51
|
Kozsurek M, Lukácsi E, Fekete C, Puskár Z. Nonselective innervation of lamina I projection neurons by cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive fibres in the rat spinal dorsal horn. Eur J Neurosci 2009; 29:2375-87. [PMID: 19490082 DOI: 10.1111/j.1460-9568.2009.06773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides have been implicated in spinal pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. We demonstrated previously that the majority of these fibres originate from nociceptive primary afferents. Using tract tracing, multiple immunofluorescent labelling and electronmicroscopy we determined the proportion of peptidergic primary afferents expressing CART, looked for evidence for coexistence of CART with galanin in these afferents in lamina I and examined their targets. Almost all (97.9%) randomly selected calcitonin gene-related peptide (CGRP)-immunoreactive terminals were substance P (SP)-positive (+) and CART was detected in approximately half (48.6%) of them. Most (81.4%) of the CGRP/SPergic boutons were galanin+ and approximately half (49.0%) of these contained CART. Many (72.9%) of the CARTergic boutons which expressed CGRP were also immunoreactive for galanin, while only 8.6% of the CARTergic terminals were galanin+ without CGRP. Electron microscopy showed that most of the CART terminals formed asymmetrical synapses, mainly with dendrites. All different morphological and neurochemical subtypes of spinoparabrachial projection neurons in the lamina I received contacts from CART-immunoreactive nociceptive afferents. The innervation density from these boutons did not differ significantly between either the different neurochemical or the morphological subclasses of these cells. This suggests a nonselective innervation of lamina I projection neurons from a subpopulation of CGRP/SP afferents containing CART peptide. These results provide anatomical evidence for involvement of CART peptide in spinal pain transmission.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, János Szentágothai Laboratory, Semmelweis University, Tuzoltó u. 58, 1094-Budapest, Hungary
| | | | | | | |
Collapse
|
52
|
Lapirot O, Chebbi R, Monconduit L, Artola A, Dallel R, Luccarini P. NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat. Pain 2009; 142:245-254. [DOI: 10.1016/j.pain.2009.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 02/05/2023]
|
53
|
Adelson D, Lao L, Zhang G, Kim W, Marvizón JCG. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers. Neuroscience 2009; 161:538-53. [PMID: 19336248 DOI: 10.1016/j.neuroscience.2009.03.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 11/29/2022]
Abstract
Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.
Collapse
Affiliation(s)
- D Adelson
- Veterans Affairs Greater Los Angeles Healthcare System, Building 115, Room 119, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
54
|
Todd AJ, Polgár E, Watt C, Bailey MES, Watanabe M. Neurokinin 1 receptor-expressing projection neurons in laminae III and IV of the rat spinal cord have synaptic AMPA receptors that contain GluR2, GluR3 and GluR4 subunits. Eur J Neurosci 2009; 29:718-26. [PMID: 19200070 PMCID: PMC2695158 DOI: 10.1111/j.1460-9568.2009.06633.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPArs), which mediate fast excitatory glutamatergic transmission, are tetramers made from four subunits (GluR1-4 or GluRA-D). Although synaptic AMPArs are not normally detected by immunocytochemistry in perfusion-fixed tissue, they can be revealed by using antigen retrieval with pepsin. All AMPAr-positive synapses in spinal cord are thought to contain GluR2, while the other subunits have specific laminar distributions. GluR4 can be alternatively spliced such that it has a long or short cytoplasmic tail. We have reported that <10% of AMPAr-containing synapses in lamina II have the long form of GluR4, and that these are often arranged in dorsoventrally orientated clusters. In this study, we test the hypothesis that GluR4-containing receptors are associated with dorsal dendrites of projection neurons in laminae III and IV that express the neurokinin 1 receptor (NK1r). Immunostaining for NK1r was carried out before antigen retrieval, and sections were then reacted to reveal GluR2 and either GluR4 (long form), GluR3 or GluR1. All NK1r-positive lamina III/IV neurons had numerous GluR2-immunoreactive puncta in their dendritic plasma membranes, and virtually all (97%) of the puncta tested were labelled (usually strongly) with the GluR4 antibody. Sizes of puncta varied, but many were elongated and they were significantly larger than nearby puncta that were not associated with the NK1r cells. None of the GluR2 puncta on these cells was positive for GluR1, while 85% were GluR3-immunoreactive. These results show that synaptic AMPArs on the dendrites of the lamina III/IV NK1r projection neurons contain GluR2, GluR3 and GluR4, but not GluR1 subunits.
Collapse
Affiliation(s)
- Andrew J Todd
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
55
|
Large projection neurons in lamina I of the rat spinal cord that lack the neurokinin 1 receptor are densely innervated by VGLUT2-containing axons and possess GluR4-containing AMPA receptors. J Neurosci 2009; 28:13150-60. [PMID: 19052206 DOI: 10.1523/jneurosci.4053-08.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although most projection neurons in lamina I express the neurokinin 1 receptor (NK1r), we have identified a population of large multipolar projection cells that lack the NK1r, are characterized by the high density of gephyrin puncta that coat their cell bodies and dendrites, and express the transcription factor Fos in response to noxious chemical stimulation. Here we show that these cells have a very high density of glutamatergic input from axons with strong immunoreactivity for vesicular glutamate transporter 2 that are likely to originate from excitatory interneurons. However, they receive few contacts from peptidergic primary afferents or transganglionically labeled Adelta nociceptors. Unlike most glutamatergic synapses in superficial laminas, those on the gephyrin-coated cells contain the GluR4 subunit of the AMPA receptor. A noxious heat stimulus caused Fos expression in 38% of the gephyrin-coated cells but in 85% of multipolar NK1r-immunoreactive cells. These findings are consistent with the suggestion that there is a correlation between function and morphology for lamina I neurons but indicate that there are at least two populations of multipolar neurons that differ in receptor expression, excitatory inputs, and responses to noxious stimulation. Although there are only approximately 10 gephyrin-coated cells on each side per segment in the lumbar enlargement, they constitute approximately 18% of the lamina I component of the spinothalamic tract at this level, which suggests that they play an important role in transmission of nociceptive information to the cerebral cortex. Our results also provide the first evidence that postsynaptic GluR4-containing AMPA receptors are involved in spinal nociceptive transmission.
Collapse
|
56
|
Al-Khater KM, Kerr R, Todd AJ. A quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord. J Comp Neurol 2008; 511:1-18. [PMID: 18720412 PMCID: PMC2658017 DOI: 10.1002/cne.21811] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major ascending outputs from superficial spinal dorsal horn consist of projection neurons in lamina I, together with neurons in laminae III–IV that express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Some neurons in each of these populations belong to the spinothalamic tract, which conveys nociceptive information via the thalamus to cortical areas involved in pain. A projection from the cervical superficial dorsal horn to the posterior triangular nucleus (PoT) has recently been identified. PoT is at the caudal end of the thalamus and was not included in injection sites in many previous retrograde tracing studies. We have injected various tracers (cholera toxin B subunit, Fluoro-Gold, and fluorescent latex microspheres) into the thalamus to estimate the number of spinothalamic neurons in each of these two populations, and to investigate their projection targets. Most lamina I and lamina III/IV NK1r-immunoreactive spinothalamic neurons in cervical and lumbar segments could be labeled from injections centered on PoT. Our results suggest that there are 90 lamina I spinothalamic neurons per side in C7 and 15 in L4 and that some of those in C7 only project to PoT. We found that 85% of the lamina III/IV NK1r-immunoreactive neurons in C6 and 17% of those in L5 belong to the spinothalamic tract, and these apparently project exclusively to the caudal thalamus, including PoT. Because PoT projects to second somatosensory and insular cortices, our results suggest that these are major targets for information conveyed by both these populations of spinothalamic neurons.
Collapse
Affiliation(s)
- Khulood M Al-Khater
- Spinal Cord Group, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | |
Collapse
|
57
|
Pacharinsak C, Khasabov SG, Beitz AJ, Simone DA. NK-1 receptors in the rostral ventromedial medulla contribute to hyperalgesia produced by intraplantar injection of capsaicin. Pain 2008; 139:34-46. [DOI: 10.1016/j.pain.2008.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/07/2008] [Accepted: 02/26/2008] [Indexed: 12/24/2022]
|
58
|
Tseng TJ, Chen CC, Hsieh YL, Hsieh ST. Influences of surgical decompression on the dorsal horn after chronic constriction injury: changes in peptidergic and delta-opioid receptor (+) nerve terminals. Neuroscience 2008; 156:758-68. [PMID: 18773941 DOI: 10.1016/j.neuroscience.2008.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/30/2022]
Abstract
To understand plastic changes in the dorsal horn related to neuropathic pain, we developed a model of decompression in rats with chronic constriction injury (CCI) and investigated corresponding changes in the dorsal horn. At postoperative week 4 (POW 4) of CCI, rats were divided into a decompression group, in which ligatures were removed, and a CCI group, in which ligatures remained. Spinal cords were immunostained for substance P (SP), the delta-opioid receptor (DOR), and calcitonin gene-related peptide (CGRP). Areas of immunoreactive nerve terminals in the dorsal horn were quantified and expressed as the dorsal horn index (immunoreactive areas of the operated side compared with those of the contralateral side). At POW 4, dorsal horn indexes of all of these molecules were significantly reduced in both groups to similar degrees (0.36-0.43). At POW 8, neuropathic pain behaviors had completely disappeared in the decompression group with significant reversal of the dorsal horn indexes compared with the CCI group (0.81+/-0.02 vs. 0.58+/-0.09, P < 0.001 for SP and 0.75+/-0.04 vs. 0.55+/-0.03, P < 0.001 for DOR). In the CCI group, neuropathic pain behaviors became normalized at POW 12 with corresponding changes in dorsal horn indexes for both SP and DOR similar to those of the decompression group. In contrast, changes in the dorsal horn indexes of CGRP were similar in both the CCI and decompression groups throughout the experimental period. These findings suggest that CCI and decompression cause different patterns in peptidergic and DOR (+) nerve terminals in the dorsal horn.
Collapse
Affiliation(s)
- T-J Tseng
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
59
|
Wiley RG. Substance P receptor-expressing dorsal horn neurons: Lessons from the targeted cytotoxin, substance P-saporin. Pain 2008; 136:7-10. [DOI: 10.1016/j.pain.2008.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
|
60
|
Dagci T, Okur BE, Kayalioglu G. Lateral spinal nucleus of the rat: NADPH-diaphorase activity and Fos expression after noxious peripheral stimulation. NEUROPHYSIOLOGY+ 2008. [DOI: 10.1007/s11062-008-9018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
61
|
Yoo CJ, Hwang SJ. The VR1-Positive Primary Afferent-Mediated Expression of pERK in the Lumbosacral Neurons in Response to Mechanical and Chemical Stimulation of the Urinary Bladder in Rats. J Korean Neurosurg Soc 2007; 42:462-9. [PMID: 19096590 DOI: 10.3340/jkns.2007.42.6.462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study characterized the neurons in the lumbosacral cord that express phospho ERK (pERK) after distension or irritation of the bladder, and their relation to the vanilloid receptor 1 (VR1) positive primary afferents. METHODS Mechanical distension and chemical irritation of the bladder were induced by intravesical injection of the saline and mustard oil, respectively. Spinal neurons expressing pERK and the primary afferent fibers were characterized using multiple immunofluorescence for neurokinin 1 (NK1), neuronal nitric oxide synthetase (nNOS) and VR1. RESULTS Neurons in lamina I, medial dorsal horn (MDH), dorsal gray commissure (DGC) and sacral parasympathetic nucleus (SPN) were immunoreactive for pERK after either mechanical or chemical stimulation. The majority of pERK positive cells were positive for NK1 in lamina I and SPN, but not in the DGC. Most of pERK positive cells are not stained for nNOS except in a small population of the cells in the SPN and DGC. Contacts between perikarya and dendrites of pERK-positive cells and terminals of primary afferents expressing VR1 were identified in lamina I, lateral collateral path (LCP) and SPN. CONCLUSION In this study, the lumbosacral neurons activated by mechanical and chemical stimulation of the urinary bladder were identified with expression of the pERK, and also provided the evidence that VR1-positive primary afferents may mediate the activation of these neurons.
Collapse
Affiliation(s)
- Chan Jong Yoo
- Department of Neurosurgery , Gachon University, Gil Medical Center, Incheon, Korea
| | | |
Collapse
|
62
|
Polgár E, Thomson S, Maxwell DJ, Al-Khater K, Todd AJ. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. Eur J Neurosci 2007; 26:1587-98. [PMID: 17880393 PMCID: PMC2635481 DOI: 10.1111/j.1460-9568.2007.05793.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
63
|
Tsagareli MG. Ivane Beritashvili: founder of physiology and neuroscience in Georgia. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2007; 16:288-306. [PMID: 17620192 DOI: 10.1080/09647040600600148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper is dedicated to one of the outstanding scientists of the twentieth century--Ivane Beritashvili. He was a Georgian physiologist who graduated from St. Petersburg University and worked under the supervision of N. Wedensky. He founded the Department of Physiology and the Institute of Physiology at the University of Tbilisi, Georgia. Among his numerous contributions was the discovery of the rhythmical course of reciprocal inhibition in spinal reflexes, the first demonstration of the excitatory and inhibitory reactions in the brain stem neuropil. But Beritashvili's most significant contribution was the discovery of the mediation of animal psychoneural behavior by image-driven memory.
Collapse
|
64
|
Wiley RG, Kline RH, Vierck CJ. Anti-nociceptive effects of selectively destroying substance P receptor-expressing dorsal horn neurons using [Sar9,Met(O2)11]-substance P-saporin: behavioral and anatomical analyses. Neuroscience 2007; 146:1333-45. [PMID: 17418497 DOI: 10.1016/j.neuroscience.2007.01.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Lumbar intrathecal injections of substance P-saporin (SP-sap) destroy dorsal horn neurons that express the neurokinin-1 receptor (NK-1R) resulting in decreased responses to a range of noxious stimuli and decreased hyperalgesia and allodynia. Forebrain injections of SP-sap produce considerable non-specific damage raising some concern about use of this toxin in vivo. The more stable and selective substance P congener, [Sar9,Met(O2)11]substance P coupled to saporin (SSP-sap) produces much more selective forebrain lesions at significantly lower doses. The present study sought to determine the anatomic and nocifensive behavioral effects of lumbar intrathecal injections of the more precisely targeted SSP-sap. On the basis of loss of lamina I NK-1R staining, lumbar intrathecal SSP-sap was seven times more potent than SP-sap and produced no loss of NK-1R expressing neurons in deeper laminae (III-VI or X). Transient decreases in hotplate responding occurred at 44 degrees C and 47 degrees C but not 52 degrees C during the first 3 weeks after SSP-sap injection with return to baseline by 4 weeks. Operant escape responses were reduced at 0.3 degrees C, 44 degrees C and 47 degrees C for at least 4 months. In the formalin test, SSP-sap also was about seven times more potent than SP-sap in reducing phase two behavior in both female Long Evans and male Sprague-Dawley rats. Both SSP-sap and SP-sap reduced formalin-induced FOS expression in deep and superficial laminae of the L4 dorsal horn in parallel with the reduction in phase 2 behavior. In summary, SSP-sap is highly effective in destroying lamina I NK-1R expressing neurons, without loss of deep NK-1R neurons. The behavioral effects of SSP-sap are similar to SP-sap suggesting that the antinociceptive effects of both toxins are indeed due to selective loss of NK-1R neurons in lamina I. SSP-sap is an attractive agent for possible treatment of chronic pain.
Collapse
MESH Headings
- Analgesics
- Animals
- Behavior, Animal/drug effects
- Conditioning, Operant/drug effects
- Data Interpretation, Statistical
- Escape Reaction/drug effects
- Female
- Formaldehyde
- Genes, fos/drug effects
- Hot Temperature
- Immunohistochemistry
- Injections, Spinal
- Male
- Pain Measurement/drug effects
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/ultrastructure
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, Neurokinin-1/biosynthesis
- Receptors, Neurokinin-1/metabolism
- Recombinant Fusion Proteins/pharmacology
- Ribosome Inactivating Proteins, Type 1
- Saporins
Collapse
Affiliation(s)
- R G Wiley
- Laboratory of Experimental Neurology, VA TVHS, Nashville, TN 37212-2637, USA.
| | | | | |
Collapse
|
65
|
Polgár E, Campbell AD, MacIntyre LM, Watanabe M, Todd AJ. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation. Mol Pain 2007; 3:4. [PMID: 17309799 PMCID: PMC1803781 DOI: 10.1186/1744-8069-3-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/19/2007] [Indexed: 11/20/2022] Open
Abstract
Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive) primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs) in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching), thermal (immersion in water at 52°C) or chemical (injection of 2% formaldehyde). Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK) in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Annie D Campbell
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lynsey M MacIntyre
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
66
|
Rycroft BK, Vikman KS, Christie MJ. Inflammation reduces the contribution of N-type calcium channels to primary afferent synaptic transmission onto NK1 receptor-positive lamina I neurons in the rat dorsal horn. J Physiol 2007; 580:883-94. [PMID: 17303639 PMCID: PMC2075448 DOI: 10.1113/jphysiol.2006.125880] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-type calcium channels contribute to the release of glutamate from primary afferent terminals synapsing onto nocisponsive neurons in the dorsal horn of the spinal cord, but little is known of functional adaptations to these channels in persistent pain states. Subtype-selective conotoxins and other drugs were used to determine the role of different calcium channel types in a rat model of inflammatory pain. Electrically evoked primary afferent synapses onto lumber dorsal horn neurons were examined three days after induction of inflammation with intraplantar complete Freund's adjuvant. The maximal inhibitory effect of the N-type calcium channel blockers, omega-conotoxins CVID and MVIIA, were attenuated in NK1 receptor-positive lamina I neurons after inflammation, but the potency of CVID was unchanged. This was associated with reduced inhibition of the frequency of asynchronous-evoked synaptic events by CVID studied in the presence of extracellular strontium, suggesting reduced N-type channel contribution to primary afferent synapses after inflammation. After application of CVID, the relative contributions of P/Q and L channels to primary afferent transmission and the residual current were unchanged by inflammation, suggesting the adaptation was specific to N-type channels. Blocking T-type channels did not affect synaptic amplitude under control or inflamed conditions. Reduction of N-type channel contribution to primary afferent transmission was selective for NK1 receptor-positive neurons identified by post hoc immunohistochemistry and did not occur at synapses in laminae II(o) or II(i), or inhibitory synapses. These results suggest that inflammation selectively downregulates N-type channels in the terminals of primary afferents synapsing onto (presumed) nociceptive lamina I NK1 receptor-positive neurons.
Collapse
Affiliation(s)
- Beth K Rycroft
- Pain Management Research Institute, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards 2065, Australia
| | | | | |
Collapse
|
67
|
Vera-Portocarrero LP, Zhang ET, King T, Ossipov MH, Vanderah TW, Lai J, Porreca F. Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways. Pain 2006; 129:35-45. [PMID: 17123731 PMCID: PMC4028682 DOI: 10.1016/j.pain.2006.09.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/15/2006] [Accepted: 09/25/2006] [Indexed: 11/19/2022]
Abstract
Opioids can induce hyperalgesia in humans and in animals. Mechanisms of opiate-induced hyperalgesia and possibly of spinal antinociceptive tolerance may be linked to pronociceptive adaptations occurring at multiple levels of the nervous system including activation of descending facilitatory influences from the brainstem, spinal neuroplasticity, and changes in primary afferent fibers. Here, the role of NK-1 receptor expressing cells in the spinal dorsal horn in morphine-induced hyperalgesia and spinal antinociceptive tolerance was assessed by ablating these cells with intrathecal injection of SP-saporin (SP-SAP). Ablation of NK-1 receptor expressing cells prevented (a) morphine-induced thermal and mechanical hypersensitivity, (b) increased touch-evoked spinal FOS expression, (c) upregulation of spinal dynorphin content and (d) the rightward displacement of the spinal morphine antinociceptive dose-response curve (i.e., tolerance). Morphine-induced hyperalgesia and antinociceptive tolerance were also blocked by spinal administration of ondansetron, a serotonergic receptor antagonist. Thus, NK-1 receptor expressing neurons play a critical role in sustained morphine-induced neuroplastic changes which underlie spinal excitability reflected as thermal and tactile hypersensitivity to peripheral stimuli, and to reduced antinociceptive actions of spinal morphine (i.e., antinociceptive tolerance). Ablation of these cells likely eliminates the ascending limb of a spinal-bulbospinal loop that engages descending facilitation and elicits subsequent spinal neuroplasticity. The data may provide a basis for understanding mechanisms of prolonged pain which can occur in the absence of tissue injury.
Collapse
|
68
|
Torsney C, Anderson RL, Ryce-Paul KAG, MacDermott AB. Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice. Mol Pain 2006; 2:17. [PMID: 16681857 PMCID: PMC1479315 DOI: 10.1186/1744-8069-2-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein (GFP) reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord. RESULTS Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn. CONCLUSION The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 1
- Fluorescent Antibody Technique
- Ganglia, Spinal/cytology
- Ganglia, Spinal/enzymology
- Genes, Reporter/genetics
- Green Fluorescent Proteins/genetics
- Mice
- Mice, Transgenic
- Nerve Fibers, Unmyelinated/enzymology
- Nerve Fibers, Unmyelinated/ultrastructure
- Neurons, Afferent/cytology
- Neurons, Afferent/enzymology
- Nociceptors/cytology
- Nociceptors/enzymology
- Pain/enzymology
- Pain/genetics
- Pain/physiopathology
- Phosphoric Diester Hydrolases/genetics
- Posterior Horn Cells/cytology
- Posterior Horn Cells/enzymology
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X3
- TRPV Cation Channels/genetics
Collapse
Affiliation(s)
- Carole Torsney
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- CT is currently in the Centre for Neuroscience Research, Division of Veterinary Biomedical Sciences, University of Edinburgh, UK
| | - Rebecca L Anderson
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- RLA is currently in the Department of Anatomy & Histology and Centre for Neuroscience at Flinders University, Adelaide, Australia
| | | | - Amy B MacDermott
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- Center for Neurobiology and Behavior, Columbia University, NY, USA
| |
Collapse
|
69
|
Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006; 26:1833-43. [PMID: 16467532 PMCID: PMC6793628 DOI: 10.1523/jneurosci.4584-05.2006] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Blockade of local spinal cord inhibition mimics the behavioral hypersensitivity that manifests in chronic pain states. This suggests that there is a pathway capable of mediating allodynia/hyperalgesia that exists but is normally under strong inhibitory control. Lamina I and III neurokinin 1 (NK1) receptor expressing (NK1R+) dorsal horn neurons, many of which are projection neurons, are required for the development of this hypersensitivity and are therefore likely to be a component of this proposed pathway. To investigate, whole-cell patch-clamp recordings were made from lamina I and III NK1R+ neurons in the spinal cord slice preparation with attached dorsal root. Excitatory postsynaptic currents were recorded in response to electrical stimulation of the dorsal root. Lamina I NK1R+ neurons were shown to receive high-threshold (Adelta/C fiber) monosynaptic input, whereas lamina III NK1R+ neurons received low-threshold (Abeta fiber) monosynaptic input. In contrast, lamina I neurons lacking NK1 receptor (NK1R-) received polysynaptic A fiber input. Blockade of local GABAergic and glycinergic inhibition with bicuculline (10 microm) and strychnine (300 nm), respectively, revealed significant A fiber input to lamina I NK1R+ neurons that was predominantly Abeta fiber mediated. This novel A fiber input was polysynaptic in nature and required NMDA receptor activity to be functional. In lamina I NK1R- and lamina III NK1R+ neurons, disinhibition enhanced control-evoked responses, and this was also NMDA receptor dependent. These disinhibition-induced changes, in particular the novel polysynaptic low-threshold input onto lamina I NK1R+ neurons, may be an underlying component of the hypersensitivity present in chronic pain states.
Collapse
Affiliation(s)
- Carole Torsney
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
70
|
Castro AR, Morgado C, Lima D, Tavares I. Differential expression of NK1 and GABAB receptors in spinal neurones projecting to antinociceptive or pronociceptive medullary centres. Brain Res Bull 2006; 69:266-75. [PMID: 16564421 DOI: 10.1016/j.brainresbull.2005.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 11/27/2005] [Accepted: 12/03/2005] [Indexed: 11/16/2022]
Abstract
The balance between excitatory and inhibitory input exerted upon spinal cord neurones that belong to spinofugal pathways determines the ultimate type of information transmitted to the brain. We compared the relative expression of NK1 and GABAB receptors in two spinomedullary pathways targeting an antinociceptive area and a pronociceptive centre, respectively, the lateral part of the caudal ventrolateral medulla (VLMlat) and the dorsal reticular nucleus (DRt). Spinal cord sections of rats injected in the VLMlat or DRt with the retrograde tracer cholera toxin subunit B were triple-immunoreacted for the tracer, NK1 receptors and GABAB receptors. The dorsal horn neurones labelled from the VLMlat mainly co-localized the two receptors while those labelled from the DRt mainly expressed GABAB receptors, which was particularly evident in neurones of laminae IV-V. The morphological classification of lamina I neurones projecting to the VLMlat showed that fusiform, flattened and pyramidal cells mainly co-localized NK1 and GABAB receptors. As to lamina I neurones projecting to the DRt, multipolar neurones mainly expressed GABAB receptors while the majority of flattened and pyramidal neurones co-localized NK1 and GABAB receptors. The present results suggest that the expression of NK1 and GABAB receptors varies in neurones participating to different spinofugal pathways. The importance of the present findings in the knowledge of the endogenous supraspinal pain control system is discussed.
Collapse
Affiliation(s)
- A R Castro
- Institute of Histology and Embryology, Faculdade de Medicina, IBMC, University of Porto, Portugal
| | | | | | | |
Collapse
|
71
|
Brumovsky P, Hofstetter C, Olson L, Ohning G, Villar M, Hökfelt T. The neuropeptide tyrosine Y1R is expressed in interneurons and projection neurons in the dorsal horn and area X of the rat spinal cord. Neuroscience 2006; 138:1361-76. [PMID: 16448775 DOI: 10.1016/j.neuroscience.2005.11.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/22/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
The localization of the neuropeptide tyrosine Y1 receptor was studied with immunohistochemistry in parasagittal and transverse, free-floating sections of the rat lumbar spinal cord. At least seven distinct Y1 receptor-positive populations could tentatively be recognized: Type 1) abundant small, fusiform Y1 receptor-positive neurons in laminae I-II, producing a profuse neuropil; Type 2) Y1 receptor-positive projection neurons in lamina I; Type 3) small Y1 receptor-positive neurons in lamina III, similar to Type 1 neurons, but less densely packed; Type 4) a number of large, multipolar Y1 receptor-positive neurons in the border area between laminae III-IV, with dendrites projecting toward laminae I-II; Type 5) a considerable number of large, multipolar Y1 receptor-positive neurons in laminae V-VI; Type 6) many large Y1 receptor-positive neurons around the central canal (area X); and Type 7) a small number of large Y1 receptor-positive neurons in the medial aspect of the ventral horns (lamina VIII). Many of the neurons present in laminae V-VI and area X produce craniocaudal processes extending for several hundred micrometers. Retrograde tracing using cholera toxin B subunit injected at the 9th thoracic spinal cord level shows that several Type 5 neurons in laminae V-VI, and at least a few Type 2 in lamina I and Type 6 in area X have projections extending to the lower segments of the thoracic spinal cord (and perhaps to supraspinal levels). The present results define distinct subpopulations of neuropeptide tyrosine-sensitive neurons, localized in superficial and deep layers of the dorsal, in the ventral horns and in area X. The lamina II neurons express somatostatin [The neuropeptide Y Y1 receptor is a somatic receptor on dorsal root ganglion neurons and a postsynaptic receptor on somatostatin dorsal horn neurons. Eur J Neurosci 11:2211-2225] and are presumably glutamatergic [Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13-27], that is they are excitatory interneurons under a Y1 receptor-mediated inhibitory influence. The remaining Y1 receptor-positive spinal neurons need to be phenotyped, for example if the large Y1 receptor-positive laminae III-IV neurons (Type 5) are identical to the neurokinin (NK)1R-positive neurons previously shown to receive neuropeptide tyrosine positive dendritic contacts [Polgár E, Shehab SA, Watt C, Todd AJ (1999) GABAergic neurons that contain neuropeptide Y selectively target cells with the NK1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 19:2637-2646]. If so, neuropeptide tyrosine could have an antinociceptive action not only via Y1 receptor-positive interneurons (Type 1) but also projection neurons. The present results show neuropeptide tyrosine-sensitive neuron populations virtually in all parts of the lumbar spinal cord, suggesting a role for neuropeptide tyrosine signaling in many spinal functions, including pain.
Collapse
Affiliation(s)
- P Brumovsky
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, B2:5, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
72
|
Yu XH, Ribeiro-da-Silva A, Ribeiro Da Silva A, De Koninck Y. Morphology and neurokinin 1 receptor expression of spinothalamic lamina I neurons in the rat spinal cord. J Comp Neurol 2006; 491:56-68. [PMID: 16127696 DOI: 10.1002/cne.20675] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Distinct morphological types of spinothalamic tract (STT) lamina I (LI) neurons have been identified in the cat and monkey spinal dorsal horn. Because these morphological types appear to differ in functional properties and receptor expression, we examined their distribution in the rat to test how their identification relates to earlier classification schemes. LI STT cells were retrogradely labeled with cholera toxin subunit b (CTb). Three types were recognized on the basis of cell body shape and proximal dendrites in the horizontal plane: fusiform, multipolar, and pyramidal. The relative distribution of these types was: 43, 26, and 28%, respectively, similar to that observed in the cat and monkey. 3D reconstructions were used to view each cell in all three major projection planes: horizontal, parasagittal, and transverse. Most LI STT neurons appeared fusiform in the parasagittal plane even though they belonged to different types based on their appearance in the horizontal plane, except in the most lateral portion of the dorsal horn, where LI curves ventrally. The proportion of STT neurons within LI was quantified by using the optical dissector method. To label all LI neurons, we used an anti-neuron-specific nuclear protein (NeuN) antibody. We found that approximately 9% of LI neurons projected to the thalamus. We also investigated neurokinin 1 receptor (NK-1r) expression in LI STT neurons. As in the monkey, most pyramidal STT neurons did not express NK-1r. These results provide further evidence that distinct morphological types of neurons differ in phenotype but not in their projection pattern.
Collapse
Affiliation(s)
- Xiao Hong Yu
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
73
|
Todd AJ. Chapter 6 Anatomy and neurochemistry of the dorsal horn. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:61-76. [PMID: 18808828 DOI: 10.1016/s0072-9752(06)80010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
74
|
Takemura M, Sugiyo S, Moritani M, Kobayashi M, Yonehara N. Mechanisms of orofacial pain control in the central nervous system. ACTA ACUST UNITED AC 2006; 69:79-100. [PMID: 16819148 DOI: 10.1679/aohc.69.79] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent advances in the study of pain have revealed somatotopic- and modality-dependent processing and the integration of nociceptive signals in the brain and spinal cord. This review summarizes the uniqueness of the trigeminal sensory nucleus (TSN) in structure and function as it relates to orofacial pain control. The oral nociceptive signal is primarily processed in the rostral TSN above the obex, the nucleus principalis (Vp), and the subnuclei oralis (SpVo) and interpolaris (SpVi), while secondarily processed in the subnucleus caudalis (SpVc). In contrast, the facial nociceptive signal is primarily processed in the SpVc. The neurons projecting to the thalamus are localized mostly in the Vp, moderately in the SpVi, and modestly in the ventrolateral SpVo and the SpVc. Orofacial sensory inputs are modulated in many different ways: by interneurons in the TSN proper, through reciprocal connection between the TSN and rostral ventromedial medulla, and by the cerebral cortex. A wide variety of neuroactive substances, including substance P, gamma-aminobutyric acid, serotonin and nitric oxide (NO) could be involved in the modulatory functions of these curcuits. The earliest expression of NO synthase (NOS) in the developing rat brain is observed in a discrete neuronal population in the SpVo at embryonic day 15. NOS expression in the SpVc is late at postnatal day 10. The neurons receiving intraoral signals are intimately related with the sensorimotor reflexive function through the SpVo. In summary, a better understanding of the trigeminal sensory system--which differs from the spinal system--will help to find potential therapeutic targets and lend to developing new analgesics for orofacial-specific pain with high efficacy and fewer side effects.
Collapse
Affiliation(s)
- Motohide Takemura
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Yamadaoka, Suita, Japan.
| | | | | | | | | |
Collapse
|
75
|
Abstract
Despite significant improvements in our ability to treat neuropathic pain, we are far from the situation of being able to guarantee pain relief. The next few years promise to see the introduction of novel pharmacologic entities that show potential in the field of neuropathic pain treatment. Allied to this will be the realization that some drugs originally released for nonpain indications in fact have an analgesic effect in neuropathic pain. Our treatment armamentarium will be further enhanced by the release of currently available agents with proven efficacy but in new formulations. However, not every product of our improved knowledge will manifest as a new drug treatment for neuropathic pain. Despite evidence of efficacy, some drugs will fail to reach commercialization due to the lack of investment in their clinical development.
Collapse
Affiliation(s)
- Gary McCleane
- Rampark Pain Centre, 2 Rampark, Dromore Road, Lurgan, BT66 7JH, Northern Ireland, UK.
| |
Collapse
|
76
|
Slack SE, Grist J, Mac Q, McMahon SB, Pezet S. TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons. J Comp Neurol 2005; 489:59-68. [PMID: 15977164 DOI: 10.1002/cne.20606] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in the phenomena of synaptic plasticity in the adult. It is found in terminals of nociceptive primary afferents. Following a pain-related stimulus, it is released in the spinal cord, where it activates its high-affinity receptor TrkB, leading to the phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK). A large body of evidence suggests that BDNF has a positive neuromodulatory effect on glutamate transmission in the spinal cord. However, none of these studies examined anatomically whether projection neurons known to be involved in transmission of nociceptive inputs express BDNF's receptor. Because the spinothalamic tract (STT) is a well-characterized pathway for its role in the transfer and integration of sensory and nociceptive informations, this study in rats aimed to 1) determine whether neurons of the STT pathway express the TrkB receptor, 2) establish the rostrocaudal and laminar distribution of STT-TrkB neurons in the whole spinal cord, and 3) test the potential functionality of TrkB expression in these cells by investigating the ability of BDNF to activate the MAP kinase ERK. Using tract tracing coupled to immunofluorescent labeling for TrkB, we observed that in all levels of the spinal cord most STT neurons were immunoreactive for TrkB. Furthermore, microinjections of BDNF into the spinal cord or release of endogenous BDNF by intraplantar injection of capsaicin activated ERK phosphorylation in TrkB-containing STT neurons. These data suggest an important role for BDNF in nociception as an activator of spinothalamic projection neurons.
Collapse
Affiliation(s)
- Sarah E Slack
- The London Pain Consortium, King's College London, Neurorestoration, Center for Age Related Diseases, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
77
|
Guy N, Chalus M, Dallel R, Voisin DL. Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. Eur J Neurosci 2005; 21:741-54. [PMID: 15733092 DOI: 10.1111/j.1460-9568.2005.03918.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent evidence has been accumulated that not only spinal trigeminal nucleus caudalis (Sp5C) neurons but also spinal trigeminal nucleus oralis (Sp5O) neurons respond to noxious stimuli. It is unknown, however, whether Sp5O neurons project to supratrigeminal structures implicated in the sensory processing of orofacial nociceptive information. This study used retrograde tracing with Fluorogold in rats to investigate and compare the projections from the Sp5O and Sp5C to two major thalamic nuclei that relay ascending somatosensory information to the primary somatic sensory cortex: the ventroposteromedial thalamic nucleus (VPM) and the posterior thalamic nuclear group (Po). Results not only confirmed the existence of contralateral projections from the Sp5C to the VPM and Po, with retrogradely labelled neurons displaying a specific distribution in laminae I, III and V, they also showed consistent and similar numbers of retrogradely labelled cell bodies in the contralateral Sp5O. In addition, a topographic distribution of VPM projections from Sp5C and Sp5O was found: neurons in the dorsomedial parts of Sp5O and Sp5C projected to the medial VPM, neurons in the ventrolateral Sp5O and Sp5C projected to the lateral VPM, and neurons in intermediate parts of Sp5O and Sp5C projected to the intermediate VPM. All together, these data suggest that not only the Sp5C, but also the Sp5O relay somatosensory orofacial information from the brainstem to the thalamus. Furthermore, trigemino-VPM pathways conserve the somatotopic distribution of primary afferents found in each subnucleus. These results thus improve our understanding of trigeminal somatosensory processing and help to direct future electrophysiological investigations.
Collapse
Affiliation(s)
- Nathalie Guy
- INSERM E216 Neurobiologie de la douleur trigéminale, Faculté de Chirurgie Dentaire, 11 boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
78
|
Todd AJ, Spike RC, Young S, Puskár Z. Fos induction in lamina I projection neurons in response to noxious thermal stimuli. Neuroscience 2005; 131:209-17. [PMID: 15680704 DOI: 10.1016/j.neuroscience.2004.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2004] [Indexed: 11/24/2022]
Abstract
Lamina I of the spinal cord contains many projection neurons: the majority of these are activated by noxious stimulation, although some respond to other stimuli, such as innocuous cooling. In the rat, approximately 80% of lamina I projection neurons express the neurokinin 1 (NK1) receptor, on which substance P acts. Lamina I neurons can be classified into three main morphological classes: pyramidal, fusiform and multipolar cells. It has been reported that in the cat, pyramidal cells respond to innocuous cooling, and whilst both fusiform and multipolar cells are activated by noxious mechanical and heat stimuli, only cells in the latter group respond to noxious cold [Nat Neurosci 1 (1998) 218]. However, we have previously shown that NK1 receptor-immunoreactive projection neurons belonging to each morphological class are equally likely to up-regulate the transcription factor Fos after noxious chemical stimulation, and that the density of innervation by substance P-containing (nociceptive) afferents is similar for cells of each type [J Neurosci 22 (2002) 4103]. This suggests that the morphological-physiological correlation that has been reported in the cat may not apply in the rat. We have tested this further by examining Fos expression in lamina I spinoparabrachial neurons in the rat after application of noxious heat or noxious cold stimuli under general anesthesia. Following noxious heat, 57-69% of NK1 receptor-immunoreactive spinoparabrachial neurons expressed Fos, and the proportion did not differ significantly between morphological groups. However, after noxious cold stimulation Fos was present in 63% of multipolar neurons, but only 19-26% of fusiform or pyramidal cells. These results suggest that although most NK1 receptor-expressing spinoparabrachial neurons are activated by noxious stimuli, responsiveness to noxious cold is significantly more common in those of the multipolar type. There therefore appears to be a correlation between morphology and function for lamina I projection neurons in the rat.
Collapse
Affiliation(s)
- A J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
79
|
Mitchell JL, Silverman MB, Aicher SA. Rat trigeminal lamina I neurons that project to thalamic or parabrachial nuclei contain the mu-opioid receptor. Neuroscience 2005; 128:571-82. [PMID: 15381286 DOI: 10.1016/j.neuroscience.2004.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Ligands of the mu-opioid receptor are known to inhibit nociceptive transmission in the dorsal horn, yet the cellular site(s) of action for this inhibition remain to be fully elucidated. Neurons located in lamina I of the dorsal horn are involved in distinct aspects of nociceptive transmission. Neurons projecting to the thalamus are thought to be involved in sensory-discriminative aspects of pain perception, while neurons projecting to the parabrachial nucleus are thought to be important for emotional and/or autonomic responses to noxious stimuli. The present study examined these two populations of lamina I projection neurons in the trigeminal dorsal horn to determine if the mu-opioid receptor protein (MOR1) is differentially located in these populations of neurons. Lamina I projection neurons were identified using the retrograde tracer FluoroGold (FGold). FGold was injected into either the contralateral thalamus (ventral posterolateral (VPM)/ventral posterolateral (VPL) thalamic region) or into the ipsilateral parabrachial nuclei. The distribution of MOR1 in these neurons was determined using immunocytochemistry. The distribution of MOR1-ir within these two populations of lamina I projection neurons was examined by both confocal and electron microscopy. We found that both populations of projection neurons contained MOR1. Immunogold analyses revealed the presence of MOR1-ir at membrane sites and within the cytoplasm of these neurons. Cytoplasmic receptor labeling may represent sites of synthesis, recycling or reserve populations of receptors. MOR1 was primarily found in the somata and proximal dendrites of projection neurons. In addition, these neurons rarely received synaptic input from MOR1-containing axon terminals. These results indicate that lamina I neurons in trigeminal dorsal horn that project to the thalamic and parabrachial nuclei contain MOR1 and are likely sites of action for MOR ligands that modulate sensory and/or autonomic aspects of pain transmission in the trigeminal dorsal horn.
Collapse
Affiliation(s)
- J L Mitchell
- Neurological Sciences Institute, Oregon Health and Science University, 505 Northwest 185(th) Avenue, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
80
|
Abstract
The pharmacological treatment of neuropathic pain relies, to a large extent, on drugs belonging to a small number of defined classes. Opioids, tricyclic antidepressants, antiepileptic drugs and membrane stabilisers form the current basis of treatment. Varying levels of evidence support the use of individual members of these classes and overall show no indication that one class of drug, or individual drug has universal effectiveness. More refined knowledge of the modes of action of these agents used to treat neuropathic pain should lead to a more logical approach to the management of this difficult series of conditions. A number of drugs currently licensed for a different indication have recently had an analgesic effect in neuropathic pain attributed to them. In addition, a number of novel compounds are undergoing investigation and provide hope of dicovering more efficacious treatment options in the future.
Collapse
Affiliation(s)
- Gary McCleane
- Rampark Pain Centre, 2 Rampark, Dromore Road, Lurgan, BT66 7JH, N. Ireland, UK.
| |
Collapse
|
81
|
Clarke RW. Synaptic mechanisms in nociception: emerging targets for centrally-acting analgesics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.2.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
82
|
Taiwo OB, Kovács KJ, Sun Y, Larson AA. Unilateral spinal nerve ligation leads to an asymmetrical distribution of mast cells in the thalamus of female but not male mice. Pain 2005; 114:131-40. [PMID: 15733638 DOI: 10.1016/j.pain.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 11/08/2004] [Accepted: 12/02/2004] [Indexed: 01/23/2023]
Abstract
Mast cells are restricted to the leptomeninges and thalamus of healthy mice. These populations are increased by stress and highly sensitive to reproductive hormones. To examine the influence of nociception, a form of stress, on thalamic mast cells, we ligated the left fifth lumbar spinal nerve of male and female mice to induce hyperalgesia. Two, 7 and 14 days later, mice were killed and thalami examined histologically using toluidine blue stain. The total number of thalamic mast cells was not influenced by ligation of the spinal nerve compared to sham-operation in either female or male mice. However, in females, the percent of thalamic mast cells located on the side of the thalamus contralateral to the ligation was greater on days 2 and 7, coincident with mechanical hyperalgesia. At these times, areas in which mast cells were most dense contralateral to nerve-injury included the posterior (Po) and lateral geniculate (LG) nuclei compared to their symmetrical distribution in sham-operated mice. These data suggest that local nociceptive signals to each side of the thalamus rather than stress hormones influence the location of mast cells during the development of allodynia and hyperalgesia. In addition, both hyperalgesia and mast cell distribution induced by nerve-ligation differ in females compared to males, reflecting a novel neuroimmune response to pain within the CNS.
Collapse
Affiliation(s)
- Oludare B Taiwo
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | |
Collapse
|
83
|
Suzuki R, Dickenson A. Spinal and Supraspinal Contributions to Central Sensitization in Peripheral Neuropathy. Neurosignals 2005; 14:175-81. [PMID: 16215300 DOI: 10.1159/000087656] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Indexed: 11/19/2022] Open
Abstract
We will focus on spinal cord dorsal horn lamina I projection neurones, their supraspinal targets and involvement in pain processing. These spinal cord neurons respond to tonic peripheral inputs by wind-up and other intrinsic mechanisms that cause central hyper-excitability, which in turn can further enhance afferent inputs. We describe here another hierarchy of excitation - as inputs arrive in lamina I, neurones rapidly inform the parabrachial area (PBA) and periaqueductal grey (PAG), areas associated with the affective and autonomic responses to pain. In addition, PBA can connect to areas of the brainstem that send descending projections down to the spinal cord - establishing a loop. The serotonin receptor, 5HT3, in the spinal cord mediates excitatory descending inputs from the brainstem. These descending excitatory inputs are needed for the full coding of polymodal peripheral inputs from spinal neurons and are enhanced after nerve injury. Furthermore, activity in this serotonergic system can determine the actions of gabapentin (GBP) that is widely used in the treatment of neuropathic pain. Thus, a hierarchy of separate, but interacting excitatory systems exist at peripheral, spinal and supraspinal sites that all converge on spinal neurones. The reciprocal relations between pain, fear, anxiety and autonomic responses are likely to be subserved by these spinal-brainstem-spinal pathways we describe here. Understanding these pain pathways is a first step toward elucidating the complex links between pain and emotions.
Collapse
Affiliation(s)
- Rie Suzuki
- Department of Pharmacology, Medical Sciences Building, University College London, UK.
| | | |
Collapse
|
84
|
Castro AR, Pinto M, Lima D, Tavares I. Imbalance between the expression of NK1 and GABAB receptors in nociceptive spinal neurons during secondary hyperalgesia: A c-fos study in the monoarthritic rat. Neuroscience 2005; 132:905-16. [PMID: 15857696 DOI: 10.1016/j.neuroscience.2005.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/23/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The neurochemical changes that operate in nociceptive spinal cord circuits during secondary hyperalgesia are largely unknown, in particular with respect to the balance between excitatory and inhibitory neurotransmission. In this study we evaluated the expression of NK1 and GABA(B) receptors in nociceptive spinal neurons in a model of secondary hyperalgesia consisting of noxious mechanical stimulation of the hindlimb skin close to a joint chronically inflamed by complete Freund's adjuvant. In spinal segments receiving input from that skin area, Fos-immunodetection was combined with immunocytochemistry for NK1 receptors, GABA(B) receptors or both receptors. In control and monoarthritic animals, neurons double-labeled for Fos and each receptor occurred mainly in laminae I and IV-V. In lamina I, the percentage of NK1 neurons expressing Fos was higher in monoarthritics while lower percentages of GABA(B) neurons expressed Fos. The percentage of Fos-positive cells expressing NK1 immunoreaction did not change in monoarthritics but that of Fos cells with GABA(B) immunoreaction was lower in these animals. In laminae IV-V, a large increase in Fos expression was detected in monoarthritic rats but the relative proportions of Fos-positive neurons expressing each receptor were similar in the two groups. Co-localization of NK1 and GABA(B) receptors occurred only in lamina I neurons in both experimental groups with no differences between control and monoarthritic animals in the percentages of Fos-positive neurons that expressed the receptors. Considering the participation of lamina I neurons bearing NK1 and GABA(B) receptors in several spinofugal systems, it is possible that the imbalance between excitatory and inhibitory actions exerted, respectively, by substance P and GABA may subserve secondary hyperalgesia by increasing ascending transmission of nociceptive input.
Collapse
Affiliation(s)
- A R Castro
- Institute of Histology and Embryology, Faculdade de Medicina and IBMC, University of Porto, Portugal
| | | | | | | |
Collapse
|
85
|
Abe T, Ohshita N, Sugiyo S, Moritani M, Kobayashi M, Takemura M. Elimination of neurokinin-1 receptor neurons in caudal nucleus reverses the effects of systemic bicuculline on c-Fos expression in rat trigeminal sensory nucleus: I. High intensity electrical stimulation of the trigeminal ganglion. Neuroscience 2005; 133:739-47. [PMID: 15896914 DOI: 10.1016/j.neuroscience.2005.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/04/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Although neurokinin-1 receptor (NK-1)-bearing neurons are distributed in lamina I of the trigeminal caudal nucleus (Vc) and constitute major projection neurons, little is known about their fundamental role(s) in nociceptive processing. This study examines the effect of intra cisterna magna injection of substance P (SP) conjugated to saporin (SP-Sap; 5 microM, 5 microl) [with/without systemic administration of bicuculline] on c-Fos expression in the trigeminal sensory nucleus (TSN) induced 2 h after 10 min repetitive electrical stimulation of the trigeminal ganglion (TG) at high intensity (1.0 mA, 5 Hz, 5 ms) in the urethane-anesthetized rat. In the SP-Sap-treated rats, the numbers of NK-1-immunopositive neurons in laminae I and III of the Vc decreased compared with rats similarly pretreated with saline (Sal; 5 microl) or blank-saporin (Bl-Sap; 5 microM, 5 microl). In Sal- or Bl-Sap-treated controls, high intensity stimulation induced c-Fos expression in neurons throughout the full extent of ipsilateral superficial layers of the Vc (VcI/II), magnocellular zone of the Vc (VcIII/IV) and the dorsal or dorsomedial subdivisions of the rostral TSN above the obex (trigeminal principal, oral (Vo) and interpolar nuclei). Preadministration of bicuculline (2 mg/kg, i.p.) decreased the numbers of c-Fos-immunopositive neurons in the VcI/II, VcIII/IV and Vo in Sal- or Bl-Sap-treated controls. In contrast, high intensity stimulation induced less c-Fos-immunopositive neurons in the VcI/II and Vo of rats treated with SP-Sap compared with those in Sal- or Bl-Sap-treated controls. In SP-Sap-treated rats preadministered with bicuculline, the numbers of c-Fos-immunopositive neurons in the VcI/II and Vo were increased compared with the SP-Sap-treated rats preadministered with Sal. These results suggest that NK-1-immunopositive neurons in laminae I and III of Vc play a pivotal role in the nociceptive specific processing in the TSN through GABA(A) receptors.
Collapse
Affiliation(s)
- T Abe
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Trends Neurosci 2004; 27:582-4. [PMID: 15374667 DOI: 10.1016/j.tins.2004.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neurokinin-1 receptor is expressed by lamina I projection neurons of the spinal cord that are crucial for regulating pain behavior. These neurons are nocispecific, support long-term potentiation and appear to downregulate the K(+)-Cl(-) exporter channel KCC2 following peripheral nerve damage, leading to increased excitability. These lamina I neurons project to the brainstem and thalamus and modulate descending inhibitory and excitatory pathways to the dorsal horn that regulate nociceptive traffic.
Collapse
|
87
|
Gamboa-Esteves FO, McWilliam PN, Batten TFC. Substance P (NK1) and somatostatin (sst2A) receptor immunoreactivity in NTS-projecting rat dorsal horn neurones activated by nociceptive afferent input. J Chem Neuroanat 2004; 27:251-66. [PMID: 15261332 DOI: 10.1016/j.jchemneu.2004.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 02/17/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Spinal neurones that receive inputs from primary afferent fibres and have axons projecting supraspinally to the medulla oblongata may represent a pathway through which nociceptive and non-nociceptive peripheral stimuli are able to modulate cardiorespiratory reflexes. Expression of the neurokinin-1 (NK1) receptor is believed to be an indicator of lamina I cells that receive nociceptive inputs from substance P releasing afferents, and similarly, sst2A receptor expression may be a marker for neurones receiving somatostatinergic inputs. In this study, immunoreactivity for these two receptors was investigated in rat spinal neurones retrogradely labelled by injections of cholera toxin B or Fluorogold into the nucleus of the solitary tract (NTS). In addition, nociceptive activation of these labelled cells was studied by immunodetection of Fos protein in response to cutaneous and visceral noxious chemical stimuli. NK1 and sst2A receptors in lamina I were localised to mainly separate populations of retrogradely labelled cells with fusiform, flattened and pyramidal morphologies. Examples of projection neurones expressing both receptors were, however observed. With visceral stimulation, many retrogradely labelled cells expressing c-fos were immunoreactive for the NK1 receptor, and a smaller population was sst2A positive. In contrast, with cutaneous stimulation, only NK1 positive retrogradely labelled cells showed c-fos expression. These data provide evidence that lamina I neurones receiving noxious cutaneous and visceral stimuli via NK1 receptor activation project to NTS and so may be involved in coordinating nociceptive and cardiorespiratory responses. Moreover, a subpopulation of projection neurones that respond to visceral stimuli may receive somatostatinergic inputs of peripheral, local or supraspinal origins.
Collapse
Affiliation(s)
- Filomena O Gamboa-Esteves
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
88
|
Morris R, Cheunsuang O, Stewart A, Maxwell D. Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. ACTA ACUST UNITED AC 2004; 46:173-90. [PMID: 15464206 DOI: 10.1016/j.brainresrev.2004.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2004] [Indexed: 01/03/2023]
Abstract
It has become increasingly clear that nociceptive information is signalled by several anatomically distinct populations of primary afferents that target different populations of neurones in the spinal cord. It is probable that these different systems all give rise to the sensation pain and hence, an understanding of their separate roles and the processes that they employ, may offer ways of selectively targeting pain arising from different causes. The review focuses on what is known of the anatomy of neurones in LI-III of the spinal dorsal horn that are implicated in nociception. The dendritic geometry and synaptic input of the large LI neurones that receive input from primary afferents containing substance P that express neurokinin 1 (NK(1)) receptors suggests that these neurones may monitor the extent of injury rather than the specific localisation of a discrete noxious stimulus. This population of neurones is also critically involved in hyperalgesia. In contrast neurones in LII with the morphology of stalked cells that receive primary afferent input from glomerular synapses may be more suitable for fine discrimination of the exact location of a noxious event such as a sting or parasite attack. The review focuses as far as possible on precisely defined anatomy in the belief that only by understanding these anatomical relationships will we eventually be able to interpret the complex processes occurring in the dorsal horn. The review attempts to be an accessible guide to a sometimes complex and highly specialised literature in this field.
Collapse
Affiliation(s)
- Richard Morris
- Department of Veterinary Preclinical Sciences, University of Liverpool, Brownlow Hill/Crown Street, Liverpool, L69 7ZJ, UK.
| | | | | | | |
Collapse
|
89
|
Hilton KJ, Bateson AN, King AE. A model of organotypic rat spinal slice culture and biolistic transfection to elucidate factors that drive the preprotachykinin-A promoter. ACTA ACUST UNITED AC 2004; 46:191-203. [PMID: 15464207 DOI: 10.1016/j.brainresrev.2004.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2004] [Indexed: 11/25/2022]
Abstract
The tachykinin substance P (SP) is a neuropeptide that is expressed in some nociceptive primary sensory afferents and in discrete populations of spinal cord neurons. Expression of spinal SP and the preprotachykinin-A (PPT-A) gene that encodes SP exhibits plasticity in response to conditions such as peripheral inflammation but the mechanisms that regulate expression are poorly understood. We have developed a spinal cord organotypic culture system that is suitable for the analysis of PPT-A gene promoter activity following biolistic transfection of recombinant DNA constructs. Spinal cord organotypic slices showed good viability over a 7-day culture period. Immunostaining for phenotypic markers such as NeuN and beta-III tubulin demonstrated preservation of neurons and their structure, although there was evidence of axotomy-induced down-regulation of NeuN in certain neuronal populations. Neurokinin-1 receptor (NK-1R) immunostaining in laminae I and III was similar to that seen in acute slices. Biolistic transfection was used to introduce DNA constructs into neurons of these organotypic cultures. Following transfection with a construct in which expression of enhanced green fluorescent protein (EGFP) is controlled by the PPT-A promoter, we showed that induction of neuronal activity by administration of a forskolin analogue/high K(+) (10 microM/10 mM) for 24 h resulted in a fourfold increase in the number of EGFP-positive cells. Similarly, a twofold increase was obtained after treatment with the NK-1R-specific agonist [Sar(9),Met (O(2))(11)]-substance P (10 microM). These data demonstrate the usefulness of this model to study physiological and pharmacological factors relevant to nociceptive processing that can modulate PPT-A promoter activity.
Collapse
Affiliation(s)
- Kathryn J Hilton
- School of Biomedical Sciences, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
90
|
Khasabov SG, Ghilardi JR, Mantyh PW, Simone DA. Spinal neurons that express NK-1 receptors modulate descending controls that project through the dorsolateral funiculus. J Neurophysiol 2004; 93:998-1006. [PMID: 15456795 DOI: 10.1152/jn.01160.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective ablation of spinal neurons possessing substance P receptors (NK-1 receptors) using the selective cytotoxin conjugate substance P-saporin (SP-SAP) decreases hyperalgesia and central sensitization. The mechanisms by which NK-1 expressing neurons modulate the excitability of other dorsal horn neurons are unclear. Because the majority of NK-1 expressing spinal neurons project rostrally, it is possible that they are part of a spinal-supraspinal circuitry that contributes to descending modulation of excitability of spinal nociceptive neurons. We therefore determined whether ablation of spinal neurons that possess the NK-1 receptor altered descending systems that travel via the dorsolateral funiculus (DLF). Spontaneous activity and responses of dorsal horn neurons evoked by mechanical (von Frey monofilaments) and heat (35-51 degrees C) stimuli were determined before and after transection of the DLF and were compared in rats pretreated with intrathecal application of vehicle or SP-SAP. In vehicle-treated rats, transection of the DLF caused a 233% increase in mean spontaneous activity of neurons and enhanced their responses to mechanical and heat stimuli, whereas these increases in excitation were blocked in rats pretreated with SP-SAP. Importantly, SP-SAP alone had no effect on spontaneous or evoked activity in the absence of DLF transection. These results demonstrate that spinal neurons expressing the NK-1 receptor appear to play a pivotal role in regulating descending systems that modulate activity of nociceptive dorsal horn neurons.
Collapse
Affiliation(s)
- Sergey G Khasabov
- Department of Oral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
91
|
Worsley MA, Todd AJ, King AE. Serotoninergic-mediated inhibition of substance P sensitive deep dorsal horn neurons: a combined electrophysiological and morphological study in vitro. Exp Brain Res 2004; 160:360-7. [PMID: 15448960 DOI: 10.1007/s00221-004-2018-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 06/03/2004] [Indexed: 12/19/2022]
Abstract
Dorsal horn neurons that express the neurokinin 1 receptor (NK-1R) play an important role in nociceptive processing. The targetting of NK-1R neurons by serotoninergic (5-hydroxytryptamine, 5-HT) axons would provide a straightforward means to exert an inhibitory analgesic effect at spinal level. This study used single cell electrophysiology to analyse and correlate the responses of rat deep DH neurons in vitro to both 5-HT and the NK-1R agonist [Sar9,Met(O2)11]-substance P (SP). Subsequently a combination of immunocytochemistry and confocal imaging was applied to biocytin-filled laminae III-VI neurons to reveal putative 5-HT innervation in this neuronal sample. A population of neurons was identified in which 5-HT (50 microM) significantly attenuated the dorsal root-evoked excitatory postsynaptic potential and [Sar9,Met(O2)11]-SP (2 microM) induced a direct tetrodotoxin-resistant depolarisation. Immunolabelling revealed that all of these neurons were inhibited by 5-HT, including those that were excited by [Sar9,Met(O2)11]-SP, were overlaid by a plexus of 5-HT immunoreactive fibres and in some instances, closely apposed putative contacts with somata and proximal dendrites identified although their incidence was low. Inhibition by 5-HT of deep DH neurons directly responsive to SP may account at least in part for monoamine-induced modulation of nociceptive processing in the spinal cord.
Collapse
Affiliation(s)
- Matthew A Worsley
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ, UK
| | | | | |
Collapse
|
92
|
Seagrove LC, Suzuki R, Dickenson AH. Electrophysiological characterisations of rat lamina I dorsal horn neurones and the involvement of excitatory amino acid receptors. Pain 2004; 108:76-87. [PMID: 15109510 DOI: 10.1016/j.pain.2003.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 12/01/2003] [Accepted: 12/03/2003] [Indexed: 11/23/2022]
Abstract
Lamina I of the spinal cord plays a key role in sensory transmission between afferent activity and the CNS. Studies have shown lamina I neurones to have distinct response properties compared to deep dorsal horn neurones, but little is known regarding excitatory amino acid mechanisms in their responses. Spinal electrophysiological recordings of lamina I neurones confirmed that the majority of these neurones (74%) are nociceptive specific (NS) in their responses, of which 18% can be termed polymodal nociceptive (HPC) (13% of the total population). The remainder (26%) were wide dynamic range. Lamina I neurones had smaller mechanical and heat-evoked responses compared to deeper dorsal horn neurones. The electrically evoked responses were also smaller, with a distinct lack of an NMDA-mediated 'wind-up' effect. NBQX (AMPA receptor antagonist, 0.5, 5, 50 microg/50 microl) produced dose-dependent inhibitions of the electrically evoked neuronal responses, but APV (NMDA receptor antagonist, 50, 100, 500 microg/50 microl) had minimal effects on their responses. These results implicate mainly AMPA receptors in the responses of lamina I neurones. Bicuculline (GABA(A) receptor antagonist, 0.5, 5, 50 microg/50 microl) demonstrated a role exerted by GABA(A) receptors in the control of A-delta fibre-mediated mechanical responses in lamina I. Overall, this study describes a high threshold, AMPA receptor possessing population of lamina I neurones, which seem to lack functional NMDA receptors, and are partially controlled by GABA(A) receptor activity.
Collapse
Affiliation(s)
- Lucinda C Seagrove
- Department of Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | | | | |
Collapse
|
93
|
Castro AR, Pinto M, Lima D, Tavares I. Nociceptive spinal neurons expressing NK1 and GABAB receptors are located in lamina I. Brain Res 2004; 1003:77-85. [PMID: 15019566 DOI: 10.1016/j.brainres.2003.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
The nociceptive nature of spinal dorsal horn neurons expressing NK1 and gamma-aminobutyric acid (GABA)(B) receptors was evaluated in the rat. Immunodetection of the Fos protein, induced by noxious mechanical stimulation of the skin, was combined with immunocytochemistry for NK1 or GABA(B) receptors (double-immunostaining study) or both receptors (triple-immunostaining study). Neurons double-labeled for Fos and for each receptor largely prevailed in lamina I. The proportions of Fos-positive cells immunostained for NK1 or GABA(B) receptors were higher in lamina I than in the remaining spinal laminae. More Fos-positive cells were immunoreactive (IR) for GABA(B) receptors than for NK1 in all dorsal horn laminae. In the triple-immunostaining study, co-localization of NK1 and GABA(B) receptors occurred only in lamina I and was higher in neurons expressing Fos. As to the morphological lamina I cell class, NK1-positive cells belonged mainly to the fusiform type while similar proportions of fusiform, pyramidal and flattened NK1 neurons expressed GABA(B) receptors. No differences were found between those cell types as to the degree of nociceptive activation. The present results suggest that the co-localization of NK1 and GABA(B) receptors is a common feature of fusiform, pyramidal and flattened neurons in lamina I. Considering the participation of the three cell classes in various ascending systems, it is concluded that a simultaneous action of substance P (SP) and GABA may play an important role in the modulation of nociceptive input supraspinally transmitted from lamina I.
Collapse
Affiliation(s)
- Ana Rita Castro
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
94
|
Labrakakis C, MacDermott AB. Neurokinin receptor 1-expressing spinal cord neurons in lamina I and III/IV of postnatal rats receive inputs from capsaicin sensitive fibers. Neurosci Lett 2004; 352:121-4. [PMID: 14625038 DOI: 10.1016/j.neulet.2003.08.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dorsal horn neurons expressing receptor for substance P (SP), the neurokinin 1 (NK1) receptor, play an important role in transmission and processing of nociceptive stimuli. To identify and study these neurons in the rat spinal cord slice preparation, we used fluorescence-conjugated SP to label NK1 receptor-expressing neurons. Labeled neurons in lamina I and III/IV were patch clamped and the vanilloid receptor 1 (TRPV1) agonist, capsaicin, was applied to evoke glutamate release from central terminals of peripheral nociceptors. Capsaicin induced an increase in the frequency of miniature excitatory postsynaptic currents in 73% of lamina I and 43% of lamina III/IV neurons expressing NK1-receptor indicating that these neurons receive direct input from capsaicin and heat sensitive nociceptors.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Physiology and Cellular Biophysics and the Center of Neurobiology and Behavior, Columbia University, New York, NY, USA.
| | | |
Collapse
|
95
|
Immunohistochemical localizations of Orexin-A and the neurokinin 1 receptor in the rat spinal cord. ACTA VET-BEOGRAD 2004. [DOI: 10.2298/avb0404311n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
96
|
Ruscheweyh R, Ikeda H, Heinke B, Sandkühler J. Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J Physiol 2003; 555:527-43. [PMID: 14694142 PMCID: PMC1664848 DOI: 10.1113/jphysiol.2003.054049] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most lamina I neurones with a projection to the brainstem express the neurokinin 1 receptor and thus belong to a small subgroup of lamina I neurones that are necessary for the development of hyperalgesia in rat models of persisting pain. These neurones are prone to synaptic plasticity following primary afferent stimulation in the noxious range while other nociceptive lamina I neurones are not. Here, we used whole-cell patch-clamp recordings from lamina I neurones in young rat spinal cord transverse slices to test if projection neurones possess membrane properties that set them apart from other lamina I neurones. Neurones with a projection to the parabrachial area or the periaqueductal grey (PAG) were identified by retrograde labelling with the fluorescent tracer DiI. The properties of lamina I projection neurones were found to be fundamentally different from those of unidentified, presumably propriospinal lamina I neurones. Two firing patterns, the gap and the bursting firing pattern, occurred almost exclusively in projection neurones. Most spino-parabrachial neurones showed the gap firing pattern while the bursting firing pattern was characteristic of spino-PAG neurones. The underlying membrane currents had the properties of an A-type K(+) current and a Ca(2+) current with a low activation threshold, respectively. Projection neurones, especially those of the burst firing type, were more easily excitable than unidentified neurones and received a larger proportion of monosynaptic input from primary afferent C-fibres. Intracellular labelling with Lucifer yellow showed that projection neurones had larger somata than unidentified neurones and many had a considerable extension in the mediolateral plane.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Brain Research Institute, Department of Neurophysiology, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
97
|
Honoré P, Kamp EH, Rogers SD, Gebhart GF, Mantyh PW. Activation of lamina I spinal cord neurons that express the substance P receptor in visceral nociception and hyperalgesia. THE JOURNAL OF PAIN 2003; 3:3-11. [PMID: 14622848 DOI: 10.1054/jpai.2002.27001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spinal lamina I neurons expressing the substance P receptor (SPR) have been shown to play a role in the transmission of somatic inflammatory and neuropathic pain. To evaluate their involvement in visceral nociception in both the noninflamed and inflamed colon, we examined the expression and ligand-induced internalization of the SPR in the rat spinal cord after distention of the noninflamed colon and in rats with inflammation induced by intracolonic instillation of zymosan (3 hours). In the noninflamed animal, acute noxious but not non-noxious colorectal distention induced SPR internalization in lamina I neurons at the thoracolumbar (T13) and lumbosacral (S1) spinal levels, whereas SPR internalization was not detected in lamina I neurons at spinal lumbar segment L4. Although zymosan-induced colorectal inflammation alone did not induce SPR internalization in lamina I neurons, there was an increased number of SPR-expressing lamina I neurons showing SPR internalization in segments T12 through S2 of the spinal cord after colorectal distention. These results show that acute noxious visceral stimuli induce activation of spinal lamina I neurons expressing the SPR and, that after visceral inflammation, there is a marked increase in both the number and rostrocaudal extent of lamina I SPR neurons activated in response to both normally non-noxious and noxious distention of the colon.
Collapse
Affiliation(s)
- Prisca Honoré
- Department of Preventive Sciences, Psychiatry and Neuroscience, University of Minnesota, Minneapolis, USA
| | | | | | | | | |
Collapse
|
98
|
McCleane GJ, Suzuki R, Dickenson AH. Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study. Anesth Analg 2003; 97:1474-1478. [PMID: 14570668 DOI: 10.1213/01.ane.0000085640.69855.51] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Neurokinin-1-expressing neurones in lamina I to III of the spinal cord are intimately involved in the regulation of ascending and spino-bulbal pathways that regulate excitatory transmission. In experimental animals, ablation of these neurones reduces the responses to a variety of nociceptive stimuli. Furthermore, in animals, spinal application of the selective 5HT3 receptor antagonist ondansetron mimics these effects, indicating that 5HT3 receptors play a pronociceptive role and mediate descending excitatory controls that allow spinal neurones to fully code peripheral stimuli. In this study, we examined the potential analgesic effect of a single IV injection of ondansetron in humans with chronic neuropathic pain. Each consenting subject received a single IV injection of 8 mg ondansetron and placebo in varying order at least 1 wk apart with pain scores being recorded for the 48 h preceding and after each injection. Pain scores were significantly reduced 2 h after ondansetron injection (but at no other time point). This suggests that ondansetron can have an analgesic effect in neuropathic pain. Side effects were minor and infrequent. IMPLICATIONS The selective 5HT3 receptor antagonist ondansetron, currently used as an antiemetic, may also have analgesic properties. Side effects with a single IV injection are infrequent and usually mild.
Collapse
Affiliation(s)
- Gary J McCleane
- Rampark Pain Centre, Lurgan, Northern Ireland, and the *Department of Pharmacology, University College, Gower Street, London
| | | | | |
Collapse
|
99
|
Spike RC, Puskár Z, Andrew D, Todd AJ. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003; 18:2433-48. [PMID: 14622144 DOI: 10.1046/j.1460-9568.2003.02981.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the rat lumbar spinal cord the major supraspinal targets for lamina I projection neurons are the caudal ventrolateral medulla (CVLM), lateral parabrachial area (LPb) and periaqueductal grey matter (PAG). In this study we have estimated the number of lamina I neurons retrogradely labelled from each of these sites in the L4 segment, as well as the proportion that can be labelled by injecting different tracers into two separate sites. Our results suggest that this segment contains approximately 400 lamina I projection neurons on each side, and that approximately 85% of these can be labelled from either the CVLM or the LPb on the contralateral side. Around 120 lamina I cells in L4 project to the PAG, and over 90% of these cells can also be labelled from the CVLM or LPb. Most lamina I neurons projecting to CVLM or LPb are located in the contralateral dorsal horn, but in each case some cells were found to have bilateral projections. We also examined horizontal sections to investigate morphology and the expression of the neurokinin 1 (NK1) receptor in cells labelled from CVLM, LPb or PAG. There were no consistent morphological differences between these groups, however, while cells with strong or moderate NK1 receptor-immunostaining were labelled from LPb or CVLM, they seldom projected to the PAG. These results suggest that many lamina I cells project to more than one site in the brain and that those projecting to PAG may represent a distinct subclass of lamina I projection neuron.
Collapse
Affiliation(s)
- R C Spike
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
100
|
Gao YJ, Zhang YQ, Zhao ZQ. Involvement of spinal neurokinin-1 receptors in the maintenance but not induction of carrageenan-induced thermal hyperalgesia in the rat. Brain Res Bull 2003; 61:587-93. [PMID: 14519455 DOI: 10.1016/s0361-9230(03)00215-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The study was undertaken to assess the antihyperalgesic effect of L-732,138, (N-acetyl-L-tryptophan-3,5-bistrifluoromethyl benzyl ester), a non-peptide neurokinin-1 (NK1) receptor antagonist in rats when given intrathecally. The peripheral inflammation associated with behavioral hyperalgesia to a thermal stimulus was induced by intraplantar (i.pl.) injection of carrageenan. The thermal hyperalgesia was measured by paw withdrawal latency. Intrathecal (i.t.) injection of L-732,138 (100 nmol) at 3h after carrageenan markedly attenuated the paw withdrawal latency of the inflamed paw, but not that of the non-inflamed paw. L-732,138 (100 nmol, i.t.) given 10 min prior to carrageenan injection had no effect on the carrageenan-induced decrease in paw withdrawal latency to noxious thermal stimulus. The results demonstrate that NK1 receptor is involved in the maintenance but not the induction and development of thermal hyperalgesia evoked by carrageenan.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Institute of Neurobiology, Fudan University, 220 Han Dan Road, Shanghai 200433, PR China
| | | | | |
Collapse
|