51
|
Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiol Dis 2018; 117:161-169. [PMID: 29859874 DOI: 10.1016/j.nbd.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Although N-acetylaspartate (NAA) has long been recognized as the most abundant amino acid in neurons by far, its primary role has remained a mystery. Based on its unique tertiary structure, we explored the potential of NAA to modulate aggregation of amyloid-beta (Aβ) peptide 1-42 via multiple corroborating aggregation assays along with electron microscopy. Thioflavin-T fluorescence assay demonstrated that at physiological concentrations, NAA substantially inhibited the initiation of Aβ fibril formation. In addition, NAA added after 25 min of Aβ aggregation was shown to break up preformed fibrils. Electron microscopy analysis confirmed the absence of mature fibrils following NAA treatment. Furthermore, fluorescence correlation spectroscopy and dynamic light scattering measurements confirmed significant reductions in Aβ fibril hydrodynamic radius following treatment with NAA. These results suggest that physiological levels of NAA could play an important role in controlling Aβ aggregation in vivo where they are both found in the same neuronal compartments.
Collapse
|
52
|
Nielsen DA, Spellicy CJ, Harding MJ, Graham DP. Apolipoprotein E DNA methylation and posttraumatic stress disorder are associated with plasma ApoE level: A preliminary study. Behav Brain Res 2018; 356:415-422. [PMID: 29807071 DOI: 10.1016/j.bbr.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Mild traumatic brain injury (mTBI) occurred in 15-30% of Veterans returning from Iraq and Afghanistan. We examined whether DNA methylation of the apolipoprotein E (APOE) gene promoter region or plasma ApoE protein levels are altered in mTBI. APOE promoter region DNA methylation, APOE genotype, and plasma ApoE concentration were determined in 87 Veterans with or without mTBI who were recruited from 2010-2014. Plasma ApoE concentration was found to be associated with Posttraumatic Stress Disorder (PTSD) symptom severity ratings by hierarchical linear regression (p = .013) and ANCOVA (p = .007). Hierarchical linear regression revealed that plasma ApoE concentration was associated with APOE-ε4 genotype status (p=.022). Higher ApoE plasma levels were found in ε3/ε3 Veterans than in APOE-ε4 carriers (p = .031). Furthermore, plasma ApoE concentration was associated experiment-wise with DNA methylation at CpG sites -877 (p = .021), and -775 (p = .014). The interaction between APOE-ε4 genotype and having a PTSD diagnosis was associated with DNA methylation at CpG site -675 (p = .009).
Collapse
Affiliation(s)
- David A Nielsen
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.
| | - Catherine J Spellicy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Harding
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David P Graham
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States; Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
53
|
Ling H, Neal JW, Revesz T. Evolving concepts of chronic traumatic encephalopathy as a neuropathological entity. Neuropathol Appl Neurobiol 2018; 43:467-476. [PMID: 28664614 DOI: 10.1111/nan.12425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a long-term neurodegenerative consequence of repetitive head impacts which can only be definitively diagnosed in post-mortem. Recently, the consensus neuropathological criteria for the diagnosis of CTE was published requiring the presence of the accumulation of abnormal tau in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci in an irregular pattern as the mandatory features. The clinical diagnosis and antemortem prediction of CTE pathology remain challenging if not impossible due to the common co-existing underlying neurodegenerative pathologies and the lack of specific clinical pointers and reliable biomarkers. This review summarizes the historical evolution of CTE as a neuropathological entity and highlights the latest advances and future directions of research studies on the topic of CTE.
Collapse
Affiliation(s)
- H Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - J W Neal
- Department of Cellular Pathology, Cardiff University, Wales, UK
| | - T Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
54
|
Jaunmuktane Z, Quaegebeur A, Taipa R, Viana-Baptista M, Barbosa R, Koriath C, Sciot R, Mead S, Brandner S. Evidence of amyloid-β cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol 2018; 135:671-679. [PMID: 29450646 PMCID: PMC5904220 DOI: 10.1007/s00401-018-1822-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022]
Abstract
Amyloid-β (Aβ) is a peptide deposited in the brain parenchyma in Alzheimer's disease and in cerebral blood vessels, causing cerebral amyloid angiopathy (CAA). Aβ pathology is transmissible experimentally in animals and through medical procedures in humans, such as contaminated growth hormone or dura mater transplantation in the context of iatrogenic prion disease. Here, we present four patients who underwent neurosurgical procedures during childhood or teenage years and presented with intracerebral haemorrhage approximately three decades later, caused by severe CAA. None of these patients carried pathogenic mutations associated with early Aβ pathology development. In addition, we identified in the literature four patients with a history of neurosurgical intervention and subsequent development of CAA. These findings raise the possibility that Aβ pathology may be transmissible, as prion disease is, through neurosurgical procedures.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Ricardo Taipa
- Portuguese Brain Bank, Neuropathology Unit, Department of Neuroscience, Centro Hospitalar Universitario do Porto, 4099-001, Porto, Portugal
| | - Miguel Viana-Baptista
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Raquel Barbosa
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Carolin Koriath
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Raf Sciot
- Department of Imaging and Pathology, University of Leuven, 3000, Louvain, Belgium
| | - Simon Mead
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Medical Research Council Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
55
|
Becker RE, Kapogiannis D, Greig NH. Does traumatic brain injury hold the key to the Alzheimer's disease puzzle? Alzheimers Dement 2018; 14:431-443. [PMID: 29245000 PMCID: PMC5958613 DOI: 10.1016/j.jalz.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Neurodegenerative disorders have been a graveyard for hundreds of well-intentioned efforts at drug discovery and development. Concussion and other traumatic brain injuries (TBIs) and Alzheimer's disease (AD) share many overlapping pathologies and possible clinical links. METHODS We searched the literature since 1995 using MEDLINE and Google Scholar for the terms concussion, AD, and shared neuropathologies. We also studied a TBI animal model as a supplement to transgenic (Tg) mouse AD models for evaluating AD drug efficacy by preventing neuronal losses. To evaluate TBI/AD pathologies and neuronal self-induced cell death (apoptosis), we are studying brain extracellular vesicles in plasma and (-)-phenserine pharmacology to probe, in animal models of AD and humans, apoptosis and pathways common to concussion and AD. RESULTS Neuronal cell death and a diverse and significant pathological cascade follow TBIs. Many of the developing pathologies are present in early AD. The use of an animal model of concussion as a supplement to Tg mice provides an indication of an AD drug candidate's potential for preventing apoptosis and resulting progression toward dementia in AD. This weight drop supplementation to Tg mouse models, the experimental drug (-)-phenserine, and plasma-derived extracellular vesicles enriched for neuronal origin to follow biomarkers of neurodegenerative processes, each and in combination, show promise as tools useful for probing the progression of disease in AD, TBI/AD pathologies, apoptosis, and drug effects on rates of apoptosis both preclinically and in humans. (-)-Phenserine both countered many subacute post-TBI pathologies that could initiate clinical AD and, in the concussion and other animal models, showed evidence consistent with direct inhibition of neuronal preprogrammed cell death in the presence of TBI/AD pathologies. DISCUSSION These findings may provide support for expanding preclinical Tg mouse studies in AD with a TBI weight drop model, insights into the progression of pathological targets, their relations to apoptosis, and timing of interventions against these targets and apoptosis. Such studies may demonstrate the potential for drugs to effectively and safely inhibit preprogrammed cell death as a new drug development strategy for use in the fight to defeat AD.
Collapse
Affiliation(s)
- Robert E Becker
- Aristea Translational Medicine Corporation, Park City, UT, USA; Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
56
|
Lejbman N, Olivera A, Heinzelmann M, Feng R, Yun S, Kim HS, Gill J. Active duty service members who sustain a traumatic brain injury have chronically elevated peripheral concentrations of Aβ40 and lower ratios of Aβ42/40. Brain Inj 2018; 30:1436-1441. [PMID: 27834544 PMCID: PMC5152557 DOI: 10.1080/02699052.2016.1219054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Primary objective: Excessive accumulation of amyloid beta (Aβ) and tau have been observed in older individuals with chronic neurological symptoms related to a traumatic brain injury (TBI), yet little is known about the possible role of Aβ in younger active duty service members following a TBI. The purpose of the study was to determine if Aβ 40 or 42 related to sustaining a TBI or to chronic neurological symptoms in a young cohort of military personnel. Research design: This was a cross-sectional study of active duty service members who reported sustaining a TBI and provided self-report of neurological and psychological symptoms and provided blood. Methods and procedures: An ultrasensitive single-molecule enzyme-linked immunosorbent assay was used to compare concentrations of Aβ in active duty service members with (TBI+; n = 53) and without (TBI–; n = 18) a history of TBI. Self-report and medical history were used to measure TBI occurrence and approximate the number of total TBIs and the severity of TBIs sustained during deployment. Main outcomes and results: This study reports that TBI is associated with higher concentrations of Aβ40 (F1,68 = 6.948, p = 0.009) and a lower ratio of Aβ42/Aβ40 (F1,62 = 5.671, p = 0.020). These differences remained significant after controlling for co-morbid symptoms of post-traumatic stress disorder and depression. Conclusions: These findings suggest that alterations in Aβ relate to TBIs and may contribute to chronic neurological symptoms.
Collapse
Affiliation(s)
- Natasha Lejbman
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA
| | - Anlys Olivera
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA
| | - Morgan Heinzelmann
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA
| | - Rebekah Feng
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA
| | - Sijung Yun
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA.,b Yotta Biomed, LLC , Bethesda , MD , USA
| | - Hyung-Suk Kim
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA
| | - Jessica Gill
- a National Institute of Nursing Research, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
57
|
Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A, Büki A, Chesnut RM, Citerio G, Coburn M, Cooper DJ, Crowder AT, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier JP, Duhaime AC, Ercole A, van Essen TA, Feigin VL, Gao G, Giacino J, Gonzalez-Lara LE, Gruen RL, Gupta D, Hartings JA, Hill S, Jiang JY, Ketharanathan N, Kompanje EJO, Lanyon L, Laureys S, Lecky F, Levin H, Lingsma HF, Maegele M, Majdan M, Manley G, Marsteller J, Mascia L, McFadyen C, Mondello S, Newcombe V, Palotie A, Parizel PM, Peul W, Piercy J, Polinder S, Puybasset L, Rasmussen TE, Rossaint R, Smielewski P, Söderberg J, Stanworth SJ, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Synnot A, Te Ao B, Tenovuo O, Theadom A, Tibboel D, Videtta W, Wang KKW, Williams WH, Wilson L, Yaffe K, Adams H, Agnoletti V, Allanson J, Amrein K, Andaluz N, Anke A, Antoni A, van As AB, Audibert G, Azaševac A, Azouvi P, Azzolini ML, Baciu C, Badenes R, Barlow KM, Bartels R, Bauerfeind U, Beauchamp M, Beer D, Beer R, Belda FJ, Bellander BM, Bellier R, Benali H, Benard T, Beqiri V, Beretta L, Bernard F, Bertolini G, et alMaas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A, Büki A, Chesnut RM, Citerio G, Coburn M, Cooper DJ, Crowder AT, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier JP, Duhaime AC, Ercole A, van Essen TA, Feigin VL, Gao G, Giacino J, Gonzalez-Lara LE, Gruen RL, Gupta D, Hartings JA, Hill S, Jiang JY, Ketharanathan N, Kompanje EJO, Lanyon L, Laureys S, Lecky F, Levin H, Lingsma HF, Maegele M, Majdan M, Manley G, Marsteller J, Mascia L, McFadyen C, Mondello S, Newcombe V, Palotie A, Parizel PM, Peul W, Piercy J, Polinder S, Puybasset L, Rasmussen TE, Rossaint R, Smielewski P, Söderberg J, Stanworth SJ, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Synnot A, Te Ao B, Tenovuo O, Theadom A, Tibboel D, Videtta W, Wang KKW, Williams WH, Wilson L, Yaffe K, Adams H, Agnoletti V, Allanson J, Amrein K, Andaluz N, Anke A, Antoni A, van As AB, Audibert G, Azaševac A, Azouvi P, Azzolini ML, Baciu C, Badenes R, Barlow KM, Bartels R, Bauerfeind U, Beauchamp M, Beer D, Beer R, Belda FJ, Bellander BM, Bellier R, Benali H, Benard T, Beqiri V, Beretta L, Bernard F, Bertolini G, Bilotta F, Blaabjerg M, den Boogert H, Boutis K, Bouzat P, Brooks B, Brorsson C, Bullinger M, Burns E, Calappi E, Cameron P, Carise E, Castaño-León AM, Causin F, Chevallard G, Chieregato A, Christie B, Cnossen M, Coles J, Collett J, Della Corte F, Craig W, Csato G, Csomos A, Curry N, Dahyot-Fizelier C, Dawes H, DeMatteo C, Depreitere B, Dewey D, van Dijck J, Đilvesi Đ, Dippel D, Dizdarevic K, Donoghue E, Duek O, Dulière GL, Dzeko A, Eapen G, Emery CA, English S, Esser P, Ezer E, Fabricius M, Feng J, Fergusson D, Figaji A, Fleming J, Foks K, Francony G, Freedman S, Freo U, Frisvold SK, Gagnon I, Galanaud D, Gantner D, Giraud B, Glocker B, Golubovic J, Gómez López PA, Gordon WA, Gradisek P, Gravel J, Griesdale D, Grossi F, Haagsma JA, Håberg AK, Haitsma I, Van Hecke W, Helbok R, Helseth E, van Heugten C, Hoedemaekers C, Höfer S, Horton L, Hui J, Huijben JA, Hutchinson PJ, Jacobs B, van der Jagt M, Jankowski S, Janssens K, Jelaca B, Jones KM, Kamnitsas K, Kaps R, Karan M, Katila A, Kaukonen KM, De Keyser V, Kivisaari R, Kolias AG, Kolumbán B, Kolundžija K, Kondziella D, Koskinen LO, Kovács N, Kramer A, Kutsogiannis D, Kyprianou T, Lagares A, Lamontagne F, Latini R, Lauzier F, Lazar I, Ledig C, Lefering R, Legrand V, Levi L, Lightfoot R, Lozano A, MacDonald S, Major S, Manara A, Manhes P, Maréchal H, Martino C, Masala A, Masson S, Mattern J, McFadyen B, McMahon C, Meade M, Melegh B, Menovsky T, Moore L, Morgado Correia M, Morganti-Kossmann MC, Muehlan H, Mukherjee P, Murray L, van der Naalt J, Negru A, Nelson D, Nieboer D, Noirhomme Q, Nyirádi J, Oddo M, Okonkwo DO, Oldenbeuving AW, Ortolano F, Osmond M, Payen JF, Perlbarg V, Persona P, Pichon N, Piippo-Karjalainen A, Pili-Floury S, Pirinen M, Ple H, Poca MA, Posti J, Van Praag D, Ptito A, Radoi A, Ragauskas A, Raj R, Real RGL, Reed N, Rhodes J, Robertson C, Rocka S, Røe C, Røise O, Roks G, Rosand J, Rosenfeld JV, Rosenlund C, Rosenthal G, Rossi S, Rueckert D, de Ruiter GCW, Sacchi M, Sahakian BJ, Sahuquillo J, Sakowitz O, Salvato G, Sánchez-Porras R, Sándor J, Sangha G, Schäfer N, Schmidt S, Schneider KJ, Schnyer D, Schöhl H, Schoonman GG, Schou RF, Sir Ö, Skandsen T, Smeets D, Sorinola A, Stamatakis E, Stevanovic A, Stevens RD, Sundström N, Taccone FS, Takala R, Tanskanen P, Taylor MS, Telgmann R, Temkin N, Teodorani G, Thomas M, Tolias CM, Trapani T, Turgeon A, Vajkoczy P, Valadka AB, Valeinis E, Vallance S, Vámos Z, Vargiolu A, Vega E, Verheyden J, Vik A, Vilcinis R, Vleggeert-Lankamp C, Vogt L, Volovici V, Voormolen DC, Vulekovic P, Vande Vyvere T, Van Waesberghe J, Wessels L, Wildschut E, Williams G, Winkler MKL, Wolf S, Wood G, Xirouchaki N, Younsi A, Zaaroor M, Zelinkova V, Zemek R, Zumbo F. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 2017; 16:987-1048. [DOI: 10.1016/s1474-4422(17)30371-x] [Show More Authors] [Citation(s) in RCA: 822] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/06/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
|
58
|
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol 2017; 7:170228. [PMID: 29237809 PMCID: PMC5746550 DOI: 10.1098/rsob.170228] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is marked by the presence of extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs) and gliosis, activated glial cells, in the brain. It is thought that Aβ plaques trigger NFT formation, neuronal cell death, neuroinflammation and gliosis and, ultimately, cognitive impairment. There are increased numbers of reactive astrocytes in AD, which surround amyloid plaques and secrete proinflammatory factors and can phagocytize and break down Aβ. It was thought that neuronal cells were the major source of Aβ. However, mounting evidence suggests that astrocytes may play an additional role in AD by secreting significant quantities of Aβ and contributing to overall amyloid burden in the brain. Astrocytes are the most numerous cell type in the brain, and therefore even minor quantities of amyloid secretion from individual astrocytes could prove to be substantial when taken across the whole brain. Reactive astrocytes have increased levels of the three necessary components for Aβ production: amyloid precursor protein, β-secretase (BACE1) and γ-secretase. The identification of environmental factors, such as neuroinflammation, that promote astrocytic Aβ production, could redefine how we think about developing therapeutics for AD.
Collapse
Affiliation(s)
- Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| |
Collapse
|
59
|
Grant DA, Serpa R, Moattari CR, Brown A, Greco T, Prins ML, Teng E. Repeat Mild Traumatic Brain Injury in Adolescent Rats Increases Subsequent β-Amyloid Pathogenesis. J Neurotrauma 2017; 35:94-104. [PMID: 28728464 DOI: 10.1089/neu.2017.5042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Single moderate-to-severe traumatic brain injuries (TBIs) may increase subsequent risk for neurodegenerative disease by facilitating β-amyloid (Aβ) deposition. However, the chronic effects on Aβ pathogenesis of repetitive mild TBIs (rTBI), which are common in adolescents and young adults, remain uncertain. We examined the effects of rTBI sustained during adolescence on subsequent deposition of Aβ pathology in a transgenic APP/PS1 rat model. Transgenic rats received sham or four individual mild TBIs (rTBIs) separated by either 24- or 72-h intervals at post-natal day 35 (before Aβ plaque deposition). Animals were euthanized at 12 months of age and underwent immunohistochemical analyses of Aβ plaque deposition. Significantly greater hippocampal Aβ plaque deposition was observed after rTBI separated by 24 h relative to rTBI separated by 72 h or sham injuries. These increases in hippocampal Aβ plaque load were driven by increases in both plaque number and size. Similar, though less-pronounced, effects were observed in extrahippocampal regions. Increases in Aβ plaque deposition were observed both ipsilaterally and contralaterally to the injury site and in both males and females. rTBIs sustained in adolescence can increase subsequent deposition of Aβ pathology, and these effects are critically dependent on interinjury interval.
Collapse
Affiliation(s)
- Daya A Grant
- 1 Department of Neurosurgery, UCLA , Los Angeles, California.,3 Interdeparmental Program for Neuroscience, UCLA , Los Angeles, California
| | - Rebecka Serpa
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Cameron R Moattari
- 3 Interdeparmental Program for Neuroscience, UCLA , Los Angeles, California
| | - Ari Brown
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Tiffany Greco
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Mayumi L Prins
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Edmond Teng
- 2 Department of Neurology, David Geffen School of Medicine at UCLA, UCLA , Los Angeles, California.,4 Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles, California
| |
Collapse
|
60
|
Griesbach GS, Masel BE, Helvie RE, Ashley MJ. The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases. J Neurotrauma 2017; 35:17-24. [PMID: 28920532 DOI: 10.1089/neu.2017.5103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer's or Parkinson's. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.
Collapse
Affiliation(s)
- Grace S Griesbach
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,2 Department of Neurosurgery, David Geffen School of Medicine at the University of California , Los Angeles, California
| | - Brent E Masel
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,3 University of Texas Medical Branch , Galveston, Texas
| | - Richard E Helvie
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| | - Mark J Ashley
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| |
Collapse
|
61
|
Albayram O, Kondo A, Mannix R, Smith C, Tsai CY, Li C, Herbert MK, Qiu J, Monuteaux M, Driver J, Yan S, Gormley W, Puccio AM, Okonkwo DO, Lucke-Wold B, Bailes J, Meehan W, Zeidel M, Lu KP, Zhou XZ. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun 2017; 8:1000. [PMID: 29042562 PMCID: PMC5645414 DOI: 10.1038/s41467-017-01068-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and associated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer's disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form, contributes to tau pathology and functional impairment in an animal model of severe TBI. Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis P-tau elimination with a specific neutralizing antibody administered immediately or at delayed time points after injury, attenuates the development of neuropathology and brain dysfunction during acute and chronic phases including CTE-like pathology and dysfunction after repetitive TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is effectively neutralized by cis antibody treatment.Induction of the cis form of phosphorylated tau (cis P-tau) has previously been shown to occur in animal models of traumatic brain injury (TBI), and blocking this form of tau using antibody was beneficial in a rodent model of severe TBI. Here the authors show that cis P-tau induction is a feature of several different forms of TBI in humans, and that administration of cis P-tau targeting antibody to rodents reduces or delays pathological features of TBI.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
| | - Asami Kondo
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Colin Smith
- Department of Neuropathology, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Cheng-Yu Tsai
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
| | - Chenyu Li
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
| | - Megan K Herbert
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
| | - Jianhua Qiu
- Division of Emergency Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Michael Monuteaux
- Division of Emergency Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jane Driver
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Harvard Medical School, 150S Huntington Ave, Boston, MA, 02130, USA
| | - Sandra Yan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - William Gormley
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ava M Puccio
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia University, Suite 4300, Health Sciences Center, PO Box 9183, Morgantown, WV, 26506, USA
| | - Julian Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago, Pritzker School of Medicine, 3rd Floor Kellogg, Evanston, IL, 60637, USA
| | - William Meehan
- Micheli Center for Sports Injury Prevention, Division of Sports Medicine, Children's Hospital Boston, Harvard Medical School, 319 Longwood Avenue, Boston, MA, 02115, USA
| | - Mark Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA.
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA, 02215, USA.
| |
Collapse
|
62
|
Abstract
There is a long history linking traumatic brain injury (TBI) with the development of dementia. Despite significant reservations, such as recall bias or concluding causality for TBI, a summary of recent research points to several conclusions on the TBI-dementia relationship. 1) Increasing severity of a single moderate-to-severe TBI increases the risk of subsequent Alzheimer's disease (AD), the most common type of dementia. 2) Repetitive, often subconcussive, mild TBIs increases the risk for chronic traumatic encephalopathy (CTE), a degenerative neuropathology. 3) TBI may be a risk factor for other neurodegenerative disorders that can be associated with dementia. 4) TBI appears to lower the age of onset of TBI-related neurocognitive syndromes, potentially adding "TBI cognitive-behavioral features". The literature further indicates several specific risk factors for TBI-associated dementia: 5) any blast or blunt physical force to the head as long as there is violent head displacement; 6) decreased cognitive and/or neuronal reserve and the related variable of older age at TBI; and 7) the presence of apolipoprotein E ɛ4 alleles, a genetic risk factor for AD. Finally, there are neuropathological features relating TBI with neurocognitive syndromes: 8) acute TBI results in amyloid pathology and other neurodegenerative proteinopathies; 9) CTE shares features with neurodegenerative dementias; and 10) TBI results in white matter tract and neural network disruptions. Although further research is needed, these ten findings suggest that dose-dependent effects of violent head displacement in vulnerable brains predispose to dementia; among several potential mechanisms is the propagation of abnormal proteins along damaged white matter networks.
Collapse
Affiliation(s)
- Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Neurology, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
63
|
Gowrishankar S, Wu Y, Ferguson SM. Impaired JIP3-dependent axonal lysosome transport promotes amyloid plaque pathology. J Cell Biol 2017; 216:3291-3305. [PMID: 28784610 PMCID: PMC5626538 DOI: 10.1083/jcb.201612148] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
Axonal lysosomes accumulate abnormally in Alzheimer’s disease brains. However, whether and how such lysosomes contribute to disease pathology has been unclear. Gowrishankar et al. show that the JIP3-dependent transport of axonal lysosomes negatively regulates amyloid precursor protein processing into amyloidogenic peptides. Lysosomes robustly accumulate within axonal swellings at Alzheimer’s disease (AD) amyloid plaques. However, the underlying mechanisms and disease relevance of such lysosome accumulations are not well understood. Motivated by these problems, we identified JNK-interacting protein 3 (JIP3) as an important regulator of axonal lysosome transport and maturation. JIP3 knockout mouse neuron primary cultures accumulate lysosomes within focal axonal swellings that resemble the dystrophic axons at amyloid plaques. These swellings contain high levels of amyloid precursor protein processing enzymes (BACE1 and presenilin 2) and are accompanied by elevated Aβ peptide levels. The in vivo importance of the JIP3-dependent regulation of axonal lysosomes was revealed by the worsening of the amyloid plaque pathology arising from JIP3 haploinsufficiency in a mouse model of AD. These results establish the critical role of JIP3-dependent axonal lysosome transport in regulating amyloidogenic amyloid precursor protein processing and support a model wherein Aβ production is amplified by plaque-induced axonal lysosome transport defects.
Collapse
Affiliation(s)
- Swetha Gowrishankar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT .,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
64
|
Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 2017; 6:20. [PMID: 28702179 PMCID: PMC5504572 DOI: 10.1186/s40035-017-0088-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.
Collapse
Affiliation(s)
- Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Glen Acosta
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| | - Joseph Fernandez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
65
|
Unusual FDG-PET Findings in Traumatic Brain Injury; Did Traumatic Brain Injury Provoke Rapid Progression of Alzheimer's Disease? Dement Neurocogn Disord 2017; 16:54-55. [PMID: 30906371 PMCID: PMC6427956 DOI: 10.12779/dnd.2017.16.2.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/01/2022] Open
Abstract
Traumatic brain injury (TBI) is common, and is often the leading cause of disability and death. Complications after TBI include increased risk for chronic central nervous system disease, such as Alzheimer's disease (AD). However, the pathophysiology relating acute injury to neurodegeneration is unclear. Here we present a case of a patient whose cognition declined after TBI, and whose 18F fluorodeoxyglucose positron emission tomography scan showed an AD pattern.
Collapse
|
66
|
Shively SB, Edgerton SL, Iacono D, Purohit DP, Qu BX, Haroutunian V, Davis KL, Diaz-Arrastia R, Perl DP. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain. Acta Neuropathol 2017; 133:353-366. [PMID: 27885490 PMCID: PMC5325841 DOI: 10.1007/s00401-016-1649-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild impact traumatic brain injury from contact sports. Recently, a consensus panel defined the pathognomonic lesion for CTE as accumulations of abnormally hyperphosphorylated tau (p-tau) in neurons (neurofibrillary tangles), astrocytes and cell processes distributed around small blood vessels at sulcal depths in irregular patterns within the cortex. The pathophysiological mechanism for this lesion is unknown. Moreover, a subset of CTE cases harbors cortical β-amyloid plaques. In this study, we analyzed postmortem brain tissues from five institutionalized patients with schizophrenia and history of surgical leucotomy with subsequent survival of at least another 40 years. Because leucotomy involves severing axons bilaterally in prefrontal cortex, this surgical procedure represents a human model of single traumatic brain injury with severe axonal damage and no external impact. We examined cortical tissues at the leucotomy site and at both prefrontal cortex rostral and frontal cortex caudal to the leucotomy site. For comparison, we analyzed brain tissues at equivalent neuroanatomical sites from non-leucotomized patients with schizophrenia, matched in age and gender. All five leucotomy cases revealed severe white matter damage with dense astrogliosis at the axotomy site and also neurofibrillary tangles and p-tau immunoreactive neurites in the overlying gray matter. Four cases displayed p-tau immunoreactivity in neurons, astrocytes and cell processes encompassing blood vessels at cortical sulcal depths in irregular patterns, similar to CTE. The three cases with apolipoprotein E ε4 haplotype showed scattered β-amyloid plaques in the overlying gray matter, but not the two cases with apolipoprotein E ε3/3 genotype. Brain tissue samples from prefrontal cortex rostral and frontal cortex caudal to the leucotomy site, and all cortical samples from the non-leucotomized patients, showed minimal p-tau and β-amyloid pathology. These findings suggest that chronic axonal damage contributes to the unique pathology of CTE over time.
Collapse
Affiliation(s)
- Sharon B Shively
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sarah L Edgerton
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD, 20817, USA
| | - Diego Iacono
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD, 20817, USA
| | - Dushyant P Purohit
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Bao-Xi Qu
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Kenneth L Davis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Daniel P Perl
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
67
|
Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 2017; 34:51-63. [PMID: 27829172 DOI: 10.1016/j.arr.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
Collapse
|
68
|
Johnson VE, Stewart W, Arena JD, Smith DH. Traumatic Brain Injury as a Trigger of Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2017; 15:383-400. [PMID: 28674990 DOI: 10.1007/978-3-319-57193-5_15] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative "dose" of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration.
Collapse
Affiliation(s)
- Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.,University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
69
|
The Emerging Role of Proteomics in Precision Medicine: Applications in Neurodegenerative Diseases and Neurotrauma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:59-70. [DOI: 10.1007/978-3-319-60733-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
70
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016. [PMID: 27994591 DOI: 10.3389/fimmu.201600556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
71
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016; 7:556. [PMID: 27994591 PMCID: PMC5137185 DOI: 10.3389/fimmu.2016.00556] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
72
|
Abstract
Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury - the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.
Collapse
|
73
|
Cerajewska TL, Davies M, West NX. Periodontitis: a potential risk factor for Alzheimer's disease. Br Dent J 2016; 218:29-34. [PMID: 25571822 DOI: 10.1038/sj.bdj.2014.1137] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 01/12/2023]
Abstract
The role of periodontitis as a risk factor for multiple systemic diseases is widely accepted and there is growing evidence of an association between periodontitis and sporadic late onset Alzheimer's disease (SLOAD). Recent epidemiologic, microbiologic and inflammatory findings strengthen this association, indicating that periodontal pathogens are possible contributors to neural inflammation and SLOAD. The aim of this article is to present contemporary evidence of this association.
Collapse
Affiliation(s)
- T L Cerajewska
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| | - M Davies
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| | - N X West
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| |
Collapse
|
74
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
75
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
76
|
Edwards G, Moreno-Gonzalez I, Soto C. Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun 2016; 483:1137-1142. [PMID: 27492070 DOI: 10.1016/j.bbrc.2016.07.123] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022]
Abstract
Neurodegenerative diseases are characterized by distinctive neuropathological alterations, including the cerebral accumulation of misfolded protein aggregates, neuroinflammation, synaptic dysfunction, and neuronal loss, along with behavioral impairments. Traumatic brain injury (TBI) is believed to be an important risk factor for certain neurodegenerative diseases, such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). TBI represents a ubiquitous problem in the world and could play a major role in the pathogenesis and etiology of AD or CTE later in life. TBI events appear to trigger and exacerbate some of the pathological processes in these diseases, in particular, the formation and accumulation of misfolded protein aggregates composed of amyloid-beta (Aβ) and tau. Here, we describe the relationship between repetitive mild TBI and the development of Aβ and tau pathology in patients affected by AD or CTE on the basis of epidemiological and pathological studies in human cases, and a thorough overview of data obtained in experimental animal models. We also discuss the possibility that TBI may contribute to initiate the formation of misfolded oligomeric species that may subsequently spread the pathology through a prion-like process of seeding of protein misfolding.
Collapse
Affiliation(s)
- George Edwards
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School, Houston, Texas
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School, Houston, Texas
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School, Houston, Texas.
| |
Collapse
|
77
|
Abstract
Axonal damage is one of the most common and important pathologic features of traumatic brain injury. Severe diffuse axonal injury, resulting from inertial forces applied to the head, is associated with prolonged unconsciousness and poor outcome. The susceptibility of axons to mechanical injury appears to be due to both their viscoelastic properties and their highly organized structure in white matter tracts. Although axons are supple under normal conditions, they become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton, resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate organelles. Calcium entry into damaged axons is thought to initiate further damage by the activation of proteases and the induction of mitochondrial swelling and dysfunction. Ultimately, swollen axons may become disconnected and contribute to additional neuropathologic changes in brain tissue. However, promising new therapies that reduce proteolytic activity or maintain mitochondrial integrity may attenuate progressive damage of injured axons following experimental brain trauma. Future advancements in the prevention and treatment of traumatic axonal injury will depend on our collective understanding of the relationship between the biomechanics and pathophysiology of various phases of axonal trauma.
Collapse
Affiliation(s)
- Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania,
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
78
|
Washington PM, Burns MP. The Effect of the APOE4 Gene on Accumulation of Aβ40 After Brain Injury Cannot Be Reversed by Increasing apoE4 Protein. J Neuropathol Exp Neurol 2016; 75:770-778. [PMID: 27297672 PMCID: PMC7299436 DOI: 10.1093/jnen/nlw049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The apolipoprotein E (apoE) protein is involved in clearance of β-amyloid (Aβ) from the brain; and the APOE4 gene is associated with Aβ plaque formation in humans following traumatic brain injury (TBI). Here, we examined the association between apoE and Aβ40 after experimental TBI and the effects of APOE alleles on this relationship. We report a biphasic response of soluble apoE protein after TBI with an acute reduction at 1 day postinjury followed by an increase at 7 days postinjury. TBI-induced Aβ40 levels decreased as soluble apoE levels increased. In APOE4 mice there was a diminished apoE response to TBI that corresponded to prolonged accumulation of TBI-induced Aβ40 versus that in APOE3 mice. Amyloid precursor protein processing was similar in APOE3 and APOE4 mice suggesting that impaired clearance was responsible for the abnormal accumulation of Aβ40 in the latter. Treatment of APOE4 mice with bexarotene for 7 days increased apoE4 protein levels but was not sufficient to reduce TBI-induced Aβ40 Thus, rapid clearance of TBI-induced Aβ40 occurs in mice but these pathways are impaired in APOE4 carriers. These data may help explain the deposition of Aβ in APOE4 carriers and the increased incidence of brain Aβ plaques following TBI.
Collapse
Affiliation(s)
- Patricia M Washington
- From the Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC (PM, MB)
| | - Mark P Burns
- From the Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC (PM, MB).
| |
Collapse
|
79
|
Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol 2016; 15:455-532. [DOI: 10.1016/s1474-4422(16)00062-4] [Citation(s) in RCA: 1001] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/06/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022]
|
80
|
Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis 2016; 7:163-79. [PMID: 27114849 PMCID: PMC4809608 DOI: 10.14336/ad.2015.0907] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023] Open
Abstract
Despite the significant health and economic burden that traumatic brain injury (TBI) places on society, the development of successful therapeutic agents have to date not translated into efficacious therapies in human clinical trials. Injury to the brain is ongoing after TBI, through a complex cascade of primary and secondary injury events, providing a valuable window of opportunity to help limit and prevent some of the severe consequences with a timely treatment. Of note, it has been suggested that novel treatments for TBI should be multifactorial in nature, mimicking the body's own endogenous repair response. Whilst research has historically focused on the role of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease, recent advances in trauma research have demonstrated that APP offers considerable neuroprotective properties following TBI, suggesting that APP is an ideal therapeutic candidate. Its acute upregulation following TBI has been shown to serve a beneficial role following trauma and has lead to significant advances in understanding the neuroprotective and neurotrophic functions of APP and its metabolites. Research has focused predominantly on the APP derivative sAPPα, which has consistently demonstrated neuroprotective and neurotrophic functions both in vitro and in vivo following various traumatic insults. Its neuroprotective activity has been narrowed down to a 15 amino acid sequence, and this region is linked to both heparan binding and growth-factor-like properties. It has been proposed that APP binds to heparan sulfate proteoglycans to exert its neuroprotective action. APP presents us with a novel therapeutic compound that could overcome many of the challenges that have stalled development of efficacious TBI treatments previously.
Collapse
Affiliation(s)
- Stephanie Plummer
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Corinna Van den Heuvel
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Emma Thornton
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Frances Corrigan
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Roberto Cappai
- Department of Pathology, the University of Melbourne, Victoria, Australia
| |
Collapse
|
81
|
Bird SM, Sohrabi HR, Sutton TA, Weinborn M, Rainey-Smith SR, Brown B, Patterson L, Taddei K, Gupta V, Carruthers M, Lenzo N, Knuckey N, Bucks RS, Verdile G, Martins RN. Cerebral amyloid-β accumulation and deposition following traumatic brain injury--A narrative review and meta-analysis of animal studies. Neurosci Biobehav Rev 2016; 64:215-28. [PMID: 26899257 DOI: 10.1016/j.neubiorev.2016.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) increases the risk of neurodegenerative disorders many years post-injury. However, molecular mechanisms underlying the relationship between TBI and neurodegenerative diseases, such as Alzheimer's disease (AD), remain to be elucidated. Nevertheless, previous studies have demonstrated a link between TBI and increased amyloid-β (Aβ), a protein involved in AD pathogenesis. Here, we review animal studies that measured Aβ levels following TBI. In addition, from a pool of initially identified 1209 published papers, we examined data from 19 eligible animal model studies using a meta-analytic approach. We found an acute increase in cerebral Aβ levels ranging from 24h to one month following TBI (overall log OR=2.97 ± 0.40, p<0.001). These findings may contribute to further understanding the relationship between TBI and future dementia risk. The methodological inconsistencies of the studies discussed in this review suggest the need for improved and more standardised data collection and study design, in order to properly elucidate the role of TBI in the expression and accumulation of Aβ.
Collapse
Affiliation(s)
- Sabine M Bird
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Hamid R Sohrabi
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Thomas A Sutton
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Michael Weinborn
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia; School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Belinda Brown
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Leigh Patterson
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Veer Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Malcolm Carruthers
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Centre for Men's Health, 96 Harley Street, London, W1G 7HY, United Kingdom
| | - Nat Lenzo
- Oceanic Medical Imaging, Hollywood Medical Centre, 85 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Neville Knuckey
- Centre for Neuromuscular and Neurological Disorders (CNND), University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Romola S Bucks
- School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Giuseppe Verdile
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia.
| |
Collapse
|
82
|
Faden AI, Wu J, Stoica BA, Loane DJ. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 2016; 173:681-91. [PMID: 25939377 PMCID: PMC4742301 DOI: 10.1111/bph.13179] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked to dementia and chronic neurodegeneration. Described initially in boxers and currently recognized across high contact sports, the association between repeated concussion (mild TBI) and progressive neuropsychiatric abnormalities has recently received widespread attention, and has been termed chronic traumatic encephalopathy. Less well appreciated are cognitive changes associated with neurodegeneration in the brain after isolated spinal cord injury. Also under-recognized is the role of sustained neuroinflammation after brain or spinal cord trauma, even though this relationship has been known since the 1950s and is supported by more recent preclinical and clinical studies. These pathological mechanisms, manifested by extensive microglial and astroglial activation and appropriately termed chronic traumatic brain inflammation or chronic traumatic inflammatory encephalopathy, may be among the most important causes of post-traumatic neurodegeneration in terms of prevalence. Importantly, emerging experimental work demonstrates that persistent neuroinflammation can cause progressive neurodegeneration that may be treatable even weeks after traumatic injury.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
83
|
Hay J, Johnson VE, Smith DH, Stewart W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:21-45. [PMID: 26772317 DOI: 10.1146/annurev-pathol-012615-044116] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.
Collapse
Affiliation(s)
- Jennifer Hay
- School of Medicine and.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom; .,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| |
Collapse
|
84
|
Traumatic Brain Injury Increases the Expression of Nos1, Aβ Clearance, and Epileptogenesis in APP/PS1 Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2015; 53:7010-7027. [DOI: 10.1007/s12035-015-9578-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/29/2015] [Indexed: 11/26/2022]
|
85
|
Kokiko-Cochran O, Ransohoff L, Veenstra M, Lee S, Saber M, Sikora M, Teknipp R, Xu G, Bemiller S, Wilson G, Crish S, Bhaskar K, Lee YS, Ransohoff RM, Lamb BT. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. J Neurotrauma 2015; 33:625-40. [PMID: 26414955 DOI: 10.1089/neu.2015.3970] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.
Collapse
Affiliation(s)
| | - Lena Ransohoff
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Mike Veenstra
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Sungho Lee
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Maha Saber
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Matt Sikora
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Ryan Teknipp
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Guixiang Xu
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Shane Bemiller
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | - Gina Wilson
- 2 Department of Pharmaceutical Science, Northeast Ohio Medical University , Rootstown, Ohio
| | - Samuel Crish
- 2 Department of Pharmaceutical Science, Northeast Ohio Medical University , Rootstown, Ohio
| | - Kiran Bhaskar
- 3 Department of Molecular Genetics Microbiology and Neurology, University of New Mexico , Albuquerque New Mexico
| | - Yu-Shang Lee
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio
| | | | - Bruce T Lamb
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio.,5 Department of Genetics and Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
86
|
Adalbert R, Coleman MP. Review: Axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 2015; 39:90-108. [PMID: 23046254 DOI: 10.1111/j.1365-2990.2012.01308.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
Abstract
'Dying back' axon degeneration is a prominent feature of many age-related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease- and age-related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age-related disease are inextricably linked and the term 'healthy ageing' downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age-related disease we must study both processes.
Collapse
Affiliation(s)
- R Adalbert
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| | - M P Coleman
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| |
Collapse
|
87
|
Robinson AC, Thompson JC, Weedon L, Rollinson S, Pickering-Brown S, Snowden JS, Davidson YS, Mann DMA. No interaction between tau and TDP-43 pathologies in either frontotemporal lobar degeneration or motor neurone disease. Neuropathol Appl Neurobiol 2015; 40:844-54. [PMID: 24861427 DOI: 10.1111/nan.12155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is classified mainly into FTLD-tau and FTLD-TDP according to the protein present within inclusion bodies. While such a classification implies only a single type of protein should be present, recent studies have demonstrated dual tau and TDP-43 proteinopathy can occur, particularly in inherited FTLD. METHODS We therefore investigated 33 patients with FTLD-tau (including 9 with MAPT mutation) for TDP-43 pathological changes, and 45 patients with FTLD-TDP (including 12 with hexanucleotide expansion in C9ORF72 and 12 with GRN mutation), and 23 patients with motor neurone disease (3 with hexanucleotide expansion in C9ORF72), for tauopathy. RESULTS TDP-43 pathological changes, of the kind seen in many elderly individuals with Alzheimer's disease, were seen in only two FTLD-tau cases--a 70-year-old male with exon 10 + 13 mutation in MAPT, and a 73-year-old female with corticobasal degeneration. Such changes were considered to be secondary and probably reflective of advanced age. Conversely, there was generally only scant tau pathology, usually only within hippocampus and/or entorhinal cortex, in most patients with FTLD-TDP or MND. The extent of tau pathology in FTLD-TDP and MND, as with amyloid β protein, may relate to increased age and possession of Apolipoprotein ε4 allele. CONCLUSION We find no predilection or predisposition towards an accompanying TDP-43 pathology in patients with FTLD-tau, irrespective of presence or absence of MAPT mutation, or that genetic changes associated with FTLD-TDP predispose towards excessive tauopathy. Where the two processes coexist, this is limited and probably causatively independent of each other.
Collapse
Affiliation(s)
- Andrew C Robinson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Sundman M, Doraiswamy PM, Morey RA. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE. Front Neurosci 2015; 9:334. [PMID: 26441507 PMCID: PMC4585087 DOI: 10.3389/fnins.2015.00334] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE). The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc.), and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau), review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.
Collapse
Affiliation(s)
- Mark Sundman
- Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center Durham, NC, USA
| | - P Murali Doraiswamy
- Department of Psychiatry, Duke University Medical Center Durham, NC, USA ; Duke Institute for Brain Sciences, Duke University Medical Center Durham, NC, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center Durham, NC, USA
| |
Collapse
|
89
|
Gardner RC, Possin KL, Hess CP, Huang EJ, Grinberg LT, Nolan AL, Cohn-Sheehy BI, Ghosh PM, Lanata S, Merrilees J, Kramer JH, Berger MS, Miller BL, Yaffe K, Rabinovici GD. Evaluating and treating neurobehavioral symptoms in professional American football players: Lessons from a case series. Neurol Clin Pract 2015; 5:285-295. [PMID: 26336629 PMCID: PMC4549717 DOI: 10.1212/cpj.0000000000000157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the aftermath of multiple high-profile cases of chronic traumatic encephalopathy (CTE) in professional American football players, physicians in clinical practice are likely to face an increasing number of retired football players seeking evaluation for chronic neurobehavioral symptoms. Guidelines for the evaluation and treatment of these patients are sparse. Clinical criteria for a diagnosis of CTE are under development. The contribution of CTE vs other neuropathologies to neurobehavioral symptoms in these players remains unclear. Here we describe the experience of our academic memory clinic in evaluating and treating a series of 14 self-referred symptomatic players. Our aim is to raise awareness in the neurology community regarding the different clinical phenotypes, idiosyncratic but potentially treatable symptoms, and the spectrum of underlying neuropathologies in these players.
Collapse
Affiliation(s)
- Raquel C Gardner
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Katherine L Possin
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Christopher P Hess
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Eric J Huang
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Lea T Grinberg
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Amber L Nolan
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Brendan I Cohn-Sheehy
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Pia M Ghosh
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Serggio Lanata
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Jennifer Merrilees
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Joel H Kramer
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Mitchel S Berger
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Kristine Yaffe
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| | - Gil D Rabinovici
- Memory and Aging Center (RCG, KLP, LTG, BIC-S, PMG, SL, JM, JHK, BLM, KY, GDR), Department of Neurology, Department of Radiology & Biomedical Imaging (CPH), Department of Pathology (EJH, ALN), Department of Neurosurgery (MSB), and Departments of Psychiatry and Epidemiology and Biostatistics (KY), University of California, San Francisco; and San Francisco Veterans Affairs Medical Center (RCG, KY), San Francisco, CA
| |
Collapse
|
90
|
Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol 2015; 130:21-34. [PMID: 25943889 DOI: 10.1007/s00401-015-1435-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild traumatic brain injury. It is defined pathologically by the abnormal accumulation of tau in a unique pattern that is distinct from other tauopathies, including Alzheimer's disease (AD). Although trauma has been suggested to increase amyloid β peptide (Aβ) levels, the extent of Aβ deposition in CTE has not been thoroughly characterized. We studied a heterogeneous cohort of deceased athletes and military veterans with neuropathologically diagnosed CTE (n = 114, mean age at death = 60) to test the hypothesis that Aβ deposition is altered in CTE and associated with more severe pathology and worse clinical outcomes. We found that Aβ deposition, either as diffuse or neuritic plaques, was present in 52 % of CTE subjects. Moreover, Aβ deposition in CTE occurred at an accelerated rate and with altered dynamics in CTE compared to a normal aging population (OR = 3.8, p < 0.001). We also found a clear pathological and clinical dichotomy between those CTE cases with Aβ plaques and those without. Aβ deposition was significantly associated with the presence of the APOE ε4 allele (p = 0.035), older age at symptom onset (p < 0.001), and older age at death (p < 0.001). In addition, when controlling for age, neuritic plaques were significantly associated with increased CTE tauopathy stage (β = 2.43, p = 0.018), co-morbid Lewy body disease (OR = 5.01, p = 0.009), and dementia (OR = 4.45, p = 0.012). A subset of subjects met the diagnostic criteria for both CTE and AD, and in these subjects both Aβ plaques and total levels of Aβ1-40 were increased at the depths of the cortical sulcus compared to the gyral crests. Overall, these findings suggest that Aβ deposition is altered and accelerated in a cohort of CTE subjects compared to normal aging and that Aβ is associated with both pathological and clinical progression of CTE independent of age.
Collapse
|
91
|
Washington PM, Villapol S, Burns MP. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp Neurol 2015; 275 Pt 3:381-388. [PMID: 26091850 DOI: 10.1016/j.expneurol.2015.06.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/06/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson's disease. Further, human post-mortem studies on both single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a 'polypathology'. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI.
Collapse
Affiliation(s)
- Patricia M Washington
- Department of Pediatrics and Critical Care Medicine, Columbia University Medical Center, New York, NY, USA; Neurotrauma and Repair Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
92
|
Hong S, Washington PM, Kim A, Yang CP, Yu TS, Kernie SG. Apolipoprotein E Regulates Injury-Induced Activation of Hippocampal Neural Stem and Progenitor Cells. J Neurotrauma 2015; 33:362-74. [PMID: 25905575 DOI: 10.1089/neu.2014.3860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Partial recovery from even severe traumatic brain injury (TBI) is ubiquitous and occurs largely through unknown mechanisms. Recent evidence suggests that hippocampal neural stem/progenitor cell (NSPC) activation and subsequent neurogenesis are responsible for at least some aspects of spontaneous recovery following TBI. Apolipoprotein E (ApoE) regulates postnatal neurogenesis in the hippocampus and is therefore a putative mediator of injury-induced neurogenesis. Further, ApoE isoforms in humans are associated with different cognitive outcomes following TBI. To investigate the role of ApoE in injury-induced neurogenesis, we exposed wild-type, ApoE-deficient, and human ApoE isoform-specific (ApoE3 and ApoE4) transgenic mice crossed with nestin-green fluorescent protein (GFP) reporter mice to controlled cortical impact (CCI) and assessed progenitor activation at 2 d post-injury using unbiased stereology. GFP+ progenitor cells were increased by approximately 120% in the ipsilateral hippocampus in injured wild-type mice, compared with sham mice (p<0.01). Co-localization of GFP+ cells with bromodeoxyrudine (BrdU) to label dividing cells indicated increased proliferation of progenitors in the injured hippocampus (p<0.001). This proliferative injury response was absent in ApoE-deficient mice, as no increase in GFP+ cells was observed in the injured hippocampus, compared with sham mice, despite an overall increase in proliferation indicated by increased BrdU+ cells (86%; p<0.05). CCI-induced proliferation of GFP+ cells in both ApoE3 and ApoE4 mice but the overall response was attenuated in ApoE4 mice due to fewer GFP+ cells at baseline. We demonstrate that ApoE is required for injury-induced proliferation of NSPCs after experimental TBI, and that this response is influenced by human APOE genotype.
Collapse
Affiliation(s)
- Sue Hong
- 1 Departments of Pediatrics and Pathology and Cell Biology, Columbia University College of Physicians and Surgeons , New York, New York
| | - Patricia M Washington
- 1 Departments of Pediatrics and Pathology and Cell Biology, Columbia University College of Physicians and Surgeons , New York, New York
| | - Ahleum Kim
- 1 Departments of Pediatrics and Pathology and Cell Biology, Columbia University College of Physicians and Surgeons , New York, New York
| | - Cui-Ping Yang
- 2 Key Laboratory of Animal Models and Human Disease Mechanisms , Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tzong-Shiue Yu
- 1 Departments of Pediatrics and Pathology and Cell Biology, Columbia University College of Physicians and Surgeons , New York, New York
| | - Steven G Kernie
- 1 Departments of Pediatrics and Pathology and Cell Biology, Columbia University College of Physicians and Surgeons , New York, New York
| |
Collapse
|
93
|
Ojo JO, Mouzon BC, Crawford F. Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men. Exp Neurol 2015; 275 Pt 3:389-404. [PMID: 26054886 DOI: 10.1016/j.expneurol.2015.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurological and psychiatric condition marked by preferential perivascular foci of neurofibrillary and glial tangles (composed of hyperphosphorylated-tau proteins) in the depths of the sulci. Recent retrospective case series published over the last decade on athletes and military personnel have added considerably to our clinical and histopathological knowledge of CTE. This has marked a vital turning point in the traumatic brain injury (TBI) field, raising public awareness of the potential long-term effects of mild and moderate repetitive TBI, which has been recognized as one of the major risk factors associated with CTE. Although these human studies have been informative, their retrospective design carries certain inherent limitations that should be cautiously interpreted. In particular, the current overriding issue in the CTE literature remains confusing in regard to appropriate definitions of terminology, variability in individual pathologies and the potential case selection bias in autopsy based studies. There are currently no epidemiological or prospective studies on CTE. Controlled preclinical studies in animals therefore provide an alternative means for specifically interrogating aspects of CTE pathogenesis. In this article, we review the current literature and discuss difficulties and challenges of developing in-vivo TBI experimental paradigms to explore the link between repetitive head trauma and tau-dependent changes. We provide our current opinion list of recommended features to consider for successfully modeling CTE in animals to better understand the pathobiology and develop therapeutics and diagnostics, and critical factors, which might influence outcome. We finally discuss the possible directions of future experimental research in the repetitive TBI/CTE field.
Collapse
Affiliation(s)
- Joseph O Ojo
- Roskamp Institute, Sarasota, FL 34243, USA; The Open University, Department of Life Sciences, Milton Keynes MK7 6AA, UK; Chronic Effects of Neurotrauma Consortium, USA.
| | - Benoit C Mouzon
- Roskamp Institute, Sarasota, FL 34243, USA; The Open University, Department of Life Sciences, Milton Keynes MK7 6AA, UK; James A. Haley Veterans Administration Medical Center, Tampa, FL 33612, USA; Chronic Effects of Neurotrauma Consortium, USA.
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL 34243, USA; The Open University, Department of Life Sciences, Milton Keynes MK7 6AA, UK; James A. Haley Veterans Administration Medical Center, Tampa, FL 33612, USA; Chronic Effects of Neurotrauma Consortium, USA.
| |
Collapse
|
94
|
Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathol 2015; 129:895-907. [PMID: 25869641 PMCID: PMC4436700 DOI: 10.1007/s00401-015-1415-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer’s disease (AD) is characterized by extracellular amyloid β (Aβ) deposition and intracellular tau aggregation. Many studies have indicated some association between these processes, but it remains unknown how the two pathologies are linked. In this study, we investigated whether expression of amyloid precursor protein (APP) influences extracellular seed-dependent intracellular tau accumulation in cultured cells. Treatment of tau-expressing SH-SY5Y cells with Aβ fibrils did not induce intracellular tau aggregation. On the other hand, in cells expressing both tau and APP, treatment with tau fibrils or Sarkosyl-insoluble tau from AD brains induced intracellular tau aggregation. The seed-dependent intracellular tau aggregation was not induced by expression of APP lacking the extracellular domain. The amount of phosphorylated tau aggregates in cultured cells was dose dependently elevated in response to increased levels of APP on the cell membrane. Our results indicate that the extracellular region of APP is involved in uptake of tau fibrils into cells, raising the possibility that APP, but not Aβ, influences cell-to-cell spreading of tau pathologies in AD by serving as a receptor of abnormal tau aggregates.
Collapse
|
95
|
Portbury SD, Adlard PA. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer’s Disease: Common Pathologies Potentiated by Altered Zinc Homeostasis. J Alzheimers Dis 2015; 46:297-311. [DOI: 10.3233/jad-143048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
96
|
Blennow K, Mattsson N, Schöll M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer's disease. Trends Pharmacol Sci 2015; 36:297-309. [PMID: 25840462 DOI: 10.1016/j.tips.2015.03.002] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/06/2023]
Abstract
Aggregation of amyloid-β (Aβ) into oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer's disease (AD), and is the main focus of AD drug development. Biomarkers to monitor Aβ metabolism and aggregation directly in patients are important for further detailed study of the involvement of Aβ in disease pathogenesis and to monitor the biochemical effect of drugs targeting Aβ in clinical trials. Furthermore, if anti-Aβ disease-modifying drugs prove to be effective clinically, amyloid biomarkers will be of special value in the clinic to identify patients with brain amyloid deposition at risk for progression to AD dementia, to enable initiation of treatment before neurodegeneration is too severe, and to monitor drug effects on Aβ metabolism or pathology to guide dosage. Two types of amyloid biomarker have been developed: Aβ-binding ligands for use in positron emission tomography (PET) and assays to measure Aβ42 in cerebrospinal fluid (CSF). In this review, we present the rationales behind these biomarkers and compare their ability to measure Aβ plaque load in the brain. We also review possible shortcomings and the need of standardization of both biomarkers, as well as their implementation in the clinic.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; The Torsten Söderberg Professorship at the Royal Swedish Academy of Sciences.
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Michael Schöll
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Clinical Neuroscience and Rehabilitation, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Lund University, Lund, Sweden; Clinical Memory Research unit, Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
97
|
Weiner MW, Veitch DP, Hayes J, Neylan T, Grafman J, Aisen PS, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Shaw LM, Saykin AJ, Green RC, Harvey D, Toga AW, Friedl KE, Pacifico A, Sheline Y, Yaffe K, Mohlenoff B. Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2015; 10:S226-35. [PMID: 24924673 PMCID: PMC4392759 DOI: 10.1016/j.jalz.2014.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Both traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are common problems resulting from military service, and both have been associated with increased risk of cognitive decline and dementia resulting from Alzheimer's disease (AD) or other causes. This study aims to use imaging techniques and biomarker analysis to determine whether traumatic brain injury (TBI) and/or PTSD resulting from combat or other traumas increase the risk for AD and decrease cognitive reserve in Veteran subjects, after accounting for age. Using military and Department of Veterans Affairs records, 65 Vietnam War veterans with a history of moderate or severe TBI with or without PTSD, 65 with ongoing PTSD without TBI, and 65 control subjects are being enrolled in this study at 19 sites. The study aims to select subject groups that are comparable in age, gender, ethnicity, and education. Subjects with mild cognitive impairment (MCI) or dementia are being excluded. However, a new study just beginning, and similar in size, will study subjects with TBI, subjects with PTSD, and control subjects with MCI. Baseline measurements of cognition, function, blood, and cerebrospinal fluid biomarkers; magnetic resonance images (structural, diffusion tensor, and resting state blood-level oxygen dependent (BOLD) functional magnetic resonance imaging); and amyloid positron emission tomographic (PET) images with florbetapir are being obtained. One-year follow-up measurements will be collected for most of the baseline procedures, with the exception of the lumbar puncture, the PET imaging, and apolipoprotein E genotyping. To date, 19 subjects with TBI only, 46 with PTSD only, and 15 with TBI and PTSD have been recruited and referred to 13 clinics to undergo the study protocol. It is expected that cohorts will be fully recruited by October 2014. This study is a first step toward the design and statistical powering of an AD prevention trial using at-risk veterans as subjects, and provides the basis for a larger, more comprehensive study of dementia risk factors in veterans.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Jacqueline Hayes
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Thomas Neylan
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Jordan Grafman
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul S Aisen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Clifford Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John Q Trojanowski
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Karl E Friedl
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Anthony Pacifico
- Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Yvette Sheline
- Department of Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Kristine Yaffe
- Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA
| | - Brian Mohlenoff
- Department of Psychiatry, University of California, San Francisco, CA, USA
| |
Collapse
|
98
|
Collins JM, King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol 2015; 267:219-29. [PMID: 25747037 DOI: 10.1016/j.expneurol.2015.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/11/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury is a risk factor for Alzheimer's disease (AD), however the effect of such neural damage on the onset and progression of beta-amyloid (Aβ) plaque pathology is not well understood. This study utilized an in vivo model of focal brain injury to examine how localized damage may acutely affect the onset and progression of Aβ plaque deposition as well as inflammatory and synaptic changes, in the APP/PS1 (APPSWE, PSEN1dE9) transgenic model of AD relative to wild-type (Wt) mice. Acute focal brain injury in 3- and 9-month-old APP/PS1 and Wt mice was induced by insertion of a needle into the somatosensory neocortex, as compared to sham surgery, and examined at 24h and 7d post-injury (PI). Focal brain injury did not induce thioflavine-S stained or (pan-Aβ antibody) MOAB-2-labeled plaques at either 24h or 7d PI in 3-month-old APP/PS1 mice or Wt mice. Nine-month-old APP/PS1 mice demonstrate cortical Aβ plaques but focal injury had no statistically significant (p>0.05) effect on thioflavine-S or MOAB-2 plaque load surrounding the injury site at 24h PI or 7d PI. There was a significant (p<0.001) increase in cross-sectional cortical area occupied by Iba-1 positive microglia in injured mice compared to sham animals, however this response did not differ between APP/PS1 and Wt mice (p>0.05). For both Wt and APP/PS1 mice alike, synaptophysin puncta near the injury site were significantly reduced 24h PI (compared to sites distant to the injury and the corresponding area in sham mice; p<0.01), but not after 7d PI (p>0.05). There was no significant effect of genotype on this response (p>0.05). These results indicate that focal brain injury and the associated microglial response do not acutely alter Aβ plaque deposition in the APP/PS1 mouse model. Furthermore the current study demonstrated that the brains of both Wt and APP/PS1 mice are capable of recovering lost synaptophysin immunoreactivity post-injury, the latter in the presence of Aβ plaque pathology that causes synaptic degeneration.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia.
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia; School of Medicine, University of Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia; School of Medicine, University of Tasmania, Australia
| |
Collapse
|
99
|
Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 2015; 34:16180-93. [PMID: 25471560 DOI: 10.1523/jneurosci.3020-14.2014] [Citation(s) in RCA: 771] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the "glymphatic" pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration.
Collapse
|
100
|
Brody DL, Benetatos J, Bennett RE, Klemenhagen KC, Mac Donald CL. The pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions. Mol Cell Neurosci 2015; 66:91-8. [PMID: 25684677 DOI: 10.1016/j.mcn.2015.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. In addition, the role of injury to dendritic spine cytoskeletal structures, vascular reactivity impairments, and microthrombi are intriguing and subjects of ongoing inquiry. Methods for quantitative analysis of axonal injury, dendritic injury, and synaptic loss need to be refined for the field to move forward in a rigorous fashion. We and others are attempting to develop translational approaches to assess these specific pathophysiological events in both animals and humans to facilitate clinically relevant pharmacodynamic assessments of candidate therapeutics. In this article, we review and discuss several of the recent experimental results from our lab and others. We include new initial data describing the difficulty in modeling progressive tau pathology in experimental rcTBI, and results demonstrating that sertraline can alleviate social interaction deficits and depressive-like behaviors following experimental rcTBI plus foot shock stress. Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. This article is part of a Special Issue entitled "Traumatic Brain Injury".
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA.
| | - Joseph Benetatos
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| | - Rachel E Bennett
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| | - Kristen C Klemenhagen
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| | - Christine L Mac Donald
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| |
Collapse
|