51
|
Rüthnick D, Vitale J, Neuner A, Schiebel E. The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body. J Cell Biol 2021; 220:211743. [PMID: 33523111 PMCID: PMC7852455 DOI: 10.1083/jcb.202004196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
The spindle pole body (SPB) provides microtubule-organizing functions in yeast and duplicates exactly once per cell cycle. The first step in SPB duplication is the half-bridge to bridge conversion via the antiparallel dimerization of the centrin (Cdc31)-binding protein Sfi1 in anaphase. The bridge, which is anchored to the old SPB on the proximal end, exposes free Sfi1 N-termini (N-Sfi1) at its distal end. These free N-Sfi1 promote in G1 the assembly of the daughter SPB (dSPB) in a yet unclear manner. This study shows that N-Sfi1 including the first three Cdc31 binding sites interacts with the SPB components Spc29 and Spc42, triggering the assembly of the dSPB. Cdc31 binding to N-Sfi1 promotes Spc29 recruitment and is essential for satellite formation. Furthermore, phosphorylation of N-Sfi1 has an inhibitory effect and delays dSPB biogenesis until G1. Taking these data together, we provide an understanding of the initial steps in SPB assembly and describe a new function of Cdc31 in the recruitment of dSPB components.
Collapse
Affiliation(s)
- Diana Rüthnick
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Jlenia Vitale
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Annett Neuner
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Elmar Schiebel
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
52
|
Guo Z, Dai Y, Hu W, Zhang Y, Cao Z, Pei W, Liu N, Nie J, Wu A, Mao W, Chang L, Li B, Pei H, Hei TK, Zhou G. The long noncoding RNA CRYBG3 induces aneuploidy by interfering with spindle assembly checkpoint via direct binding with Bub3. Oncogene 2021; 40:1821-1835. [PMID: 33564066 PMCID: PMC7946627 DOI: 10.1038/s41388-020-01601-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023]
Abstract
Aneuploidy is a hallmark of genomic instability that leads to tumor initiation, progression, and metastasis. CDC20, Bub1, and Bub3 form the mitosis checkpoint complex (MCC) that binds the anaphase-promoting complex or cyclosome (APC/C), a crucial factor of the spindle assembly checkpoint (SAC), to ensure the bi-directional attachment and proper segregation of all sister chromosomes. However, just how MCC is regulated to ensure normal mitosis during cellular division remains unclear. In the present study, we demonstrated that LNC CRYBG3, an ionizing radiation-inducible long noncoding RNA, directly binds with Bub3 and interrupts its interaction with CDC20 to result in aneuploidy. The 261-317 (S3) residual of the LNC CRYBG3 sequence is critical for its interaction with Bub3 protein. Overexpression of LNC CRYBG3 leads to aneuploidy and promotes tumorigenesis and metastasis of lung cancer cells, implying that LNC CRYBG3 is a novel oncogene. These findings provide a novel mechanistic basis for the pathogenesis of NSCLC after exposure to ionizing radiation as well as a potential target for the diagnosis, treatment, and prognosis of an often fatal disease.
Collapse
Affiliation(s)
- Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yongsheng Zhang
- Department of Pathology, the Second Affiliated Hospital, Medical College of Soochow University, Suzhou, 215123, China
| | - Zhifei Cao
- Department of Pathology, the Second Affiliated Hospital, Medical College of Soochow University, Suzhou, 215123, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ningang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Weidong Mao
- Department of Pathology, the Second Affiliated Hospital, Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
53
|
Colón-Marrero S, Jusino S, Rivera-Rivera Y, Saavedra HI. Mitotic kinases as drivers of the epithelial-to-mesenchymal transition and as therapeutic targets against breast cancers. Exp Biol Med (Maywood) 2021; 246:1036-1044. [PMID: 33601912 DOI: 10.1177/1535370221991094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.
Collapse
Affiliation(s)
- Stephanie Colón-Marrero
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Shirley Jusino
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
54
|
Abstract
Accurate chromosome segregation is required for cell survival and organismal development. During mitosis, the spindle assembly checkpoint acts as a safeguard to maintain the high fidelity of mitotic chromosome segregation by monitoring the attachment of kinetochores to the mitotic spindle. Bub1 is a conserved kinase critical for the spindle assembly checkpoint. Bub1 also facilitates chromosome alignment and contributes to the regulation of mitotic duration. Here, focusing on the spindle assembly checkpoint and on chromosome alignment, we summarize the primary literature on Bub1, discussing its structure and functional domains, as well its regulation and roles in mitosis. In addition, we discuss recent evidence for roles of Bub1 beyond mitosis regulation in TGFβ signaling and telomere replication. Finally, we discuss the involvement of Bub1 in human diseases, especially in cancer, and the potential of using Bub1 as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, Korea
| | - Anton Gartner
- IBS Center for Genomic Integrity, Ulsan, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
55
|
Sarkar S, Sahoo PK, Mahata S, Pal R, Ghosh D, Mistry T, Ghosh S, Bera T, Nasare VD. Mitotic checkpoint defects: en route to cancer and drug resistance. Chromosome Res 2021; 29:131-144. [PMID: 33409811 DOI: 10.1007/s10577-020-09646-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Loss of mitosis regulation is a common feature of malignant cells that leads to aberrant cell division with inaccurate chromosome segregation. The mitotic checkpoint is responsible for faithful transmission of genetic material to the progeny. Defects in this checkpoint, such as mutations and changes in gene expression, lead to abnormal chromosome content or aneuploidy that may facilitate cancer development. Furthermore, a defective checkpoint response is indicated in the development of drug resistance to microtubule poisons that are used in treatment of various blood and solid cancers for several decades. Mitotic slippage and senescence are important cell fates that occur even with an active mitotic checkpoint and are held responsible for the resistance. However, contradictory findings in both the scenarios of carcinogenesis and drug resistance have aroused questions on whether mitotic checkpoint defects are truly responsible for these dismal outcomes. Here, we discuss the possible contribution of the faulty checkpoint signaling in cancer development and drug resistance, followed by the latest research on this pathway for better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.,Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Pranab Kumar Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Dipanwita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
56
|
Cairo G, MacKenzie AM, Lacefield S. Differential requirement for Bub1 and Bub3 in regulation of meiotic versus mitotic chromosome segregation. J Cell Biol 2020; 219:133770. [PMID: 32328625 PMCID: PMC7147105 DOI: 10.1083/jcb.201909136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Accurate chromosome segregation depends on the proper attachment of kinetochores to spindle microtubules before anaphase onset. The Ipl1/Aurora B kinase corrects improper attachments by phosphorylating kinetochore components and so releasing aberrant kinetochore–microtubule interactions. The localization of Ipl1 to kinetochores in budding yeast depends upon multiple pathways, including the Bub1–Bub3 pathway. We show here that in meiosis, Bub3 is crucial for correction of attachment errors. Depletion of Bub3 results in reduced levels of kinetochore-localized Ipl1 and concomitant massive chromosome missegregation caused by incorrect chromosome–spindle attachments. Depletion of Bub3 also results in shorter metaphase I and metaphase II due to premature localization of protein phosphatase 1 (PP1) to kinetochores, which antagonizes Ipl1-mediated phosphorylation. We propose a new role for the Bub1–Bub3 pathway in maintaining the balance between kinetochore localization of Ipl1 and PP1, a balance that is essential for accurate meiotic chromosome segregation and timely anaphase onset.
Collapse
Affiliation(s)
- Gisela Cairo
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
57
|
Abstract
Fifty years ago, the first isolation of conditional budding yeast mutants that were defective in cell division was reported. Looking back, we now know that the analysis of these mutants revealed the molecular mechanisms and logic of the cell cycle, identified key regulatory enzymes that drive the cell cycle, elucidated structural components that underly essential cell cycle processes, and influenced our thinking about cancer and other diseases. Here, we briefly summarize what was concluded about the coordination of the cell cycle 50 years ago and how that relates to our current understanding of the molecular events that have since been elucidated.
Collapse
Affiliation(s)
- Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Lee Hartwell
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - David Toczyski
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158-9001
| |
Collapse
|
58
|
Tsai K, Britton S, Nematbakhsh A, Zandi R, Chen W, Alber M. Role of combined cell membrane and wall mechanical properties regulated by polarity signals in cell budding. Phys Biol 2020; 17:065011. [PMID: 33085651 DOI: 10.1088/1478-3975/abb208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Budding yeast, Saccharomyces cerevisiae, serves as a prime biological model to study mechanisms underlying asymmetric growth. Previous studies have shown that prior to bud emergence, polarization of a conserved small GTPase Cdc42 must be established on the cell membrane of a budding yeast. Additionally, such polarization contributes to the delivery of cell wall remodeling enzymes and hydrolase from cytosol through the membrane, to change the mechanical properties of the cell wall. This leads to the hypothesis that Cdc42 and its associated proteins at least indirectly regulate cell surface mechanical properties. However, how the surface mechanical properties in the emerging bud are changed and whether such change is important are not well understood. To test several hypothesised mechanisms, a novel three-dimensional coarse-grained particle-based model has been developed which describes inhomogeneous mechanical properties of the cell surface. Model simulations predict alternation of the levels of stretching and bending stiffness of the cell surface in the bud region by the polarized Cdc42 signals is essential for initiating bud formation. Model simulations also suggest that bud shape depends strongly on the distribution of the polarized signaling molecules while the neck width of the emerging bud is strongly impacted by the mechanical properties of the chitin and septin rings. Moreover, the temporal change of the bud mechanical properties is shown to affect the symmetry of the bud shape. The 3D model of asymmetric cell growth can also be used for studying viral budding and other vegetative reproduction processes performed via budding, as well as detailed studies of cell growth.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America. Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | | | | | | | | | | |
Collapse
|
59
|
Schuyler SC, Wang LI, Ding YS, Lee YC, Chen HY. Deletion of Budding Yeast MAD2 Suppresses Clone-to-Clone Differences in Artificial Linear Chromosome Copy Numbers and Gives Rise to Higher Retention Rates. Microorganisms 2020; 8:microorganisms8101495. [PMID: 33003307 PMCID: PMC7599710 DOI: 10.3390/microorganisms8101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Our goal was to investigate the changes in artificial short-linear chromosome average copy numbers per cell arising from partial or full loss of Mitotic Arrest-Deficient 2 (MAD2) spindle checkpoint function in budding yeast Saccharomyces cerevisiae. Average artificial linear chromosome copy numbers in a population of cells, as measured by quantitative polymerase chain reactions (qPCR), and retention rates, as measured by fluctuation analyses, were performed on a total of 62 individual wild type and mad2∆ mutant haploid and diploid clones. Wild type cells, both haploids and diploids, displayed phenotypically unique clone-to-clone differences: one group of 15 clones displayed low-copy numbers per cell and high retention rates, were 1 clone was found to have undergone a genomic integration event, and the second group of 15 clones displayed high copy numbers per cell and low retention rates, with the latter values being consistent with the previously published results where only a single clone had been measured. These chromosome states were observed to be unstable when propagated for 10 days under selection, where high copy-low retention rate clones evolved into low copy-high retention rate clones, but no evidence for integration events was observed. By contrast, mad2∆ haploid and mad2∆/mad2∆ diploids displayed a suppression of the clone-to-clone differences, where 20 out of 21 clones had mid-level artificial linear chromosome copy numbers per cell, but maintained elevated chromosome retention rates. The elevated levels in retention rates in mad2∆ and mad2∆/mad2∆ cells were also maintained even in the absence of selection during growth over 3 days. MAD2/mad2∆ heterozygous diploids displayed multiple clonal groups: 4 with low copy numbers, 5 with mid-level copy numbers, and 1 with a high copy number of artificial linear chromosomes, but all 10 clones uniformly displayed low retention rates. Our observations reveal that MAD2 function contributes to the ability of yeast cells to maintain a high number of artificial linear chromosomes per cell in some clones, but, counter-intuitively, mad2∆ suppresses clone-to-clone differences and leads to an improvement in artificial linear chromosome retention rates yielding a more uniform and stable clonal population with mid-level chromosome copy numbers per cell.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan; (L.-I.W.); (Y.-S.D.); (Y.-C.L.); (H.-Y.C.)
- Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800-x3596
| | - Lin-Ing Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan; (L.-I.W.); (Y.-S.D.); (Y.-C.L.); (H.-Y.C.)
| | - Yi-Shan Ding
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan; (L.-I.W.); (Y.-S.D.); (Y.-C.L.); (H.-Y.C.)
| | - Yi-Chieh Lee
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan; (L.-I.W.); (Y.-S.D.); (Y.-C.L.); (H.-Y.C.)
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan; (L.-I.W.); (Y.-S.D.); (Y.-C.L.); (H.-Y.C.)
| |
Collapse
|
60
|
Endo Y, Saeki K, Watanabe M, Miyajima-Magara N, Igarashi M, Mochizuki M, Nishimura R, Sugano S, Sasaki N, Nakagawa T. Spindle assembly checkpoint competence in aneuploid canine malignant melanoma cell lines. Tissue Cell 2020; 67:101403. [PMID: 32835936 DOI: 10.1016/j.tice.2020.101403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 02/03/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents unequal segregation of chromosomes during mitosis. Abnormalities in the SAC are associated with chromosome instability and resultant aneuploidy. This study was performed to evaluate the SAC competence in canine malignant melanoma (CMM) using four aneuploid cell lines (CMeC1, CMeC2, KMeC, and LMeC). After treatment with nocodazole, a microtubule disrupting agent, CMeC1, KMeC, and LMeC cells were arrested in M phase, whereas CMeC2 cells were not arrested, and progressed into the next cell cycle phase without cytokinesis. Chromosome spread analysis revealed a significantly increased rate of premature sister chromatid separation in CMeC2 cells. Expression of the phosphorylated form of the SAC regulator, monopolar spindle 1 (Mps1), was lower in CMeC2 cells than in the other CMM cell lines. These results indicate that the SAC is defective in CMeC2 cells, which may partially explain aneuploidy in CMM. Thus, CMeC2 cells may be useful for further studies of the SAC mechanism in CMM and in determining the relationship between SAC incompetence and aneuploidy.
Collapse
Affiliation(s)
- Yoshifumi Endo
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Laboratory of Veterinary Clinical Oncology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Manabu Watanabe
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, the University of Tokyo, Minato-ku, Tokyo 113-8657, Japan
| | - Nozomi Miyajima-Magara
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Igarashi
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, the University of Tokyo, Minato-ku, Tokyo 113-8657, Japan; Biochemistry Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo, Tokyo 104-0045, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, the University of Tokyo, Minato-ku, Tokyo 113-8657, Japan
| | - Nobuo Sasaki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
61
|
Kuzmin E, VanderSluis B, Nguyen Ba AN, Wang W, Koch EN, Usaj M, Khmelinskii A, Usaj MM, van Leeuwen J, Kraus O, Tresenrider A, Pryszlak M, Hu MC, Varriano B, Costanzo M, Knop M, Moses A, Myers CL, Andrews BJ, Boone C. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science 2020; 368:eaaz5667. [PMID: 32586993 PMCID: PMC7539174 DOI: 10.1126/science.aaz5667] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.
Collapse
Affiliation(s)
- Elena Kuzmin
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex N Nguyen Ba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | - Oren Kraus
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Amy Tresenrider
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael Pryszlak
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ming-Che Hu
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Brenda Varriano
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alan Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Brenda J Andrews
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
62
|
Proudfoot KG, Anderson SJ, Dave S, Bunning AR, Sinha Roy P, Bera A, Gupta ML. Checkpoint Proteins Bub1 and Bub3 Delay Anaphase Onset in Response to Low Tension Independent of Microtubule-Kinetochore Detachment. Cell Rep 2020; 27:416-428.e4. [PMID: 30970246 PMCID: PMC6485967 DOI: 10.1016/j.celrep.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 05/18/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores. Kinetochore attachment and tension are critical for proper chromosome segregation, but isolating the contribution of either stimulus has been challenging. Using a Taxol-sensitive yeast model, Proudfoot et al. show that reducing tension specifically produces a delay in mitotic progression that is temporally and mechanistically distinct from that produced by unattached kinetochores.
Collapse
Affiliation(s)
- Kathleen G Proudfoot
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Samuel J Anderson
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sandeep Dave
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Angela R Bunning
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pallavi Sinha Roy
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
63
|
LaBar T, Phoebe Hsieh YY, Fumasoni M, Murray AW. Evolutionary Repair Experiments as a Window to the Molecular Diversity of Life. Curr Biol 2020; 30:R565-R574. [PMID: 32428498 PMCID: PMC7295036 DOI: 10.1016/j.cub.2020.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Comparative genomics reveals an unexpected diversity in the molecular mechanisms underlying conserved cellular functions, such as DNA replication and cytokinesis. However, the genetic bases and evolutionary processes underlying this 'molecular diversity' remain to be explained. Here, we review a tool to generate alternative mechanisms for conserved cellular functions and test hypotheses concerning the generation of molecular diversity - evolutionary repair experiments, in which laboratory microbial populations adapt in response to a genetic perturbation. We summarize the insights gained from evolutionary repair experiments, the spectrum and dynamics of compensatory mutations, and the alternative molecular mechanisms used to repair perturbed cellular functions. We relate these experiments to the modifications of conserved functions that have occurred outside the laboratory. We end by proposing strategies to improve evolutionary repair experiments as a tool to explore the molecular diversity of life.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
64
|
Gallegos JE, Adames NR, Rogers MF, Kraikivski P, Ibele A, Nurzynski-Loth K, Kudlow E, Murali TM, Tyson JJ, Peccoud J. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants. NPJ Syst Biol Appl 2020; 6:11. [PMID: 32376972 PMCID: PMC7203125 DOI: 10.1038/s41540-020-0134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Over the last 30 years, computational biologists have developed increasingly realistic mathematical models of the regulatory networks controlling the division of eukaryotic cells. These models capture data resulting from two complementary experimental approaches: low-throughput experiments aimed at extensively characterizing the functions of small numbers of genes, and large-scale genetic interaction screens that provide a systems-level perspective on the cell division process. The former is insufficient to capture the interconnectivity of the genetic control network, while the latter is fraught with irreproducibility issues. Here, we describe a hybrid approach in which the 630 genetic interactions between 36 cell-cycle genes are quantitatively estimated by high-throughput phenotyping with an unprecedented number of biological replicates. Using this approach, we identify a subset of high-confidence genetic interactions, which we use to refine a previously published mathematical model of the cell cycle. We also present a quantitative dataset of the growth rate of these mutants under six different media conditions in order to inform future cell cycle models.
Collapse
Affiliation(s)
- Jenna E Gallegos
- Colorado State University, Chemical and Biological Engineering, Fort Collins, CO, USA
| | - Neil R Adames
- Colorado State University, Chemical and Biological Engineering, Fort Collins, CO, USA.,New Culture, Inc., San Francisco, CA, USA
| | | | - Pavel Kraikivski
- Virginia Tech, Academy of Integrated Sciences, Blacksburg, VA, USA
| | - Aubrey Ibele
- Colorado State University, Chemical and Biological Engineering, Fort Collins, CO, USA
| | - Kevin Nurzynski-Loth
- Colorado State University, Chemical and Biological Engineering, Fort Collins, CO, USA
| | - Eric Kudlow
- Colorado State University, Chemical and Biological Engineering, Fort Collins, CO, USA
| | - T M Murali
- Virginia Tech, Computer Science, Blacksburg, VA, USA
| | - John J Tyson
- Virginia Tech, Biological Sciences, Blacksburg, VA, USA
| | - Jean Peccoud
- Colorado State University, Chemical and Biological Engineering, Fort Collins, CO, USA. .,GenoFAB, Inc., Fort Collins, CO, USA.
| |
Collapse
|
65
|
Ishii M, Akiyoshi B. Characterization of unconventional kinetochore kinases KKT10 and KKT19 in Trypanosoma brucei. J Cell Sci 2020; 133:jcs240978. [PMID: 32184264 PMCID: PMC7197874 DOI: 10.1242/jcs.240978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetochore is a macromolecular protein complex that drives chromosome segregation in eukaryotes. Unlike most eukaryotes that have canonical kinetochore proteins, evolutionarily divergent kinetoplastids, such as Trypanosoma brucei, have unconventional kinetochore proteins. T. brucei also lacks a canonical spindle checkpoint system, and it therefore remains unknown how mitotic progression is regulated in this organism. Here, we characterized, in the procyclic form of T. brucei, two paralogous kinetochore proteins with a CLK-like kinase domain, KKT10 and KKT19, which localize at kinetochores in metaphase but disappear at the onset of anaphase. We found that these proteins are functionally redundant. Double knockdown of KKT10 and KKT19 led to a significant delay in the metaphase to anaphase transition. We also found that phosphorylation of two kinetochore proteins, KKT4 and KKT7, depended on KKT10 and KKT19 in vivo Finally, we showed that the N-terminal part of KKT7 directly interacts with KKT10 and that kinetochore localization of KKT10 depends not only on KKT7 but also on the KKT8 complex. Our results reveal that kinetochore localization of KKT10 and KKT19 is tightly controlled to regulate the metaphase to anaphase transition in T. bruceiThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
66
|
Benzi G, Camasses A, Atsunori Y, Katou Y, Shirahige K, Piatti S. A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. EMBO Rep 2020; 21:e50257. [PMID: 32307893 DOI: 10.15252/embr.202050257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2023] Open
Abstract
The Mps1 kinase corrects improper kinetochore-microtubule attachments, thereby ensuring chromosome biorientation. Yet, its critical phosphorylation targets in this process remain largely elusive. Mps1 also controls the spindle assembly checkpoint (SAC), which halts chromosome segregation until biorientation is attained. Its role in SAC activation is antagonised by the PP1 phosphatase and involves phosphorylation of the kinetochore scaffold Knl1/Spc105, which in turn recruits the Bub1 kinase to promote assembly of SAC effector complexes. A crucial question is whether error correction and SAC activation are part of a single or separable pathways. Here, we isolate and characterise a new yeast mutant, mps1-3, that is severely defective in chromosome biorientation and SAC signalling. Through an unbiased screen for extragenic suppressors, we found that mutations lowering PP1 levels at Spc105 or forced association of Bub1 with Spc105 reinstate both chromosome biorientation and SAC signalling in mps1-3 cells. Our data argue that a common mechanism based on Knl1/Spc105 phosphorylation is critical for Mps1 function in error correction and SAC signalling, thus supporting the idea that a single sensory apparatus simultaneously elicits both pathways.
Collapse
Affiliation(s)
- Giorgia Benzi
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Alain Camasses
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Yoshimura Atsunori
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Katou
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
67
|
Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020; 8:160. [PMID: 32300589 PMCID: PMC7142266 DOI: 10.3389/fcell.2020.00160] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
The maintenance of genomic stability is crucial for species survival, and its failure is closely associated with tumorigenesis. The Fanconi anemia (FA) pathway, involving 22 identified genes, plays a central role in repairing DNA interstrand cross-links. Importantly, a germline defect in any of these genes can cause Fanconi's anemia, a heterogeneous genetic disorder, characterized by congenital growth abnormalities, bone marrow failure, and predisposition to cancer. On the other hand, the breast cancer susceptibility genes, BRCA1 and BRCA2, also known as FANCS and FANCD1, respectively, are involved in the FA pathway; hence, researchers have studied the association between the FA pathway and cancer predisposition. Here, we mainly focused on and systematically reviewed the clinical and mechanistic implications of the predisposition of individuals with abnormalities in the FA pathway to cancer, especially breast cancer.
Collapse
Affiliation(s)
- Can-Bin Fang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiang’an, China
| |
Collapse
|
68
|
Hsieh YYP, Makrantoni V, Robertson D, Marston AL, Murray AW. Evolutionary repair: Changes in multiple functional modules allow meiotic cohesin to support mitosis. PLoS Biol 2020; 18:e3000635. [PMID: 32155147 PMCID: PMC7138332 DOI: 10.1371/journal.pbio.3000635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/07/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The role of proteins often changes during evolution, but we do not know how cells adapt when a protein is asked to participate in a different biological function. We forced the budding yeast, Saccharomyces cerevisiae, to use the meiosis-specific kleisin, recombination 8 (Rec8), during the mitotic cell cycle, instead of its paralog, Scc1. This perturbation impairs sister chromosome linkage, advances the timing of genome replication, and reduces reproductive fitness by 45%. We evolved 15 parallel populations for 1,750 generations, substantially increasing their fitness, and analyzed the genotypes and phenotypes of the evolved cells. Only one population contained a mutation in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and delay genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow cells to use an existing protein to participate in new biological functions.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vasso Makrantoni
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L. Marston
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
69
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
70
|
Fumasoni M, Murray AW. The evolutionary plasticity of chromosome metabolism allows adaptation to constitutive DNA replication stress. eLife 2020; 9:e51963. [PMID: 32043971 PMCID: PMC7069727 DOI: 10.7554/elife.51963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Many biological features are conserved and thus considered to be resistant to evolutionary change. While rapid genetic adaptation following the removal of conserved genes has been observed, we often lack a mechanistic understanding of how adaptation happens. We used the budding yeast, Saccharomyces cerevisiae, to investigate the evolutionary plasticity of chromosome metabolism, a network of evolutionary conserved modules. We experimentally evolved cells constitutively experiencing DNA replication stress caused by the absence of Ctf4, a protein that coordinates the enzymatic activities at replication forks. Parallel populations adapted to replication stress, over 1000 generations, by acquiring multiple, concerted mutations. These mutations altered conserved features of two chromosome metabolism modules, DNA replication and sister chromatid cohesion, and inactivated a third, the DNA damage checkpoint. The selected mutations define a functionally reproducible evolutionary trajectory. We suggest that the evolutionary plasticity of chromosome metabolism has implications for genome evolution in natural populations and cancer.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
71
|
Yi ZY, Meng TG, Ma XS, Li J, Zhang CH, Ouyang YC, Schatten H, Qiao J, Sun QY, Qian WP. CDC6 regulates both G2/M transition and metaphase-to-anaphase transition during the first meiosis of mouse oocytes. J Cell Physiol 2020; 235:5541-5554. [PMID: 31984513 DOI: 10.1002/jcp.29469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.
Collapse
Affiliation(s)
- Zi-Yun Yi
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chun-Hui Zhang
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Jie Qiao
- Reproductive Medical Center, Peking University Third Hospital, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
72
|
Chen J, Liao A, Powers EN, Liao H, Kohlstaedt LA, Evans R, Holly RM, Kim JK, Jovanovic M, Ünal E. Aurora B-dependent Ndc80 degradation regulates kinetochore composition in meiosis. Genes Dev 2020; 34:209-225. [PMID: 31919192 PMCID: PMC7000919 DOI: 10.1101/gad.333997.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
The kinetochore complex is a conserved machinery that connects chromosomes to spindle microtubules. During meiosis, the kinetochore is restructured to accommodate a specialized chromosome segregation pattern. In budding yeast, meiotic kinetochore remodeling is mediated by the temporal changes in the abundance of a single subunit called Ndc80. We previously described the regulatory events that control the timely synthesis of Ndc80. Here, we report that Ndc80 turnover is also tightly regulated in meiosis: Ndc80 degradation is active in meiotic prophase, but not in metaphase I. Ndc80 degradation depends on the ubiquitin ligase APCAma1 and is mediated by the proteasome. Importantly, Aurora B-dependent Ndc80 phosphorylation, a mark that has been previously implicated in correcting erroneous microtubule-kinetochore attachments, is essential for Ndc80 degradation in a microtubule-independent manner. The N terminus of Ndc80, including a 27-residue sequence and Aurora B phosphorylation sites, is both necessary and sufficient for kinetochore protein degradation. Finally, defects in Ndc80 turnover predispose meiotic cells to chromosome mis-segregation. Our study elucidates the mechanism by which meiotic cells modulate their kinetochore composition through regulated Ndc80 degradation, and demonstrates that Aurora B-dependent regulation of kinetochores extends beyond altering microtubule attachments.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andrew Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Emily N Powers
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Hanna Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lori A Kohlstaedt
- UC Berkeley QB3 Proteomics Facility, University of California at Berkeley, Berkeley, California 94720, USA
| | - Rena Evans
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan M Holly
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jenny Kim Kim
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Marko Jovanovic
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
73
|
Bates M, Furlong F, Gallagher MF, Spillane CD, McCann A, O'Toole S, O'Leary JJ. Too MAD or not MAD enough: The duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Lett 2020; 469:11-21. [DOI: 10.1016/j.canlet.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
74
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
75
|
Vossen ML, Alhosawi HM, Aney KJ, Burrack LS. CaMad2 Promotes Multiple Aspects of Genome Stability Beyond Its Direct Function in Chromosome Segregation. Genes (Basel) 2019; 10:genes10121013. [PMID: 31817479 PMCID: PMC6947305 DOI: 10.3390/genes10121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Mad2 is a central component of the spindle assembly checkpoint required for accurate chromosome segregation. Additionally, in some organisms, Mad2 has roles in preventing mutations and recombination through the DNA damage response. In the fungal pathogen Candida albicans, CaMad2 has previously been shown to be required for accurate chromosome segregation, survival in high levels of hydrogen peroxide, and virulence in a mouse model of infection. In this work, we showed that CaMad2 promotes genome stability through its well-characterized role in promoting accurate chromosome segregation and through reducing smaller scale chromosome changes due to recombination and DNA damage repair. Deletion of MAD2 decreased cell growth, increased marker loss rates, increased sensitivity to microtubule-destabilizing drugs, and increased sensitivity to DNA damage inducing treatments. CaMad2-GFP localized to dots, consistent with a role in kinetochore binding, and to the nuclear periphery, consistent with an additional role in DNA damage. Furthermore, deletion of MAD2 increases growth on fluconazole, and fluconazole treatment elevates whole chromosome loss rates in the mad2∆/∆ strain, suggesting that CaMad2 may be important for preventing fluconazole resistance via aneuploidy.
Collapse
|
76
|
Recruitment of the Ulp2 protease to the inner kinetochore prevents its hyper-sumoylation to ensure accurate chromosome segregation. PLoS Genet 2019; 15:e1008477. [PMID: 31747400 PMCID: PMC6892545 DOI: 10.1371/journal.pgen.1008477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/04/2019] [Accepted: 10/14/2019] [Indexed: 01/15/2023] Open
Abstract
The kinetochore is the central molecular machine that drives chromosome segregation in all eukaryotes. Genetic studies have suggested that protein sumoylation plays a role in regulating the inner kinetochore; however, the mechanism remains elusive. Here, we show that Saccharomyces cerevisiae Ulp2, an evolutionarily conserved SUMO specific protease, contains a previously uncharacterized kinetochore-targeting motif that recruits Ulp2 to the kinetochore via the Ctf3CENP-I-Mcm16CENP-H-Mcm22CENP-K complex (CMM). Once recruited, Ulp2 selectively targets multiple subunits of the kinetochore, specifically the Constitutive Centromere-Associated Network (CCAN), via its SUMO-interacting motif (SIM). Mutations that impair the kinetochore recruitment of Ulp2 or its binding to SUMO result in an elevated rate of chromosome loss, while mutations that affect both result in a synergistic increase of chromosome loss rate, hyper-sensitivity to DNA replication stress, along with a dramatic accumulation of hyper-sumoylated CCAN. Notably, sumoylation of CCAN occurs at the kinetochore and is perturbed by DNA replication stress. These results indicate that Ulp2 utilizes its dual substrate recognition to prevent hyper-sumoylation of CCAN, ensuring accurate chromosome segregation during cell division.
Collapse
|
77
|
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019; 593:2889-2907. [PMID: 31469407 DOI: 10.1002/1873-3468.13591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
78
|
Zw10 is a spindle assembly checkpoint protein that regulates meiotic maturation in mouse oocytes. Histochem Cell Biol 2019; 152:207-215. [DOI: 10.1007/s00418-019-01800-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/17/2023]
|
79
|
Wu WD, Yu KW, Zhong N, Xiao Y, She ZY. Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division. Eur J Cell Biol 2019; 98:74-80. [DOI: 10.1016/j.ejcb.2018.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
|
80
|
French BT, Straight AF. The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:59-84. [PMID: 28840233 DOI: 10.1007/978-3-319-58592-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Faithful transmission of genetic information during cell division requires attachment of chromosomes to the mitotic spindle via the kinetochore. In vitro reconstitution studies are beginning to uncover how the kinetochore is assembled upon the underlying centromere, how the kinetochore couples chromosome movement to microtubule dynamics, and how cells ensure the site of kinetochore assembly is maintained from one generation to the next. Here we give special emphasis to advances made in Xenopus egg extract, which provides a unique, biochemically tractable in vitro system that affords the complexity of cytoplasm and nucleoplasm to permit reconstitution of the dynamic, cell cycle-regulated functions of the centromere and kinetochore.
Collapse
Affiliation(s)
- Bradley T French
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA.
| |
Collapse
|
81
|
Mukherjee S, Sandri BJ, Tank D, McClellan M, Harasymiw LA, Yang Q, Parker LL, Gardner MK. A Gradient in Metaphase Tension Leads to a Scaled Cellular Response in Mitosis. Dev Cell 2019; 49:63-76.e10. [PMID: 30799228 PMCID: PMC6535804 DOI: 10.1016/j.devcel.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
During mitosis, motor proteins associate with microtubules to exert pushing forces that establish a mitotic spindle. These pushing forces generate opposing tension in the chromatin that connects oppositely attached sister chromatids, which may then act as a mechanical signal to ensure the fidelity of chromosome segregation during mitosis. However, the role of tension in mitotic cellular signaling remains controversial. In this study, we generated a gradient in tension over multiple isogenic budding yeast cell lines by genetically altering the magnitude of motor-based spindle forces. We found that a decreasing gradient in tension led to an increasing gradient in the rates of kinetochore detachment and anaphase chromosome mis-segregration, and in metaphase time. Simulations and experiments indicated that these tension responses originate from a tension-dependent kinetochore phosphorylation gradient. We conclude that the cell is exquisitely tuned to the magnitude of tension as a signal to detect potential chromosome segregation errors during mitosis.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian J Sandri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Damien Tank
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren A Harasymiw
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
82
|
Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Cells 2019; 8:cells8030278. [PMID: 30909555 PMCID: PMC6468716 DOI: 10.3390/cells8030278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful chromosome segregation during mitosis is crucial for maintaining genome stability. The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate mitotic progression. Defective SAC signaling leads to premature sister chromatid separation and aneuploid daughter cells. Mechanistically, the SAC couples the kinetochore microtubule attachment status to the cell cycle progression machinery. In the presence of abnormal kinetochore microtubule attachments, the SAC prevents the metaphase-to-anaphase transition through a complex kinase-phosphatase signaling cascade which results in the correct balance of SAC components recruited to the kinetochore. The correct kinetochore localization of SAC proteins is a prerequisite for robust SAC signaling and, hence, accurate chromosome segregation. Here, we review recent progresses on the kinetochore recruitment of core SAC factors.
Collapse
|
83
|
Brace JL, Doerfler MD, Weiss EL. A cell separation checkpoint that enforces the proper order of late cytokinetic events. J Cell Biol 2019; 218:150-170. [PMID: 30455324 PMCID: PMC6314563 DOI: 10.1083/jcb.201805100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic cell division requires dependency relationships in which late processes commence only after early ones are appropriately completed. We have discovered a system that blocks late events of cytokinesis until early ones are successfully accomplished. In budding yeast, cytokinetic actomyosin ring contraction and membrane ingression are coupled with deposition of an extracellular septum that is selectively degraded in its primary septum immediately after its completion by secreted enzymes. We find this secretion event is linked to septum completion and forestalled when the process is slowed. Delay of septum degradation requires Fir1, an intrinsically disordered protein localized to the cytokinesis site that is degraded upon septum completion but stabilized when septation is aberrant. Fir1 protects cytokinesis in part by inhibiting a separation-specific exocytosis function of the NDR/LATS kinase Cbk1, a key component of "hippo" signaling that induces mother-daughter separation. We term this system enforcement of cytokinesis order, a checkpoint ensuring proper temporal sequence of mechanistically incompatible processes of cytokinesis.
Collapse
Affiliation(s)
- Jennifer L Brace
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Matthew D Doerfler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Eric L Weiss
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
84
|
Kirsch-Volders M, Pacchierotti F, Parry EM, Russo A, Eichenlaub-Ritter U, Adler ID. Risks of aneuploidy induction from chemical exposure: Twenty years of collaborative research in Europe from basic science to regulatory implications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:126-147. [PMID: 31097149 DOI: 10.1016/j.mrrev.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Although Theodor Boveri linked abnormal chromosome numbers and disease more than a century ago, an in-depth understanding of the impact of mitotic and meiotic chromosome segregation errors on cell proliferation and diseases is still lacking. This review reflects on the efforts and results of a large European research network that, from the 1980's until 2004, focused on protection against aneuploidy-inducing factors and tackled the following problems: 1) the origin and consequences of chromosome imbalance in somatic and germ cells; 2) aneuploidy as a result of environmental factors; 3) dose-effect relationships; 4) the need for validated assays to identify aneugenic factors and classify them according to their modes of action; 5) the need for reliable, quantitative data suitable for regulating exposure and preventing aneuploidy induction; 6) the need for mechanistic insight into the consequences of aneuploidy for human health. This activity brought together a consortium of experts from basic science and applied genetic toxicology to prepare the basis for defining guidelines and to encourage regulatory activities for the prevention of induced aneuploidy. Major strengths of the EU research programmes on aneuploidy were having a valuable scientific approach based on well-selected compounds and accurate methods that allow the determination of precise dose-effect relationships, reproducibility and inter-laboratory comparisons. The work was conducted by experienced scientists stimulated by a fascination with the complex scientific issues surrounding aneuploidy; a key strength was asking the right questions at the right time. The strength of the data permitted evaluation at the regulatory level. Finally, the entire enterprise benefited from a solid partnership under the lead of an inspired and stimulating coordinator. The research programme elucidated the major modes of action of aneugens, developed scientifically sound assays to assess aneugens in different tissues, and achieved the international validation of relevant assays with the goal of protecting human populations from aneugenic chemicals. The role of aneuploidy in tumorigenesis will require additional research, and the study of effects of exposure to multiple agents should become a priority. It is hoped that these reflections will stimulate the implementation of aneuploidy testing in national and OECD guidelines.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ursula Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
85
|
Hussain S, Saxena S, Shrivastava S, Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar N, Sharma AK, Tiwari AK, Singh RK. Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis. PLoS One 2018; 13:e0208656. [PMID: 30517191 PMCID: PMC6281268 DOI: 10.1371/journal.pone.0208656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P ≤ 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis (2DE) and MALDI-TOF PMF studies which were in concordance with microarray data. Thus, the study has uncovered ample number of candidate genes associated with CMTs which need to be further validated as therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Rajkumar James Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Abhinav Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | | | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Miyapur, Hyderabad, Telangana, India
| | - Naveen Kumar
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Anil Kumar Sharma
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Ashok Kumar Tiwari
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| |
Collapse
|
86
|
Snyder AB, Biango-Daniels MN, Hodge KT, Worobo RW. Nature Abhors a Vacuum: Highly Diverse Mechanisms Enable Spoilage Fungi to Disperse, Survive, and Propagate in Commercially Processed and Preserved Foods. Compr Rev Food Sci Food Saf 2018; 18:286-304. [DOI: 10.1111/1541-4337.12403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Abigail B. Snyder
- the Dept. of Extension; The Ohio State Univ.; 1680 Madison Ave. Wooster OH 44691 USA
| | - Megan N. Biango-Daniels
- the Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science; Cornell Univ.; Ithaca NY 14850 USA
| | - Kathie T. Hodge
- the Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science; Cornell Univ.; Ithaca NY 14850 USA
| | - Randy W. Worobo
- the Dept. of Food Science; Cornell Univ.; 411 Tower Rd. Ithaca NY 14850 USA
| |
Collapse
|
87
|
Watson ER, Brown NG, Peters JM, Stark H, Schulman BA. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends Cell Biol 2018; 29:117-134. [PMID: 30482618 DOI: 10.1016/j.tcb.2018.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) E3 ligase controls mitosis and nonmitotic pathways through interactions with proteins that coordinate ubiquitylation. Since the discovery that the catalytic subunits of APC/C are conformationally dynamic cullin and RING proteins, many unexpected and intricate regulatory mechanisms have emerged. Here, we review structural knowledge of this regulation, focusing on: (i) coactivators, E2 ubiquitin (Ub)-conjugating enzymes, and inhibitors engage or influence multiple sites on APC/C including the cullin-RING catalytic core; and (ii) the outcomes of these interactions rely on mobility of coactivators and cullin-RING domains, which permits distinct conformations specifying different functions. Thus, APC/C is not simply an interaction hub, but is instead a dynamic, multifunctional molecular machine whose structure is remodeled by binding partners to achieve temporal ubiquitylation regulating cell division.
Collapse
Affiliation(s)
- Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Campus Vienna Biocenter (VBC) 1, 1030 Vienna, Austria
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
88
|
Amin P, Soper Ní Chafraidh S, Leontiou I, Hardwick KG. Regulated reconstitution of spindle checkpoint arrest and silencing through chemically induced dimerisation in vivo. J Cell Sci 2018; 132:jcs.219766. [PMID: 30237224 PMCID: PMC6398473 DOI: 10.1242/jcs.219766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Chemically induced dimerisation (CID) uses small molecules to control specific protein-protein interactions. We employed CID dependent on the plant hormone abscisic acid (ABA) to reconstitute spindle checkpoint signalling in fission yeast. The spindle checkpoint signal usually originates at unattached or inappropriately attached kinetochores. These are complex, multiprotein structures with several important functions. To bypass kinetochore complexity, we took a reductionist approach to studying checkpoint signalling. We generated a synthetic checkpoint arrest ectopically by inducing heterodimerisation of the checkpoint proteins Mph1 (the fission yeast homologue of Mps1) and Spc7 (the fission yeast homologue of KNL1). These proteins were engineered such that they cannot localise to kinetochores, and only form a complex in the presence of ABA. Using this novel assay we were able to checkpoint arrest a synchronous population of cells within 30 min of ABA addition. This assay allows detailed genetic dissection of checkpoint activation and, importantly, also provides a valuable tool for studying checkpoint silencing. To analyse silencing of the checkpoint and the ensuing mitotic exit, we simply washed out the ABA from arrested fission yeast cells. We show here that silencing is critically dependent on protein phosphatase 1 (PP1) recruitment to Mph1-Spc7 signalling platforms.
Collapse
Affiliation(s)
- Priya Amin
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sadhbh Soper Ní Chafraidh
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Kevin G Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
89
|
Jelenić I, Selmecki A, Laan L, Pavin N. Spindle Dynamics Model Explains Chromosome Loss Rates in Yeast Polyploid Cells. Front Genet 2018; 9:296. [PMID: 30131823 PMCID: PMC6091489 DOI: 10.3389/fgene.2018.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023] Open
Abstract
Faithful chromosome segregation, driven by the mitotic spindle, is essential for organismal survival. Neopolyploid cells from diverse species exhibit a significant increase in mitotic errors relative to their diploid progenitors, resulting in chromosome nondisjunction. In the model system Saccharomyces cerevisiae, the rate of chromosome loss in haploid and diploid cells is measured to be one thousand times lower than the rate of loss in isogenic tetraploid cells. Currently it is unknown what constrains the number of chromosomes that can be segregated with high fidelity in an organism. Here we developed a simple mathematical model to study how different rates of chromosome loss in cells with different ploidy can arise from changes in (1) spindle dynamics and (2) a maximum duration of mitotic arrest, after which cells enter anaphase. We apply this model to S. cerevisiae to show that this model can explain the observed rates of chromosome loss in S. cerevisiae cells of different ploidy. Our model describes how small increases in spindle assembly time can result in dramatic differences in the rate of chromosomes loss between cells of increasing ploidy and predicts the maximum duration of mitotic arrest.
Collapse
Affiliation(s)
- Ivan Jelenić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE, United States
| | - Liedewij Laan
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, Delft, Netherlands
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
90
|
Petty EL, Evpak M, Pillus L. Connecting GCN5's centromeric SAGA to the mitotic tension-sensing checkpoint. Mol Biol Cell 2018; 29:2201-2212. [PMID: 29995571 PMCID: PMC6249797 DOI: 10.1091/mbc.e17-12-0701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple interdependent mechanisms ensure faithful segregation of chromosomes during cell division. Among these, the spindle assembly checkpoint monitors attachment of spindle microtubules to the centromere of each chromosome, whereas the tension-sensing checkpoint monitors the opposing forces between sister chromatid centromeres for proper biorientation. We report here a new function for the deeply conserved Gcn5 acetyltransferase in the centromeric localization of Rts1, a key player in the tension-sensing checkpoint. Rts1 is a regulatory component of protein phopshatase 2A, a near universal phosphatase complex, which is recruited to centromeres by the Shugoshin (Sgo) checkpoint component under low-tension conditions to maintain sister chromatid cohesion. We report that loss of Gcn5 disrupts centromeric localization of Rts1. Increased RTS1 dosage robustly suppresses gcn5∆ cell cycle and chromosome segregation defects, including restoration of Rts1 to centromeres. Sgo1’s Rts1-binding function also plays a key role in RTS1 dosage suppression of gcn5∆ phenotypes. Notably, we have identified residues of the centromere histone H3 variant Cse4 that function in these chromosome segregation-related roles of RTS1. Together, these findings expand the understanding of the mechanistic roles of Gcn5 and Cse4 in chromosome segregation.
Collapse
Affiliation(s)
- Emily L Petty
- Division of Biological Sciences, Molecular Biology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA 92103
| | - Masha Evpak
- Division of Biological Sciences, Molecular Biology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA 92103
| | - Lorraine Pillus
- Division of Biological Sciences, Molecular Biology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA 92103
| |
Collapse
|
91
|
Zhang H, Deng X, Sun B, Lee Van S, Kang Z, Lin H, Lee YRJ, Liu B. Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. NATURE PLANTS 2018; 4:485-494. [PMID: 29967519 DOI: 10.1038/s41477-018-0192-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/04/2018] [Indexed: 05/15/2023]
Abstract
The evolutionarily conserved WD40 protein budding uninhibited by benzimidazole 3 (BUB3) is known for its function in spindle assembly checkpoint control. In the model plant Arabidopsis thaliana, nearly identical BUB3;1 and BUB3;2 proteins decorated the phragmoplast midline through interaction with the microtubule-associated protein MAP65-3 during cytokinesis. BUB3;1 and BUB3;2 interacted with the carboxy-terminal segment of MAP65-3 (but not MAP65-1), which harbours its microtubule-binding domain for its post-mitotic localization. Reciprocally, BUB3;1 and BUB3;2 also regulated MAP65-3 localization in the phragmoplast by enhancing its microtubule association. In the bub3;1 bub3;2 double mutant, MAP65-3 localization was often dissipated away from the phragmoplast midline and abolished upon treatment of low doses of the cytokinesis inhibitory drug caffeine that were tolerated by the control plant. The phragmoplast microtubule array exhibited uncoordinated expansion pattern in the double mutant cells as the phragmoplast edge reached the parental plasma membrane at different times in different areas. Upon caffeine treatment, phragmoplast expansion was halted as if the microtubule array was frozen. As a result, cytokinesis was abolished due to failed cell plate assembly. Our findings have uncovered a novel function of the plant BUB3 in MAP65-3-dependent microtubule reorganization during cytokinesis.
Collapse
Affiliation(s)
- Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Baojuan Sun
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Sonny Lee Van
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Honghui Lin
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
92
|
Song Y, Michaels TCT, Ma Q, Liu Z, Yuan H, Takayama S, Knowles TPJ, Shum HC. Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nat Commun 2018; 9:2110. [PMID: 29844310 PMCID: PMC5974351 DOI: 10.1038/s41467-018-04510-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
Networks of natural protein nanofibrils, such as cytoskeletal filaments, control the shape and the division of cells, yet mimicking this functionality in a synthetic setting has proved challenging. Here, we demonstrate that artificial networks of protein nanofibrils can induce controlled deformation and division of all-aqueous emulsion droplets with budding-like morphologies. We show that this process is driven by the difference in the immersional wetting energy of the nanofibril network, and that both the size and the number of the daughter droplets formed during division can be controlled by modulating the fibril concentration and the chemical properties of the fibril network. Our results demonstrate a route for achieving biomimetic division with synthetic self-assembling fibrils and offer an engineered approach to regulate the morphology of protein gels.
Collapse
Affiliation(s)
- Yang Song
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Qingming Ma
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), 518000, Shenzhen, China
| | - Zhou Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), 518000, Shenzhen, China
| | - Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), 518000, Shenzhen, China
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong.
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), 518000, Shenzhen, China.
| |
Collapse
|
93
|
Abstract
The spindle assembly checkpoint (SAC) is crucial to maintain genomic stability since it prevents premature separation of sister chromatids in mitosis and ensures the fidelity of chromosome segregation. The SAC arrests cells in mitosis and is not satisfied until all kinetochores are stably attached to the mitotic spindle. Improperly attached kinetochores activate the SAC and catalyze the formation of the mitotic checkpoint complex (MCC), containing Mad2, Cdc20, BubR1, and Bub3 proteins. The MCC binds and thereby inhibits the APC/C E3 ubiquitin ligase until the last kinetochore has attached to microtubules. Once the SAC is satisfied, the APC/C promptly activates and targets cyclin B1 and securin for degradation, thus allowing sister chromatids to separate and the cell to exit mitosis. Our understanding of SAC signaling has increased thanks to the development of new genetic, biochemical, molecular, and structural biology techniques. Here, we describe how live-cell imaging microscopy in combination with gene-targeting strategies and biochemical assays can be exploited to investigate the intrinsic properties of the SAC in mammalian cultured cells.
Collapse
|
94
|
Abstract
Chromosome segregation relies on forces generated by spindle microtubules that are translated into chromosome movement through interactions with kinetochores, highly conserved macromolecular machines that assemble on a specialized centromeric chromatin structure. Kinetochores not only have to stably attach to growing and shrinking microtubules, but they also need to recruit spindle assembly checkpoint proteins to halt cell cycle progression when there are attachment defects. Even the simplest kinetochore in budding yeast contains more than 50 unique components that are present in multiple copies, totaling more than 250 proteins in a single kinetochore. The complex nature of kinetochores makes it challenging to elucidate the contributions of individual components to its various functions. In addition, it is difficult to manipulate forces in vivo to understand how they regulate kinetochore-microtubule attachments and the checkpoint. To address these issues, we developed a technique to purify kinetochores from budding yeast that can be used to analyze kinetochore functions and composition as well as to reconstitute kinetochore-microtubule attachments in vitro.
Collapse
|
95
|
Luo Y, Ahmad E, Liu ST. MAD1: Kinetochore Receptors and Catalytic Mechanisms. Front Cell Dev Biol 2018; 6:51. [PMID: 29868582 PMCID: PMC5949338 DOI: 10.3389/fcell.2018.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
The mitotic checkpoint monitors kinetochore-microtubule attachment, delays anaphase onset and prevents aneuploidy when unattached or tensionless kinetochores are present in cells. Mitotic arrest deficiency 1 (MAD1) is one of the evolutionarily conserved core mitotic checkpoint proteins. MAD1 forms a cell cycle independent complex with MAD2 through its MAD2 interaction motif (MIM) in the middle region. Such a complex is enriched at unattached kinetochores and functions as an unusual catalyst to promote conformational change of additional MAD2 molecules, constituting a crucial signal amplifying mechanism for the mitotic checkpoint. Only MAD2 in its active conformation can be assembled with BUBR1 and CDC20 to form the Mitotic Checkpoint Complex (MCC), which is a potent inhibitor of anaphase onset. Recent research has shed light on how MAD1 is recruited to unattached kinetochores, and how it carries out its catalytic activity. Here we review these advances and discuss their implications for future research.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Ejaz Ahmad
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
96
|
McKinley KL. Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis. Methods Cell Biol 2018; 144:75-105. [PMID: 29804684 DOI: 10.1016/bs.mcb.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The faithful execution of cell division requires the coordinated action of hundreds of gene products. Precisely perturbing these gene products in cells is central to understanding their functions during normal cell division, and the contributions of their disruption to disease. Here, we describe experimental approaches for using CRISPR/Cas9 for gene disruption and modification, with a focus on human cell culture. We describe strategies for inducible gene disruption to generate acute knockouts of essential cell division genes, which can be modified for the chronic elimination of nonessential genes. We also describe strategies for modifying the genome to generate protein fusions to report on and modify protein behavior. These tools facilitate investigation of protein function, dissection of protein assembly networks, and analyses of disease-associated mutations.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
97
|
DNA replication stress and its impact on chromosome segregation and tumorigenesis. Semin Cancer Biol 2018; 55:61-69. [PMID: 29692334 DOI: 10.1016/j.semcancer.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023]
Abstract
Genome instability and cell cycle dysregulation are commonly associated with cancer. DNA replication stress driven by oncogene activation during tumorigenesis is now well established as a source of genome instability. Replication stress generates DNA damage not only during S phase, but also in the subsequent mitosis, where it impacts adversely on chromosome segregation. Some regions of the genome seem particularly sensitive to replication stress-induced instability; most notably, chromosome fragile sites. In this article, we review some of the important issues that have emerged in recent years concerning DNA replication stress and fragile site expression, as well as how chromosome instability is minimized by a family of ring-shaped protein complexes known as SMC proteins. Understanding how replication stress impacts on S phase and mitosis in cancer should provide opportunities for the development of novel and tumour-specific treatments.
Collapse
|
98
|
Abstract
Examining cell behavior in its correct tissue context is a major challenge in cell biology. The recent development of mammalian stem cell-based organoid cultures offers exciting opportunities to visualize dynamic cellular events in a 3D tissue-like setting. We describe here an approach for live imaging of cell division processes in intestinal organoid cultures derived from human and mouse adult stem cells. These approaches can be extended to the analysis of cellular events in diseased tissue, such as patient-derived tumor organoids.
Collapse
|
99
|
Jiao XF, Huang CJ, Wu D, Zhang JY, Long YT, Chen F, Li X, Huo LJ. Abce1 orchestrates M-phase entry and cytoskeleton architecture in mouse oocyte. Oncotarget 2018; 8:39012-39020. [PMID: 28380459 PMCID: PMC5503591 DOI: 10.18632/oncotarget.16546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
ATP-binding cassette E1 (ABCE1) is a member of the ATP-binding cassette transporters and essential for diverse biological events regulating abroad range of biological functions including viral infection, cell proliferation, anti-apoptosis, translation initiation and ribosome biogenesis. Here, we discovered that Abce1 also plays indispensable roles in mouse oocyte meiotic progression. In the present study, we examined the expression, localization, and function of Abce1 during mouse oocyte meiotic maturation. Immunostaining and confocal microscopy identified that Abce1 localized as small dots in nucleus in germinal vesicle stage. After germinal vesicle breakdown, it dispersedly localized around the whole spindle apparatus. During the anaphase and telophase stages, Abce1 was just like a cap to localize around the two pole region of spindle but not the midbody and chromosome. Knockdown of Abce1 by specific siRNA injection delayed the resumption of meiosis (GVBD) and affected the extrusion of first polar body. Moreover, the process of spindle assembly and chromosome alignment were severely impaired. Abce1-RNAi led to the dissociation of γ-tubulin and p-MAPK from spindle poles, thus caused mounts of spindle morphology abnormities and chromosome alignment defects, leading to high incidence of aneuploidy. Our findings refresh the knowledge of Abce1 function by exploring its role in oocyte meiotic resumption, spindle assembly and chromosome alignment.
Collapse
Affiliation(s)
- Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Ting Long
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
100
|
Abstract
Kinetoplastids have a nucleus that contains the nuclear genome and a kinetoplast that contains the mitochondrial genome. These single-copy organelles must be duplicated and segregated faithfully to daughter cells at each cell division. In Trypanosoma brucei, although duplication of both organelles starts around the same time, segregation of the kinetoplast precedes that of the nucleus. Cytokinesis subsequently takes place so that daughter cells inherit a single copy of each organelle. Very little is known about the molecular mechanism that governs the timing of these events. Furthermore, it is thought that T. brucei lacks a spindle checkpoint that delays the onset of nuclear division in response to spindle defects. Here we show that a mitotic cyclin CYC6 has a dynamic localization pattern during the cell cycle, including kinetochore localization. Using CYC6 as a molecular cell cycle marker, we confirmed that T. brucei cannot delay the onset of anaphase in response to a bipolar spindle assembly defect. Interestingly, expression of a stabilized form of CYC6 caused the nucleus to arrest in a metaphase-like state without preventing cytokinesis. We propose that trypanosomes have an ability to regulate the timing of nuclear division by modulating the CYC6 protein level, without a spindle checkpoint.
Collapse
Affiliation(s)
- Hanako Hayashi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|