51
|
Callier T, Brantly NW, Caravelli A, Bensmaia SJ. The frequency of cortical microstimulation shapes artificial touch. Proc Natl Acad Sci U S A 2020; 117:1191-1200. [PMID: 31879342 PMCID: PMC6969512 DOI: 10.1073/pnas.1916453117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intracortical microstimulation (ICMS) of the somatosensory cortex evokes vivid tactile sensations and can be used to convey sensory feedback from brain-controlled bionic hands. Changes in ICMS frequency lead to changes in the resulting sensation, but the discriminability of frequency has only been investigated over a narrow range of low frequencies. Furthermore, the sensory correlates of changes in ICMS frequency remain poorly understood. Specifically, it remains to be elucidated whether changes in frequency only modulate sensation magnitude-as do changes in amplitude-or whether they also modulate the quality of the sensation. To fill these gaps, we trained monkeys to discriminate the frequency of ICMS pulse trains over a wide range of frequencies (from 10 to 400 Hz). ICMS amplitude also varied across stimuli to dissociate sensation magnitude from ICMS frequency and ensure that animals could not make frequency judgments based on magnitude. We found that animals could consistently discriminate ICMS frequency up to ∼200 Hz but that the sensory correlates of frequency were highly electrode dependent: On some electrodes, changes in frequency were perceptually distinguishable from changes in amplitude-seemingly giving rise to a change in sensory quality; on others, they were not. We discuss the implications of our findings for neural coding and for brain-controlled bionic hands.
Collapse
Affiliation(s)
- Thierri Callier
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | - Nathan W Brantly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Attilio Caravelli
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637;
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL 60637
| |
Collapse
|
52
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
53
|
Hughes C, Herrera A, Gaunt R, Collinger J. Bidirectional brain-computer interfaces. BRAIN-COMPUTER INTERFACES 2020; 168:163-181. [DOI: 10.1016/b978-0-444-63934-9.00013-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
54
|
Sound- and current-driven laminar profiles and their application method mimicking acoustic responses in the mouse auditory cortex in vivo. Brain Res 2019; 1721:146312. [PMID: 31323198 DOI: 10.1016/j.brainres.2019.146312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 11/24/2022]
Abstract
The local application of electrical currents to the cortex is one of the most commonly used techniques to activate neurons, and this intracortical stimulation (ICS) could potentially lead to new types of neuroprosthetic devices that can be directly applied to the cortex. To identify whether ICS-activated circuits are physiological vs. profoundly artificial, it is necessary to record in vivo the responses of the same neuronal population to both natural sensory stimuli and artificial electric stimuli. However, few studies have extensively reported simultaneous electrophysiological recordings combined with ICS. Here, we evaluated the similarity between sound- and ICS-driven cortical response patterns in different cortical layers. In the mouse auditory cortex, we performed laminar recordings using 16-channel silicon electrodes and ICS using sharp glass-pipette electrodes containing biocytin for layer identification. In different cortical depths, short current pulses were delivered in vivo to mice under urethane anesthesia. For the recorded data, we mainly analyzed properties of local field potentials and current source densities (CSDs). We demonstrated that electrical stimulation evoked different excitation patterns according to the stimulated cortical layer; responses to electric stimuli in layer 4 were most likely to mimic acoustic responses. Next, we proposed a CSD-based stimulation method to artificially synthesize sound-driven responses, using an approximation method associated with a linear combination of CSD patterns electrically stimulated in the different cortical layers. The result indicates that synthesized responses were consistent with the canonical model of sound processing. Using these approaches, we provide a new technique in which natural sound-driven responses can be mimicked by well-designed computational stimulation pattern sequences in a layer-dependent manner. These findings may aid in the future development of an electrical stimulation methodology for a cortical prosthesis.
Collapse
|
55
|
Bjanes DA, Moritz CT. A Robust Encoding Scheme for Delivering Artificial Sensory Information via Direct Brain Stimulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1994-2004. [PMID: 31443035 DOI: 10.1109/tnsre.2019.2936739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Innovations for creating somatosensation via direct electrical stimulation of the brain will be required for the next generation of bi-directional cortical neuroprostheses. The current lack of tactile perception and proprioceptive input likely imposes a fundamental limit on speed and accuracy of brain-controlled prostheses or re-animated limbs. This study addresses the unique challenge of identifying a robust, high bandwidth sensory encoding scheme in a high-dimensional parameter space. Previous studies demonstrated single dimensional encoding schemes delivering low bandwidth sensory information, but no comparison has been performed across parameters, nor with update rates suitable for real-time operation of a neuroprosthesis. Here, we report the first comprehensive measurement of the resolution of key stimulation parameters such as pulse amplitude, pulse width, frequency, train interval and number of pulses. Surprisingly, modulation of stimulation frequency was largely undetectable. While we initially expected high frequency content to be an ideal candidate for passing high throughput sensory signals to the brain, we found only modulation of very low frequencies were detectable. Instead, the charge-per-phase of each pulse yields the highest resolution sensory signal, and is the key parameter modulating perceived intensity. The stimulation encoding patterns were designed for high-bandwidth information transfer that will be required for bi-directional brain interfaces. Our discovery of the stimulation features which best encode perceived intensity have significant implications for design of any neural interface seeking to convey information directly to the brain via electrical stimulation.
Collapse
|
56
|
Lenschow C, Brecht M. Physiological and Anatomical Outputs of Rat Genital Cortex. Cereb Cortex 2019; 28:1472-1486. [PMID: 29373631 PMCID: PMC6093453 DOI: 10.1093/cercor/bhx359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 01/02/2023] Open
Abstract
Rat somatosensory genital cortex contains a large sexually monomorphic representation of the penis in males and the clitoris in females. Genital cortex microstimulation-evoked movements of legs, trunk and genitals, which showed sex-specific differences related to mating behaviors and included thrusting in males and lordosis-like movements in females. Erections/tumescence of penis or clitoris could not be evoked, however. Anterograde tracer injections into penis/clitoris cortex revealed eleven corticocortical and 10 subcortical projection targets, which were qualitatively similar in both sexes. Corticocortical genital-cortex-projections innervated about 3% of the cortical surface and most were analog to other somatosensory projections targeting motor cortex, secondary somatosensory cortex, parietal cortex and perirhinal cortex. Corticocortical projections that differed from other parts of somatosensory cortex targeted male scrotum cortex, female vulva cortex, the somatosensory–ear–auditory-cortex-region and the caudal parietal area. Aligning cytoarchitectonic borders with motor topography, sensory genital responses and corticocortical projections identified a candidate region for genital motor cortex. Most subcortical genital-cortex-projections were analog to other thalamic, tectal or pontine projections of somatosensory cortex. Genital-cortex-specific subcortical projections targeted amygdala and nucleus submedius and accumbens. Microstimulation-effects and projections support a sexual function of genital cortex and suggest that genital cortex is a major hub of sexual sensorimotor processing in rodents.
Collapse
Affiliation(s)
- Constanze Lenschow
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
57
|
Jog MV, Wang DJJ, Narr KL. A review of transcranial direct current stimulation (tDCS) for the individualized treatment of depressive symptoms. ACTA ACUST UNITED AC 2019; 17-18:17-22. [PMID: 31938757 DOI: 10.1016/j.pmip.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a low intensity neuromodulation technique shown to elicit therapeutic effects in a number of neuropsychological conditions. Independent randomized sham-controlled trials and meta- and mega-analyses demonstrate that tDCS targeted to the left dorsolateral prefrontal cortex can produce a clinically meaningful response in patients with major depressive disorder (MDD), but effects are small to moderate in size. However, the heterogeneous presentation, and the neurobiology underlying particular features of depression suggest clinical outcomes might benefit from empirically informed patient selection. In this review, we summarize the status of tDCS research in MDD with focus on the clinical, biological, and intrinsic and extrinsic factors shown to enhance or predict antidepressant response. We also discuss research strategies for optimizing tDCS to improve patient-specific clinical outcomes. TDCS appears suited for both bipolar and unipolar depression, but is less effective in treatment resistant depression. TDCS may also better target core aspects of depressed mood over vegetative symptoms, while pretreatment patient characteristics might inform subsequent response. Peripheral blood markers of gene and immune system function have not yet proven useful as predictors or correlates of tDCS response. Though further research is needed, several lines of evidence suggest that tDCS administered in combination with pharmacological and cognitive behavioral interventions can improve outcomes. Tailoring stimulation to the functional and structural anatomy and/or connectivity of individual patients can maximize physiological response in targeted networks, which in turn could translate to therapeutic benefits.
Collapse
Affiliation(s)
- Mayank V Jog
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California.,Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California.,Department of Neurology, and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
58
|
Casteau S, Smith DT. Associations and Dissociations between Oculomotor Readiness and Covert Attention. Vision (Basel) 2019; 3:vision3020017. [PMID: 31735818 PMCID: PMC6802773 DOI: 10.3390/vision3020017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
The idea that covert mental processes such as spatial attention are fundamentally dependent on systems that control overt movements of the eyes has had a profound influence on theoretical models of spatial attention. However, theories such as Klein’s Oculomotor Readiness Hypothesis (OMRH) and Rizzolatti’s Premotor Theory have not gone unchallenged. We previously argued that although OMRH/Premotor theory is inadequate to explain pre-saccadic attention and endogenous covert orienting, it may still be tenable as a theory of exogenous covert orienting. In this article we briefly reiterate the key lines of argument for and against OMRH/Premotor theory, then evaluate the Oculomotor Readiness account of Exogenous Orienting (OREO) with respect to more recent empirical data. These studies broadly confirm the importance of oculomotor preparation for covert, exogenous attention. We explain this relationship in terms of reciprocal links between parietal ‘priority maps’ and the midbrain oculomotor centres that translate priority-related activation into potential saccade endpoints. We conclude that the OMRH/Premotor theory hypothesis is false for covert, endogenous orienting but remains tenable as an explanation for covert, exogenous orienting.
Collapse
|
59
|
Michelson NJ, Eles JR, Vazquez AL, Ludwig KA, Kozai TDY. Calcium activation of cortical neurons by continuous electrical stimulation: Frequency dependence, temporal fidelity, and activation density. J Neurosci Res 2019; 97:620-638. [PMID: 30585651 PMCID: PMC6469875 DOI: 10.1002/jnr.24370] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/18/2023]
Abstract
Electrical stimulation of the brain has become a mainstay of fundamental neuroscience research and an increasingly prevalent clinical therapy. Despite decades of use in basic neuroscience research and the growing prevalence of neuromodulation therapies, gaps in knowledge regarding activation or inactivation of neural elements over time have limited its ability to adequately interpret evoked downstream responses or fine-tune stimulation parameters to focus on desired responses. In this work, in vivo two-photon microscopy was used to image neuronal calcium activity in layer 2/3 neurons of somatosensory cortex (S1) in male C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice during 30 s of continuous electrical stimulation at varying frequencies. We show frequency-dependent differences in spatial and temporal somatic responses during continuous stimulation. Our results elucidate conflicting results from prior studies reporting either dense spherical activation of somas biased toward those near the electrode, or sparse activation of somas at a distance via axons near the electrode. These findings indicate that the neural element specific temporal response local to the stimulating electrode changes as a function of applied charge density and frequency. These temporal responses need to be considered to properly interpret downstream circuit responses or determining mechanisms of action in basic science experiments or clinical therapeutic applications.
Collapse
Affiliation(s)
- Nicholas J. Michelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, CA
| | - James R. Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alberto L. Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison
- Department of Neurological Surgery, University of Wisconsin Madison
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
60
|
Tanaka Y, Nomoto T, Shiki T, Sakata Y, Shimada Y, Hayashida Y, Yagi T. Focal activation of neuronal circuits induced by microstimulation in the visual cortex. J Neural Eng 2019; 16:036007. [PMID: 30818288 DOI: 10.1088/1741-2552/ab0b80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Microstimulation to the cortical tissue applied with penetrating electrodes delivers current that spreads concentrically around the electrode tip and is known to evoke focal visual sensations, i.e. phosphenes. However, to date, there is no direct evidence depicting the spatiotemporal properties of neuronal activity induced immediately after microstimulation and how such activity drives the subsequent local cortical circuits. APPROACH In the present study, we imaged the spatiotemporal distribution of action potentials (APs) directly induced by microstimulation and the subsequent trans-synaptic signal propagation using a voltage-sensitive dye (VSD) and a calcium-sensitive dye (CaSD) in slice preparations of the mouse primary visual cortex. MAIN RESULTS The directly induced APs were confined to the close vicinity of the electrode tip, and the effective distance of excitation was proportional to the square root of the current intensity. The excitation around the electrode tip in layer IV mainly propagated to layer II/III to further induce the subsequent focal activation in downstream local cortical circuits. The extent of activation in the downstream circuits was restrained by competitive interactions between excitatory and inhibitory signals. Namely, the spread of the excitation to lateral neighbor neurons along the layer II/III was confined by the delayed inhibition that also spread laterally at a faster rate. SIGNIFICANCE These observations indicate that dynamic interactions between excitatory and inhibitory signals play a critical role in the focal activation of a cortical circuit in response to intracortical microstimulation and, therefore, in evoking a localized phosphene.
Collapse
Affiliation(s)
- Yuta Tanaka
- Division of Electrical, Electronic, and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Voigt MB, Kral A. Cathodic-leading pulses are more effective than anodic-leading pulses in intracortical microstimulation of the auditory cortex. J Neural Eng 2019; 16:036002. [PMID: 30790776 DOI: 10.1088/1741-2552/ab0944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Intracortical microstimulation (ICMS) is widely used in neuroscientific research. Earlier work from our lab showed the possibility to combine ICMS with neuronal recordings on the same shank of multi-electrode arrays and consequently inside the same cortical column in vivo. The standard stimulus pulse shape for ICMS is a symmetric, biphasic current pulse. Here, we investigated the role of the leading-phase polarity (cathodic- versus anodic-leading) of such single ICMS pulses on the activation of the cortical network. APPROACH Local field potentials (LFPs) and multi-unit responses were recorded in the primary auditory cortex (A1) of adult guinea pigs (n = 15) under ketamine/xylazine anesthesia using linear multi-electrode arrays. Physiological responses of A1 were recorded during acoustic stimulation and ICMS. For the ICMS, the leading-phase polarity, the stimulated electrode and the stimulation current where varied systematically on any one of the 16 electrodes while recording at the same time with the 15 remaining electrodes. MAIN RESULTS Cathodic-leading ICMS consistently led to higher response amplitudes. In superficial cortical layers and for a given current amplitude, cathodic-leading and anodic-leading ICMS showed comparable activation patterns, while in deep layers only cathodic-leading ICMS reliably generated local neuronal activity. ICMS had a significantly smaller dynamic range than acoustic stimulation regardless of leading-phase polarity. SIGNIFICANCE The present study provides in vivo evidence for a differential neuronal activation mechanism of the different leading-phase polarities, with cathodic-leading stimulation being more effective, and suggests that the waveform of the stimulus should be considered systematically for cortical neuroprosthesis development.
Collapse
Affiliation(s)
- Mathias Benjamin Voigt
- Department of Experimental Otology, Institute of AudioNeuroTechnology (VIANNA), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany. Cluster of Excellence 'Hearing4all', Hannover, Germany
| | | |
Collapse
|
62
|
Solomon EA, Kragel JE, Gross R, Lega B, Sperling MR, Worrell G, Sheth SA, Zaghloul KA, Jobst BC, Stein JM, Das S, Gorniak R, Inman CS, Seger S, Rizzuto DS, Kahana MJ. Medial temporal lobe functional connectivity predicts stimulation-induced theta power. Nat Commun 2018; 9:4437. [PMID: 30361627 PMCID: PMC6202342 DOI: 10.1038/s41467-018-06876-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 02/04/2023] Open
Abstract
Focal electrical stimulation of the brain incites a cascade of neural activity that propagates from the stimulated region to both nearby and remote areas, offering the potential to control the activity of brain networks. Understanding how exogenous electrical signals perturb such networks in humans is key to its clinical translation. To investigate this, we applied electrical stimulation to subregions of the medial temporal lobe in 26 neurosurgical patients fitted with indwelling electrodes. Networks of low-frequency (5–13 Hz) spectral coherence predicted stimulation-evoked increases in theta (5–8 Hz) power, particularly when stimulation was applied in or adjacent to white matter. Stimulation tended to decrease power in the high-frequency broadband (HFB; 50–200 Hz) range, and these modulations were correlated with HFB-based networks in a subset of subjects. Our results demonstrate that functional connectivity is predictive of causal changes in the brain, capturing evoked activity across brain regions and frequency bands. Direct electrical brain stimulation can induce widespread changes in neural activity, offering a means to modulate network-wide activity and treat disease. Here, the authors show that the low-frequency functional connectivity profile of a stimulation target predicts where induced theta activity occurs.
Collapse
Affiliation(s)
- E A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19146, USA.
| | - J E Kragel
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19146, USA
| | - R Gross
- Department of Neurosurgery, Emory School of Medicine, Atlanta, GA, 30322, USA
| | - B Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - M R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | - G Worrell
- Department of Neurology, Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - S A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - K A Zaghloul
- Surgical Neurology Branch, National Institutes of Health, Bethesda, MD, 20814, USA
| | - B C Jobst
- Department of Neurology, Dartmouth Medical Center, Lebanon, NH, 03756, USA
| | - J M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S Das
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Gorniak
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | - C S Inman
- Department of Neurosurgery, Emory School of Medicine, Atlanta, GA, 30322, USA
| | - S Seger
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - D S Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19146, USA
| | - M J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19146, USA.
| |
Collapse
|
63
|
de Oliveira J, Maciel R, Moraes M, Rosa Cota V. Asynchronous, bilateral, and biphasic temporally unstructured electrical stimulation of amygdalae enhances the suppression of pentylenetetrazole-induced seizures in rats. Epilepsy Res 2018; 146:1-8. [DOI: 10.1016/j.eplepsyres.2018.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/20/2018] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
|
64
|
Spatio-temporal characteristics of population responses evoked by microstimulation in the barrel cortex. Sci Rep 2018; 8:13913. [PMID: 30224723 PMCID: PMC6141467 DOI: 10.1038/s41598-018-32148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
Intra-cortical microstimulation (ICMS) is a widely used technique to artificially stimulate cortical tissue. This method revealed functional maps and provided causal links between neuronal activity and cognitive, sensory or motor functions. The effects of ICMS on neural activity depend on stimulation parameters. Past studies investigated the effects of stimulation frequency mainly at the behavioral or motor level. Therefore the direct effect of frequency stimulation on the evoked spatio-temporal patterns of cortical activity is largely unknown. To study this question we used voltage-sensitive dye imaging to measure the population response in the barrel cortex of anesthetized rats evoked by high frequency stimulation (HFS), a lower frequency stimulation (LFS) of the same duration or a single pulse stimulation. We found that single pulse and short trains of ICMS induced cortical activity extending over few mm. HFS evoked a lower population response during the sustained response and showed a smaller activation across time and space compared with LFS. Finally the evoked population response started near the electrode site and spread horizontally at a propagation velocity in accordance with horizontal connections. In summary, HFS was less effective in cortical activation compared to LFS although HFS had 5 fold more energy than LFS.
Collapse
|
65
|
Goncalves SB, Palha JM, Fernandes HC, Souto MR, Pimenta S, Dong T, Yang Z, Ribeiro JF, Correia JH. LED Optrode with Integrated Temperature Sensing for Optogenetics. MICROMACHINES 2018; 9:E473. [PMID: 30424406 PMCID: PMC6187356 DOI: 10.3390/mi9090473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 12/02/2022]
Abstract
In optogenetic studies, the brain is exposed to high-power light sources and inadequate power density or exposure time can cause cell damage from overheating (typically temperature increasing of 2 ∘ C). In order to overcome overheating issues in optogenetics, this paper presents a neural tool capable of assessing tissue temperature over time, combined with the capability of electrical recording and optical stimulation. A silicon-based 8 mm long probe was manufactured to reach deep neural structures. The final proof-of-concept device comprises a double-sided function: on one side, an optrode with LED-based stimulation and platinum (Pt) recording points; and, on the opposite side, a Pt-based thin-film thermoresistance (RTD) for temperature assessing in the photostimulation site surroundings. Pt thin-films for tissue interface were chosen due to its biocompatibility and thermal linearity. A single-shaft probe is demonstrated for integration in a 3D probe array. A 3D probe array will reduce the distance between the thermal sensor and the heating source. Results show good recording and optical features, with average impedance magnitude of 371 k Ω , at 1 kHz, and optical power of 1.2 mW·mm - 2 (at 470 nm), respectively. The manufactured RTD showed resolution of 0.2 ∘ C at 37 ∘ C (normal body temperature). Overall, the results show a device capable of meeting the requirements of a neural interface for recording/stimulating of neural activity and monitoring temperature profile of the photostimulation site surroundings, which suggests a promising tool for neuroscience research filed.
Collapse
Affiliation(s)
- S Beatriz Goncalves
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - José M Palha
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Helena C Fernandes
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Márcio R Souto
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Sara Pimenta
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Tao Dong
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Institute for Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway (USN), Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - João F Ribeiro
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - José H Correia
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| |
Collapse
|
66
|
Clemens AM, Fernandez Delgado Y, Mehlman ML, Mishra P, Brecht M. Multisensory and Motor Representations in Rat Oral Somatosensory Cortex. Sci Rep 2018; 8:13556. [PMID: 30201995 PMCID: PMC6131144 DOI: 10.1038/s41598-018-31710-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022] Open
Abstract
In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior.
Collapse
Affiliation(s)
- Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Yohami Fernandez Delgado
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Max L Mehlman
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Poonam Mishra
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany.
| |
Collapse
|
67
|
Intracortical Microstimulation Modulates Cortical Induced Responses. J Neurosci 2018; 38:7774-7786. [PMID: 30054394 DOI: 10.1523/jneurosci.0928-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/19/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
Recent advances in cortical prosthetics relied on intracortical microstimulation (ICMS) to activate the cortical neural network and convey information to the brain. Here we show that activity elicited by low-current ICMS modulates induced cortical responses to a sensory stimulus in the primary auditory cortex (A1). A1 processes sensory stimuli in a stereotyped manner, encompassing two types of activity: evoked activity (phase-locked to the stimulus) and induced activity (non-phase-locked to the stimulus). Time-frequency analyses of extracellular potentials recorded from all layers and the surface of the auditory cortex of anesthetized guinea pigs of both sexes showed that ICMS during the processing of a transient acoustic stimulus differentially affected the evoked and induced response. Specifically, ICMS enhanced the long-latency-induced component, mimicking physiological gain increasing top-down feedback processes. Furthermore, the phase of the local field potential at the time of stimulation was predictive of the response amplitude for acoustic stimulation, ICMS, as well as combined acoustic and electric stimulation. Together, this was interpreted as a sign that the response to electrical stimulation was integrated into the ongoing cortical processes in contrast to substituting them. Consequently, ICMS modulated the cortical response to a sensory stimulus. We propose such targeted modulation of cortical activity (as opposed to a stimulation that substitutes the ongoing processes) as an alternative approach for cortical prostheses.SIGNIFICANCE STATEMENT Intracortical microstimulation (ICMS) is commonly used to activate a specific subset of cortical neurons, without taking into account the ongoing activity at the time of stimulation. Here, we found that a low-current ICMS pulse modulated the way the auditory cortex processed a peripheral stimulus, by supra-additively combining the response to the ICMS with the cortical processing of the peripheral stimulus. This artificial modulation mimicked natural modulations of response magnitude such as attention or expectation. In contrast to what was implied in earlier studies, this shows that the response to electrical stimulation is not substituting ongoing cortical activity but is integrated into the natural processes.
Collapse
|
68
|
Kim T, Cho M, Yu KJ. Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1163. [PMID: 29986539 PMCID: PMC6073353 DOI: 10.3390/ma11071163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
Scientific and engineering progress associated with increased interest in healthcare monitoring, therapy, and human-machine interfaces has rapidly accelerated the development of bio-integrated multifunctional devices. Recently, compensation for the cons of existing materials on electronics for health care systems has been provided by carbon-based nanomaterials. Due to their excellent mechanical and electrical properties, these materials provide benefits such as improved flexibility and stretchability for conformal integration with the soft, curvilinear surfaces of human tissues or organs, while maintaining their own unique functions. This review summarizes the most recent advanced biomedical devices and technologies based on two most popular carbon based materials, carbon nanotubes (CNTs) and graphene. In the beginning, we discuss the biocompatibility of CNTs and graphene by examining their cytotoxicity and/or detrimental effects on the human body for application to bioelectronics. Then, we scrutinize the various types of flexible and/or stretchable substrates that are integrated with CNTs and graphene for the construction of high-quality active electrode arrays and sensors. The convergence of these carbon-based materials and bioelectronics ensures scalability and cooperativity in various fields. Finally, future works with challenges are presented in bio-integrated electronic applications with these carbon-based materials.
Collapse
Affiliation(s)
- Taemin Kim
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Myeongki Cho
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Ki Jun Yu
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
69
|
Joseph K, Mottaghi S, Christ O, Feuerstein TJ, Hofmann UG. When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics. Front Neurosci 2018; 12:293. [PMID: 29780301 PMCID: PMC5946007 DOI: 10.3389/fnins.2018.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Modern electroceuticals are bound to employ the usage of electrical high frequency (130-180 Hz) stimulation carried out under closed loop control, most prominent in the case of movement disorders. However, particular challenges are faced when electrical recordings of neuronal tissue are carried out during high frequency electrical stimulation, both in-vivo and in-vitro. This stimulation produces undesired artifacts and can render the recorded signal only partially useful. The extent of these artifacts is often reduced by temporarily grounding the recording input during stimulation pulses. In the following study, we quantify the effects of this method, "blanking," on the spike count and spike train statistics. Starting from a theoretical standpoint, we calculate a loss in the absolute number of action potentials, depending on: width of the blanking window, frequency of stimulation, and intrinsic neuronal activity. These calculations were then corroborated by actual high signal to noise ratio (SNR) single cell recordings. We state that, for clinically relevant frequencies of 130 Hz (used for movement disorders) and realistic blanking windows of 2 ms, up to 27% of actual existing spikes are lost. We strongly advice cautioned use of the blanking method when spike rate quantification is attempted. Impact statement Blanking (artifact removal by temporarily grounding input), depending on recording parameters, can lead to significant spike loss. Very careful use of blanking circuits is advised.
Collapse
Affiliation(s)
- Kevin Joseph
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soheil Mottaghi
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Christ
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas J Feuerstein
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
70
|
O'Shea DJ, Shenoy KV. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. J Neural Eng 2018; 15:026020. [PMID: 29265009 PMCID: PMC5833982 DOI: 10.1088/1741-2552/aaa365] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. APPROACH We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. MAIN RESULTS The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. SIGNIFICANCE We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States of America. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | | |
Collapse
|
71
|
Green DB, Shackleton TM, Grimsley JMS, Zobay O, Palmer AR, Wallace MN. Communication calls produced by electrical stimulation of four structures in the guinea pig brain. PLoS One 2018; 13:e0194091. [PMID: 29584746 PMCID: PMC5870961 DOI: 10.1371/journal.pone.0194091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/25/2018] [Indexed: 02/03/2023] Open
Abstract
One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.
Collapse
Affiliation(s)
- David B. Green
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Trevor M. Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Jasmine M. S. Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Oliver Zobay
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Mark N. Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
72
|
Najarpour Foroushani A, Pack CC, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J Neural Eng 2018; 15:021005. [DOI: 10.1088/1741-2552/aaa904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Kim LH, McLeod RS, Kiss ZHT. A new psychometric questionnaire for reporting of somatosensory percepts. J Neural Eng 2018; 15:013002. [DOI: 10.1088/1741-2552/aa966a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
74
|
Tolerance to rewarding brain electrical stimulation: Differential effects of contingent and non-contingent activation of parabrachial complex and lateral hypothalamus. Behav Brain Res 2018; 336:15-21. [DOI: 10.1016/j.bbr.2017.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023]
|
75
|
Tanaka Y, Isomura T, Shimba K, Kotani K, Jimbo Y. Neurogenesis Enhances Response Specificity to Spatial Pattern Stimulation in Hippocampal Cultures. IEEE Trans Biomed Eng 2017; 64:2555-2561. [DOI: 10.1109/tbme.2016.2639468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
76
|
Gkogkidis CA, Wang X, Schubert T, Gierthmühlen M, Kohler F, Schulze-Bonhage A, Burgard W, Rickert J, Haberstroh J, Schüttler M, Stieglitz T, Ball T. Closed-loop interaction with the cerebral cortex using a novel micro-ECoG-based implant: the impact of beta vs. gamma stimulation frequencies on cortico-cortical spectral responses. BRAIN-COMPUTER INTERFACES 2017. [DOI: 10.1080/2326263x.2017.1381829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C. Alexis Gkogkidis
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Xi Wang
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Tobias Schubert
- Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Mortimer Gierthmühlen
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfram Burgard
- Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | | | - Jörg Haberstroh
- CEMT, Experimental Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
77
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
78
|
Circuit changes in motor cortex during motor skill learning. Neuroscience 2017; 368:283-297. [PMID: 28918262 DOI: 10.1016/j.neuroscience.2017.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed.
Collapse
|
79
|
Da Cunha C, McKimm E, Da Cunha RM, Boschen SL, Redgrave P, Blaha CD. Mechanism for optimization of signal-to-noise ratio of dopamine release based on short-term bidirectional plasticity. Brain Res 2017; 1667:68-73. [PMID: 28495305 DOI: 10.1016/j.brainres.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Repeated electrical stimulation of dopamine (dopamine) fibers can cause variable effects on further dopamine release; sometimes there are short-term decreases while in other cases short-term increases have been reported. Previous studies have failed to discover what factors determine in which way dopamine neurons will respond to repeated stimulation. The aim of the present study was therefore to investigate what determines the direction and magnitude of this particular form of short-term plasticity. Fixed potential amperometry was used to measure dopamine release in the nucleus accumbens in response to two trains of electrical pulses administered to the ventral tegmental area of anesthetized mice. When the pulse trains were of equal magnitude we found that low magnitude stimulation was associated with short-term suppression and high magnitude stimulation with short-term facilitation of dopamine release. Secondly, we found that the magnitude of the second pulse train was critical for determining the sign of the plasticity (suppression or facilitation), while the magnitude of the first pulse train determined the extent to which the response to the second train was suppressed or facilitated. This form of bidirectional plasticity might provide a mechanism to enhance signal-to-noise ratio of dopamine neurotransmission.
Collapse
Affiliation(s)
- Claudio Da Cunha
- Universidade Federal do Paraná, Departamento de Farmacologia, 81.531-980 Curitiba, PR, Brazil; Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Eric McKimm
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Rafael M Da Cunha
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Suelen L Boschen
- Universidade Federal do Paraná, Departamento de Farmacologia, 81.531-980 Curitiba, PR, Brazil; Department of Psychology, University of Memphis, Memphis, TN 38152, USA; Neural Engineering Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charles D Blaha
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA; Neural Engineering Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
80
|
Klink PC, Dagnino B, Gariel-Mathis MA, Roelfsema PR. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation. Neuron 2017. [PMID: 28625487 DOI: 10.1016/j.neuron.2017.05.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Neuromodulation and Behaviour, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV Amsterdam, the Netherlands
| | - Bruno Dagnino
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Marie-Alice Gariel-Mathis
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
81
|
Katlowitz KA, Oya H, Howard MA, Greenlee JDW, Long MA. Paradoxical vocal changes in a trained singer by focally cooling the right superior temporal gyrus. Cortex 2017; 89:111-119. [PMID: 28282570 PMCID: PMC5421518 DOI: 10.1016/j.cortex.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/26/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
The production and perception of music is preferentially mediated by cortical areas within the right hemisphere, but little is known about how these brain regions individually contribute to this process. In an experienced singer undergoing awake craniotomy, we demonstrated that direct electrical stimulation to a portion of the right posterior superior temporal gyrus (pSTG) selectively interrupted singing but not speaking. We then focally cooled this region to modulate its activity during vocalization. In contrast to similar manipulations in left hemisphere speech production regions, pSTG cooling did not elicit any changes in vocal timing or quality. However, this manipulation led to an increase in the pitch of speaking with no such change in singing. Further analysis revealed that all vocalizations exhibited a cooling-induced increase in the frequency of the first formant, raising the possibility that potential pitch offsets may have been actively avoided during singing. Our results suggest that the right pSTG plays a key role in vocal sensorimotor processing whose impact is dependent on the type of vocalization produced.
Collapse
Affiliation(s)
- Kalman A Katlowitz
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Hiroyuki Oya
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Matthew A Howard
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Jeremy D W Greenlee
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
82
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
83
|
Cota VR, Drabowski BMB, de Oliveira JC, Moraes MFD. The epileptic amygdala: Toward the development of a neural prosthesis by temporally coded electrical stimulation. J Neurosci Res 2017; 94:463-85. [PMID: 27091311 DOI: 10.1002/jnr.23741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
Many patients with epilepsy do not obtain proper control of their seizures through conventional treatment. We review aspects of the pathophysiology underlying epileptic phenomena, with a special interest in the role of the amygdala, stressing the importance of hypersynchronism in both ictogenesis and epileptogenesis. We then review experimental studies on electrical stimulation of mesiotemporal epileptogenic areas, the amygdala included, as a means to treat medically refractory epilepsy. Regular high-frequency stimulation (HFS) commonly has anticonvulsant effects and sparse antiepileptogenic properties. On the other hand, HFS is related to acute and long-term increases in excitability related to direct neuronal activation, long-term potentiation, and kindling, raising concerns regarding its safety and jeopardizing in-depth understanding of its mechanisms. In turn, the safer regular low-frequency stimulation (LFS) has a robust antiepileptogenic effect, but its pro- or anticonvulsant effect seems to vary at random among studies. As an alternative, studies by our group on the development and investigation of temporally unstructured electrical stimulation applied to the amygdala have shown that nonperiodic stimulation (NPS), which is a nonstandard form of LFS, is capable of suppressing both acute and chronic spontaneous seizures. We hypothesize two noncompetitive mechanisms for the therapeutic role of amygdala in NPS, 1) a direct desynchronization of epileptic circuitry in the forebrain and brainstem and 2) an indirect desynchronization/inhibition through nucleus accumbens activation. We conclude by reintroducing the idea that hypersynchronism, rather than hyperexcitability, may be the key for epileptic phenomena and epilepsy treatment.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Bruna Marcela Bacellar Drabowski
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Jasiara Carla de Oliveira
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
84
|
Hurtado MM, García R, Puerto A. Tiapride prevents the aversive but not the rewarding effect induced by parabrachial electrical stimulation in a place preference task. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
85
|
Hao Y, Riehle A, Brochier TG. Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using Single Pulse Microstimulation. Front Neural Circuits 2016; 10:104. [PMID: 28018182 PMCID: PMC5159418 DOI: 10.3389/fncir.2016.00104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS) applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single and multiunit activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions.
Collapse
Affiliation(s)
- Yaoyao Hao
- Institut de Neurosciences de la Timone, CNRS - Aix-Marseille Université, UMR7289 Marseille, France
| | - Alexa Riehle
- Institut de Neurosciences de la Timone, CNRS - Aix-Marseille Université, UMR7289Marseille, France; RIKEN Brain Science InstituteSaitama, Japan; Institute of Neuroscience and Medicine, Forschungszentrum JülichJülich, Germany
| | - Thomas G Brochier
- Institut de Neurosciences de la Timone, CNRS - Aix-Marseille Université, UMR7289 Marseille, France
| |
Collapse
|
86
|
Kim S, Callier T, Bensmaia SJ. A computational model that predicts behavioral sensitivity to intracortical microstimulation. J Neural Eng 2016; 14:016012. [PMID: 27977419 DOI: 10.1088/1741-2552/14/1/016012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. APPROACH We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. MAIN RESULTS Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R 2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber's law. SIGNIFICANCE The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics.
Collapse
Affiliation(s)
- Sungshin Kim
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
87
|
Boi F, Moraitis T, De Feo V, Diotalevi F, Bartolozzi C, Indiveri G, Vato A. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder. Front Neurosci 2016; 10:563. [PMID: 28018162 PMCID: PMC5145890 DOI: 10.3389/fnins.2016.00563] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.
Collapse
Affiliation(s)
- Fabio Boi
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| | - Timoleon Moraitis
- Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Vito De Feo
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| | - Francesco Diotalevi
- Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia Genova, Italy
| | | | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Alessandro Vato
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| |
Collapse
|
88
|
Naloxone blocks the aversive effects of electrical stimulation of the parabrachial complex in a place discrimination task. Neurobiol Learn Mem 2016; 136:21-27. [DOI: 10.1016/j.nlm.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 01/02/2023]
|
89
|
Hurtado MM, Puerto A. Tolerance to repeated rewarding electrical stimulation of the parabrachial complex. Behav Brain Res 2016; 312:14-9. [PMID: 27283973 DOI: 10.1016/j.bbr.2016.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 12/29/2022]
Abstract
The parabrachial complex has been related to various rewarding behavioral processes. As previously shown, electrical stimulation of the lateral parabrachial external (LPBe) subnucleus induces opiate-dependent concurrent place preference. In this study, two groups of animals (and their respective controls) were subjected to sessions of rewarding brain stimulation daily or on alternate days. The rats stimulated every other day maintained a consistent preference for the place associated with the brain stimulation. However, as also found in the Insular Cortex, there was a progressive decay in the initial place preference of animals receiving daily stimulation. These data suggest that the rewarding effects induced by electrical stimulation of LPBe subnucleus may be subject to tolerance. These findings are discussed with respect to other anatomical areas showing reward decay and to the reinforcing effects induced by various electrical and chemical rewarding agents.
Collapse
Affiliation(s)
- María M Hurtado
- Department of Psychobiology & Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain.
| | - Amadeo Puerto
- Department of Psychobiology & Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain
| |
Collapse
|
90
|
Boychuk JA, Farrell JS, Palmer LA, Singleton AC, Pittman QJ, Teskey GC. HCN channels segregate stimulation-evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. J Physiol 2016; 595:247-263. [PMID: 27568501 DOI: 10.1113/jp273068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/17/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task. Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation. Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single-pellet reaching task relative to wild-type controls. Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. ABSTRACT The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short-duration high-resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole-cell patch clamp to substantially reduce Ih current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled-motor learning task relative to wild-type controls. Furthermore, in reaching-proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple movement responses within shared networks of motor cortex. This mechanism supports a viewpoint of primary motor cortex as a site of dynamic integration for behavioural output.
Collapse
Affiliation(s)
- Jeffery A Boychuk
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA.,Epilepsy Center, University of Kentucky, Lexington, Kentucky, USA.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan S Farrell
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Laura A Palmer
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Anna C Singleton
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Quentin J Pittman
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
91
|
Kreiman G. A null model for cortical representations with grandmothers galore. LANGUAGE, COGNITION AND NEUROSCIENCE 2016; 32:274-285. [PMID: 29204455 PMCID: PMC5710804 DOI: 10.1080/23273798.2016.1218033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There has been extensive discussion in the literature about the extent to which cortical representations can be described as localist or distributed. Here we discuss a simple null model that encompasses a family of related architectures describing the transformation of signals throughout the parts of the visual system involved in object recognition. This family of models constitutes a rigorous first approximation to explain the neurophysiological properties of ventral visual cortex. This null model contains both distributed and local representations throughout the entire hierarchy of computations and the responses of individual units are meaningful and interpretable when encoding is adequately defined for each computational stage.
Collapse
|
92
|
Higo N, Kunori N, Murata Y. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex. PLoS One 2016; 11:e0160720. [PMID: 27494282 PMCID: PMC4975470 DOI: 10.1371/journal.pone.0160720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022] Open
Abstract
In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv.
Collapse
Affiliation(s)
- Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8568, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), JST, Kawaguchi, Saitama, 332–0012, Japan
- * E-mail:
| | - Nobuo Kunori
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8568, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8568, Japan
| |
Collapse
|
93
|
High-Frequency Stimulation at the Subthalamic Nucleus Suppresses Excessive Self-Grooming in Autism-Like Mouse Models. Neuropsychopharmacology 2016; 41:1813-21. [PMID: 26606849 PMCID: PMC4869050 DOI: 10.1038/npp.2015.350] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023]
Abstract
Approximately one quarter of individuals with an autism spectrum disorder (ASD) display self-injurious behavior (SIB) ranging from head banging to self-directed biting and punching. Sometimes, these behaviors are extreme and unresponsive to pharmacological and behavioral therapies. We have found electroconvulsive therapy (ECT) can produce life-changing results, with more than 90% suppression of SIB frequency. However, these patients typically require frequent maintenance ECT (mECT), as often as every 5 days, to sustain the improvement gained during the acute course. Long-term consequences of such frequent mECT started as early as childhood in some cases are unknown. Accordingly, there is a need for alternative forms of chronic stimulation for these patients. To explore the feasibility of deep brain stimulation (DBS) for intractable SIB seen in some patients with an ASD, we utilized two genetically distinct mouse models demonstrating excessive self-grooming, namely the Viaat-Mecp2(-/y) and Shank3B(-/-) lines, and administered high-frequency stimulation (HFS) via implanted electrodes at the subthalamic nucleus (STN-HFS). We found that STN-HFS significantly suppressed excessive self-grooming in both genetic lines. Suppression occurs both acutely when stimulation is switched on, and persists for several days after HFS is stopped. This effect was not explained by a change in locomotor activity, which was unaffected by STN-HFS. Likewise, social interaction deficits were not corrected by STN-HFS. Our data show STN-HFS suppresses excessive self-grooming in two autism-like mouse models, raising the possibility DBS might be used to treat intractable SIB associated with ASDs. Further studies are required to explore the circuitry engaged by STN-HFS, as well as other potential stimulation sites. Such studies might also yield clues about pathways, which could be modulated by non-invasive stimulatory techniques.
Collapse
|
94
|
Doron G, Brecht M. What single-cell stimulation has told us about neural coding. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140204. [PMID: 26240419 DOI: 10.1098/rstb.2014.0204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In recent years, single-cell stimulation experiments have resulted in substantial progress towards directly linking single-cell activity to movement and sensation. Recent advances in electrical recording and stimulation techniques have enabled control of single neuron spiking in vivo and have contributed to our understanding of neuronal coding schemes in the brain. Here, we review single neuron stimulation effects in different brain structures and how they vary with artificially inserted spike patterns. We briefly compare single neuron stimulation with other brain stimulation techniques. A key advantage of single neuron stimulation is the precise control of the evoked spiking patterns. Systematically varying spike patterns and measuring evoked movements and sensations enables 'decoding' of the single-cell spike patterns and provides insights into the readout mechanisms of sensory and motor cortical spikes.
Collapse
Affiliation(s)
- Guy Doron
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstrasse 13 Haus 6, 10115 Berlin, Germany NeuroCure Cluster of Excellence, Humboldt University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstrasse 13 Haus 6, 10115 Berlin, Germany
| |
Collapse
|
95
|
Differential effects of naloxone on rewarding electrical stimulation of the central nucleus of the amygdala and parabrachial complex in a place preference study. Brain Res Bull 2016; 124:182-9. [PMID: 27173444 DOI: 10.1016/j.brainresbull.2016.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/29/2022]
Abstract
The central nucleus of the amygdala (CeA) is considered to be involved in different affective, sensory, regulatory, and acquisition processes. This study analyzed whether electrical stimulation of the PB-CeA system induces preferences in a concurrent place preference (cPP) task, as observed after stimulation of the parabrachial-insular cortex (PB-IC) axis. It also examined whether the rewarding effects are naloxone-dependent. The results show that electrical stimulation of the CeA and external lateral parabrachial subnucleus (LPBe) induces consistent preference behaviors in a cPP task. However, subcutaneous administration of an opiate antagonist (naloxone; 4mg/ml/kg) blocked the rewarding effect of the parabrachial stimulation but not that of the amygdala stimulation. These results are interpreted in the context of multiple brain reward systems that appear to differ both anatomically and neurochemically, notably with respect to the opiate system.
Collapse
|
96
|
Abstract
Human contrast sensitivity for narrowband Gabor targets is suppressed when superimposed on narrowband masks of the same spatial frequency and orientation (referred to as overlay suppression), with suppression being broadly tuned to orientation and spatial frequency. Numerous behavioral and neurophysiological experiments have suggested that overlay suppression originates from the initial lateral geniculate nucleus (LGN) inputs to V1, which is consistent with the broad tuning typically reported for overlay suppression. However, recent reports have shown narrowly tuned anisotropic overlay suppression when narrowband targets are masked by broadband noise. Consequently, researchers have argued for an additional form of overlay suppression that involves cortical contrast gain control processes. The current study sought to further explore this notion behaviorally using narrowband and broadband masks, along with a computational neural simulation of the hypothesized underlying gain control processes in cortex. Additionally, we employed transcranial direct current stimulation (tDCS) in order to test whether cortical processes are involved in driving narrowly tuned anisotropic suppression. The behavioral results yielded anisotropic overlay suppression for both broadband and narrowband masks and could be replicated with our computational neural simulation of anisotropic gain control. Further, the anisotropic form of overlay suppression could be directly modulated by tDCS, which would not be expected if the suppression was primarily subcortical in origin. Altogether, the results of the current study provide further evidence in support of an additional overlay suppression process that originates in cortex and show that this form of suppression is also observable with narrowband masks.
Collapse
|
97
|
Hong K, Shim HM, Goh M, Jang SY, Lee S, Kim KS. Direct perturbation of neural integrator by bilateral galvanic vestibular stimulation. Med Biol Eng Comput 2016; 55:207-212. [PMID: 27108289 DOI: 10.1007/s11517-016-1502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
Caloric vestibular stimulation (CVS) and galvanic vestibular stimulation (GVS) act primarily on the peripheral vestibular system. Although the electrical current applied during GVS is thought to flow through peripheral vestibular organs, some current may spread into areas within the central nervous system, particularly when the bilateral galvanic vestibular stimulation (bGVS) method is used. According to Alexander's law, the magnitude of nystagmus increases with eccentric gaze movement, due to the function of the neural integrator (NI); thus, if the information for vestibular stimulation corresponds to Alexander's law, the peripheral vestibular organ is stimulated. Therefore, it would appear that if CVS results comply with Alexander's law, and bGVS results do not, the sites stimulated by bGVS are not perfectly located in the peripheral vestibular area. In our experiments on normal human subjects, the magnitude of nystagmus under CVS increased with rising gaze eccentricity in the direction that the magnitude of the nystagmus increases, and this change was found to follow Alexander's law. However, in the case of nystagmus under bGVS, results did not follow Alexander's law. In addition, study of the influences of bGVS at different current intensities on nystagmus magnitude showed that bGVS at 5 mA distorted nystagmus magnitude more than at 3 mA, which suggests bGVS acts not only on the peripheral vestibular nerves, but also on some areas of the central nervous system, particularly the NI. According to our experiments, bGVS directly affects neural integrator function.
Collapse
Affiliation(s)
- Kihwan Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyeon-Min Shim
- Department of Digital Electronics, Dong Seoul University, Seongnam, Korea
| | - Minsoo Goh
- Institute for Information and Electronics Research (IIER), Inha University, Incheon, Korea
| | - Seung-Yon Jang
- Department of Otolaryngology-Head and Neck Surgery, Inha University Hospital, Incheon, Korea
| | - Sangmin Lee
- Institute for Information and Electronics Research (IIER), Inha University, Incheon, Korea
- Department of Electronic Engineering, Inha University, Incheon, Korea
| | - Kyu-Sung Kim
- Institute for Information and Electronics Research (IIER), Inha University, Incheon, Korea.
- Department of Otolaryngology-Head and Neck Surgery, Inha University Hospital, Incheon, Korea.
| |
Collapse
|
98
|
Scullion K, Guy AR, Singleton A, Spanswick SC, Hill MN, Teskey GC. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior. Neuroscience 2016; 319:134-45. [PMID: 26826333 DOI: 10.1016/j.neuroscience.2016.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 01/13/2023]
Abstract
It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior.
Collapse
Affiliation(s)
- K Scullion
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - A R Guy
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - A Singleton
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - S C Spanswick
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - M N Hill
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - G C Teskey
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
99
|
Vincent M, Rossel O, Hayashibe M, Herbet G, Duffau H, Guiraud D, Bonnetblanc F. The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping? Rev Neurosci 2016; 27:231-58. [DOI: 10.1515/revneuro-2015-0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/17/2015] [Indexed: 11/15/2022]
Abstract
AbstractBoth electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the ‘gold standard’ for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).
Collapse
Affiliation(s)
- Marion Vincent
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | - Olivier Rossel
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | - Mitsuhiro Hayashibe
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | | | | | - David Guiraud
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | | |
Collapse
|
100
|
Buzzi J, De Momi E, Baratelli FM, Giacometti M, Fiocchi S, Parazzini M, Ravazzani P, Ferrigno G. A new handheld electromagnetic cortical stimulator for brain mapping during open skull neurosurgery: a feasibility study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3387-90. [PMID: 26737019 DOI: 10.1109/embc.2015.7319119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcranial magnetic stimulations have provided invaluable tools for investigating nervous system functions in a preoperative context; in this paper we propose an innovative tool to extend the magnetic stimulation to an open skull context as a promising approach to map the brain cortex. The present gold standard for intraoperative functional mapping of the brain cortex, the direct brain stimulation, has a low spatial resolution and limited penetration and focusing capabilities. The magnetic stimulatory device that we present, is designed to overcome these limitations, while working with low currents and voltages. In the present work we propose an early study of feasibility, in which the possibility of exploiting a train of fast changing magnetic fields to reach the neuron's current thresholds is investigated. Measurements of electric field intensity at different distances from the coil, showed that the magnetic stimulator realized is capable of delivering an electric field on a loop of wire theoretically sufficient to evoke neuron's action potential, thus showing the approach' feasibility.
Collapse
|