51
|
Chong YC, Toh TB, Chan Z, Lin QXX, Thng DKH, Hooi L, Ding Z, Shuen T, Toh HC, Dan YY, Bonney GK, Zhou L, Chow P, Wang Y, Benoukraf T, Chow EKH, Han W. Targeted Inhibition of Purine Metabolism Is Effective in Suppressing Hepatocellular Carcinoma Progression. Hepatol Commun 2020; 4:1362-1381. [PMID: 32923839 PMCID: PMC7471427 DOI: 10.1002/hep4.1559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor‐specific metabolic rewiring, acquired to confer a proliferative and survival advantage over nontransformed cells, represents a renewed focus in cancer therapy development. Hepatocellular carcinoma (HCC), a malignancy that has hitherto been resistant to compounds targeting oncogenic signaling pathways, represents a candidate cancer to investigate the efficacy of selectively antagonizing such adaptive metabolic reprogramming. To this end, we sought to characterize metabolic changes in HCC necessary for tumorigenesis. We analyzed gene expression profiles in three independent large‐scale patient cohorts who had HCC. We identified a commonly deregulated purine metabolic signature in tumors with the extent of purine biosynthetic enzyme up‐regulation correlated with tumor grade and a predictor of clinical outcome. The functional significance of enhanced purine metabolism as a hallmark in human HCC was then validated using a combination of HCC cell lines, patient‐derived xenograft (PDX) organoids, and mouse models. Targeted ablation of purine biosynthesis by knockdown of the rate‐limiting enzyme inosine‐5′‐monophosphate dehydrogenase (IMPDH) or using the drug mycophenolate mofetil (MMF) reduced HCC proliferation in vitro and decreased the tumor burden in vivo. In comparing the sensitivities of PDX tumor organoids to MMF therapy, we found that HCC tumors defined by high levels of IMPDH and guanosine nucleosides were most susceptible to treatment. Mechanistically, a phosphoinositide 3‐kinase (PI3K)–E2F transcription factor 1 (E2F1) axis coordinated purine biosynthetic enzyme expression, deregulation of which altered the activity of mitogen‐activated protein kinase/RAS signaling. Simultaneously abolishing PI3K signaling and IMPDH activity with clinically approved inhibitors resulted in greatest efficacy in reducing tumor growth in a PDX mouse model. Conclusion: Enhanced purine metabolic activity regulated by PI3K pathway‐dependent activation of E2F1 promotes HCC carcinogenesis, suggesting the potential for targeting purine metabolic reprogramming as a precision therapeutic strategy for patients with HCC.
Collapse
Affiliation(s)
- Yong Chun Chong
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health National University of Singapore Singapore Singapore.,Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Zhiling Chan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Quy Xiao Xuan Lin
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Dexter Kai Hao Thng
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Timothy Shuen
- Division of Medical Oncology National Cancer Center Singapore Singapore Singapore
| | - Han Chong Toh
- Division of Medical Oncology National Cancer Center Singapore Singapore Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology National University Health System Singapore Singapore
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery National University Health System Singapore Singapore
| | - Lei Zhou
- Department of Medicine National University of Singapore Singapore Singapore
| | - Pierce Chow
- Department of Hepatopancreatobiliary and Transplant Surgery Singapore General Hospital Singapore Singapore
| | - Yulan Wang
- Singapore Phenome Center Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore.,Discipline of Genetics Faculty of Medicine Memorial University of Newfoundland St. John's Canada
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| |
Collapse
|
52
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
53
|
Zhao C, Zeng C, Ye S, Dai X, He Q, Yang B, Zhu H. Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ): a nexus between hypoxia and cancer. Acta Pharm Sin B 2020; 10:947-960. [PMID: 32642404 PMCID: PMC7332664 DOI: 10.1016/j.apsb.2019.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature of solid tumors. As transcription factors, hypoxia-inducible factors (HIFs) are the master regulators of the hypoxic microenvironment; their target genes function in tumorigenesis and tumor development. Intriguingly, both yes-associated protein (YAP) and its paralog transcriptional coactivator with a PDZ-binding motif (TAZ) play fundamental roles in the malignant progression of hypoxic tumors. As downstream effectors of the mammalian Hippo pathway, YAP and/or TAZ (YAP/TAZ) are phosphorylated and sequestered in the cytoplasm by the large tumor suppressor kinase 1/2 (LATS1/2)-MOB kinase activator 1 (MOB1) complex, which restricts the transcriptional activity of YAP/TAZ. However, dephosphorylated YAP/TAZ have the ability to translocate to the nucleus where they induce transcription of target genes, most of which are closely related to cancer. Herein we review the tumor-related signaling crosstalk between YAP/TAZ and hypoxia, describe current agents and therapeutic strategies targeting the hypoxia–YAP/TAZ axis, and highlight questions that might have a potential impact in the future.
Collapse
Affiliation(s)
- Chenxi Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenming Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 882028401; fax: +86 571 88208400.
| |
Collapse
|
54
|
Siddiqui S, Libertini SJ, Lucas CA, Lombard AP, Baek HB, Nakagawa RM, Nishida KS, Steele TM, Melgoza FU, Borowsky AD, Durbin-Johnson BP, Qi L, Ghosh PM, Mudryj M. The p14ARF tumor suppressor restrains androgen receptor activity and prevents apoptosis in prostate cancer cells. Cancer Lett 2020; 483:12-21. [PMID: 32330514 DOI: 10.1016/j.canlet.2020.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) is characterized by a unique dependence on optimal androgen receptor (AR) activity where physiological androgen concentrations induce proliferation but castrate and supraphysiological levels suppress growth. This feature has been exploited in bipolar androgen therapy (BAT) for castrate resistant malignancies. Here, we investigated the role of the tumor suppressor protein p14ARF in maintaining optimal AR activity and the function of the AR itself in regulating p14ARF levels. We used a tumor tissue array of differing stages and grades to define the relationships between these components and identified a strong positive correlation between p14ARF and AR expression. Mechanistic studies utilizing CWR22 xenograft and cell culture models revealed that a decrease in AR reduced p14ARF expression and deregulated E2F factors, which are linked to p14ARF and AR regulation. Chromatin immunoprecipitation studies identified AR binding sites upstream of p14ARF. p14ARF depletion enhanced AR-dependent PSA and TMPRSS2 transcription, hence p14ARF constrains AR activity. However, p14ARF depletion ultimately results in apoptosis. In PCa cells, AR co-ops p14ARF as part of a feedback mechanism to ensure optimal AR activity for maximal prostate cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Salma Siddiqui
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA
| | - Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Christopher A Lucas
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Alan P Lombard
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Han Bit Baek
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | | | - Thomas M Steele
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, USA
| | - Frank U Melgoza
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA
| | | | | | - LiHong Qi
- Department of Public Health Sciences, University of California Davis, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA.
| |
Collapse
|
55
|
Tian R, Zou H, Wang LF, Song MJ, Liu L, Zhang H. Identification of microRNA-mRNA regulatory networks and pathways related to retinoblastoma across human and mouse. Int J Ophthalmol 2020; 13:535-544. [PMID: 32399402 PMCID: PMC7137714 DOI: 10.18240/ijo.2020.04.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the mRNA and pathways related to retinoblastoma (RB) genesis and development. METHODS Microarray datasets GSE29683 (human) and GSE29685 (mouse) were downloaded from NCBI GEO database. Homologous genes between the two species were identified using WGCNA, followed by protein-protein interaction (PPI) network construction and gene enrichment analysis. Disease-related miRNAs and pathways were retrieved from miR2Disease database and Comparative Toxicogenomics Database (CTD), respectively. RESULTS A total of 352 homologous genes were identified. Two pathways including "cell cycle" and "pathway in cancer" in CTD and enrichment analysis were identified and seven miRNAs (including hsa-miR-373, hsa-miR-34a, hsa-miR-129, hsa-miR-494, hsa-miR-503, hsa-let-7 and hsa-miR-518c) were associated with RB. miRNAs modulate "cell cycle" and "pathway in cancer" pathways via regulating 13 genes (including CCND1, CDC25C, E2F2, CDKN2D and TGFB2). CONCLUSION These results suggest that these miRNAs play crucial roles in RB genesis through "cell cycle" and "pathway in cancer" pathways by regulating their targets including CCND1, CDC25C, E2F2 and CDKN2D.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - He Zou
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu-Fei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Mei-Jiao Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu Liu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Hui Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
56
|
Wang W, Zhang R, Wang X, Wang N, Zhao J, Wei Z, Xiang F, Wang C. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci 2020; 111:1422-1434. [PMID: 32011034 PMCID: PMC7156822 DOI: 10.1111/cas.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) displays higher heterogeneity, stronger invasiveness, higher risk of metastasis and poorer prognosis compared with major breast cancer subtypes. KIF3A, a member of the kinesin family of motor proteins, serves as a microtubule-directed motor subunit and has been found to regulate early development, ciliogenesis and tumorigenesis. To explore the expression, regulation and mechanism of KIF3A in TNBC, 3 TNBC cell lines, 98 cases of primary TNBC and paired adjacent tissues were examined. Immunohistochemistry, real-time PCR, western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques, transwell assays, scratch tests, and xenograft mice models were used. We found that KIF3A was overexpressed in TNBC and such high KIF3A expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3A suppressed TNBC cell proliferation by repressing the Rb-E2F signaling pathway and inhibited migration and invasion by repressing epithelial-mesenchymal transition. The tumor size was smaller and the number of lung metastatic nodules was lower in KIF3A depletion MDA-MB-231 cell xenograft mice than in the negative control group. In addition, KIF3A overexpression correlated with chemoresistance. These results suggested that high expression of KIF3A in TNBC was associated with the tumor progression and metastasis.
Collapse
Affiliation(s)
- Weilin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Runze Zhang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiao Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ning Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Jing Zhao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhimin Wei
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fenggang Xiang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chengqin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
57
|
Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J 2020; 34:3413-3428. [PMID: 31922321 DOI: 10.1096/fj.201902849r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
58
|
Tomao F, Santangelo G, Musacchio L, Di Donato V, Fischetti M, Giancotti A, Perniola G, Petrella MC, Monti M, Palaia I, Muzii L, Benedetti Panici P. Targeting cervical cancer: Is there a role for poly (ADP-ribose) polymerase inhibition? J Cell Physiol 2020; 235:5050-5058. [PMID: 31912897 DOI: 10.1002/jcp.29440] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
Patients with metastatic and recurrent cervical cancer (CC) have a poor prognosis with limited palliative treatment options. Increasing understanding of the cellular aberrations inherent to cancer cells has allowed the development of therapies to target biological pathways, an important step toward the individualization of cancer therapy. The poly (ADP-ribose) polymerase (PARP) family of enzymes is important in several DNA repair pathways. Drugs that inhibit these PARP enzymes have been investigated in many types of cancer and their application in the treatment of gynecologic malignancies has rapidly evolved. Although the majority of data for PARPi in gynecologic malignancies has been specifically regarding ovarian cancer, their role in the treatment of uterine and CC is currently being investigated. This review will examine PARP inhibitors in CC, summarizes the critical clinical trials of PARP inhibitors that have been completed, provides an overview of the on-going trials, presents the confirmed conclusions and notes the issues that need to be addressed in future studies.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Giusi Santangelo
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Lucia Musacchio
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Margherita Fischetti
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Maria Cristina Petrella
- AOUC Azienda Ospedaliero-Universitaria Careggi, Reparto di Oncologia Medica, Florence, Italy
| | - Marco Monti
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| |
Collapse
|
59
|
Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MRG, Mestroni L, Coarfa C, Gurha P, Marian AJ. DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circ Res 2019; 124:856-873. [PMID: 30696354 DOI: 10.1161/circresaha.118.314238] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. OBJECTIVE To gain insights into the molecular pathogenesis of DCM in laminopathies. METHODS AND RESULTS We generated a tet-off bigenic mice expressing either a WT (wild type) or a mutant LMNA (D300N) protein in cardiac myocytes. LMNAD300N mutation is associated with DCM in progeroid syndromes. Expression of LMNAD300N led to severe myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. Administration of doxycycline suppressed LMNAD300N expression and prevented the phenotype. Whole-heart RNA sequencing in 2-week-old WT and LMNAD300N mice led to identification of ≈6000 differentially expressed genes. Gene Set Enrichment and Hallmark Pathway analyses predicted activation of E2F (E2F transcription factor), DNA damage response, TP53 (tumor protein 53), NFκB (nuclear factor κB), and TGFβ (transforming growth factor-β) pathways, which were validated by Western blotting, quantitative polymerase chain reaction of selected targets, and immunofluorescence staining. Differentially expressed genes involved cell death, cell cycle regulation, inflammation, and epithelial-mesenchymal differentiation. RNA sequencing of human hearts with DCM associated with defined LMNA pathogenic variants corroborated activation of the DNA damage response/TP53 pathway in the heart. Increased expression of CDKN2A (cyclin-dependent kinase inhibitor 2A)-a downstream target of E2F pathway and an activator of TP53-provided a plausible mechanism for activation of the TP53 pathway. To determine pathogenic role of TP53 pathway in DCM, Tp53 gene was conditionally deleted in cardiac myocytes in mice expressing the LMNAD300N protein. Deletion of Tp53 partially rescued myocardial fibrosis, apoptosis, proliferation of nonmyocyte cells, left ventricular dilatation and dysfunction, and slightly improved survival. CONCLUSIONS Cardiac myocyte-specific expression of LMNAD300N, associated with DCM, led to pathogenic activation of the E2F/DNA damage response/TP53 pathway in the heart and induction of myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. The findings denote the E2F/DNA damage response/TP53 axis as a responsible mechanism for DCM in laminopathies and as a potential intervention target.
Collapse
Affiliation(s)
- Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Division of Cardiology, Department of Advanced Biomedical Science, University of Naples Federico II, Italy (R.L.)
| | - Jennifer Karmouch
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,MD Anderson Cancer Center, Houston, TX (J.K.)
| | - Ju-Yun Tsai
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Thermo Fisher Scientific, Taiwan (J.-Y.T.)
| | - Grace Czernuszewicz
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Matthew R G Taylor
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Luisa Mestroni
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, TX (C.C.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| |
Collapse
|
60
|
Zhou Y, Yang Y, Liang T, Hu Y, Tang H, Song D, Fang H. The regulatory effect of microRNA-21a-3p on the promotion of telocyte angiogenesis mediated by PI3K (p110α)/AKT/mTOR in LPS induced mice ARDS. J Transl Med 2019; 17:427. [PMID: 31878977 PMCID: PMC6933909 DOI: 10.1186/s12967-019-02168-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Telocytes (TCs) are newly identified interstitial cells that participate in tissue protection and repair. The present study investigated the mechanisms underlying the protective effect of TCs in a mouse model of respiratory distress. Methods The mouse model of acute respiratory distress syndrome (ARDS) was established by intratracheal instillation of lipopolysaccharide (LPS). After instillation of TCs culture medium, lung injury was assessed, and angiogenesis markers, including CD31 and endothelial nitric oxide synthase (eNOS), were detected by immunofluorescence. Bioinformatics analysis was used to screen significantly differentially expressed microRNAs (miRNAs) in cultured TCs stimulated with LPS, and the regulation of downstream angiogenesis genes by these miRNAs was analysed and verified. PI3K subunits and pathways were evaluated by using a PI3K p110α inhibitor to study the involved mechanisms. Results In ARDS mice, instillation of TCs culture medium ameliorated LPS-induced inflammation and lung injury and increased the protein levels of CD31 and eNOS in the injured lungs. A total of 7 miRNAs and 1899 mRNAs were differentially regulated in TCs stimulated with LPS. Functional prediction analysis showed that the differentially expressed mRNAs were enriched in angiogenesis-related processes, which were highly correlated with miR-21a-3p. Culture medium from TCs with miR-21a-3p inhibition failed to promote angiogenesis in mouse models of LPS-induced ARDS. In cultured TCs, LPS stimulation upregulated the expression of miR-21a-3p, which further targeted the transcription factor E2F8 and decreased Notch2 protein expression. TCs culture medium enhanced hemangioendothelioma endothelial cells (EOMA cells) proliferation, which was blocked by the miR-21a-3p inhibitor. The PI3K p110α inhibitor decreased vascular endothelial growth factor levels in LPS-stimulated TCs and reversed the enhancing effect of TCs culture medium on EOMA cells proliferation. Conclusions TCs exerted protective effects under inflammatory conditions by promoting angiogenesis via miR-21a-3p. The PI3K p110α subunit and transcriptional factor E2F8 could be involved in this process.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yajie Yang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Tao Liang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yan Hu
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Haihong Tang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Fang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Anaesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
| |
Collapse
|
61
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
62
|
Robinson AM, Rathore R, Redlich NJ, Adkins DR, VanArsdale T, Van Tine BA, Michel LS. Cisplatin exposure causes c-Myc-dependent resistance to CDK4/6 inhibition in HPV-negative head and neck squamous cell carcinoma. Cell Death Dis 2019; 10:867. [PMID: 31727874 PMCID: PMC6856201 DOI: 10.1038/s41419-019-2098-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
The loss of p16 is a signature event in Human Papilloma Virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) that leads to increased Cyclin Dependent Kinase 4/6 (CDK) signaling. Palbociclib, a CDK4/6 inhibitor, is active for the treatment of a subset of HNSCC. In this study, we analyzed patient response data from a phase I clinical trial of palbociclib in HNSCC and observed an association between prior cisplatin exposure and CDK inhibitor resistance. We studied the effects of palbociclib on cisplatin-sensitive and -resistant HNSCC cell lines. We found that while palbociclib is highly effective against chemo-naive HNSCC cell lines and tumor xenografts, prior cisplatin exposure induces intrinsic resistance to palbociclib in vivo, a relationship that was not observed in vitro. Mechanistically, in the course of provoking a DNA damage-resistance phenotype, cisplatin exposure upregulates both c-Myc and cyclin E, and combination treatment with palbociclib and the c-Myc bromodomain inhibitor JQ1 exerts a synergistic anti-growth effect in cisplatin-resistant cells. These data show the benefit of exploiting the inherent resistance mechanisms of HNSCC to overcome cisplatin- and palbociclib resistance through the use of c-Myc inhibition.
Collapse
Affiliation(s)
- Anthony M Robinson
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Richa Rathore
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Douglas R Adkins
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Brian A Van Tine
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Loren S Michel
- Memorial Sloan-Kettering Cancer Center, Monmouth, NJ, USA
| |
Collapse
|
63
|
Stallaert W, Kedziora KM, Chao HX, Purvis JE. Bistable switches as integrators and actuators during cell cycle progression. FEBS Lett 2019; 593:2805-2816. [PMID: 31566708 DOI: 10.1002/1873-3468.13628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Progression through the cell cycle is driven by bistable switches-specialized molecular circuits that govern transitions from one cellular state to another. Although the mechanics of bistable switches are relatively well understood, it is less clear how cells integrate multiple sources of molecular information to engage these switches. Here, we describe how bistable switches act as hubs of information processing and examine how variability, competition, and inheritance of molecular signals determine the timing of the Rb-E2F bistable switch that controls cell cycle entry. Bistable switches confer both robustness and plasticity to cell cycle progression, ensuring that cell cycle events are performed completely and in the correct order, while still allowing flexibility to cope with ongoing stress and changing environmental conditions.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of Genetics, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Department of Genetics, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hui Xiao Chao
- Department of Genetics, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Department of Genetics, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
64
|
Expression and purification of the recombinant full-length retinoblastoma protein and characterisation of its interaction with the oncoprotein HDM2. Protein Expr Purif 2019; 162:62-66. [DOI: 10.1016/j.pep.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 01/11/2023]
|
65
|
Jusino S, Saavedra HI. Role of E2Fs and mitotic regulators controlled by E2Fs in the epithelial to mesenchymal transition. Exp Biol Med (Maywood) 2019; 244:1419-1429. [PMID: 31575294 DOI: 10.1177/1535370219881360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings: development, wound healing and fibrosis, and tumor progression. Despite occurring in three independent biological settings, EMT signaling shares some molecular mechanisms that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that confer cells invasive and migratory capacity to distant sites. Here we summarize the molecular mechanism that delineates EMT and we will focus on the role of E2 promoter binding factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable due to their control in numerous pivotal cellular functions and due to the lack of selectivity against individual E2Fs, we will also discuss the role of three mitotic regulators and/or mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be useful as drug targets. Impact statement The study of the epithelial to mesenchymal transition (EMT) is an active area of research since it is one of the early intermediates to invasion and metastasis—a state of the cancer cells that ultimately kills many cancer patients. We will present in this review that besides their canonical roles as regulators of proliferation, unregulated expression of the E2F transcription factors may contribute to cancer initiation and progression to metastasis by signaling centrosome amplification, chromosome instability, and EMT. Since our discovery that the E2F activators control centrosome amplification and mitosis in cancer cells, we have identified centrosome and mitotic regulators that may represent actionable targets against EMT and metastasis in cancer cells. This is impactful to all of the cancer patients in which the Cdk/Rb/E2F pathway is deregulated, which has been estimated to be most cancer patients with solid tumors.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| |
Collapse
|
66
|
Laaniste L, Srivastava PK, Stylianou J, Syed N, Cases-Cunillera S, Shkura K, Zeng Q, Rackham OJL, Langley SR, Delahaye-Duriez A, O'Neill K, Williams M, Becker A, Roncaroli F, Petretto E, Johnson MR. Integrated systems-genetic analyses reveal a network target for delaying glioma progression. Ann Clin Transl Neurol 2019; 6:1616-1638. [PMID: 31420939 PMCID: PMC6764637 DOI: 10.1002/acn3.50850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To identify a convergent, multitarget proliferation characteristic for astrocytoma transformation that could be targeted for therapy discovery. Methods Using an integrated functional genomics approach, we prioritized networks associated with astrocytoma progression using the following criteria: differential co‐expression between grade II and grade III IDH1‐mutated and 1p/19q euploid astrocytomas, preferential enrichment for genetic risk to cancer, association with patient survival and sample‐level genomic features. Drugs targeting the identified multitarget network characteristic for astrocytoma transformation were computationally predicted using drug transcriptional perturbation data and validated using primary human astrocytoma cells. Results A single network, M2, consisting of 177 genes, was associated with glioma progression on the basis of the above criteria. Functionally, M2 encoded physically interacting proteins regulating cell cycle processes and analysis of genome‐wide gene‐regulatory interactions using mutual information and DNA–protein interactions revealed the known regulators of cell cycle processes FoxM1, B‐Myb, and E2F2 as key regulators of M2. These results suggest functional disruption of M2 via gene mutation or altered expression as a convergent pathway regulating astrocytoma transformation. By considering M2 as a multitarget drug target regulating astrocytoma transformation, we identified several drugs that are predicted to restore M2 expression in anaplastic astrocytoma toward its low‐grade profile and of these, we validated the known antiproliferative drug resveratrol as down‐regulating multiple nodes of M2 including at nanomolar concentrations achievable in human cerebrospinal fluid by oral dosing. Interpretation Our results identify M2 as a multitarget network characteristic for astrocytoma progression and encourage M2‐based drug screening to identify new compounds for preventing glioma transformation.
Collapse
Affiliation(s)
- Liisi Laaniste
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Julianna Stylianou
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Qingyu Zeng
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Sarah R Langley
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.,Duke-NUS Medical School, Singapore
| | - Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, France
| | - Kevin O'Neill
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew Williams
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Centre, Bonn, Germany
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore.,MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| |
Collapse
|
67
|
Lin QY, Wang JQ, Wu LL, Zheng WE, Chen PR. miR-638 represses the stem cell characteristics of breast cancer cells by targeting E2F2. Breast Cancer 2019; 27:147-158. [PMID: 31410735 DOI: 10.1007/s12282-019-01002-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The miR-638 acted as a tumor suppressor and E2F transcription factor 2 (E2F2) was a critical regulator in some cancers, while the role of them on stemness of breast cancer stem cells (BCSCs) was rarely detailed. Hence, we focused on exploring the effects of miR-638 and E2F2 on BCSCs stemness. METHODS The proportion of CD24 -/CD44 + cells of BCSCs was detected by flow cytometry. The target relationship of miR-638 and E2F2 was explored using luciferase assays. The ability of self-renewal, proliferation, and invasion of BCSCs were determined by Mammosphere forming, Cell Counting Kit-8 (CCK-8), colony formation, and transwell assays. Xenograft tumor was established to detect the influence of miR-638 on tumor growth. RESULTS miR-638 was down-regulated, while E2F2 was elevated in breast cancer. The E2F2 level was negatively correlated with miR-638. The BCSCs represented higher proportion of CD24 -/CD44 + cells and levels of sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4). The miR-638 was down-regulated and E2F2 was increased in BCSCs. MiR-638 could target to E2F2 and decreased the level of E2F2 in BCSCs cells. Overexpression of miR-638 decreased the proportion of CD24 -/CD44 + cells and the levels of SOX2 and OCT4 by inhibiting E2F2. The overexpression of miR-638 also inhibited the abilities of self-renewal, proliferation, and invasion of BCSCs by inhibiting E2F2. The miR-638 overexpression inhibited the breast tumor growth. CONCLUSION MiR-638 represses the characteristics and behaviors of BCSCs by targeting E2F2. MiR-638 may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Qiu-Yan Lin
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Jia-Qi Wang
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Li-Li Wu
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Wei-E Zheng
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Pei-Rui Chen
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China.
| |
Collapse
|
68
|
Temporal Proteomic Analysis of BK Polyomavirus Infection Reveals Virus-Induced G 2 Arrest and Highly Effective Evasion of Innate Immune Sensing. J Virol 2019; 93:JVI.00595-19. [PMID: 31142673 PMCID: PMC6675895 DOI: 10.1128/jvi.00595-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022] Open
Abstract
BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.
Collapse
|
69
|
Endothelial retinoblastoma protein reduces abdominal aortic aneurysm development via promoting DHFR/NO pathway-mediated vasoprotection. Mol Cell Biochem 2019; 460:29-36. [DOI: 10.1007/s11010-019-03567-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
70
|
Cunarro J, Buque X, Casado S, Lugilde J, Vidal A, Mora A, Sabio G, Nogueiras R, Aspichueta P, Diéguez C, Tovar S. p107 Deficiency Increases Energy Expenditure by Inducing Brown-Fat Thermogenesis and Browning of White Adipose Tissue. Mol Nutr Food Res 2018; 63:e1801096. [PMID: 30383332 DOI: 10.1002/mnfr.201801096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Indexed: 11/07/2022]
Abstract
SCOPE The tumor suppressor p107, a pocket protein member of the retinoblastoma susceptibility protein family, plays an important role in the cell cycle and cellular adipocyte differentiation. Nonetheless, the mechanism by which it influences whole body Energy homeostasis is unknown. METHODS AND RESULTS The phenotype of p107 knockout (KO) mixed-background C57BL6/129 mice phenotype is studied by focusing on the involvement of white and brown adipose tissue (WAT and BAT) in energy metabolism. It is shown that p107 KO mice are leaner and have high-fat diet resistence. This phenomenon is explained by an increase of energy expenditure. The higher energy expenditure is caused by the activation of thermogenesis and may be mediated by both BAT and the browning of WAT. Consequently, it leads to the resistance of p107 KO mice to high-fat diet effects, prevention of liver steatosis, and improvement of the lipid profile and glucose homeostasis. CONCLUSION These data allowed the unmasking of a mechanism by which a KO of p107 prevents diet-induced obesity by increasing energy expenditure via increased thermogenesis in BAT and browning of WAT, indicating the relevance of p107 as a modulator of metabolic activity of both brown and white adipocytes. Therefore, it can be targeted for the development of new therapies to ameliorate the metabolic syndrome.
Collapse
Affiliation(s)
- Juan Cunarro
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Xabier Buque
- Department of Physiology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Biocruces Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Sabela Casado
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Javier Lugilde
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Anxo Vidal
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Alfonso Mora
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Rubén Nogueiras
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Biocruces Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Carlos Diéguez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
71
|
Hu R, Wang MQ, Niu WB, Wang YJ, Liu YY, Liu LY, Wang M, Zhong J, You HY, Wu XH, Deng N, Lu L, Wei LB. SKA3 promotes cell proliferation and migration in cervical cancer by activating the PI3K/Akt signaling pathway. Cancer Cell Int 2018; 18:183. [PMID: 30459531 PMCID: PMC6236911 DOI: 10.1186/s12935-018-0670-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/30/2018] [Indexed: 01/03/2023] Open
Abstract
Background Cervical cancer (CC) is one of the most common cancers among females worldwide. Spindle and kinetochore-associated complex subunit 3 (SKA3), located on chromosome 13q, was identified as a novel gene involved in promoting malignant transformation in cancers. However, the function and underlying mechanisms of SKA3 in CC remain unknown. Using the Oncomine database, we found that expression of SKA3 mRNA is higher in CC tissues than in normal tissues and is linked with poor prognosis. Methods In our study, immunohistochemistry showed increased expression of SKA3 in CC tissues. The effect of SKA3 on cell proliferation and migration was evaluated by CCK8, clone formation, Transwell and wound-healing assays in HeLa and SiHa cells with stable SKA3 overexpression and knockdown. In addition, we established a xenograft tumor model in vivo. Results SKA3 overexpression promoted cell proliferation and migration and accelerated tumor growth. We further identified that SKA3 is involved in regulating cell cycle progression and the PI3K/Akt signaling pathway via RNA-sequencing (RNA-Seq) and gene set enrichment analyses. Western blotting results revealed that SKA3 overexpression increased levels of p-Akt, cyclin E2, CDK2, cyclin D1, CDK4, E2F1 and p-Rb in HeLa cells. Additionally, the use of an Akt inhibitor (GSK690693) significantly reversed the cell proliferation capacity induced by SKA3 overexpression in HeLa cells. Conclusions We suggest that SKA3 overexpression contributes to CC cell growth and migration by promoting cell cycle progression and activating the PI3K-Akt signaling pathway, which may provide potential novel therapeutic targets for CC treatment.
Collapse
Affiliation(s)
- Rong Hu
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Ming-Qing Wang
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Wen-Bo Niu
- 5Cancer Research Institute, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Yan-Jing Wang
- 3Zhujiang Hospital of Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510280 Guangdong China
| | - Yang-Yang Liu
- Zhongshan Huangpu People's Hospital, No. 32, Long'an Street, Huangpu Town, Zhongshan, 528429 Guangdong China
| | - Ling-Yu Liu
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Ming Wang
- 3Zhujiang Hospital of Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510280 Guangdong China
| | - Juan Zhong
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Hai-Yan You
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Xiao-Hui Wu
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Ning Deng
- 2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| | - Lu Lu
- 4The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No.16 Baiyun Airport Road, Baiyun District, Guangzhou, 510405 Guangdong China
| | - Lian-Bo Wei
- 1Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen, 518101 Guangdong China.,2School of Traditional Chinese Medicine, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515 Guangdong China
| |
Collapse
|
72
|
Chang MM, Lai MS, Hong SY, Pan BS, Huang H, Yang SH, Wu CC, Sun HS, Chuang JI, Wang CY, Huang BM. FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 2018; 109:3503-3518. [PMID: 30191630 PMCID: PMC6215879 DOI: 10.1111/cas.13793] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) promotes cancer progression; however, its role in cell proliferation related to tumorigenesis remains elusive. We investigated how FGF9 affected MA‐10 mouse Leydig tumor cell proliferation and found that FGF9 significantly induced cell proliferation by activating ERK1/2 and retinoblastoma (Rb) phosphorylations within 15 minutes. Subsequently, the expressions of E2F1 and the cell cycle regulators: cyclin D1, cyclin E1 and cyclin‐dependent kinase 4 (CDK4) in G1 phase and cyclin A1, CDK2 and CDK1 in S‐G2/M phases were increased at 12 hours after FGF9 treatment; and cyclin B1 in G2/M phases were induced at 24 hours after FGF9 stimulation, whereas the phosphorylations of p53, p21 and p27 were not affected by FGF9. Moreover, FGF9‐induced effects were inhibited by MEK inhibitor PD98059, indicating FGF9 activated the Rb/E2F pathway to accelerate MA‐10 cell proliferation by activating ERK1/2. Immunoprecipitation assay and ChIP‐quantitative PCR results showed that FGF9‐induced Rb phosphorylation led to the dissociation of Rb‐E2F1 complexes and thereby enhanced the transactivations of E2F1 target genes, Cyclin D1, Cyclin E1 and Cyclin A1. Silencing of FGF receptor 2 (FGFR2) using lentiviral shRNA inhibited FGF9‐induced ERK1/2 phosphorylation and cell proliferation, indicating that FGFR2 is the obligate receptor for FGF9 to bind and activate the signaling pathway in MA‐10 cells. Furthermore, in a severe combined immunodeficiency mouse xenograft model, FGF9 significantly promoted MA‐10 tumor growth, a consequence of increased cell proliferation and decreased apoptosis. Conclusively, FGF9 interacts with FGFR2 to activate ERK1/2, Rb/E2F1 and cell cycle pathways to induce MA‐10 cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siou-Ying Hong
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Hsin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hsun Yang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
73
|
Li F, Xu X, Yang X, Li Z, Zhou X. Identification of a cis-Acting Element Derived from Tomato Leaf Curl Yunnan Virus that Mediates the Replication of a Deficient Yeast Plasmid in Saccharomyces cerevisiae. Viruses 2018; 10:v10100536. [PMID: 30274361 PMCID: PMC6213642 DOI: 10.3390/v10100536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Geminiviruses are a group of small single-stranded DNA viruses that replicate in the host cell nucleus. It has been reported that the viral replication initiator protein (Rep) and the conserved common region (CR) are required for rolling circle replication (RCR)-dependent geminivirus replication, but the detailed mechanisms of geminivirus replication are still obscure owing to a lack of a eukaryotic model system. In this study, we constructed a bacterial–yeast shuttle plasmid with the autonomous replication sequence (ARS) deleted, which failed to replicate in Saccharomyces cerevisiae cells and could not survive in selective media either. Tandemly repeated copies of 10 geminivirus genomic DNAs were inserted into this deficient plasmid to test whether they were able to replace the ARS to execute genomic DNA replication in yeast cells. We found that yeast cells consisting of the recombinant plasmid with 1.9 tandemly repeated copies of tomato leaf curl Yunnan virus isolate Y194 (TLCYnV-Y194, hereafter referred to as Y194) can replicate well and survive in selective plates. Furthermore, we showed that the recombinant plasmid harboring the Y194 genome with the mutation of the viral Rep or CR was still able to replicate in yeast cells, indicating the existence of a non-canonic RCR model. By a series of mutations, we mapped a short fragment of 174 nucleotides (nts) between the V1 and C3 open reading frames (ORFs), including an ARS-like element that can substitute the function of the ARS responsible for stable replication of extrachromosomal DNAs in yeast. The results of this study established a geminivirus replication system in yeast cells and revealed that Y194 consisting of an ARS-like element was able to support the replication a bacterial–yeast shuttle plasmid in yeast cells.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiongbiao Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
74
|
Disproportionate feedback interactions govern cell‐type specific proliferation in mammalian cells. FEBS Lett 2018; 592:3248-3263. [DOI: 10.1002/1873-3468.13241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 11/07/2022]
|
75
|
Zeng H, Jorapur A, Shain AH, Lang UE, Torres R, Zhang Y, McNeal AS, Botton T, Lin J, Donne M, Bastian IN, Yu R, North JP, Pincus L, Ruben BS, Joseph NM, Yeh I, Bastian BC, Judson RL. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell 2018; 34:56-68.e9. [PMID: 29990501 PMCID: PMC6084788 DOI: 10.1016/j.ccell.2018.05.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 02/03/2023]
Abstract
Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.
Collapse
Affiliation(s)
- Hanlin Zeng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Aparna Jorapur
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - A Hunter Shain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Ursula E Lang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Rodrigo Torres
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yuntian Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Andrew S McNeal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Thomas Botton
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Donne
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingmar N Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Richard Yu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Jeffrey P North
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Laura Pincus
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Beth S Ruben
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Nancy M Joseph
- Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Boris C Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
76
|
Abstract
Osteosarcoma (OS) is the most common primary bone tumor affecting predominantly adolescents and young adults. It accounts for about 5% of all childhood cancers. Although the majority of OSs are sporadic, a small percentage occur as a component of hereditary cancer syndromes. Early onset, bilateral, multifocal, and metachronous tumors suggest genetic predisposition. The inheritance patterns can be autosomal dominant or recessive. These syndromes predispose to a wide variety of mesenchymal and epithelial cancers with propensity for certain mutations being prevalent in specific cancer subtypes. Li-Fraumeni syndrome, retinoblastoma, Rothmund-Thompson syndrome (type 2), Werner syndrome, and Bloom syndrome, constitute the majority of the tumor syndromes predisposing to OS and will be the focus for this review.
Collapse
|
77
|
Li S, Wang C, Wang W, Liu W, Zhang G. Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia. Medicine (Baltimore) 2018; 97:e10734. [PMID: 29768346 PMCID: PMC5976347 DOI: 10.1097/md.0000000000010734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore the underlying mechanism of relapsed acute lymphoblastic leukemia (ALL).Datasets of GSE28460 and GSE18497 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between diagnostic and relapsed ALL samples were identified using Limma package in R, and a Venn diagram was drawn. Next, functional enrichment analyses of co-regulated DEGs were performed. Based on the String database, protein-protein interaction network and module analyses were also conducted. Moreover, transcription factors and miRNAs targeting co-regulated DEGs were predicted using the WebGestalt online tool.A total of 71 co-regulated DEGs were identified, including 56 co-upregulated genes and 15 co-downregulated genes. Functional enrichment analyses showed that upregulated DEGs were significantly enriched in the cell cycle, and DNA replication, and repair related pathways. POLD1, MCM2, and PLK4 were hub proteins in both protein-protein interaction network and module, and might be potential targets of E2F. Additionally, POLD1 and MCM2 were found to be regulated by miR-520H via E2F1.High expression of POLD1, MCM2, and PLK4 might play positive roles in the recurrence of ALL, and could serve as potential therapeutic targets for the treatment of relapsed ALL.
Collapse
|
78
|
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc Natl Acad Sci U S A 2018; 115:E3837-E3845. [PMID: 29610335 DOI: 10.1073/pnas.1720094115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA damage poses a serious threat to genome integrity and greatly affects growth and development. To maintain genome stability, all organisms have evolved elaborate DNA damage response mechanisms including activation of cell cycle checkpoints and DNA repair. Here, we show that the DNA repair protein SNI1, a subunit of the evolutionally conserved SMC5/6 complex, directly links these two processes in Arabidopsis SNI1 binds to the activation domains of E2F transcription factors, the key regulators of cell cycle progression, and represses their transcriptional activities. In turn, E2Fs activate the expression of SNI1, suggesting that E2Fs and SNI1 form a negative feedback loop. Genetically, overexpression of SNI1 suppresses the phenotypes of E2F-overexpressing plants, and loss of E2F function fully suppresses the sni1 mutant, indicating that SNI1 is necessary and sufficient to inhibit E2Fs. Altogether, our study revealed that SNI1 is a negative regulator of E2Fs and plays dual roles in DNA damage responses by linking cell cycle checkpoint and DNA repair.
Collapse
|
79
|
Yang X, Gong Y, He Q, Licht JD, Liaw L, Friesel RE. Loss of Spry1 attenuates vascular smooth muscle proliferation by impairing mitogen-mediated changes in cell cycle regulatory circuits. J Cell Biochem 2018; 119:3267-3279. [PMID: 29105817 PMCID: PMC5826877 DOI: 10.1002/jcb.26486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
Signals from growth factors or mechanical stimuli converge to promote vascular smooth muscle cell (VSMC) migration and proliferation, key events in the pathogenesis of intimal hyperplasia upon vascular injury. Spry1, a regulator of receptor tyrosine kinases (RTK), plays a role in maintaining the contractile phenotype of VSMC. The aim of the current study was to determine the role of Spry1 in VSMC proliferation in vitro and injury induced neointimal hyperplasia in vivo. VSMC proliferation and neointima formation were evaluated in cultured human aortic SMC (hAoSMC) and ligation-induced injury of mouse carotid arteries from Spry1 gene targeted mice, and their corresponding wild type littermates. Human Spry1 or non-targeting control lentiviral shRNAs were used to knock down Spry1 in hAoSMC. Time course cell cycle analysis showed a reduced fraction of S-phase cells at 12 and 24 h after growth medium stimulation in Spry1 shRNA transduced hAoSMC. Consistent with reduced S-phase entry, the induction of cyclinD1 and the levels of pRbS807/S811, pH3Ser10, and pCdc2 were also reduced, while the cell cycle inhibitor p27Kip1 was maintained in Spry1 knockdown hAoSMC. In vivo, loss of Spry1 attenuated carotid artery ligation-induced neointima formation in mice, and this effect was accompanied by a decrease in cell proliferation similar to the in vitro results. Our findings demonstrate that loss of Spry1 attenuates mitogen-induced VSMC proliferation, and thus injury-induced neointimal hyperplasia likely via insufficient activation of Akt signaling causing decreased cyclinD1 and increased p27Kip1 and a subsequent decrease in Rb and cdc2 phosphorylation.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Yan Gong
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Qing He
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jonathan D. Licht
- Division of Hematology and Oncology
- Department of Medicine
- University of Florida Health Cancer Center
- University of Florida College of Medicine, Gainesville, FL
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| |
Collapse
|
80
|
Raposo AE, Piller SC. Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 2018; 13:3. [PMID: 29568320 PMCID: PMC5859524 DOI: 10.1186/s13008-018-0036-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein–protein interactions, RNA splicing and transport. The enzymes responsible for arginine methylation, protein arginine methyltransferases (PRMTs), have been shown to methylate or associate with important regulatory proteins of the cell cycle and DNA damage repair pathways, such as cyclin D1, p53, p21 and the retinoblastoma protein. Overexpression of PRMTs resulting in aberrant methylation patterns in cancers often correlates with poor recovery prognosis. This indicates that protein arginine methylation is also an important regulator of the cell cycle, and consequently a target for cancer regulation. The effect of protein arginine methylation on the cell cycle and how this emerging key player of cell cycle regulation may be used in therapeutic strategies for cancer are the focus of this review.
Collapse
Affiliation(s)
- Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
81
|
Suppression of c-Myc and RRM2 expression in pancreatic cancer cells by the sphingosine kinase-2 inhibitor ABC294640. Oncotarget 2018; 7:60181-60192. [PMID: 27517489 PMCID: PMC5312377 DOI: 10.18632/oncotarget.11112] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/06/2016] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer remains extremely difficult to treat, with the average lifespan following diagnosis being only 3-6 months, resulting in a death to incidence ratio of 0.94. A major reason for this high mortality rate is resistance to the main chemotherapeutic agent used to treat this disease, gemcitabine. Alterations in nucleoside and gemcitabine metabolism, specifically over-expression of ribonucleotide reductase, have been implicated as a major mechanism of resistance to this drug. Here, we show that inhibition of sphingosine kinase-2 by the specific inhibitor ABC294640 is synergistically cytotoxic with gemcitabine toward three human pancreatic cancer cell lines. Treatment with ABC294640 results in decreased expression of both RRM2 and MYC in all three cell lines. Additionally, expression of c-Myc protein and phosphorylation of Rb at S780 both decrease in a dose-dependent manner in response to ABC294640, while acetylation of H3-K9 and p21 levels increase. Pretreatment with the protein phosphatase 1 inhibitor okadaic acid or the ceramide synthase inhibitor fumonisin B1 fails to prevent the effects of ABC294640 on Rb phosphorylation. These data indicate a role for sphingosine kinase-2 in E2F and c-Myc mediated transcription through alteration of histone acetylation and p21 expression. These effects of ABC294640 suggest that it may be an effective agent for pancreatic cancer, particularly in combination with gemcitabine.
Collapse
|
82
|
Ki-67: more than a proliferation marker. Chromosoma 2018; 127:175-186. [PMID: 29322240 DOI: 10.1007/s00412-018-0659-8] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Ki-67 protein has been widely used as a proliferation marker for human tumor cells for decades. In recent studies, multiple molecular functions of this large protein have become better understood. Ki-67 has roles in both interphase and mitotic cells, and its cellular distribution dramatically changes during cell cycle progression. These localizations correlate with distinct functions. For example, during interphase, Ki-67 is required for normal cellular distribution of heterochromatin antigens and for the nucleolar association of heterochromatin. During mitosis, Ki-67 is essential for formation of the perichromosomal layer (PCL), a ribonucleoprotein sheath coating the condensed chromosomes. In this structure, Ki-67 acts to prevent aggregation of mitotic chromosomes. Here, we present an overview of functional roles of Ki-67 across the cell cycle and also describe recent experiments that clarify its role in regulating cell cycle progression in human cells.
Collapse
|
83
|
Pfister AS, Kühl M. Of Wnts and Ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:131-155. [PMID: 29389514 DOI: 10.1016/bs.pmbts.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt proteins are secreted glycoproteins that activate different intracellular signal transduction pathways. They regulate cell proliferation and are required for proper embryonic development. Misregulation of Wnt signaling can result in various diseases including cancer. In most circumstances, cell growth is essential for cell division and thus cell proliferation. Therefore, several reports have highlighted the key role of Wnt proteins for cell growth. Ribosomes represent the cellular protein synthesis machinery and cells need to be equipped with an appropriate number of ribosomes to allow cell growth. Recent findings suggest a role for Wnt proteins in regulating ribosome biogenesis and we here summarize these findings representing a previously unknown function of Wnt proteins. Understanding this role of Wnt signaling might open new avenues to slow down proliferation by drugs for instance in cancer therapy.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
84
|
PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat Commun 2017; 8:2103. [PMID: 29235459 PMCID: PMC5727396 DOI: 10.1038/s41467-017-02282-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
The c-myc oncogene stimulates ribosomal biogenesis and protein synthesis to promote cellular growth. However, the pathway by which cells sense and restore dysfunctional mRNA translation and how this is linked to cell proliferation and growth is not known. We here show that mRNA translation stress in cis triggered by the gly-ala repeat sequence of Epstein–Barr virus (EBV)-encoded EBNA1, results in PI3Kδ-dependent induction of E2F1 mRNA translation with the consequent activation of c-Myc and cell proliferation. Treatment with a specific PI3Kδ inhibitor Idelalisib (CAL-101) suppresses E2F1 and c-Myc levels and causes cell death in EBNA1-induced B cell lymphomas. Suppression of PI3Kδ prevents E2F1 activation also in non-EBV-infected cells. These data illustrate an mRNA translation stress–response pathway for E2F1 activation that is exploited by EBV to promote cell growth and proliferation, offering new strategies to treat EBV-carrying cancers. The oncogenic activity of EBNA1 protein is unknown; it contains a glycine and alanine repeat sequence (GAr) which regulates its own translation in cis. Here the authors show that GAr stimulates PI3Kδ-mediated induction of E2F1 translation, leading to c-Myc induction and stimulation of proliferation.
Collapse
|
85
|
An X, Hao Y, Meneses PI. Host cell transcriptome modification upon exogenous HPV16 L2 protein expression. Oncotarget 2017; 8:90730-90747. [PMID: 29207600 PMCID: PMC5710881 DOI: 10.18632/oncotarget.21817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Human papillomavirus type 16 minor capsid protein L2 has been shown to assist in the initial entry and intracellular trafficking events leading to nuclear translocation of the viral genome. During our investigations of L2 function, we observed that expression of L2 in a keratinocyte cell line (HaCaT) resulted in phenotypic changes. In this manuscript, we present data that expression of the L2 protein in this cellular model system HaCaTs resulted in a shift from G0/G1 phase to mitotic S phase, as well as a reduced amount of retinoblastoma protein (Rb) and an increase in Cdc2 phosphorylation. We performed genome-wide host cell mRNA sequencing and identified 2586 differentially expressed genes upon HPV16 L2 expression. Via machine learning and protein network analysis, genes involved in cellular differentiation and proliferation were highlighted as impacted by L2. Our results have implications for the role of L2 at the viral production stages when the virus needs to prevent cellular differentiation while maintaining the cells ability to replicate DNA. Our study suggests a potential novel function of the L2 protein, as a regulator of cellular gene transcription.
Collapse
Affiliation(s)
- Xinwei An
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
| | - Yuhan Hao
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America.,Applied Bioinformatics Laboratories, New York University School of Medicine, New York, New York, United Sates of America
| | - Patricio I Meneses
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
| |
Collapse
|
86
|
Dubrez L. Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation. Int J Mol Sci 2017; 18:ijms18102188. [PMID: 29048367 PMCID: PMC5666869 DOI: 10.3390/ijms18102188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly regulated over the course of the cell cycle progression and in response to genotoxic stress. I discuss here the most recent evidence demonstrating the role of ubiquitination in E2F1’s regulation.
Collapse
Affiliation(s)
- Laurence Dubrez
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000 Dijon, France.
- Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, 21000 Dijon, France.
| |
Collapse
|
87
|
Seoane M, Costoya JA, Arce VM. Uncoupling Oncogene-Induced Senescence (OIS) and DNA Damage Response (DDR) triggered by DNA hyper-replication: lessons from primary mouse embryo astrocytes (MEA). Sci Rep 2017; 7:12991. [PMID: 29021613 PMCID: PMC5636792 DOI: 10.1038/s41598-017-13408-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/22/2017] [Indexed: 11/15/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a complex process, in which activation of oncogenic signals during early tumorigenesis results in a high degree of DNA replication stress. The ensuing response to the DNA damage produces a permanent G1 arrest that prevents unlimited cell proliferation and lessens the development of tumours. However, despite the role of OIS in the proliferative arrest resulting from an activating oncogenic-lesion has obtained wide support, there is also evidence indicating that cells may overcome oncogene-induced senescence under some circumstances. In this study, we have investigated the possibility that some of the assumptions on the role of DNA damage response (DDR) in triggering OIS may depend on the fact that most of the available data were obtained in mouse embryo fibroblast. By comparing the degree of OIS observed in mouse embryo fibroblasts (MEF) and mouse embryo astrocytes (MEA) obtained from the same individuals we have demonstrated that, despite truthful activation of DDR in both cell types, significant levels of OIS were only detected in MEF. Therefore, this uncoupling between OIS and DDR observed in astrocytes supports the intriguingly possibility that OIS is not a widespread response mechanism to DDR.
Collapse
Affiliation(s)
- Marcos Seoane
- Molecular Oncology Laboratory MOL. Departamento de Fisioloxia, Facultade de Medicina and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS). Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL. Departamento de Fisioloxia, Facultade de Medicina and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS). Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Víctor M Arce
- Molecular Oncology Laboratory MOL. Departamento de Fisioloxia, Facultade de Medicina and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS). Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
88
|
Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target Oncol 2017; 12:571-597. [PMID: 28815409 PMCID: PMC5610669 DOI: 10.1007/s11523-017-0514-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.
Collapse
Affiliation(s)
- Aaron Simpson
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria.
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
89
|
Rivera-Carvantes MC, Jarero-Basulto JJ, Feria-Velasco AI, Beas-Zárate C, Navarro-Meza M, González-López MB, Gudiño-Cabrera G, García-Rodríguez JC. Changes in the expression level of MAPK pathway components induced by monosodium glutamate-administration produce neuronal death in the hippocampus from neonatal rats. Neuroscience 2017; 365:57-69. [PMID: 28954212 DOI: 10.1016/j.neuroscience.2017.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 11/18/2022]
Abstract
Excessive Glutamate (Glu) release may trigger excitotoxic cellular death by the activation of intracellular signaling pathways that transduce extracellular signals to the cell nucleus, which determines the onset of a death program. One such signaling pathway is the mitogen-activated protein kinases (MAPK), which is involved in both survival and cell death. Experimental evidences from the use of specific inhibitors supports the participation of some MAPK pathway components in the excitotoxicity mechanism, but the complete process of this activation, which terminates in cell damage and death, is not clearly understood. The present work, we investigated the changes in the expression level of some MAPK-pathway components in hippocampal excitotoxic cell death in the neonatal rats using an experimental model of subcutaneous monosodium glutamate (MSG) administration on postnatal days (PD) 1, 3, 5 and 7. Data were collected at different ages through PD 14. Cell viability was evaluated using fluorescein diacetate mixed with propidium iodide (FDA-PI), and the Nissl-staining technique was used to evaluate histological damage. Transcriptional changes were also investigated in 98 components of the MAPK pathway that are associated with cell damage. These results are an evidence of that repetitive use of MSG, in neonatal rats, induces cell damage-associated transcriptional changes of MAPK components, that might reflect a differential stage of both biochemical and molecular brain maturation. This work also suggests that some of the proteins evaluated such as phosphorylated retinoblastoma (pRb) protein, which was up-regulated, could regulate the response to excitotoxic through modulation of the process of re-entry into the cell cycle in the hippocampus of rats treated with MSG.
Collapse
Affiliation(s)
- Martha Catalina Rivera-Carvantes
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico.
| | - José Jaime Jarero-Basulto
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Alfredo Ignacio Feria-Velasco
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Carlos Beas-Zárate
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Mónica Navarro-Meza
- Department of Health and Wellness, CUSur, University of Guadalajara, Ciudad Guzman, Jal., Mexico
| | - Mariana Berenice González-López
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Graciela Gudiño-Cabrera
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | | |
Collapse
|
90
|
Cloning, expression pattern, and potential role of apoptosis inhibitor 5 in the termination of embryonic diapause and early embryo development of Artemia sinica. Gene 2017; 628:170-179. [DOI: 10.1016/j.gene.2017.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/05/2023]
|
91
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
92
|
Roy R, Huang Y, Seckl MJ, Pardo OE. Emerging roles of hnRNPA1 in modulating malignant transformation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28791797 DOI: 10.1002/wrna.1431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. hnRNPA1 is the most abundant and ubiquitously expressed member of this protein family and has been shown to be involved in multiple molecular events driving malignant transformation. In addition to selective mRNA splicing events promoting expression of specific protein variants, hnRNPA1 regulates the gene expression and translation of several key players associated with tumorigenesis and cancer progression. Here, we will summarize our current knowledge of the involvement of hnRNPA1 in cancer, including its roles in regulating cell proliferation, invasiveness, metabolism, adaptation to stress and immortalization. WIREs RNA 2017, 8:e1431. doi: 10.1002/wrna.1431 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yueyang Huang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
93
|
Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mossé YP, Nakagawara A, Parareda A, Scollon SR, Schneider KW, Skalet AH, States LJ, Walsh MF, Diller LR, Brodeur GM. Retinoblastoma and Neuroblastoma Predisposition and Surveillance. Clin Cancer Res 2017; 23:e98-e106. [PMID: 28674118 PMCID: PMC7266051 DOI: 10.1158/1078-0432.ccr-17-0652] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022]
Abstract
Retinoblastoma (RB) is the most common intraocular malignancy in childhood. Approximately 40% of retinoblastomas are hereditary and due to germline mutations in the RB1 gene. Children with hereditary RB are also at risk for developing a midline intracranial tumor, most commonly pineoblastoma. We recommend intensive ocular screening for patients with germline RB1 mutations for retinoblastoma as well as neuroimaging for pineoblastoma surveillance. There is an approximately 20% risk of developing second primary cancers among individuals with hereditary RB, higher among those who received radiotherapy for their primary RB tumors. However, there is not yet a clear consensus on what, if any, screening protocol would be most appropriate and effective. Neuroblastoma (NB), an embryonal tumor of the sympathetic nervous system, accounts for 15% of pediatric cancer deaths. Prior studies suggest that about 2% of patients with NB have an underlying genetic predisposition that may have contributed to the development of NB. Germline mutations in ALK and PHOX2B account for most familial NB cases. However, other cancer predisposition syndromes, such as Li-Fraumeni syndrome, RASopathies, and others, may be associated with an increased risk for NB. No established protocols for NB surveillance currently exist. Here, we describe consensus recommendations on hereditary RB and NB from the AACR Childhood Cancer Predisposition Workshop. Clin Cancer Res; 23(13); e98-e106. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.
Collapse
Affiliation(s)
- Junne Kamihara
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | | | - William D Foulkes
- Human Genetics, Medicine and Oncology, McGill University, Montreal, Québec, Canada
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Yaël P Mossé
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Andreu Parareda
- Sant Joan de Deu, Barcelona Children's Hospital, Barcelona, Catalonia, Spain
| | | | | | - Alison H Skalet
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Lisa J States
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Lisa R Diller
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | | |
Collapse
|
94
|
Liu X, Guo H, Wei Y, Cai C, Zhang B, Li J. TGF-β induces growth suppression in multiple myeloma MM.1S cells via E2F1. Oncol Lett 2017; 14:1884-1888. [PMID: 28789423 DOI: 10.3892/ol.2017.6360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor-β (TGF-β) has an important role in multiple target genes and signaling pathways. The E2F family of transcription factors is a group of DNA-binding proteins that are involved in cell-cycle progression, and therefore have a key role in proliferation. The present study demonstrates that inhibition of cell growth by TGF-β occurs in the multiple myeloma cell line MM.1S. However, the growth-suppressive effects of TGF-β may be reversed by small interfering (si)RNA to reduce the expression of E2F1. TGF-β1 and E2F1 siRNA were manipulated in MM.1S cells to investigate the association between these genes. FACScan Flow Cytometer, western blot analysis and other methods were adopted to confirm such interrelation. The present data showed that TGF-β mediated growth suppression in MM.1S cells, while inducing E2F1 protein expression levels rapidly and transiently. The present data support the hypothesis that E2F1 is a central mediator of TGF-β-induced growth suppression in MM.1S cells and control of E2F1 may be a downstream event of TGF-β action, at least in one multiple myeloma cell line.
Collapse
Affiliation(s)
- Xialei Liu
- Department of General Surgery 3, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Hui Guo
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yuting Wei
- Department of Hemodialysis, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Chaonong Cai
- Department of General Surgery 3, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Baimeng Zhang
- Department of General Surgery 3, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jian Li
- Department of General Surgery 3, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
95
|
Shats I, Deng M, Davidovich A, Zhang C, Kwon JS, Manandhar D, Gordân R, Yao G, You L. Expression level is a key determinant of E2F1-mediated cell fate. Cell Death Differ 2017; 24:626-637. [PMID: 28211871 DOI: 10.1038/cdd.2017.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/08/2023] Open
Abstract
The Rb/E2F network has a critical role in regulating cell cycle progression and cell fate decisions. It is dysfunctional in virtually all human cancers, because of genetic lesions that cause overexpression of activators, inactivation of repressors, or both. Paradoxically, the downstream target of this network, E2F1, is rarely strongly overexpressed in cancer. E2F1 can induce both proliferation and apoptosis but the factors governing these critical cell fate decisions remain unclear. Previous studies have focused on qualitative mechanisms such as differential cofactors, posttranslational modification or state of other signaling pathways as modifiers of the cell fate decisions downstream of E2F1 activation. In contrast, the importance of the expression levels of E2F1 itself in dictating the downstream phenotypes has not been rigorously studied, partly due to the limited resolution of traditional population-level measurements. Here, through single-cell quantitative analysis, we demonstrate that E2F1 expression levels have a critical role in determining the fate of individual cells. Low levels of exogenous E2F1 promote proliferation, moderate levels induce G1, G2 and mitotic cell cycle arrest, and very high levels promote apoptosis. These multiple anti-proliferative mechanisms result in a strong selection pressure leading to rapid elimination of E2F1-overexpressing cells from the population. RNA-sequencing and RT-PCR revealed that low levels of E2F1 are sufficient to induce numerous cell cycle-promoting genes, intermediate levels induce growth arrest genes (i.e., p18, p19 and p27), whereas higher levels are necessary to induce key apoptotic E2F1 targets APAF1, PUMA, HRK and BIM. Finally, treatment of a lung cancer cell line with a proteasome inhibitor, MLN2238, resulted in an E2F1-dependent mitotic arrest and apoptosis, confirming the role of endogenous E2F1 levels in these phenotypes. The strong anti-proliferative activity of moderately overexpressed E2F1 in multiple cancer types suggests that targeting E2F1 for upregulation may represent an attractive therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Igor Shats
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Michael Deng
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Adam Davidovich
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Carolyn Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jungeun S Kwon
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Dinesh Manandhar
- Department of Biostatistics and Bioinformatics, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Raluca Gordân
- Department of Biostatistics and Bioinformatics, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
96
|
Méndez-López LF, Davila-Velderrain J, Domínguez-Hüttinger E, Enríquez-Olguín C, Martínez-García JC, Alvarez-Buylla ER. Gene regulatory network underlying the immortalization of epithelial cells. BMC SYSTEMS BIOLOGY 2017; 11:24. [PMID: 28209158 PMCID: PMC5314717 DOI: 10.1186/s12918-017-0393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumorigenic transformation of human epithelial cells in vitro has been described experimentally as the potential result of spontaneous immortalization. This process is characterized by a series of cell-state transitions, in which normal epithelial cells acquire first a senescent state which is later surpassed to attain a mesenchymal stem-like phenotype with a potentially tumorigenic behavior. In this paper we aim to provide a system-level mechanistic explanation to the emergence of these cell types, and to the time-ordered transition patterns that are common to neoplasias of epithelial origin. To this end, we first integrate published functional and well-curated molecular data of the components and interactions that have been found to be involved in such cell states and transitions into a network of 41 molecular components. We then reduce this initial network by removing simple mediators (i.e., linear pathways), and formalize the resulting regulatory core into logical rules that govern the dynamics of each of the network components as a function of the states of its regulators. RESULTS Computational dynamic analysis shows that our proposed Gene Regulatory Network model recovers exactly three attractors, each of them defined by a specific gene expression profile that corresponds to the epithelial, senescent, and mesenchymal stem-like cellular phenotypes, respectively. We show that although a mesenchymal stem-like state can be attained even under unperturbed physiological conditions, the likelihood of converging to this state is increased when pro-inflammatory conditions are simulated, providing a systems-level mechanistic explanation for the carcinogenic role of chronic inflammatory conditions observed in the clinic. We also found that the regulatory core yields an epigenetic landscape that restricts temporal patterns of progression between the steady states, such that recovered patterns resemble the time-ordered transitions observed during the spontaneous immortalization of epithelial cells, both in vivo and in vitro. CONCLUSION Our study strongly suggests that the in vitro tumorigenic transformation of epithelial cells, which strongly correlates with the patterns observed during the pathological progression of epithelial carcinogenesis in vivo, emerges from underlying regulatory networks involved in epithelial trans-differentiation during development.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon, A. P. 14-740, México, 07300 D.F México
| | | | - Elisa Domínguez-Hüttinger
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| | | | | | - Elena R. Alvarez-Buylla
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| |
Collapse
|
97
|
Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, Martin CK, Ridolfi E, Miller GC, Zorko SM, Plevris E, Hadjiyannis Y, Perez M, Nolan E, Kladney R, Westendorp B, de Bruin A, Fernandez S, Rosol TJ, Pohar KS, Pipas JM, Leone G. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest 2017; 127:830-842. [PMID: 28134624 DOI: 10.1172/jci87583] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.
Collapse
|
98
|
Gamell C, Gulati T, Levav-Cohen Y, Young RJ, Do H, Pilling P, Takano E, Watkins N, Fox SB, Russell P, Ginsberg D, Monahan BJ, Wright G, Dobrovic A, Haupt S, Solomon B, Haupt Y. Reduced abundance of the E3 ubiquitin ligase E6AP contributes to decreased expression of the INK4/ARF locus in non-small cell lung cancer. Sci Signal 2017; 10:10/461/eaaf8223. [PMID: 28074012 DOI: 10.1126/scisignal.aaf8223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor suppressor p16INK4a, one protein encoded by the INK4/ARF locus, is frequently absent in multiple cancers, including non-small cell lung cancer (NSCLC). Whereas increased methylation of the encoding gene (CDKN2A) accounts for its loss in a third of patients, no molecular explanation exists for the remainder. We unraveled an alternative mechanism for the silencing of the INK4/ARF locus involving the E3 ubiquitin ligase and transcriptional cofactor E6AP (also known as UBE3A). We found that the expression of three tumor suppressor genes encoded in the INK4/ARF locus (p15INK4b, p16INK4a, and p19ARF) was decreased in E6AP-/- mouse embryo fibroblasts. E6AP induced the expression of the INK4/ARF locus at the transcriptional level by inhibiting CDC6 transcription, a gene encoding a key repressor of the locus. Luciferase assays revealed that E6AP inhibited CDC6 expression by reducing its E2F1-dependent transcription. Chromatin immunoprecipitation analysis indicated that E6AP reduced the amount of E2F1 at the CDC6 promoter. In a subset of NSCLC samples, an E6AP-low/CDC6-high/p16INK4a-low protein abundance profile correlated with low methylation of the gene encoding p16INK4a (CDKN2A) and poor patient prognosis. These findings define a previously unrecognized tumor-suppressive role for E6AP in NSCLC, reveal an alternative silencing mechanism of the INK4/ARF locus, and reveal E6AP as a potential prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Cristina Gamell
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Twishi Gulati
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Yaara Levav-Cohen
- The Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Richard J Young
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Hongdo Do
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria 3084, Australia
| | - Pat Pilling
- Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organization, Melbourne, Victoria 3169, Australia
| | - Elena Takano
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Prudence Russell
- Department of Anatomical Pathology, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Doron Ginsberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Brendon J Monahan
- Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 2555, Australia
| | - Gavin Wright
- Department of Surgery, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Alex Dobrovic
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria 3084, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Ben Solomon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia.,Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.,Department of Pathology, University of Melbourne, Victoria 3800, Australia
| |
Collapse
|
99
|
Cyclin E Deregulation and Genomic Instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:527-547. [PMID: 29357072 DOI: 10.1007/978-981-10-6955-0_22] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Precise replication of genetic material and its equal distribution to daughter cells are essential to maintain genome stability. In eukaryotes, chromosome replication and segregation are temporally uncoupled, occurring in distinct intervals of the cell cycle, S and M phases, respectively. Cyclin E accumulates at the G1/S transition, where it promotes S phase entry and progression by binding to and activating CDK2. Several lines of evidence from different models indicate that cyclin E/CDK2 deregulation causes replication stress in S phase and chromosome segregation errors in M phase, leading to genomic instability and cancer. In this chapter, we will discuss the main findings that link cyclin E/CDK2 deregulation to genomic instability and the molecular mechanisms by which cyclin E/CDK2 induces replication stress and chromosome aberrations during carcinogenesis.
Collapse
|
100
|
Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|