51
|
Smith D, Wallom KL, Williams IM, Jeyakumar M, Platt FM. Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis 2009; 36:242-51. [PMID: 19632328 DOI: 10.1016/j.nbd.2009.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 11/17/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal disorder characterized by sphingolipid and cholesterol storage in the late endocytic system. In common with other neurodegenerative diseases, activation of the innate immune system occurs in the brain resulting in neuro-inflammation. Targeting inflammation in the brain therefore represents a potential clinical intervention strategy that aims to slow the rate of disease progression and improve quality of life. We evaluated non-steroidal anti-inflammatory drugs (NSAIDs) and an anti-oxidant to determine whether these agents are disease modifying in an acute mouse model of NPC1. NSAIDs significantly prolonged the lifespan of NPC1 mice and slowed the onset of clinical signs. However, anti-oxidant therapy was of no significant benefit. Combining NSAID therapy with substrate reduction therapy (SRT) resulted in additive benefit. These data suggest that anti-inflammatory therapy may be a useful adjunctive treatment in the clinical management of NPC1, alone or combined with SRT.
Collapse
Affiliation(s)
- David Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | |
Collapse
|
52
|
Gourdain P, Grégoire S, Iken S, Bachy V, Dorban G, Chaigneau T, Debiec H, Bergot AS, Renault I, Aucouturier P, Carnaud C. Adoptive Transfer of T Lymphocytes Sensitized against the Prion Protein Attenuates Prion Invasion in Scrapie-Infected Mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:6619-28. [DOI: 10.4049/jimmunol.0804385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
53
|
Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 2009; 64:110-22. [PMID: 19840553 PMCID: PMC2834890 DOI: 10.1016/j.neuron.2009.08.039] [Citation(s) in RCA: 529] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2009] [Indexed: 12/24/2022]
Abstract
Until recently, the brain was studied almost exclusively by neuroscientists and the immune system by immunologists, fuelling the notion that these systems represented two isolated entities. However, as more data suggest an important role of the immune system in regulating the progression of brain aging and neurodegenerative disease, it has become clear that the crosstalk between these systems can no longer be ignored and a new interdisciplinary approach is necessary. A central question that emerges is whether immune and inflammatory pathways become hyperactivated with age and promote degeneration or whether insufficient immune responses, which fail to cope with age-related stress, may contribute to disease. We try to explore here the consequences of gain versus loss of function with an emphasis on microglia as sensors and effectors of immune function in the brain, and we discuss the potential role of the peripheral environment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kurt M Lucin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
54
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
55
|
Sisková Z, Page A, O'Connor V, Perry VH. Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1610-21. [PMID: 19779137 DOI: 10.2353/ajpath.2009.090372] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A growing body of evidence suggests that the loss of synapses is an early and major component of a number of neurodegenerative diseases. Murine prion disease offers a tractable preparation in which to study synaptic loss in a chronic neurodegenerative disease and to explore the underlying mechanisms. We have previously shown that synaptic loss in the hippocampus underpins the first behavioral changes and that there is a selective loss of presynaptic elements. The microglia have an activated morphology at this stage but they have an anti-inflammatory phenotype. We reasoned that the microglia might be involved in synaptic stripping, removing synapses undergoing a degenerative process, and that this gives rise to the anti-inflammatory phenotype. Analysis of synaptic density revealed a progressive loss from 12 weeks post disease initiation. The loss of synapses was not associated with microglia processes; instead, we found that the postsynaptic density of the dendritic spine was progressively wrapped around the degenerating presynaptic element with loss of subcellular components. Three-dimensional reconstructions of these structures from Dual Beam electron microscopy support the conclusion that the synaptic loss in prion disease is a neuron autonomous event facilitated without direct involvement of glial cells. Previous studies described synapse engulfment by developing and injured neurons, and we suggest that this mechanism may contribute to developmental and pathological changes in synapse numbers.
Collapse
Affiliation(s)
- Zuzana Sisková
- CNS Inflammation Group, Basset Crescent East, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK.
| | | | | | | |
Collapse
|
56
|
Loss of cerebellar granule neurons is associated with punctate but not with large focal deposits of prion protein in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 2009; 68:892-901. [PMID: 19606064 DOI: 10.1097/nen.0b013e3181af7f23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Whether aggregates of prion protein (PrP) reflect neurotoxicity or are neuroprotective in prion diseases is unclear. To address this question, we performed a clinicopathologic study of cerebellar granular neurons in 100 patients affected with sporadic Creutzfeldt-Jakob disease (CJD). There was significant loss of these neurons in the subset of cases with Val/Val genotype at PRNP Codon 129 and Molecular Isotype 2 of abnormal PrP (sporadic CJD-VV2) (n=32) compared with both the other CJD subtypes and to controls. Pathological PrP deposits of the punctate-type (synaptic-type) in this subgroup correlated with neuronal loss and proliferation of astrocytes and microglia. By contrast, the numbers of large deposits (5- to 50-microm-diameter) and numbers of amyloid plaques did not correlate with neuronal loss. These findings are consistent with the view that large aggregates may protect neurons by sequestering neurotoxic PrP oligomers, whereas punctate deposits may indicate the location of neuronal death processes in CJD.
Collapse
|
57
|
Gray BC, Siskova Z, Perry VH, O'Connor V. Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 2009; 35:63-74. [DOI: 10.1016/j.nbd.2009.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/24/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022] Open
|
58
|
Wynne AM, Henry CJ, Godbout JP. Immune and behavioral consequences of microglial reactivity in the aged brain. Integr Comp Biol 2009; 49:254-66. [PMID: 21665818 DOI: 10.1093/icb/icp009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bidirectional communication between the immune system and the brain is essential for mounting the appropriate immunological, physiological, and behavioral responses to immune activation. Aging, however, may impair this important bi-directional interaction. In support of this notion, peripheral infection in the elderly is associated with an increased frequency of behavioral and cognitive complications. Recent findings in animal models of aging and neurodegenerative disease indicate that microglia, innate immune cells of the brain, become primed or reactive. Understanding age- and disease-associated alterations in microglia is important because glia (microglia and astrocytes) play an integral role in propagating inflammatory signals that are initiated in the periphery. In this capacity, brain glia produce inflammatory cytokines that target neuronal substrates and elicit a sickness-behavior syndrome that is normally beneficial to the host organism. Increased reactivity of microglia sets the stage for an exaggerated neuroinflammatory cytokine response following activation of the peripheral innate immune system, which may underlie subsequent long-lasting behavioral and cognitive deficits. In support of this premise, recent findings indicate that stimulation of the peripheral immune system in aged rodents causes exaggerated neuroinflammation that is paralleled by cognitive impairment, prolonged sickness, and depressive-like complications. Therefore, the purpose of this review is to discuss the new evidence that age-associated priming of microglia could play a pathophysiological role in exaggerated behavioral and cognitive sequelae to peripheral infection.
Collapse
Affiliation(s)
- Angela M Wynne
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
59
|
Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009; 23:309-17. [PMID: 18814846 PMCID: PMC2692986 DOI: 10.1016/j.bbi.2008.09.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 12/21/2022] Open
Abstract
In the elderly, systemic infection is associated with an increased frequency of behavioral and cognitive complications. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness/depressive-like behaviors in aged BALB/c mice. Therefore, the purpose of this study was to determine the degree to which LPS-induced neuroinflammation was associated with microglia-specific induction of neuroinflammatory mediators. Here, we show that peripheral LPS challenge caused a hyperactive microglial response in the aged brain associated with higher induction of inflammatory IL-1beta and anti-inflammatory IL-10. LPS injection caused a marked induction of mRNA expression of both IL-1beta and IL-10 in the cortex of aged mice compared to adults. In the next set of studies, microglia (CD11b(+)/CD45(low)) were isolated from the brain of adult and aged mice following experimental treatments. An age-dependent increase in major histocompatibility complex (MHC) class II mRNA and protein expression was detected in microglia. Moreover, peripheral LPS injection caused a more pronounced increase in IL-1beta, IL-10, Toll-like receptor (TLR)-2, and indoleamine 2,3-dioxygenase (IDO) mRNA levels in microglia isolated from aged mice than adults. Intracellular cytokine protein detection confirmed that peripheral LPS caused the highest increase in IL-1beta and IL-10 levels in microglia of aged mice. Finally, the most prominent induction of IL-1beta was detected in MHC II(+) microglia from aged mice. Taken together, these findings provide novel evidence that age-associated priming of microglia plays a central role in exaggerated neuroinflammation induced by activation of the peripheral innate immune system.
Collapse
Affiliation(s)
- Christopher J. Henry
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Yan Huang
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Angela M. Wynne
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Jonathan P. Godbout
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA,Institute for Behavioral Medicine Research, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA,To whom correspondence should be addressed: J.P. Godbout, 2166B Graves Hall, 333 W. 10th Ave, The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 292-7000 Fax: (614) 333-8286,
| |
Collapse
|
60
|
Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 2009; 65:304-12. [PMID: 18801476 PMCID: PMC2633437 DOI: 10.1016/j.biopsych.2008.07.024] [Citation(s) in RCA: 432] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 07/10/2008] [Accepted: 07/28/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic neurodegeneration results in microglial activation, but the contribution of inflammation to the progress of neurodegeneration remains unclear. We have shown that microglia express low levels of proinflammatory cytokines during chronic neurodegeneration but are "primed" to produce a more proinflammatory profile after systemic challenge with bacterial endotoxin (lipopolysaccharide [LPS]). METHODS Here, we investigated whether intraperitoneal (IP) challenge with LPS, to mimic systemic infection, in the early stages of prion disease can 1) produce exaggerated acute behavioral (n = 9) and central nervous system (CNS) inflammatory (n = 4) responses in diseased animals compared with control animals, and 2) whether a single LPS challenge can accelerate disease progression (n = 34-35). RESULTS Injection of LPS (100 microg/kg), at 12 weeks postinoculation (PI), resulted in heightened CNS interleukin-1 beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and interferon-beta (IFN-beta) transcription and microglial IL-1beta translation in prion-diseased animals relative to control animals. This inflammation caused exaggerated impairments in burrowing and locomotor activity, and induced hypothermia and cognitive changes in prion-diseased animals that were absent in LPS-treated control animals. At 15 weeks PI, LPS (500 microg/kg) acutely impaired motor coordination and muscle strength in prion-diseased but not in control animals. After recovery, these animals also showed earlier onset of disease-associated impairments on these parameters. CONCLUSIONS These data demonstrate that transient systemic inflammation superimposed on neurodegenerative disease acutely exacerbates cognitive and motor symptoms of disease and accelerates disease progression. These deleterious effects of systemic inflammation have implications for the treatment of chronic neurodegeneration and associated delirium.
Collapse
|
61
|
Ratté S, Prescott SA, Collinge J, Jefferys JG. Hippocampal bursts caused by changes in NMDA receptor-dependent excitation in a mouse model of variant CJD. Neurobiol Dis 2008; 32:96-104. [DOI: 10.1016/j.nbd.2008.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/14/2008] [Accepted: 06/18/2008] [Indexed: 11/15/2022] Open
|
62
|
Maclullich AMJ, Ferguson KJ, Miller T, de Rooij SEJA, Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res 2008; 65:229-38. [PMID: 18707945 PMCID: PMC4311661 DOI: 10.1016/j.jpsychores.2008.05.019] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 01/01/2023]
Abstract
Delirium is a common and serious acute neuropsychiatric syndrome with core features of inattention and cognitive impairment, and associated features including changes in arousal, altered sleep-wake cycle, and other changes in mental status. The main risk factors are old age, cognitive impairment, and other comorbidities. Though delirium has consistent core clinical features, it has a very wide range of precipitating factors, including acute illness, surgery, trauma, and drugs. The molecular mechanisms by which these precipitating factors lead to delirium are largely obscure. In this article, we attempt to narrow down some specific causal pathways. We propose a basic classification for the etiological factors: (a) direct brain insults and (b) aberrant stress responses. Direct brain insults are largely indiscriminate and include general and regional energy deprivation (e.g., hypoxia, hypoglycaemia, stroke), metabolic abnormalities (e.g., hyponatraemia, hypercalcaemia), and the effects of drugs. Aberrant stress responses are conceptually and mechanistically distinct in that they constitute adverse effects of stress-response pathways, which, in health, are adaptive. Ageing and central nervous system disease, two major predisposing factors for delirium, are associated with alterations in the magnitude or duration of stress and sickness behavior responses and increased vulnerability to the effects of these responses. We discuss in detail two stress response systems that are likely to be involved in the pathophysiology of delirium: inflammation and the sickness behavior response, and activity of the limbic-hypothalamic-pituitary-adrenal axis. We conclude by discussing the implications for future research and the development of new therapies for delirium.
Collapse
Affiliation(s)
- Alasdair M J Maclullich
- Geriatric Medicine/MRC Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | |
Collapse
|
63
|
Armstrong RA, Cairns NJ, Lantos PL. Spatial pattern of prion protein deposits in patients with sporadic Creutzfeldt–Jakob disease. Neuropathology 2008. [DOI: 10.1111/j.1440-1789.2001.00364.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Nigel J Cairns
- Brain Bank, Department of Neuropathology, Institute of Psychiatry, King's College, London, UK
| | - Peter L Lantos
- Brain Bank, Department of Neuropathology, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
64
|
Deriziotis P, Tabrizi SJ. Prions and the proteasome. Biochim Biophys Acta Mol Basis Dis 2008; 1782:713-22. [PMID: 18644436 DOI: 10.1016/j.bbadis.2008.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in animals. They are unique in terms of their biology because they are caused by the conformational re-arrangement of a normal host-encoded prion protein, PrPC, to an abnormal infectious isoform, PrPSc. Currently the precise mechanism behind prion-mediated neurodegeneration remains unclear. It is hypothesised than an unknown toxic gain of function of PrPSc, or an intermediate oligomeric form, underlies neuronal death. Increasing evidence suggests a role for the ubiquitin proteasome system (UPS) in prion disease. Both wild-type PrPC and disease-associated PrP isoforms accumulate in cells after proteasome inhibition leading to increased cell death, and abnormal beta-sheet-rich PrP isoforms have been shown to inhibit the catalytic activity of the proteasome. Here we review potential interactions between prions and the proteasome outlining how the UPS may be implicated in prion-mediated neurodegeneration.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | | |
Collapse
|
65
|
Microglial activation is not prevented by tacrolimus but dopamine neuron damage is reduced in a rat model of Parkinson's disease progression. Brain Res 2008; 1216:78-86. [DOI: 10.1016/j.brainres.2008.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/19/2022]
|
66
|
Abstract
Microglial activation and behavioral abnormalities occur before neuronal loss in experimental murine prion disease; the behavioral changes coincide with a reduction in synaptic plasticity. Because synaptic plasticity depends on an intact perineuronal net (PN), a specialized extracellular matrix that surrounds parvalbumin (PV)-positive GABAergic (gamma-aminobutyric acid [GABA]) inhibitory interneurons, we investigated the temporal relationships between microglial activation and loss of PN and PV-positive neurons in ME7 murine prion disease. Anesthetized C57Bl/6J mice received bilateral intracerebral microinjections of ME7-infected or normal brain homogenate into the dorsal hippocampus. Microglial activation, PrP accumulation, the number of PV-positive interneurons, and Wisteria floribunda agglutinin-positive neurons (i.e. those with an intact PN) were assessed in the ventral CA1 and subiculum at 4, 8, 12, 16, and 20 weeks postinjection. Hippocampal areas and total neuron numbers in the ventral CA1 and subiculum were also determined. Loss of PN coincided with early microglial activation and with a reduction in synaptic plasticity. No significant loss of PV-positive interneurons was observed. Our findings suggest that the substrate of the earliest synaptic and behavioral abnormalities in murine prion disease may be inflammatory microglia-mediated degradation of the PN.
Collapse
|
67
|
Dirikoc S, Priola SA, Marella M, Zsürger N, Chabry J. Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. J Neurosci 2007; 27:9537-44. [PMID: 17804615 PMCID: PMC6672971 DOI: 10.1523/jneurosci.1942-07.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders characterized by the accumulation in the CNS of the protease-resistant prion protein (PrPres), a structurally misfolded isoform of its physiological counterpart PrPsen. Both neuropathogenesis and prion infectivity are related to PrPres formation. Here, we report that the nonpsychoactive cannabis constituent cannabidiol (CBD) inhibited PrPres accumulation in both mouse and sheep scrapie-infected cells, whereas other structurally related cannabinoid analogs were either weak inhibitors or noninhibitory. Moreover, after intraperitoneal infection with murine scrapie, peripheral injection of CBD limited cerebral accumulation of PrPres and significantly increased the survival time of infected mice. Mechanistically, CBD did not appear to inhibit PrPres accumulation via direct interactions with PrP, destabilization of PrPres aggregates, or alteration of the expression level or subcellular localization of PrPsen. However, CBD did inhibit the neurotoxic effects of PrPres and affected PrPres-induced microglial cell migration in a concentration-dependent manner. Our results suggest that CBD may protect neurons against the multiple molecular and cellular factors involved in the different steps of the neurodegenerative process, which takes place during prion infection. When combined with its ability to target the brain and its lack of toxic side effects, CBD may represent a promising new anti-prion drug.
Collapse
Affiliation(s)
- Sevda Dirikoc
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097, Centre National de la Recherche Scientifique, 06560 Valbonne, France
| | - Suzette A. Priola
- Laboratory of Persistent Viral Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, and
| | | | - Nicole Zsürger
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097, Centre National de la Recherche Scientifique, 06560 Valbonne, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097, Centre National de la Recherche Scientifique, 06560 Valbonne, France
| |
Collapse
|
68
|
Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM. A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007; 4:571-9. [PMID: 17920538 PMCID: PMC2637868 DOI: 10.1016/j.nurt.2007.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microglial activation and macrophage infiltration into the CNS are common features of CNS autoimmune disease and of chronic neurodegenerative diseases. Because these cells largely express an overlapping set of common macrophage markers, it has been difficult to separate their respective contributions to disease onset and progression. This problem is further confounded by the many types of macrophages that have been termed microglia. Several approaches, ranging from molecular profiling of isolated cells to the generation of irradiation chimeric rodent models, are now beginning to generate rudimentary definitions distinguishing the various types of microglia and macrophages found within the CNS and the potential roles that these cells may play in health and disease.
Collapse
Affiliation(s)
- Monica J. Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Tina V. Bilousova
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Shweta S. Puntambekar
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Benoit Melchior
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Jonathan M. Doose
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| |
Collapse
|
69
|
Broom KA, Anthony DC, Lowe JP, Griffin JL, Scott H, Blamire AM, Styles P, Perry VH, Sibson NR. MRI and MRS alterations in the preclinical phase of murine prion disease: association with neuropathological and behavioural changes. Neurobiol Dis 2007; 26:707-17. [PMID: 17490889 DOI: 10.1016/j.nbd.2007.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/28/2007] [Accepted: 04/01/2007] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal chronic neurodegenerative diseases. Previous qualitative magnetic resonance imaging (MRI) and spectroscopy (MRS) studies report conflicting results in the symptomatic stages of the disease, but little work has been carried out during the earlier stages of the disease. Here we have used the murine ME7 model of prion disease to quantitatively investigate MRI and MRS changes during the period prior to the onset of overt clinical signs (20+ weeks) and have correlated these with pathological and behavioural abnormalities. Using in vivo MRI, at the later stages of the preclinical period (18 weeks) the diffusion of tissue water was significantly reduced, coinciding with significant microglial activation and behavioural hyperactivity. Using in vivo MRS, we found early (12 weeks) decreases in the ratio of N-acetyl aspartate to both choline (NAA/Cho) and creatine (NAA/Cr) in the thalamus and hippocampus, which were associated with early behavioural deficits. Ex vivo MRS of brain extracts confirmed and extended these findings, showing early (8-12 weeks) decreases in both the neuronal metabolites NAA and glutamate, and the metabolic metabolites lactate and glucose. Increases in the glial metabolite myo-inositol were observed at later stages when microglial and astrocyte activation is substantial. These changes in MRI and MRS signals, which precede overt clinical signs of disease, could provide insights into the pathogenesis of this disease and may enable early detection of pathology.
Collapse
Affiliation(s)
- Kerry A Broom
- Experimental Neuroimaging Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Rd., Oxford, OX1 3PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Stobart MJ, Parchaliuk D, Simon SLR, LeMaistre J, Lazar J, Rubenstein R, Knox JD. Differential expression of interferon responsive genes in rodent models of transmissible spongiform encephalopathy disease. Mol Neurodegener 2007; 2:5. [PMID: 17367538 PMCID: PMC1847514 DOI: 10.1186/1750-1326-2-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/16/2007] [Indexed: 11/26/2022] Open
Abstract
Background The pathological hallmarks of transmissible spongiform encephalopathy (TSE) diseases are the deposition of a misfolded form of a host-encoded protein (PrPres), marked astrocytosis, microglial activation and spongiosis. The development of powerful gene based technologies has permitted increased levels of pro-inflammatory cytokines to be demonstrated. However, due to the use of assays of differing sensitivities and typically the analysis of a single model system it remained unclear whether this was a general feature of these diseases or to what extent different model systems and routes of infection influenced the relative levels of expression. Similarly, it was not clear whether the elevated levels of cytokines observed in the brain were accompanied by similar increases in other tissues that accumulate PrPres, such as the spleen. Results The level of expression of the three interferon responsive genes, Eif2ak2, 2'5'-OAS, and Mx2, was measured in the brains of Syrian hamsters infected with scrapie 263K, VM mice infected with bovine spongiform encephalopathy and C57BL/6 mice infected with the scrapie strain ME7. Glial fibrillary acidic expression confirmed the occurrence of astrocytosis in all models. When infected intracranially all three models showed a similar pattern of increased expression of the interferon responsive genes at the onset of clinical symptoms. At the terminal stage of the disease the level and pattern of expression of the three genes was mostly unchanged in the mouse models. In contrast, in hamsters infected by either the intracranial or intraperitoneal routes, both the level of expression and the expression of the three genes relative to one another was altered. Increased interferon responsive gene expression was not observed in a transgenic mouse model of Alzheimer's disease or the spleens of C57BL/6 mice infected with ME7. Concurrent increases in TNFα, TNFR1, Fas/ApoI receptor, and caspase 8 expression in ME7 infected C57BL/6 mice were observed. Conclusion The identification of increased interferon responsive gene expression in the brains of three rodent models of TSE disease at two different stages of disease progression suggest that this may be a general feature of the disease in rodents. In addition, it was determined that the increased interferon responsive gene expression was confined to the CNS and that the TSE model system and the route of infection influenced the pattern and extent of the increased expression. The concurrent increase in initiators of Eif2ak2 mediated apoptotic pathways in C57BL/6 mice infected with ME7 suggested one mechanism by which increased interferon responsive gene expression may enhance disease progression.
Collapse
Affiliation(s)
- Michael J Stobart
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Debra Parchaliuk
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
| | - Sharon LR Simon
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
| | - Jillian LeMaistre
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Jozef Lazar
- Department of Dermatology and Human Molecular Genetics Center, MCW, Milwaukee, WI 53226, USA
| | - Richard Rubenstein
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - J David Knox
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| |
Collapse
|
71
|
Marcos-Carcavilla A, Calvo JH, González C, Moazami-Goudarzi K, Laurent P, Bertaud M, Hayes H, Beattie AE, Serrano C, Lyahyai J, Martín-Burriel I, Alves E, Zaragoza P, Badiola JJ, Serrano M. IL-1 family members as candidate genes modulating scrapie susceptibility in sheep: localization, partial characterization, and expression. Mamm Genome 2007; 18:53-63. [PMID: 17242860 DOI: 10.1007/s00335-006-0095-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/30/2006] [Indexed: 01/08/2023]
Abstract
Scrapie (SC) is a transmissible spongiform encephalopathy (TSE) in sheep and goats. Susceptibility to this neurodegenerative disease is controlled mainly by point mutations at the PRNP locus. Other genes, apart from PRNP, have been reported to modulate resistance/susceptibility to SC. On the basis of several studies on Alzheimer's disease and different TSE models, and of requirement for correct homeostasis of cytokines in brain, IL1B and IL1RN were chosen as putative positional and functional candidate genes that might be involved in the polygenic variance mentioned above. In the present work, ovine IL1B and IL1RN genes were partially isolated and characterized, including promoter and other regulatory regions. In addition, several sequence polymorphisms were identified. Furthermore, their cytogenetic positions on sheep chromosomes were determined by FISH and confirmed by linkage analysis, localizing both genes in OAR3p22, a region previously described as carrying a QTL for SC incubation period in sheep. Finally, expression analyses were carried out in eight naturally SC-infected and five uninfected sheep with the same genotype for PRNP (ARQ/ARQ). This comparison was performed using real-time RT-PCR in samples of spleen and cerebellum. Results showed differences in the expression of both cytokines in cerebellum (p < 0.05) but not in spleen (p > 0.05).
Collapse
Affiliation(s)
- Ane Marcos-Carcavilla
- Departamento de Mejora Genética Animal, INIA, Ctra La Coruña Km 7.5, 28040, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
In the last decade, the potential role of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) in brain diseases has been extensively studied. COX-2 over-expression has been associated with neurotoxiticy in acute conditions, such as hypoxia/ischemia and seizures, as well as in inflammatory chronic diseases, including Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). However, the role played by COX-2 in neurodegenerative diseases is still controversial and further clinical and experimental studies are warranted. In addition, the emerging role of COX-2 in behavioural and cognitive functions strongly indicates that studies aimed at improving our knowledge of the physiological role of COX-2 in the central nervous system are crucial to fully understand the pros and cons of its manipulation in disabling neurological diseases.
Collapse
Affiliation(s)
- Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
73
|
Minghetti L, Pocchiari M. Cyclooxygenase-2, prostaglandin E2, and microglial activation in prion diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:265-75. [PMID: 17678966 DOI: 10.1016/s0074-7742(07)82014-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclooxygenase (COX) catalyzes the first committed step in the synthesis of prostaglandins (PGs) and is the main target of nonsteroidal anti-inflammatory drugs (NSAIDs). The enzyme exists as constitutive (COX-1) and inducible (COX-2) isoforms, being the latter a major player in inflammation. In the brain, COX-2 expression has been associated with inflammatory and neurodegenerative processes of several human neurological diseases. Prion diseases, or transmissible spongiform encephalopathies, are a heterogeneous group of fatal neurodegenerative disorders, characterized by deposition of the protease-resistant prion protein, astrocytosis, and spongiform degeneration. In addition, an extensive microglial activation supports the occurrence of local chronic inflammatory response. In experimental prion diseases, COX-2 immunoreactivity was found specifically localized to microglial cells and increased with the progression of disease, along with the number of activated microglia. The induction of COX-2 was paralleled by a substantial raise in the brain homogenate PGE(2) levels. In these models, only few scattered COX-1-positive microglia-like cells were detected, suggesting that COX-2 is the major form in prion diseases. In line with the animal models, elevated levels of PGE(2) were found in the cerebrospinal fluid of subjects affected by sporadic, genetic, or variant CJD. In sporadic CJD patients, the most numerous group of patients examined, higher CSF levels of PGE(2) were associated with shorter survival. Although the mechanisms leading to microglial COX-2 expression as well as its potential implication in prion disease pathogenesis remain to be established, PGE(2) levels in the cerebrospinal fluid might represent an important index to predict survival and disease severity.
Collapse
Affiliation(s)
- Luisa Minghetti
- Department of Cell Biology and Neurosciences, Degenerative and Inflammatory Neurological Diseases Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | |
Collapse
|
74
|
Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 2007; 21:47-59. [PMID: 16647243 DOI: 10.1016/j.bbi.2006.03.005] [Citation(s) in RCA: 442] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 02/07/2023] Open
Abstract
Prior exposure to a stressor can potentiate CNS pro-inflammatory immune responses to a peripheral immune challenge. However, the neuroimmune substrate(s) mediating this effect has not been determined. The present investigation examined whether microglia serve as this neuroimmune substrate given that microglia are the primary immune effector cell in the CNS. The effect of inescapable shock (IS) on glial activation (MHC II, CD11b, Iba-1, and GFAP) and regulatory markers (CD200) in vivo, and microglia pro-inflammatory responses (interleukin-1beta; IL-1beta) to lipopolysaccharide (LPS) ex vivo, were assessed in rat hippocampus. IS upregulated the microglia activation marker MHC II 24h post-IS, while the astroglia marker GFAP was unaffected. IS also downregulated the neuronal glycoprotein CD200, which functions to hold microglia in a quiescent state. Moreover, IS potentiated the pro-inflammatory response to LPS ex vivo 24h post-IS in isolated hippocampal microglia. Finally, the behavioral controllability of shock was manipulated and the effect of escapable (controllable) shock was comparable to the effect of IS on hippocampal microglia responses to LPS ex vivo. The present results suggest that stress can activate microglia, thereby sensitizing the pro-inflammatory reactivity of microglia to immunogenic stimuli.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Center for Neuroscience, Campus Box 345, University of Colorado, Boulder, CO 80309-0345, USA.
| | | | | | | | | |
Collapse
|
75
|
Pasquali P, Nonno R, Mandara MT, Di Bari MA, Ricci G, Petrucci P, Capuccini S, Cartoni C, Macrì A, Agrimi U. Intracerebral administration of interleukin-12 (IL-12) and IL-18 modifies the course of mouse scrapie. BMC Vet Res 2006; 2:37. [PMID: 17192191 PMCID: PMC1769363 DOI: 10.1186/1746-6148-2-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/27/2006] [Indexed: 11/10/2022] Open
Abstract
Background Prion diseases are characterised by a neurodegenerative pattern in which the function of immune system remains still elusive. In the present study, we evaluate if an exogenous treatment with Interleukin-12 (IL-12) and IL-18, able to activate microglia, is able to affect scrapie pathogenesis. Results Cytokines injected intracranially, induced a strong inflammatory response characterised by TNF-α production and microglia activation. Two groups of mice were injected intracerebrally with high dose of ME7 strain of scrapie containing IL-12 and IL-18 or sterile saline. Cytokines-treated mice showed a more pronounced accumulation of PrPSc in brain tissues at 90 days post-inoculation and a shorter mean survival times than untreated mice. Conclusion We can conclude that intracerebral administration of IL-12 and IL-18 can modulate scrapie pathogenesis possibly through a microglia-mediated pattern.
Collapse
Affiliation(s)
- Paolo Pasquali
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Mandara
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Ricci
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Petrucci
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Silvia Capuccini
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Claudia Cartoni
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Agostino Macrì
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Umberto Agrimi
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
76
|
Boche D, Cunningham C, Docagne F, Scott H, Perry VH. TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 2006; 22:638-50. [PMID: 16510291 DOI: 10.1016/j.nbd.2006.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/16/2005] [Accepted: 01/02/2006] [Indexed: 11/17/2022] Open
Abstract
The ME7 model of murine prion disease shows an atypical inflammatory response characterized by morphologically activated microglia and an anti-inflammatory cytokine profile with a marked expression of TGFbeta1. The investigation of the role of TGFbeta1 during a time course disease shows that its expression is correlated with (i) the onset of behavioral abnormalities, (ii) increased activated microglia, (iii) thickening of the basement membrane, and (iv) is associated with increased PrP(sc) deposition. Increasing TGFbeta1 using an adenoviral vector has no significant impact on prion-associated behavioral impairments or on neuropathology. In contrast, inhibition of TGFbeta1 activity using an adenovirus expressing decorin induces severe cerebral inflammation, expression of inducible nitric oxide synthase and acute neuronal death in prion-diseased animals only. These data suggest that TGFbeta1 plays a critical role in the downregulation of microglial responses minimizing brain inflammation and thus avoiding exacerbation of brain damage.
Collapse
Affiliation(s)
- Delphine Boche
- CNS Inflammation Group, Southampton Neurosciences Group, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX Hampshire, UK.
| | | | | | | | | |
Collapse
|
77
|
Gray BC, Skipp P, O'Connor VM, Perry VH. Increased expression of glial fibrillary acidic protein fragments and mu-calpain activation within the hippocampus of prion-infected mice. Biochem Soc Trans 2006; 34:51-4. [PMID: 16417481 DOI: 10.1042/bst0340051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prion diseases are characteristically accompanied by marked astrocytic activation, which is initiated relatively early in the disease process. Using the intracerebrally injected ME7 strain of prion agent to model disease, we identified an expected increase in GFAP (glial fibrillary acidic protein) but additionally noted an accumulation of GFAP cleavage fragments in hippocampal homogenates. A time-dependent increase in hippocampal mu-calpain immunoreactivity within astrocytes suggests that its proteolytic activity may account for the cleavage of GFAP that is observed in the ME7 model. It may therefore contribute to the reactive gliosis that is characteristic of prion diseases.
Collapse
Affiliation(s)
- B C Gray
- Neurosciences Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK.
| | | | | | | |
Collapse
|
78
|
Felton LM, Cunningham C, Rankine EL, Waters S, Boche D, Perry VH. MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis 2006; 20:283-95. [PMID: 15886005 DOI: 10.1016/j.nbd.2005.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/08/2005] [Accepted: 03/13/2005] [Indexed: 10/25/2022] Open
Abstract
Prion diseases are chronic, fatal neurodegenerative conditions of the CNS. We have investigated the role of monocyte chemoattractant protein-1 (MCP-1) in the ME7 model of murine prion disease. MCP-1 expression increased in the CNS throughout disease progression and was positively correlated with microglial activation. We subsequently compared the inflammatory response, pathology and behavioural changes in wild-type (wt) mice and MCP-1 knockout mice (MCP-1-/-) inoculated with ME7. Late-stage clinical signs were delayed by 4 weeks in MCP-1-/- mice, and survival time increased by 2-3 weeks. By contrast, early changes in affective behaviours and locomotor activity were not delayed in onset. There was also no difference in microglial activation or neuronal death in the hippocampus and thalamus of wt mice and MCP-1-/- mice. These results highlight an important dissociation between prolonged survival, early behavioural dysfunction and hippocampal/thalamic pathology when considering therapeutic intervention for human prion diseases and other chronic neurodegenerative conditions.
Collapse
Affiliation(s)
- L M Felton
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK.
| | | | | | | | | | | |
Collapse
|
79
|
Chiti Z, Knutsen OM, Betmouni S, Greene JRT. An integrated, temporal study of the behavioural, electrophysiological and neuropathological consequences of murine prion disease. Neurobiol Dis 2006; 22:363-73. [PMID: 16431123 DOI: 10.1016/j.nbd.2005.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 12/01/2005] [Accepted: 12/04/2005] [Indexed: 10/25/2022] Open
Abstract
We have conducted an integrated study of ME7 prion disease by examining the electrophysiological and neuropathological features of hippocampal slices from behaviourally characterised C57Bl/6J mice 12, 14, 16, 18, 20 and 24 weeks after intracerebral micro-injection of ME7 or normal brain homogenate. We describe the pathogenesis of ME7 as a three-stage process. STAGE ONE: PrPSc deposition, synaptic pathology and abnormal synaptic plasticity. STAGE TWO: Onset of behavioural changes, exemplified by an increase in open-field activity, enhancement of the slow AHP and development of vacuolation. Membrane depolarisation is also an early feature, but its exact timing remains to be confirmed. STAGE THREE: Clinical disease, substantial neurodegeneration and further disruption of the action potential profile. We suggest that the mechanisms underlying the electrophysiological changes of Stages one and two may provide novel approaches to treatment of prion disease, and that those seen in Stage three may be relevant to neurodegenerative diseases more generally.
Collapse
Affiliation(s)
- Z Chiti
- MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
80
|
Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005; 25:9275-84. [PMID: 16207887 PMCID: PMC6725757 DOI: 10.1523/jneurosci.2614-05.2005] [Citation(s) in RCA: 570] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The contribution of inflammation to the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and prion diseases is poorly understood. Brain inflammation in animal models of these diseases is dominated by chronic microglial activation with minimal proinflammatory cytokine expression. However, these inflammatory cells are "primed" to produce exaggerated inflammatory responses to subsequent lipopolysaccharide (LPS) challenges. We show that, using the ME7 model of prion disease, intracerebral challenge with LPS results in dramatic interleukin-1beta (IL-1beta) expression, neutrophil infiltration, and inducible nitric oxide synthase expression in the brain parenchyma of prion-diseased mice compared with the same challenge in normal mice. Systemic inflammation evoked by LPS also produced greater increases in proinflammatory cytokines, pentraxin 3, and inducible nitric oxide synthase transcription in prion-diseased mice than in control mice and induced microglial expression of IL-1beta. These systemic challenges also increased neuronal apoptosis in the brains of ME7 animals. Thus, both central and peripheral inflammation can exacerbate local brain inflammation and neuronal death. The finding that a single acute systemic inflammatory event can induce neuronal death in the CNS has implications for therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Colm Cunningham
- CNS Inflammation Group, School of Biological Sciences, Southampton, Hampshire SO16 7PX, United Kingdom.
| | | | | | | | | |
Collapse
|
81
|
Gossner A, Hunter N, Hopkins J. Role of lymph-borne cells in the early stages of scrapie agent dissemination from the skin. Vet Immunol Immunopathol 2005; 109:267-78. [PMID: 16169089 DOI: 10.1016/j.vetimm.2005.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/28/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
Scrapie is a natural transmissible spongiform encephalopathy (TSE) of sheep, infecting the animal via the gastrointestinal tract or the skin. This project tested the hypotheses that lymph-borne cells (especially dendritic cells) are crucial for the systemic dissemination of the infectious agent from the site of infection in the skin, that PrP genotype affects PrPSC association with dendritic cells and that PrPSC carriage by cells affects their expression of cytokines. Skin, of scrapie-susceptible VRQ/ARR and scrapie-resistant ARR/ARR PrP genotypes, was scarified with FITC-labelled PrPSC. Pseudoafferent lymphatic cannulation was then used to monitor the presence of FITC-PrPSC over time in different lymph cell populations and plasma in the draining afferent lymphatics. The major observation was that PrPSC did not associate significantly with any lymphocyte or dendritic cell population in the 5 days following PrPSC scarification. The only cells seen to associate with PrPSC were neutrophils. Furthermore, despite the quantity of PrPSC used for scarification being equivalent to a standard infectious dose (the VRQ/ARR sheep dying at approximately 260 days) the only PrP found in afferent lymph during the 0-5-day period was proteinase K sensitive (i.e. soluble PrPC). No differences were observed between the PrP genotypes. Analysis of the effects of PrPSC scarification of cellular cytokine mRNA expression (by a nuclease protection assay) showed raised levels of IL-1beta and IL-8 in the susceptible VRQ/ARR group and raised levels of IFNgamma in the resistant ARR/ARR animals.
Collapse
Affiliation(s)
- Anton Gossner
- Division of Veterinary Biomedical Sciences, R(D)SVS, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | |
Collapse
|
82
|
Mor F, Izak M, Cohen IR. Identification of Aldolase as a Target Antigen in Alzheimer’s Disease. THE JOURNAL OF IMMUNOLOGY 2005; 175:3439-45. [PMID: 16116239 DOI: 10.4049/jimmunol.175.5.3439] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is the most common human neurodegenerative disease, leading to progressive cognitive decline and eventually death. The prevailing paradigm on the pathogenesis of AD is that abnormally folded proteins accumulate in specific brain areas and lead to neuronal loss via apoptosis. In recent years it has become evident that an inflammatory and possibly autoimmune component exists in AD. Moreover, recent data demonstrate that immunization with amyloid-beta peptide is therapeutically effective in AD. The nature of CNS Ags that are the target of immune attack in AD is unknown. To identify potential autoantigens in AD, we tested sera IgG Abs of AD patients in immunoblots against brain and other tissue lysates. We identified a 42-kDa band in brain lysates that was detected with >50% of 45 AD sera. The band was identified by mass spectrometry to be aldolase A. Western blotting with aldolase using patient sera demonstrated a band of identical size. The Ab reactivity was verified with ELISAs using aldolase. One of 25 elderly control patients and 3 of 30 multiple sclerosis patients showed similar reactivity (p < 0.002). In enzymatic assays, anti-aldolase positive sera were found to inhibit the enzyme's activity, and the presence of the substrate (fructose 1,6-diphosphate) enhanced Ab binding. Immunization of rats and mice with aldolase in complete Freund's adjuvant was not pathogenic. These findings reveal an autoimmune component in AD, point at aldolase as a common autoantigen in this disease, and suggest a new target for potential immune modulation.
Collapse
Affiliation(s)
- Felix Mor
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
83
|
Lu ZY, Baker CA, Manuelidis L. New molecular markers of early and progressive CJD brain infection. J Cell Biochem 2005; 93:644-52. [PMID: 15660413 DOI: 10.1002/jcb.20220] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), including human Creutzfeldt-Jakob disease (CJD), are caused by a related group of infectious agents that can be transmitted to many mammalian species. Because the infectious component of TSE agents has not been identified, we examined myeloid cell linked inflammatory pathways to find if they were activated early in CJD infection. We here identify a specific set of transcripts in CJD infected mouse brains that define early and later stages of progressive disease. Serum amyloid A3 and L-selectin mRNAs were elevated as early as 20 days after intracerebral inoculation. Transcripts of myeloid cell recruitment factors such as MIP-1alpha, MIP-1beta, and MCP1, as well as IL1alpha and TNFalpha were upregulated > 10 fold between 30 and 40 days, well before prion protein (PrP) abnormalities that begin only after 80 days. At later stages of symptomatic neurodegenerative disease (100-110 days), a selected set of transcripts rose by as much as 100 fold. In contrast, normal brain inoculated controls showed no similar sequential changes. In sum, rapid and simple PCR tests defined progressive stages of CJD brain infection. These markers may also facilitate early diagnosis of CJD in accessible peripheral tissues such as spleen and blood. Because some TSE strains can differentially target particular cell types such as microglia, several of these molecular changes may also distinguish specific agent strains. The many host responses to the CJD agent challenge the assumption that the immune system does not recognize TSE infections because these agents are composed only of the host's own PrP.
Collapse
Affiliation(s)
- Zhi Yun Lu
- Yale Medical School, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
84
|
Lee JH, Park EJ, Kim OS, Kim HY, Joe EH, Jou I. Double-stranded RNA-activated protein kinase is required for the LPS-induced activation of STAT1 inflammatory signaling in rat brain glial cells. Glia 2005; 50:66-79. [PMID: 15630703 DOI: 10.1002/glia.20156] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PKR, the double-stranded RNA (dsRNA)-activated serine/threonine kinase, has been implicated as an important component of host responses to infection and various situations of cellular stress. The involvement of PKR in signal transduction and regulation of transcription suggested to us that it may play an important role in lipopolysaccharide (LPS)-induced activation of STAT1 in rat brain immune cells. We found that LPS rapidly stimulated the phosphorylation of PKR within 5 min, followed by phosphorylation of STAT1 at 2 h in rat primary microglia and astrocyte. Using 2-aminopurine (2-AP), a pharmacological inhibitor of PKR, and PKR-specific short interfering RNA (siRNA), we demonstrated that activation of PKR was essential for LPS-induced activation of STAT1. Inhibition of PKR activity by 2-AP resulted in suppression not only of STAT1 phosphorylation, but also of nuclear factors binding activity to GAS/ISRE elements. 2-AP also significantly suppressed the downstream events of LPS-stimulated STAT1 phosphorylation, including STAT-mediated transcriptional responses and generation of nitric oxide, a hallmark of brain inflammation. Consistent with these results, transfection of PKR-specific siRNA markedly attenuated all the STAT1 dependent inflammatory signaling responses tested. We further revealed that activation of PKR by LPS led to the induction of IFN-beta through activation of NF-kappaB, triggering the phosphorylation of STAT1 in rat brain glial cells. Taken together, these findings indicate that PKR functions as an essential modulator in LPS-induced STAT inflammatory signaling events, and provides new insight into endotoxin-induced CNS diseases following infection.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
85
|
Prion diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
86
|
Cunningham C, Wilcockson DC, Boche D, Perry VH. Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 2005; 79:5174-84. [PMID: 15795301 PMCID: PMC1069550 DOI: 10.1128/jvi.79.8.5174-5184.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic neurodegenerative diseases such as prion disease and Alzheimer's disease (AD) are reported to be associated with microglial activation and increased brain and serum cytokines and acute-phase proteins (APPs). Unlike AD, prion disease is also associated with a peripheral component in that the presumed causative agent, PrPSc, also accumulates in the spleen and other lymphoreticular organs. It is unclear whether the reported systemic acute-phase response represents a systemic inflammatory response to prion disease or merely reflects central nervous system (CNS) inflammation. For this study, we investigated whether intracerebrally initiated prion disease (ME7 model) provokes splenic, hepatic, or brain inflammatory and acute-phase responses. We detected no significant elevation of proinflammatory cytokines or activation of macrophages in the spleens of these animals, despite clear PrPSc deposition. Similarly, at 19 weeks we detected no significant elevation of transcripts for the APPs serum amyloid A, complement C3, pentraxin 3, and alpha2-antiplasmin in the liver, despite CNS neurodegeneration and splenic PrPSc deposition at this time. However, despite the low CNS expression levels of proinflammatory cytokines, there was robust expression of these APPs in degenerating brains. These findings suggest that PrPSc is not a stimulus for splenic macrophages and that neither peripheral PrPSc deposition nor CNS neurodegeneration is sufficient to produce a systemic acute-phase response. We also propose that serum cytokine and APP measurements are not useful during preclinical disease. Possible consequences of the clear chronic elevation of APPs in the CNS are discussed.
Collapse
Affiliation(s)
- Colm Cunningham
- CNS Inflammation Group, School of Biological Sciences, Bassett Crescent East, Southampton, Hampshire SO16 7PX, United Kingdom.
| | | | | | | |
Collapse
|
87
|
Zhu BT. Human and animal spongiform encephalopathies are autoimmune diseases: a novel theory and its supporting evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:155-90. [PMID: 15797468 DOI: 10.1016/s0074-7742(05)63006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Bao Ting Zhu
- Department of Basic Pharmaceutical Sciences, College of Pharmacy University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
88
|
Lee HP, Jun YC, Choi JK, Kim JI, Carp RI, Kim YS. The expression of RANTES and chemokine receptors in the brains of scrapie-infected mice. J Neuroimmunol 2005; 158:26-33. [PMID: 15589034 DOI: 10.1016/j.jneuroim.2004.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 01/08/2023]
Abstract
While chemokines play an important role in host defense, it has become abundantly clear that their expression is not solely restricted to immune cells. In this study, to investigate the role of chemokines in pathogenic mechanism of neurodegeneration in prion diseases, we determined the cerebral expression of RANTES, a major chemoattractant of monocytes and activated lymphocytes, and its receptors CCR1, CCR3 and CCR5 in ME7 scrapie-infected mice. The mRNA of RANTES gene was upregulated in the brains of scrapie-infected mice. Intense immunoreactivity of RANTES was observed only in glial fibrillary acidic protein (GFAP)-positive astrocytes of the hippocampus of the infected mice. In addition, the levels of mRNA expression of CCR1, CCR3, and CCR5 were increased in hippocampus of scrapie-infected brains compared to the values in controls. Immunostaining of CCR1, CCR3, and CCR5 was observed in reactive astrocytes of the hippocampal region of scrapie-infected brains. In addition, immunoreactivity of CCR5 was also observed in microglia of scrapie-infected brains. These results suggest that RANTES and its receptors may participate in amplifying proinflammatory responses and, thereby, exacerbate the neurodegeneration of prion diseases.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Ilsong Institute of Life Science, Hallym University, 1605-4 Kwanyangdong, Dongangu, Anyang, Kyeonggi-Do 431-060, Republic of Korea
| | | | | | | | | | | |
Collapse
|
89
|
Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 2005; 49:375-84. [PMID: 15538754 DOI: 10.1002/glia.20124] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perivascular macrophages are believed to have a significant role in inflammation in the central nervous system (CNS). They express a number of different receptors that point toward functions in both innate immunity, through pathogen-associated molecular pattern recognition, phagocytosis, and cytokine responsiveness, and acquired immunity, through antigen presentation and co-stimulation. We are interested in the receptors that are differentially expressed by perivascular macrophages and microglia in both the normal CNS as well as in neuroinflammation and neurodegeneration. In this article we report the use of a well-characterized monoclonal antibody, 5D3, to localize the expression of the mannose receptor to perivascular macrophages in the normal CNS and in various models of brain pathology. Mannose receptor expression was limited to perivascular, meningeal, and choroid plexus macrophages in normal, inflamed, injured, and diseased CNS. In particular, activated microglia and invading hematogenous leukocytes were mannose receptor negative while expressing the F4/80 antigen, macrosialin (CD68), FcRII (CD32), scavenger receptor (CD204), and CR3 (CD11b/CD18). Since the perivascular macrophages expressing the mannose receptor are known to be the only constitutively phagocytic cells in the normal CNS, we injected clodronate-loaded liposomes intracerebroventricularly in control mice to deplete these cells. In these mice, there was no detectable mannose receptor expression in perivascular spaces after immunocytochemistry with the 5D3 monoclonal antibody. This finding underlines the value of the monoclonal antibody 5D3 as a tool to study murine perivascular macrophages selectively. Mannose receptor expression by macrophages located at blood-brain (perivascular), brain-cerebrospinal fluid (CSF) (meningeal), and CSF-blood (choroid plexus) interfaces supports a functional role of these cells in responding to external stimuli such as infection.
Collapse
Affiliation(s)
- Ian Galea
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | |
Collapse
|
90
|
Ching S, He L, Lai W, Quan N. IL-1 type I receptor plays a key role in mediating the recruitment of leukocytes into the central nervous system. Brain Behav Immun 2005; 19:127-37. [PMID: 15664785 DOI: 10.1016/j.bbi.2004.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 05/17/2004] [Accepted: 06/04/2004] [Indexed: 01/08/2023] Open
Abstract
This study investigates the role of type I IL-1 receptor (IL-1R1) in mediating the recruitment of leukocytes into the brain parenchyma in mice. Intracerebroventricular (icv) injection of interleukin IL-1beta induced infiltration of leukocytes between 8 and 72 h after the injection. Leukocytes were rarely found in the brain tissue of saline-injected animals. At 8h after IL-1beta injection, leukocytes were seen lining the blood vessels of the brain and sparsely scattered infiltration of leukocytes was found in the cortex. Peak infiltration of leukocytes, which distributed evenly throughout the brain, was seen at 16 h post-injection. The number of leukocytes in the brain declined thereafter and no leukocytes were found 72 h post-injection. This phenomenon was replicated in mice deficient in lymphotoxin-alpha (LT(alpha)), IL-6, interferon (IFN)-gamma receptor, or the tumor necrosis factor (TNF)-alpha receptor, but abrogated in animals deficient in IL-1R1. ICV injection of IFN-gamma or TNF-alpha, but not IL-6 or IL-12, also induced leukocyte infiltration into the brain. Injection of IL-1beta, IFN-gamma, TNF-alpha, IL-6, and IL-12 induced IL-1beta expression in the brain, with IL-6 and IL-12 being the least effective. Leukocyte infiltration induced by icv IFN-gamma and TNF-alpha was also abrogated in IL-1R1-knockout animals. The induced infiltrating leukocytes were identified as neutrophils. Chronic infection with Trypanosoma brucei resulted in the recruitment of T cells, but no other cell types, into the brain. This did not occur in IL-1R1-knockout mice. Thus, IL-1R1 appears to be important for the recruitment of leukocytes across the blood-brain barrier.
Collapse
Affiliation(s)
- San Ching
- Department of Oral Biology, Ohio State University, Columbus, OH 43210-1094, USA
| | | | | | | |
Collapse
|
91
|
Thackray AM, McKenzie AN, Klein MA, Lauder A, Bujdoso R. Accelerated prion disease in the absence of interleukin-10. J Virol 2004; 78:13697-707. [PMID: 15564479 PMCID: PMC533935 DOI: 10.1128/jvi.78.24.13697-13707.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identity of pro- and anti-inflammatory cytokines in the neuropathogenesis of prion diseases remains undefined. Here we have investigated the role of anti-inflammatory cytokines on the progression of prion disease through the use of mice that lack interleukin-4 (IL-4), IL-10, IL-13, or both IL-4 and IL-13. Collectively our data show that among these anti-inflammatory cytokines, IL-10 plays a prominent role in the regulation of prion disease. Mice deficient in IL-10 are highly susceptible to the development of prion disease and show a markedly shortened incubation time. In addition, we have correlated cytokine gene expression in prion-inoculated IL-10(-/-) mice to wild-type-inoculated animals. Our experiments show that in the absence of IL-10 there is an early expression of tumor necrosis factor alpha (TNF-alpha). In wild-type prion-inoculated mice, the expression of TNF-alpha mRNA occurs at a later time point that correlates with the extended incubation time for terminal disease development in these animals compared to those that lack IL-10. Elevated levels of IL-13 mRNA are found at early time points in the central nervous system of prion-inoculated IL-10(-/-) mice. At terminal disease, the brains of wild-type mice inoculated with RML or ME7 are characterized by elevated levels of mRNA for the proinflammatory cytokines TNF-alpha and IL-1beta, together with the anti-inflammatory cytokines IL-10, IL-13, and transforming growth factor beta. Our data are consistent with a role for proinflammatory cytokines in the initiation of pathology during prion disease and an attempt by anti-inflammatory cytokines to regulate the ensuing, invariably fatal pathology.
Collapse
Affiliation(s)
- Alana M Thackray
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, United Kingdom
| | | | | | | | | |
Collapse
|
92
|
Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK. Role of microglia in central nervous system infections. Clin Microbiol Rev 2004; 17:942-64, table of contents. [PMID: 15489356 PMCID: PMC523558 DOI: 10.1128/cmr.17.4.942-964.2004] [Citation(s) in RCA: 512] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nature of microglia fascinated many prominent researchers in the 19th and early 20th centuries, and in a classic treatise in 1932, Pio del Rio-Hortega formulated a number of concepts regarding the function of these resident macrophages of the brain parenchyma that remain relevant to this day. However, a renaissance of interest in microglia occurred toward the end of the 20th century, fueled by the recognition of their role in neuropathogenesis of infectious agents, such as human immunodeficiency virus type 1, and by what appears to be their participation in other neurodegenerative and neuroinflammatory disorders. During the same period, insights into the physiological and pathological properties of microglia were gained from in vivo and in vitro studies of neurotropic viruses, bacteria, fungi, parasites, and prions, which are reviewed in this article. New concepts that have emerged from these studies include the importance of cytokines and chemokines produced by activated microglia in neurodegenerative and neuroprotective processes and the elegant but astonishingly complex interactions between microglia, astrocytes, lymphocytes, and neurons that underlie these processes. It is proposed that an enhanced understanding of microglia will yield improved therapies of central nervous system infections, since such therapies are, by and large, sorely needed.
Collapse
Affiliation(s)
- R Bryan Rock
- Neuroimmunology Laboratory, Minneapolis Medical Research Foundation, and University of Minnesota Medical School, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Although human prion diseases are rare, they are invariably fatal, and treatments remain elusive. Hundreds of iatrogenic prion transmissions have occurred in the past two decades, and the bovine spongiform encephalopathy epidemic has raised concerns about prion transmission from cattle to humans. Research into therapeutics for prion disease is being pursued in several centres and prominently includes immunological strategies. Currently, the options that are being explored aim either to mobilize the innate and adaptive immune systems towards prion destruction or to suppress or dedifferentiate the lymphoreticular compartments that replicate prions. This article reviews the pathophysiology of prion diseases in mouse models and discusses their relevance to immunotherapeutic and immunoprophylactic antiprion strategies.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zürich, Switzerland.
| | | |
Collapse
|
94
|
Perry VH. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 2004; 18:407-13. [PMID: 15265532 DOI: 10.1016/j.bbi.2004.01.004] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 01/28/2023] Open
Abstract
Systemic inflammation is associated with sickness behaviour and signals pass from the blood to the brain via macrophage populations associated with the brain, the perivascular macrophages and the microglia. The amplitude, or gain, of this transduction process is critically dependent on the state of activation of these macrophages. In chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, or prion disease the pathology is associated with a highly atypical inflammatory response, characterised by the activation of the macrophage populations in the brain: the cells are primed. Recent evidence suggests that systemic inflammation may impact on local inflammation in the diseased brain leading to exaggerated synthesis of inflammatory cytokines and other mediators in the brain, which may in turn influence behaviour. These interactions suggest that systemic infections, or indeed any systemic challenge that promotes a systemic inflammatory response, may contribute to the outcome or progression of chronic neurodegenerative disease.
Collapse
Affiliation(s)
- V Hugh Perry
- CNS Inflammation Group, University of Southampton, Biomedical Sciences Building, Southampton SO16 7PX, UK.
| |
Collapse
|
95
|
Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004; 1:14. [PMID: 15285801 PMCID: PMC509427 DOI: 10.1186/1742-2094-1-14] [Citation(s) in RCA: 761] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 07/30/2004] [Indexed: 01/06/2023] Open
Abstract
Microglia make up the innate immune system of the central nervous system and are key cellular mediators of neuroinflammatory processes. Their role in central nervous system diseases, including infections, is discussed in terms of a participation in both acute and chronic neuroinflammatory responses. Specific reference is made also to their involvement in Alzheimer's disease where microglial cell activation is thought to be critically important in the neurodegenerative process.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, P.O. Box 100244, Gainesville, Florida 32610, USA
| | - Robert E Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences and GRECC/CAVHS, Little Rock, Arkansas 72205, USA
| |
Collapse
|
96
|
Baker CA, Lu ZY, Manuelidis L. Early induction of interferon-responsive mRNAs in Creutzfeldt-Jakob disease. J Neurovirol 2004; 10:29-40. [PMID: 14982726 PMCID: PMC4624297 DOI: 10.1080/13550280490261761] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Foreign infectious agents typically evoke a host immune response. In scrapie and Creutzfeldt-Jakob disease (CJD), no immune response has been detectable. However, many latent or persistent viruses evade immune recognition but still activate inflammatory pathways. Unique microglial responses in late CJD infection that could be part of a host defense mechanism were previously delineated, although changes secondary to neurodegeneration could not be excluded. Data here show these microglial transcriptional changes are detectable in CJD brain beginning at 30 days after innoculation. In addition, 10 other interferon-sensitive genes were similarly upregulated at very early stages of infection. These responses occurred well before abnormal prion protein (PrP) and clinical signs of CJD were detectable. Further analyses in very pure microglia from CJD brain suggested the CJD agent activated signaling pathways distinct from those induced by amyloidogenic proteins (including abnormal PrP). Although increases in interferon-alpha or -beta transcript levels were not seen in cultures or in whole brain, CJD microglia exhibited a potentiated interferon response when challenged with double-stranded RNA. The induction of interferon-sensitive genes without appreciable interferon synthesis was strikingly similar to that seen in some viral infections. These data suggest the CJD agent is recognized as a foreign virus-like entity. Moreover, the early reactive gene expression profiles described here may be useful in preclinical diagnosis.
Collapse
Affiliation(s)
- Christopher A Baker
- Section of Neuropathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
97
|
Marella M, Chabry J. Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 2004; 24:620-7. [PMID: 14736847 PMCID: PMC6729257 DOI: 10.1523/jneurosci.4303-03.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The accumulation and activation of microglial cells at sites of amyloid prion deposits or plaques have been documented extensively. Here, we investigate the in vivo recruitment of microglial cells soon after intraocular injection of scrapie-infected cell homogenate (hgtsc+) using immunohistochemistry on retinal sections. A population of CD11b/CD45-positive microglia was specifically detected within the ganglion and internal plexiform retinal cell layers by 2 d after intravitreal injection of hgtsc+. Whereas no chemotactism properties were ascribed to hgtsc+ alone, a massive migration of microglial cells was observed by incubating primary cultured neurons and astrocytes with hgtsc+ in a time- and concentration-dependent manner. hgtsc+ triggered the recruitment of microglial cells by interacting with both neurons and astrocytes by upregulation of the expression levels of a broad spectrum of neuronal and glial chemokines. We show that, in vitro and in vivo, the microglia migration is at least partly under the control of chemokine receptor-5 (CCR-5) activation, because highly specific CCR-5 antagonist TAK-779 significantly reduced the migration rate of microglia. Activated microglia recruited in the vicinity of prion may, in turn, cause neuronal cell damage by inducing apoptosis. These findings provide insight into the understanding of the cell-cell communication that takes place during the development of prion diseases.
Collapse
Affiliation(s)
- Mathieu Marella
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097, Centre National de la Recherche Scientifique 660, 06560 Valbonne, France
| | | |
Collapse
|
98
|
Armstrong RA. Measuring the degree of spatial correlation between histological features in thin sections of brain tissue. Neuropathology 2004; 23:245-53. [PMID: 14719538 DOI: 10.1046/j.1440-1789.2003.00516.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histological features visible in thin sections of brain tissue, such as neuronal perikarya, blood vessels, or pathological lesions may exhibit a degree of spatial association or correlation. In neurodegenerative disorders such as AD, Pick's disease, and CJD, information on whether different types of pathological lesion are spatially correlated may be useful in elucidating disease pathogenesis. In the present article the statistical methods available for studying spatial association in histological sections are reviewed. These include tests of interspecific association between two or more histological features using chi2 contingency tables, measurement of 'complete' and 'absolute' association, and more complex methods that use grids of contiguous samples. In addition, the use of correlation matrices and stepwise multiple regression methods are described. The advantages and limitations of each method are reviewed and possible future developments discussed.
Collapse
|
99
|
Raivich G, Bohatschek M, Werner A, Jones LL, Galiano M, Kloss CUA, Zhu XZ, Pfeffer K, Liu ZQ. Lymphocyte infiltration in the injured brain: role of proinflammatory cytokines. J Neurosci Res 2003; 72:726-33. [PMID: 12774313 DOI: 10.1002/jnr.10621] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies using mouse axotomised facial motoneuron model show a strong and highly selective entry of CD3+ lymphocytes into the affected nucleus, with a maximum at Day 14, which coincides with the peak of neuronal cell death, microglial phagocytosis, and increased synthesis of interleukin-1 beta (IL1beta), tumour necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma). We explored the possible involvement of these cytokines during the main phase of lymphocyte recruitment into the axotomised facial motor nucleus 7-21 days after nerve cut using mice homozygously deficient for IL1 receptor type 1 (IL1R1-/-), TNF receptor type 1 (TNFR1-/-), type 2 (TNFR2-/-) and type 1 and 2 (TNFR1&2-/-), IFNgamma receptor type 1 (IFNgammaR1-/-), and the appropriate controls for the genetic background. Transgenic deletion of IL1R1 led to a 54% decrease and that of TNFR2 to a 44% reduction in the number of CD3+ T-cells in the axotomised facial motor nucleus, with a similar relative decrease at Day 7, 14, and 21. Deletion of TNFR1 or IFNgammaR1 had no significant effect. Deletion of both TNFR1 and 2 (TNFR1&2-/-) caused a somewhat stronger, 63% decrease than did TNFR2 deletion alone, but this could be due to an almost complete inhibition of neuronal cell death. No mutations seemed to inhibit aggregation of CD3+ T-cells around glial nodules consisting of Ca-ion binding adaptor protein-1 (IBA1)+ phagocytotic microglia and neuronal debris. Altogether, the current data show the importance of IL1R1 and TNFR2 as the key players during the main phase of lymphocyte recruitment to the damaged part of the central nervous system.
Collapse
Affiliation(s)
- Gennadij Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that involve misfolding of the prion protein. Recent studies have provided evidence that normal prion protein might have a physiological function in neuroprotective signaling, suggesting that loss of prion protein activity might contribute to the pathogenesis of prion disease. However, studies using knockout animals do not support the loss-of-function hypothesis and argue that prion neurodegeneration might be associated with a gain of a toxic activity by the misfolded prion protein. Thus, the mechanism of neurodegeneration in spongiform encephalopathies remains enigmatic.
Collapse
Affiliation(s)
- Claudio Hetz
- Serono Pharmaceutical Research Institute, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | | | | |
Collapse
|