Post-mortem analyses of the human brain have established that oxidative stress and iron content are enhanced in association with neuronal death. As redox-active iron (free Fe2+ form) and other transition metals have the ability to generate highly reactive hydroxyl radicals by a catalytic process, we investigated the redox activity of neuromelanin (NM)-aggregates in a group of parkinsonian patients, who presented a statistically significant reduction (- 70%) in the number of melanized-neurones and an increased non-heme (Fe3+) iron content as compared with a group of matched-control subjects. The level of redox activity detected in neuromelanin-aggregates was significantly increased (+ 69%) in parkinsonian patients and was highest in patients with the most severe neuronal loss. This change was not observed in tissue in the immediate vicinity of melanized-neurones. A possible consequence of an overloading of neuromelanin with redox-active elements is an increased contribution to oxidative stress and intraneuronal damage in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Baptiste A Faucheux
- INSERM U.289, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, F-75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
63
|
Fredriksson A, Archer T. Effect of postnatal iron administration on MPTP-induced behavioral deficits and neurotoxicity: behavioral enhancement by L-Dopa-MK-801 co-administration. Behav Brain Res 2003; 139:31-46. [PMID: 12642174 DOI: 10.1016/s0166-4328(02)00035-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two experiments were performed to investigate the interactive effects of postnatal iron administration and adult MPTP treatment upon the function of C57 Bl/6 mice tested at adult age and to ascertain the possible ameliatory effects of a subthreshold dose of L-Dopa co-administered with different doses of the uncompetitive glutamate antagonist, MK-801. Experiment I indicated that postnatal iron induced marked deficits (hypoactivity), initially, in all three parameters of motor activity at the 5.0 and 7.5 mg/kg doses, and to a lesser extent at the 2.5 mg/kg dose. Later combination with MPTP (2x40 mg/kg) potentiated severely these deficits. During the final period of testing a marked hyperactivity was obtained for the two higher dose groups; this effect was abolished in mice administered MPTP. Experiment II indicated that the deficits in motor activity parameters induced by postnatal iron at 7.5 mg/kg were alleviated in a dose-related manner by the co-administration of the uncompetitive glutamate antagonist, MK-801, with a subthreshold dose of L-Dopa. Postnatal iron (7.5 mg/kg) administration followed by low doses of MPTP (2x20 mg/kg) 3 months later virtually abolished all motor activity. The combination of these compounds increased also the motor activity of mice treated with MPTP (2x20 mg/kg) or mice treated with the combination of postnatal iron and MPTP. The combination of MK-801 with L-Dopa increased locomotor (0.3 mg/kg), rearing (0.1 and 0.3 mg/kg) and total activity (0.3 mg/kg) of iron-treated mice during the initial, hypoactive 30-min period of testing. Locomotor activity (0.1 mg/kg) of MPTP-treated mice was increased too during this period. During the final 30-min period of testing all three parameters of activity (locomotion, 0.3 mg/kg; rearing and total activity, 0.1 and 0.3 mg/kg) were enhanced in the iron-treated mice, locomotion (0.1 mg/kg) and rearing (0.1 mg/kg) in the iron plus MPTP treated mice and only locomotion (0.1 mg/kg) in the MPTP-treated mice. In control mice (vehicle+saline), the higher doses of MK-801 (0.1 and 0.3 mg/kg) enhanced both locomotor and total activity. Analyses of total iron concentration in the frontal cortex and basal ganglia of Fe(2+) and vehicle treated mice indicated that marked elevations basal ganglia iron levels of the 5.0 and 7.5 mg/kg groups, later injected either saline or MPTP, were obtained (Experiment I). In Experiment II, iron concentrations in the basal ganglia were elevated in both the Fe(2+)-sal and Fe(2+)-MPTP groups to 170 and 177% of Veh.-sal values, respectively. There was a significant increase in the frontal cortex of iron-treated mice later administered either saline or MPTP (2x40 mg/kg) in Experiment I as well as in those given iron followed by MPTP (2x20mg/kg) in Experiment II. The implications of iron overload in parkinsonism seem confirmed by the interactive effects of postnatal administration of the metal followed by adult MPTP treatment upon motor activity and the activity-enhancing effects of co-administration of L-Dopa with MK-801.
Collapse
Affiliation(s)
- Anders Fredriksson
- Department of Neuroscience and Psychiatry, University of Uppsala, Ulleråker, SE-750 17, Uppsala, Sweden
| | | |
Collapse
|
64
|
Archer T, Schröder N, Fredriksson A. Neurobehavioural deficits following postnatal iron overload: II Instrumental learning performance. Neurotox Res 2003; 5:77-94. [PMID: 14628858 DOI: 10.1007/bf03033374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
65
|
Fredriksson A, Schröder N, Archer T. Neurobehavioural deficits following postnatal iron overload: I spontaneous motor activity. Neurotox Res 2003; 5:53-76. [PMID: 14628856 DOI: 10.1007/bf03033373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
66
|
Angel I, Bar A, Horovitz T, Taler G, Krakovsky M, Resnitsky D, Rosenberg G, Striem S, Friedman JE, Kozak A. Metal ion chelation in neurodegenerative disorders. Drug Dev Res 2002. [DOI: 10.1002/ddr.10083] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
67
|
Abstract
Increasing evidence suggests that estrogens may protect the nigrostriatal dopaminergic pathway affected in Parkinson's disease (PD). Animal studies show that estrogens influence the synthesis, release, and metabolism of dopamine and can modulate dopamine receptor expression and function. Some clinical studies suggest that PD symptoms may be exacerbated after menopause and delayed or alleviated with hormone replacement therapy, but others have failed to observe positive estrogenic effects. The conflicting findings suggest that several variables, including age, estrogen dose and formulation, and timing and length of dosing period, may determine whether benefits are seen and the nature of these benefits. Further investigation is therefore needed for the relationship between estrogens and the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Lisa M Shulman
- The Rosalyn Newman Scholar of Clinical Research in Parkinson's Disease, University of Maryland School of Medicine, 22 South Greene Street N4W46, Baltimore, MD 21201, USA.
| |
Collapse
|
68
|
Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Real AM, Labandeira-García JL. Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1586:155-68. [PMID: 11959457 DOI: 10.1016/s0925-4439(01)00077-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aluminum and zinc have been related to the pathogenesis of Parkinson's disease (PD), the former for its neurotoxicity and the latter for its apparent antioxidant properties. 6-Hydroxydopamine (6-OHDA) is an important neurotoxin putatively involved in the pathogenesis of PD, its neurotoxicity often being related to oxidative stress. The potential effect of these metals on the oxidative stress induced by 6-OHDA autoxidation and the potential of ascorbic acid (AA), cysteine, and glutathione to modify this effect were investigated. Both metals, particularly Al3+, induced a significant reduction in *OH production by 6-OHDA autoxidation. The combined action of AA and a metal caused a significant and sustained increase in *OH generation, particularly with Al3+, while the effect of sulfhydryl reductants was limited to only the first few minutes of the reaction. However, both Al3+ and Zn2+ provoked a decrease in the lipid peroxidation induced by 6-OHDA autoxidation using mitochondrial preparations from rat brain, assessed by TBARS formation. In the presence of AA, only Al3+ induced a significant reduction in lipid peroxidation. After intrastriatal injections of 6-OHDA in rats, tyrosine hydroxylase immunohistochemistry revealed that Al3+ reduces 6-OHDA-induced dopaminergic lesion in the striatum, which corroborates the involvement of lipid peroxidation in 6-OHDA neurotoxicity and appears to discard the participation of this mechanism on PD by Al3+ accumulation. The previously reported antioxidant properties of Zn2+ appear to be related to the induction of Zn2+-containing proteins and not to the metal per se.
Collapse
Affiliation(s)
- Estefanía Méndez-Alvarez
- Grupo de Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco 1, E-15782, Spain
| | | | | | | | | |
Collapse
|
69
|
Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J Biol Chem 2001; 276:44284-96. [PMID: 11553618 DOI: 10.1074/jbc.m105343200] [Citation(s) in RCA: 821] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation.
Collapse
Affiliation(s)
- V N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
70
|
Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Martín ME, Labandeira-García JL. Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med 2001; 31:986-98. [PMID: 11595383 DOI: 10.1016/s0891-5849(01)00679-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
6-Hydroxydopamine (6-OHDA) neurotoxicity has often been related to the generation of free radicals. Here we examined the effect of the presence of iron (Fe(2+) and Fe(3+)) and manganese and the mediation of ascorbate, L-cysteine (CySH), glutathione (GSH), and N-acetyl-CySH on hydroxyl radical (*OH) production during 6-OHDA autoxidation. In vitro, the presence of 800 nM iron increased (> 100%) the production of *OH by 5 microM 6-OHDA while Mn(2+) caused a significant reduction (72%). The presence of ascorbate (100 microM) induced a continuous generation of *OH while the presence of sulfhydryl reductants (100 microM) limited this production to the first minutes of the reaction. In general, the combined action of metal + antioxidant increased the *OH production, this effect being particularly significant (> 400%) with iron + ascorbate. In vivo, tyrosine hydroxylase immunohistochemistry revealed that intrastriatal injections of rats with 6-OHDA (30 nmol) + ascorbate (600 nmol), 6-OHDA + ascorbate + Fe(2+) (5 nmol), and 6-OHDA + ascorbate + Mn(2+) (5 nmol) caused large striatal lesions, which were markedly reduced (60%) by the substitution of ascorbate by CySH. Injections of Fe(2+) or Mn(2+) alone showed no significant difference to those of saline. These results clearly demonstrate the role of ascorbate as an essential element for the neurotoxicity of 6-OHDA, as well as the diminishing action of sulfhydryl reductants, and the negligible effect of iron and manganese on 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
- E Méndez-Alvarez
- Grupo de Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
71
|
Dal-Pizzol F, Klamt F, Frota ML, Andrades ME, Caregnato FF, Vianna MM, Schröder N, Quevedo J, Izquierdo I, Archer T, Moreira JC. Neonatal iron exposure induces oxidative stress in adult Wistar rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:109-14. [PMID: 11557099 DOI: 10.1016/s0165-3806(01)00218-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative stress and excess of iron in the brain has been implicated in a variety of acute and chronic neurological conditions. The neonatal period is critical for the establishment of normal iron content in the adult brain. In the present study, the long-term oxidative effects of iron exposure during this period were assessed by treating Wistar rats orally with 0, 7.5 or 15 mg Fe(+2)/kg of body weight on postnatal days 10-12. Thiobarbituric acid reactive species, protein carbonyl, superoxide dismutase activity were measured at the age of 3 months. It was found that there was an increase in thiobarbituric acid reactive species and protein carbonyl in the substantia nigra of iron treated rats. In contrast, oxidative stress in the striatum was decreased. Superoxide dismutase activity was decreased in the substantia nigra iron treated rats. There were no differences in cerebellum measures among the groups. Our results demonstrated that iron supplementation in a critical neonatal period induced oxidative stress and modulated SOD activity in the adult life in selective brain regions.
Collapse
Affiliation(s)
- F Dal-Pizzol
- Laboratório de Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Double KL, Gerlach M, Youdim MB, Riederer P. Impaired iron homeostasis in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:37-58. [PMID: 11205155 DOI: 10.1007/978-3-7091-6301-6_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite physiological systems designed to achieve iron homeostasis, increased concentrations of brain iron have been demonstrated in a range of neurodegenerative diseases. These including the parkinsonian syndromes, the trinucleotide repeat disorders and the dementia syndromes. The increased brain iron is confined to those brain regions most affected by the degeneration characteristic of the particular disorder and is suggested to stimulate cell damage via oxidative mechanisms. Changes in central iron homeostasis have been most closely investigated in PD, as this disorder is well characterised both clinically and pathologically. PD is associated with a significant increase in iron in the degenerating substantia nigra (SN) and is measureable in living PD patients and in post-mortem brain. This increase, however, occurs only in the advanced stages of the disease, suggesting that this phenonoma may be a secondary, rather than a primary initiating event, a hypothesis also supported by evidence from animal experiments. The source of the increased iron is unknown but a variety of changes in iron homeostasis have been identified in PD, both in the brain and in the periphery. The possibility that an increased amount of iron may be transported into the SN is supported by data demonstrating that one form of the iron-binding glycoprotein transferrin family, lactotransferrin, is increased in surviving neurons in the SN in the PD brain and that this change is associated with increased numbers of lactotransferrin receptors on neurons and microvessels in the parkinsonian SN. These changes could represent one mechanism by which iron might concentrate within the PD SN. Alternatively, the measured increased in iron might result from a redistribution of ferritin iron stores. Ferritin is located in glial cells while the degenerating neurons do not stain positive for ferritin. As free radicals are highly reactive, it is unlikely that glial-derived free radicals diffuse across the intracellular space in sufficent quantities to damage neuronal constituents. If intracellular iron release contributes to neuronal damage it seems more probable that an intraneuronal iron source is responsible for oxidant-mediated damage. Such a iron source is neuromelanin (NM), a dark-coloured pigment found in the dopaminergic neurons of the human SN. In the normal brain, NM has the ability to bind a variety of metals, including iron, and increased NM-bound iron is reported in the parkinsonian SN. The consequences of these phenomena for the cell have not yet been clarified. In the absence of significant quantities of iron NM can act as an antioxidant, in that it can interact with and inactivate free radicals. On the other hand, in the presence of iron NM appears to act as a proxidant, increasing the rate of free radical production and thus the oxidative load within the vulnerable neurons. Given that increased iron is only apparent in the advanced stages of the disease it is unlikely that NM is of importance for the primary aetiology of PD. A localised increase in tissue iron and its interaction with NM may be, however, important as a secondary mechanism by increasing the oxidative load on the cell, thereby driving neurodegeneration.
Collapse
Affiliation(s)
- K L Double
- Prince of Wales Medical Research Institute, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
73
|
Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T. Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits. Parkinsonism Relat Disord 2001; 7:97-105. [PMID: 11248590 DOI: 10.1016/s1353-8020(00)00028-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The interactive effects of neonatal iron and adult MPTP treatment groups of C57 Bl/6 mice were studied through adminustration of iron (Fe(2+)) 7.5mg/kg b.w., p.o. or vehicle (saline) on days 10-12 post partum, followed at 3months of age by administration of either MPTP (2x20 or 2x40mg/kg, s.c.) or saline. Neonatal iron administration to mice-induced hypoactivity during the first 20-min period of testing and hyperactivity during the 3rd and final 20-min period for all three parameters of motor activity tested at 4months of age. MPTP treatment caused a dose-related hypokinesia throughout the 3x20-min test periods; in the mice that received both neonatal iron and MPTP severe deficits of motor activity (akinesia) were obtained. Iron treatment impaired the ability of mice to habituate to the novel testing environment and later administration of MPTP potentiated the impairment markedly. Neurochemical analyses of striatal and frontal cortical dopamine (DA) and DA metabolites demonstrated that the depletions were potentiated under conditions of combined neonatal iron and adult MPTP. The analysis of total iron content (µg/g) in brain regions indicated notably elevated levels in the basal ganglia, but not in the frontal cortex, of mice administered Fe(2+). Iron-overload combined with MPTP treatment induced functional and neurochemical deficits with interactive consequences beyond a mere additive effect that may have implications for the neurodegenerative process in parkinsonism.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience, Psychiatry Ulleråker, Univerity Hospital, University of Uppsala, SE-750 17, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
74
|
Cheepsunthorn P, Palmer C, Menzies S, Roberts RL, Connor JR. Hypoxic/ischemic insult alters ferritin expression and myelination in neonatal rat brains. J Comp Neurol 2001; 431:382-96. [PMID: 11223809 DOI: 10.1002/1096-9861(20010319)431:4<382::aid-cne1077>3.0.co;2-#] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ferritin is expressed very early in the development of oligodendrocytes. This protein makes iron available within cells while providing some protection from iron-induced oxidative damage. In the developing rat brain, ferritin is found initially in microglia followed by oligodendrocytes in a temporal and spatial pattern that coincides with the expression of myelin. In this study, we test the hypothesis that hypoxic/ischemic (H/I) insult will alter the expression of ferritin in microglia and oligodendrocytes, resulting in a delay in the appearance of myelin markers. Seven-day-old rat pups were exposed to H/I insult. Within 24 hours, after the insult, there is an increase in ferritin-positive amoeboid microglia and a decrease in immunohistochemical reaction for the myelin marker Rip in the brain. The oligodendrocyte marker 2'-3'-cyclic nucleotide 3'-phosphodiesterase is elevated in the H/I hemisphere relative to the hypoxia-only hemisphere between 8 and 15 days after insult. By 23 days after the insult, the subcortical white matter segregates into areas that contain ferritin-positive microglia and are devoid of Rip-positive oligodendrocytes or areas with Rip-positive cells and no ferritin-positive microglia. The H/I insult also affects the ratio of H-rich to L-rich ferritin expression at most of the time periods. These results demonstrate that the type of ferritin, its cellular distribution and the normal pattern of subcortical white matter myelination is affected by H/I. We propose that the absence of ferritin in oligodendrocytes prohibits them from storing sufficient iron to meet the synthetic and metabolic demands associated with myelination.
Collapse
Affiliation(s)
- P Cheepsunthorn
- George M. Leader Family Laboratory, Department of Neuroscience and Anatomy, M.S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
75
|
Barreto WJ, Barreto SR, Santos MA, Schimid R, Paschoal FM, Mangrich AS, deOliveira LF. Interruption of the MnO2 oxidative process on dopamine and L-dopa by the action of S2O3(2-). J Inorg Biochem 2001; 84:89-96. [PMID: 11330485 DOI: 10.1016/s0162-0134(00)00207-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oxidation effects of Mn2+, Mn3+ or MnO2 on dopamine can be studied in vitro and, therefore, this offers a model of the auto-oxidation process that appears naturally in neurons causing Parkinson's disease. The use of MnO, as an oxidizer in aqueous solution at pH 7 causes the oxidation of catecholamines (L-dopa, dopamine, noradrenaline and adrenaline) to melanin. However, this work shows that, in water at pH 6-7, the oxidation of catecholamines by MnO2 in the presence of sodium thiosulphate (Na2S2O3) occurs by other mechanisms. For dopamine and L-dopa, MLCT complexes were formed with bands at 312, 350 (sh), 554 (sh) nm, and an intense band at 597 nm (epsilon approximately/= 4 x 10(3) M(-1) cm(-1)) and at ca. 336, 557 (sh) nm, and an intense band at 597 nm (epsilon approximately 6 x 10(3) M(-1) cm(-1)), respectively. The latter transitions were assigned to d(pi)-->pi*-SQ. Noradrenaline and adrenaline do not form this blue complex in solution, but generate soluble oxidized compounds. The resonance Raman spectra of these complexes in solution showed bands at 950, 1006, 1258, 1378, 1508 and 1603 cm(-1) for the complex derivation of L-dopa and at 948, 1010, 1255, 1373, 1510 and 1603 cm(-1) for the dopamine-derived compound. The most intense Raman band at ca. 1378 cm(-1) was assigned to C-O stretching with major C1-C2 characteristics and indicated that dopamine and L-dopa do not occur complexed with manganese in the catecholate or quinone form, but suggests an intermediate compound such as an anionic o-semiquinone (SQ-), forming a complex such as [Mn(II)(SQ-)3]-. All enhanced Raman frequencies are characteristic of the benzenic ring without the participation of the aminic nitrogen. A mechanism is proposed for the formation of the dopamine and L-dopa complexes and a computational simulation was performed to support it.
Collapse
Affiliation(s)
- W J Barreto
- Laboratório de Físico-Química Ambiental, Departamento de Química, Universidade Estadual de Londrina, PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
76
|
Galzigna L, De Iuliis A, Zanatta L. Enzymatic dopamine peroxidation in substantia nigra of human brain. Clin Chim Acta 2000; 300:131-8. [PMID: 10958869 DOI: 10.1016/s0009-8981(00)00313-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The main metabolic pathway affected in Parkinson's disease is that of dopamine oxidation and melanin formation in substantia nigra which involves both oxidative and reductive enzymes. The cyclic nature of the biosynthetic pathway from dopamine to melanin implies that a derangement at any of the steps may result in the disappearance of melanin. Possible pathogenetic events such as oxidative stress have therefore no clearcut interpretation since they may be both cause or consequence of the disease. This paper documents the existence of a peroxidase converting dopamine to dopaminochrome in the presence of hydrogen peroxide in the substantia nigra of autopsied human brain. The activatory effect of dopaminochrome on a purified peroxidase is shown, together with the inhibitory effect of dopaminochrome-derived melanin and the activatory effect of melanin/Fe. The toxic effect of dopaminochrome on murine neuroblastoma cells cultured in vitro is demonstrated together with the inhibition of dopaminochrome melanization induced by acetylcholine in vitro.
Collapse
Affiliation(s)
- L Galzigna
- Centro Vallisneri, Dept. Diagnostics, University of Padua, viale G. Colombo, 3, 35121, Padova, Italy
| | | | | |
Collapse
|
77
|
Linert W, Jameson GN. Redox reactions of neurotransmitters possibly involved in the progression of Parkinson's Disease. J Inorg Biochem 2000; 79:319-26. [PMID: 10830883 DOI: 10.1016/s0162-0134(99)00238-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Parkinson's Disease the neuromelanin in the substania nigra is known to contain considerably increased amounts of iron suggesting the presence of free, unprotected iron ions during its formation. Iron(II) is known to interact with peroxide via Fenton's reaction producing OH-radicals or ferryl (Fe(IV)) species. This can readily oxidize the neurotransmitter dopamine to the neurotoxic 6-hydroxydopamine (6-OHDA) which is a strong reducing agent. The produced 6-OHDA is, in turn, able to reduce and possibly release iron, as iron(II), from the iron storage protein ferritin. This cycle of events could well explain the development of Parkinson's Disease due to a continuous production of cell damaging species. The contrasting behaviour of 6-OHDA with some other important catecholamines is discussed.
Collapse
Affiliation(s)
- W Linert
- Institute of Inorganic Chemistry, Technical University of Vienna, Austria.
| | | |
Collapse
|
78
|
Jimenez del Rio M, Velez-Pardo C. Molecular mechanism of monoamine toxicity in Parkinson's disease: hypothetical cell death model. Med Hypotheses 2000; 54:269-74. [PMID: 10790763 DOI: 10.1054/mehy.1999.0839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although there have been experimental approaches to understanding the etiology of Parkinson's disease, the cause of cell degeneration in this neurological disorder remains a mystery. Herein, a hypothetical model is proposed to explain the mechanism leading neurons to die. The model is based on recent experimental evidence and it attempts to dissect the actions of dopamine and metal ions as potential triggers for the activation of an ordered cascade of events of the cell death machinery.
Collapse
|
79
|
Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T. Maze learning and motor activity deficits in adult mice induced by iron exposure during a critical postnatal period. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 119:65-74. [PMID: 10648873 DOI: 10.1016/s0165-3806(99)00160-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Newborn mice were administered Fe(2+) (iron succinate: 7.5 mg/kg, b. wt) on either Days 3-5, 10-12 or 19-21, or vehicle (saline) at the same times, postnatally. Spontaneous motor behaviour and radial arm maze learning were tested at the age of 3 months. It was found that mice treated with Fe(2+) during postnatal Days 10-12 were markedly hypokinetic during the 1st 20-min test period and hyperkinetic during the 3rd and final 20-min test period. These mice showed an almost complete lack of habituation of spontaneous motor activity parameters to the test chambers. In the radial arm maze, the Days 10-12 treatment group evidenced significantly both more errors in arm choices and longer latencies to acquire all eight pellets; these mice showed also a severe trial-to-trial retention deficit as indexed by retention quotients. These behavioural deficits were observed also in animals treated with Fe(2+) during postnatal Days 3-5, but the effects were less pronounced, indicating the higher susceptibility of the brain for Fe(2+)-induced damage during Days 10-12 postpartum. Treatment with Fe(2+) on Days 19-21 did not induce behavioural alterations in comparison with its respective control (vehicle) group. Analysis of total brain iron content indicated significantly more iron (microg/g) accumulation in the basal ganglia, but not frontal cortex, of mice from the Days 3-5 and 10-12 Fe(2+) (7.5 mg/kg) treatment groups. The contribution of iron overload during the immediate postnatal to later functional deficits seems to implicate symptoms of Parkinsonism but the kinetics of iron uptake to the brain and its regional distribution at this critical period of development awaits elucidation.
Collapse
Affiliation(s)
- A Fredriksson
- University of Uppsala, Department of Neuroscience, Psychiatry Ulleråker, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
80
|
|
81
|
Kienzl E, Jellinger K, Stachelberger H, Linert W. Iron as catalyst for oxidative stress in the pathogenesis of Parkinson's disease? Life Sci 1999; 65:1973-6. [PMID: 10576448 DOI: 10.1016/s0024-3205(99)00458-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms leading to degeneration of melanized dopaminergic neurons in the brain stem, and particularly in the substantia nigra zona compacta (SNZC) in patients with Parkinson's disease (PD) are still unknown. Demonstration of increased iron Fe(III) in SNZC of PD brain has suggested that Fe-melanin interaction may contribute to oxidative neuronal damage. Energy dispersive X-ray electron microscopic analysis of the cellular distribution of trace elements revealed significant Fe-peaks, similar to those of a synthetic melanin-Fe(III) complex in intracytoplasmic electron-dense neuromelanin granules of SNZC neurons, with highest levels in a case of PD and Alzheimer's disease (AD). No Fe increase was found in Lewy bodies or in SN neurons of control specimens. The relevance of chemical reactions of dopamine (DA), 5-hydroxydopamine (5-OHDA), and 6-hydroxydopamine (6-OHDA) with Fe(III) and with dioxygen for the pathogenesis of PD was investigated. An initiating mechanism related to interaction between Fe and neuromelanin is suggested which results in accumulation of Fe(III) and a continuous production of cytotoxic species inducing a cascade of pathogenic reactions ultimately leading to neuronal death.
Collapse
Affiliation(s)
- E Kienzl
- Ludwig Boltzmann Institute of Clinical Neurobiology, PKH, Vienna, Austria
| | | | | | | |
Collapse
|
82
|
Napolitano A, Pezzella A, Prota G. New reaction pathways of dopamine under oxidative stress conditions: nonenzymatic iron-assisted conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6, 7-dihydroxytetrahydroisoquinoline. Chem Res Toxicol 1999; 12:1090-7. [PMID: 10563835 DOI: 10.1021/tx990079p] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerial oxidation of dopamine at concentrations as low as 50 microM in the presence of ferrous ions in phosphate buffer (pH 7.4) led in the early stages (6-8 h) to the formation of the quinone of the neurotoxin 6-hydroxydopamine, 2, followed (24 h) by a complex product pattern comprising main components norepinephrine (5), 3, 4-dihydroxybenzaldehyde (4), and the neurotoxic alkaloid 6, 7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (3). Product formation required the assistance of metal ions such as Mn(II), Zn(II), and iron, in either the ferrous or ferric form. Product yields were shown to vary linearly with iron and dopamine concentration in the early phases of the reaction (2 h). Biologically relevant antioxidants, like glutathione and ascorbate, and metal chelators, e. g., 2,2'-bipyridyl, inhibited dopamine conversion to products 2-5, but not substrate consumption, while hydroxyl radical scavengers such as DMSO and mannitol did not alter the course of the reaction. On the contrary, mannitol increased product yields, an effect seen for other monosaccharides. Catalase exhibited a significant inhibitory effect particularly on the formation of 3 and 4. By using (18)O(2), evidence was obtained for incorporation of the label into the carbonyl oxygen of 4, but not into the hydroxyl group of 5. On the basis of these and other results, a complete mechanistic picture of the oxidation is drawn involving conversion of dopamine to the corresponding o-quinone and its quinonemethide tautomer with concomitant reduction of O(2) to H(2)O(2). Nucleophilic attack by H(2)O to the quinonemethide gives rise to 5, while H(2)O(2) addition leads to benzaldehyde 4 via a beta-aminohydroperoxide intermediate. This latter reaction path also gives formaldehyde which yields the isoquinoline 3 by Pictet-Spengler condensation with dopamine. The quinone 2 results from H(2)O(2) attack at the 6-position of dopamine o-quinone in agreement with previous studies. These results provide an insight into new routes of nonenzymatic conversion of dopamine to its metabolite norepinephrine and neurotoxic species which may become operative under conditions relevant to neurodegeneration.
Collapse
Affiliation(s)
- A Napolitano
- Department of Organic and Biological Chemistry, University of Naples "Federico II", Via Mezzocannone 16, I-80134 Naples, Italy
| | | | | |
Collapse
|
83
|
Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T. Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 1999; 159:25-30. [PMID: 10448122 DOI: 10.1006/taap.1999.8711] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excess iron in the brain has been implicated in the pathogenesis of several human neurodegenerative disorders, i.e., Parkinson's and Alzheimer's disease. The neonatal period is critical for the establishment of normal iron content in the adult brain. In the present study, the long-term neurobehavioral effects of iron exposure during this period were assessed by treating NMRI mice orally with 0.0, 3.7, or 37.0 mg Fe(2+)/kg body wt on postnatal days 10-12. Spontaneous motor behavior and radial arm maze learning were tested at the age of 3 months. It was found that the mice treated with the higher dose of Fe(2+), 37.0 mg/kg body wt, were hypoactive during the first 20 min of testing but hyperactive during the final 20 min, showing an almost complete lack of habituation of spontaneous activity in the test chambers. These changes were also seen in animals treated with the lower dose of Fe(2+), 3.7 mg/kg body wt, but the effects were less pronounced, indicating a dose-response relationship. In the radial arm maze, the Fe(2+) 37.0 mg/kg group evidenced significantly both more errors in arm choices and longer latencies to acquire all eight pellets. Both dose groups showed attenuated performance increments on successive trials. Analysis of brain iron content indicated significantly more total iron (microgram/g) in the basal ganglia, but not frontal cortex, of the higher, 37 mg/kg, dose group. The knowledge of the long-term effects of iron entering the brain during this critical period of rapid brain growth is limited. Increased amounts of iron in the brain, especially in the basal ganglia, may contribute to neurodegenerative processes.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience, University of Uppsala, Uppsala, S-750 17, Sweden
| | | | | | | | | |
Collapse
|
84
|
Jellinger KA. Post mortem studies in Parkinson's disease--is it possible to detect brain areas for specific symptoms? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 56:1-29. [PMID: 10370901 DOI: 10.1007/978-3-7091-6360-3_1] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive neuronal loss associated with Lewy bodies in many subcortical nuclei leading to multiple biochemical and pathophysiological changes of clinical relevance. Loss of nigral neurons causing striatal dopamine deficiency is related to both the duration and clinical stages (severity) of the disease. The clinical subtypes of PD have different morphological lesion patterns: a) The akinetic-rigid type shows more severe cell loss in the ventrolateral part of substantia nigra zona compacta (SNZC) that projects to the dorsal putamen than the medial part projecting to caudate nucleus and anterior putamen, with negative correlation between SNZC cell counts, severity of akinesia-rigidity, and dopamine loss in the posterior putamen. Reduced dopaminergic input causes overactivity of the GABA ergic inhibitory striatal neurons projecting via the "indirect loop" to SN zona reticulata (SNZR) and medial pallidum (GPI) leading to inhibition of the glutamatergic thalamo-cortical motor loop and reduced cortical activation. b) The tremor-dominant type shows more severe neuron loss in medial than in lateral SNZC and damage to the retrorubral field A8 containing only few tyrosine hydroxylase and dopamine transporter immunoreactive (IR) neurons but mainly calretinin-IR cells. A8 that is rather preserved in rigid-akinetic PD (protective role of calcium-binding protein?) projects to the matrix of dorsolateral striatum and ventromedial thalamus. Together with area A10 it influences the strial efflux via SNZR to thalamus and from there to prefrontal cortex. Rest tremor in PD is associated with increased metabolism in the thalamus, subthalamus, pons, and premotor-cortical network suggesting an increased functional activity of thalamo-motor projections. In essential tremor, no significant pathomorphological changes but overactivity of cerebello-thalamic loop have been observed. c) In the akinetic-rigid forms of multisystem atrophy, degeneration is more severe in the lateral SNZC with severe loss of calbindin-IR cells reflecting initial degeneration of the striatal matrix in the caudal putamen with transsynaptic degeneration of striatonigral efferences that remain intact in PD. This fact and loss of striatal D2 receptors--as in advanced stages of PD--are reasons for negative response to L-dopa substitution. These data suggest different pathophysiological mechanisms of the clinical subtypes of PD that have important therapeutic implications. d) Involvement of extranigral structures in PD includes the mesocortical dopaminergic system, the noradrenergic locus coeruleus, dorsal vagal nucleus and medullary nuclei, serotonergic dorsal raphe, nucleus basalis of Meynert and other cholinergic brainstem nuclei, e.g. Westphal-Edinger nucleus (controlling pupillomotor function), posterolateral hypothalamus and the limbic system, e.g. amygdaloid nucleus, part of hippocampal formation, limbic thalamic nuclei with prefrontal projections, etc. Damage to multiple neuronal systems by the progressing degenerative process causing complex biochemical changes may explain the variable clinical picture of PD including vegetative, behavioural and cognitive dysfunctions, depression, pharmacotoxic psychoses, etc. Future comparative clinico-morphological and pathobiochemical studies will further elucidate the pathophysiological basis of specific clinical symptoms of PD and related disorders providing a broader basis for effective treatment strategies. Parkinson's disease (PD) is characterized by progressive degeneration of the nigrostriatal dopaminergic system and other subcortical neuronal systems leading to striatal dopamine deficiency and other biochemical deficits related to the variable clinical signs and symptoms of the disorder. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria
| |
Collapse
|
85
|
Castellani RJ, Smith MA, Nunomura A, Harris PL, Perry G. Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein ceruloplasmin? Free Radic Biol Med 1999; 26:1508-12. [PMID: 10401616 DOI: 10.1016/s0891-5849(99)00016-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the most striking features of Alzheimer disease (AD) is an accumulation of iron in neurofibrillary tangles and senile plaques. Intriguingly, this iron is found as both iron (II) and iron (III) and is redox-active. To address the issue of whether such iron participates in redox cycling, it was essential to investigate how iron (II) accumulates, since oxidation of iron (II) can lead to the generation of reactive oxygen species. To begin to address this issue, here we investigated ceruloplasmin, a key protein involved in the regulation of the redox state of iron by converting iron (II) to iron (III). Cases of AD and age-matched controls, obtained at autopsy with similar postmortem intervals, display similar levels of ceruloplasmin immunoreactivity that is mainly confined to neurons. However, in marked contrast, cases of AD show a significant increase in ceruloplasmin within the neuropil determined by immunoblot analysis of tissue homogenates as well as a generalized increased neuropil staining. Together, these findings suggest that neuronal induction of ceruloplasmin is feeble in AD, even while there is an increase in tissue ceruloplasmin. Therefore, a failure of neuronal ceruloplasmin to respond to iron may be an important factor that then leads to an accumulation of redox-active iron in neurons in AD.
Collapse
Affiliation(s)
- R J Castellani
- Department of Pathology, University of Maryland at Baltimore, USA
| | | | | | | | | |
Collapse
|
86
|
Palmer C, Menzies SL, Roberts RL, Pavlick G, Connor JR. Changes in iron histochemistry after hypoxic-ischemic brain injury in the neonatal rat. J Neurosci Res 1999; 56:60-71. [PMID: 10213476 DOI: 10.1002/(sici)1097-4547(19990401)56:1<60::aid-jnr8>3.0.co;2-a] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Iron can contribute to hypoxic-ischemic brain damage by catalyzing the formation of free radicals. The immature brain has high iron levels and limited antioxidant defenses. The objective of this study was to describe the early alterations in nonheme iron histochemistry following a hypoxic-ischemic (HI) insult to the brain of neonatal rats. We induced a HI insult to the right cerebral hemisphere in groups of 7-day-old rats. Rats were anesthetized, then their brains were perfused and fixed at 0, 1, 4, 8, 24 hr, and 1, 2, and 3 weeks of recovery. Forty-micron-thick frozen sections were stained for iron using the intensified Perls stain. Increased iron staining was first detected within the cytoplasm of cells with pyknotic nuclei at 4 hr of recovery. Staining increased rapidly over the first 24 hr in regions of ischemic injury. By 7 days recovery, reactive glia and cortical blood vessels also stained. Increased staining in gray matter persisted at 3 weeks of recovery, whereas white matter tracts had fewer iron-positive cells compared to normal. The early increase in iron staining could be caused by an accumulation of iron posthypoxicischemic injury or a change in iron from nonstainable heme iron to stainable nonheme iron. Regardless of the source, our results indicate that there is an increase in iron available to promote oxidant stress in the neonatal rat brain following hypoxia-ischemia.
Collapse
Affiliation(s)
- C Palmer
- Department of Pediatrics, Pennsylvania State University School of Medicine, Milton S. Hershey Medical Center, Hershey 17033-0850, USA
| | | | | | | | | |
Collapse
|
87
|
Abstract
Although the aetiology of Parkinson's disease (PD) and related neurodegenerative disorders is still unknown, recent evidence from human and experimental animal models suggests that a misregulation of iron metabolism, iron-induced oxidative stress and free radical formation are major pathogenic factors. These factors trigger a cascade of deleterious events leading to neuronal death and the ensuing biochemical disturbances of clinical relevance. A review of the available data in PD provides the following evidence in support of this hypothesis: (i) an increase of iron in the brain, which in PD selectively involves neuromelanin in substantia nigra (SN) neurons; (ii) decreased availability of glutathione (GSH) and other antioxidant substances; (iii) increase of lipid peroxidation products and reactive oxygen (O2)species (ROS); and (iv) impaired mitochondrial electron transport mechanisms. Most of these changes appear to be closely related to interactions between iron and neuromelanin, which result in accumulation of iron and a continuous production of cytotoxic species leading to neuronal death. Some of these findings have been reproduced in animal models using 6-hydroxydopamine, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), iron loading and beta-carbolines, although none of them is an accurate model for PD in humans. Although it is not clear whether iron accumulation and oxidative stress are the initial events causing cell death or consequences of the disease process, therapeutic efforts aimed at preventing or at least delaying disease progression by reducing the overload of iron and generation of ROS may be beneficial in PD and related neurodegenerative disorders. Current pharmacotherapy of PD, in addition to symptomatic levodopa treatment, includes 'neuroprotective' strategies with dopamine agonists, monoamine oxidase-B inhibitors (MAO-B), glutamate antagonists, catechol O-methyltransferase inhibitors and other antioxidants or free radical scavengers. In the future, these agents could be used in combination with, or partly replaced by, iron chelators and lazaroids that prevent iron-induced generation of deleterious substances. Although experimental and preclinical data suggest the therapeutic potential of these drugs, their clinical applicability will be a major challenge for future research.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
88
|
Sawada H, Ibi M, Kihara T, Urushitani M, Akaike A, Shimohama S. Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death. J Neurosci Res 1998; 54:707-19. [PMID: 9843162 DOI: 10.1002/(sici)1097-4547(19981201)54:5<707::aid-jnr16>3.0.co;2-t] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxidative stress is important in the process of dopaminergic neuronal degeneration in Parkinson's disease. Recent studies suggest that estrogens have neuroprotective effects in neurodegenerative disorders, including Alzheimer's disease. In the present study, we investigated neuroprotection against oxidative stress afforded by estradiol using primary neuronal culture of the rat ventral mesencephalon. Oxidative stress induced by glutamate, superoxide anions, and hydrogen peroxide caused significant neuronal death. Although simultaneous administration of 17beta-estradiol and glutamate did not show any significant effects, preincubation with 17beta-estradiol provided significant neuroprotection against glutamate-induced neurotoxicity (ED50 was 50 microM for dopaminergic and 15 microM for nondopaminergic neurons). Neuroprotection occurred even after a brief preincubation with 17beta-estradiol and was not significantly blocked by either an estrogen receptor antagonist or a protein synthesis inhibitor. These findings indicate that the neuroprotection against glutamate neurotoxicity is mediated by neither estrogen receptors nor activation of genome transcription. Other steroids (corticosterone, testosterone, and cholesterol) did not provide significant neuroprotection against glutamate-induced neurotoxicity. Furthermore, preincubation with 17beta-estradiol provided neuroprotection against neuronal death induced by both superoxide anions and hydrogen peroxide. Dichlorofluorescin diacetate, a marker of oxygen radicals, revealed that preincubation with 17beta-estradiol suppressed intracellular oxygen radicals induced by hydrogen peroxide. The biologically inactive stereoisomer of estradiol, 17alpha-estradiol, provided neuroprotection against glutamate-induced toxicity in dopaminergic neurons, as well as the 17beta isoform. 17Alpha-estradiol may be a potential therapeutic agent used to prevent dopaminergic neuronal death induced by oxidative stress in Parkinson's disease.
Collapse
Affiliation(s)
- H Sawada
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Philpott CC, Rashford J, Yamaguchi-Iwai Y, Rouault TA, Dancis A, Klausner RD. Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast. EMBO J 1998; 17:5026-36. [PMID: 9724638 PMCID: PMC1170830 DOI: 10.1093/emboj/17.17.5026] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although iron is an essential nutrient, it is also a potent cellular toxin, and the acquisition of iron is a highly regulated process in eukaryotes. In yeast, iron uptake is homeostatically regulated by the transcription factor encoded by AFT1. Expression of AFT1-1(up), a dominant mutant allele, results in inappropriately high rates of iron uptake, and AFT1-1(up) mutants grow slowly in the presence of high concentrations of iron. We present evidence that when Aft1-1(up) mutants are exposed to iron, they arrest the cell division cycle at the G1 regulatory point Start. This arrest is dependent on high-affinity iron uptake and does not require the activation of the DNA damage checkpoint governed by RAD9. The iron-induced arrest is bypassed by overexpression of a mutant G1 cyclin, cln3-2, and expression of the G1-specific cyclins Cln1 and Cln2 is reduced when yeast are exposed to increasing amounts of iron, which may account for the arrest. This reduction is not due to changes in transcription of CLN1 or CLN2, nor is it due to accelerated degradation of the protein. Instead, this reduction occurs at the level of Cln2 translation, a recently recognized locus of cell-cycle control in yeast.
Collapse
Affiliation(s)
- C C Philpott
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA.
| | | | | | | | | | | |
Collapse
|
90
|
|