51
|
Weisz J, Uversky VN. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Int J Mol Sci 2020; 21:ijms21165879. [PMID: 32824294 PMCID: PMC7461550 DOI: 10.3390/ijms21165879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Annexins and S100 proteins form two large families of Ca2+-binding proteins. They are quite different both structurally and functionally, with S100 proteins being small (10–12 kDa) acidic regulatory proteins from the EF-hand superfamily of Ca2+-binding proteins, and with annexins being at least three-fold larger (329 ± 12 versus 98 ± 7 residues) and using non-EF-hand-based mechanism for calcium binding. Members of both families have multiple biological roles, being able to bind to a large cohort of partners and possessing a multitude of functions. Furthermore, annexins and S100 proteins can interact with each other in either a Ca2+-dependent or Ca2+-independent manner, forming functional annexin-S100 complexes. Such functional polymorphism and binding indiscrimination are rather unexpected, since structural information is available for many annexins and S100 proteins, which therefore are considered as ordered proteins that should follow the classical “one protein–one structure–one function” model. On the other hand, the ability to be engaged in a wide range of interactions with multiple, often unrelated, binding partners and possess multiple functions represent characteristic features of intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs); i.e., functional proteins or protein regions lacking unique tertiary structures. The aim of this paper is to provide an overview of the functional roles of human annexins and S100 proteins, and to use the protein intrinsic disorder perspective to explain their exceptional multifunctionality and binding promiscuity.
Collapse
Affiliation(s)
- Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-5816 (ext. 123); Fax: +1-813-974-7357
| |
Collapse
|
52
|
Park BS, Lee HW, Lee YJ, Park S, Kim YW, Kim SE, Kim IH, Park JH, Park KM. Serum S100B represents a biomarker for cognitive impairment in patients with end-stage renal disease. Clin Neurol Neurosurg 2020; 195:105902. [DOI: 10.1016/j.clineuro.2020.105902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
|
53
|
Wu Z, Li Q, Xie S, Shan X, Cai Z. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110530. [DOI: 10.1016/j.msec.2019.110530] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022]
|
54
|
Prognostic Value of Glial Fibrillary Acidic Protein in Patients With Moderate and Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Crit Care Med 2020; 47:e522-e529. [PMID: 30889029 DOI: 10.1097/ccm.0000000000003728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Biomarkers have been suggested as potential prognostic predictors following a moderate or severe traumatic brain injury but their prognostic accuracy is still uncertain. The objective of this systematic review is to assess the ability of the glial fibrillary acidic protein to predict prognosis in patients with moderate or severe traumatic brain injury. DATA SOURCES MEDLINE, Embase, CENTRAL, and BIOSIS electronic databases and conference abstracts, bibliographies of selected studies, and narrative reviews were searched. STUDY SELECTION Pairs of reviewers identified eligible studies. Cohort studies including greater than or equal to four patients with moderate or severe traumatic brain injury and reporting glial fibrillary acidic protein levels according to the outcomes of interest, namely Glasgow Outcome Scale or Extended Glasgow Outcome Scale, and mortality, were eligible. DATA EXTRACTION Pairs of reviewers independently extracted data from the selected studies using a standardized case report form. Mean levels were log-transformed, and their differences were pooled with random effect models. Results are presented as geometric mean ratios. Methodologic quality, risk of bias, and applicability concerns of the included studies were assessed. DATA SYNTHESIS Seven-thousand seven-hundred sixty-five citations were retrieved of which 15 studies were included in the systematic review (n = 1,070), and nine were included in the meta-analysis (n = 701). We found significant associations between glial fibrillary acidic protein serum levels and Glasgow Outcome Scale score less than or equal to 3 or Extended Glasgow Outcome Scale score less than or equal to 4 (six studies: geometric mean ratio 4.98 [95% CI, 2.19-11.13]; I = 94%) and between mortality (seven studies: geometric mean ratio 8.13 [95% CI, 3.89-17.00]; I = 99%). CONCLUSIONS Serum glial fibrillary acidic protein levels were significantly higher in patients with an unfavorable prognosis. Glial fibrillary acidic protein has a potential for clinical bedside use in helping for prognostic assessment. Further research should focus on multimodal approaches including tissue biomarkers for prognostic evaluation in critically ill patients with traumatic brain injury.
Collapse
|
55
|
Aljaberi N, Tronconi E, Schulert G, Grom AA, Lovell DJ, Huggins JL, Henrickson M, Brunner HI. The use of S100 proteins testing in juvenile idiopathic arthritis and autoinflammatory diseases in a pediatric clinical setting: a retrospective analysis. Pediatr Rheumatol Online J 2020; 18:7. [PMID: 31948488 PMCID: PMC6966841 DOI: 10.1186/s12969-020-0398-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Serum phagocyte-derived alarmins S100A8/9 and S100A12 are considered useful for the assessment of inflammatory diseases. Our study evaluated the use of S100 proteins in a pediatric clinical setting for estimating disease activity and supporting diagnosis. METHODS Patients (n = 136) who had S100 proteins tested as part of clinical care were included in this study and relevant information obtained from the medical record: C-reactive protein (CRP), disease activity status (inactive: = 0 joint; active: > 0 active joint), systemic symptoms in systemic JIA (sJIA), and symptoms of flare of other autoinflammatory and fever syndromes. Patients were categorized as: sJIA, non-systemic JIA (nsJIA), other defined autoinflammatory syndromes (AID) and systemic undifferentiated recurring fever syndromes (SURFS). RESULTS Patients with sJIA (n = 21) had significantly higher levels of S100A8/9 and S100A12 compared to patients with nsJIA (n = 49), other AIDs (n = 8) or SURFS (n = 14) (all p < 0.0001). Compared to CRP [area under the receiver operating characteristics curve (AUC) = 0.7], S100 proteins were superior in differentiating sJIA from AID and SURFS [AUC = 0.9]. S100A8/9 and S100A12 levels were not associated with disease activity in nsJIA, AID or SURFS. S100A8/9 and S100A12 levels were significantly higher in active sJIA compared to inactive (p = 0.0002 and p = 0.0002 respectively). CONCLUSION Compared to other autoinflammatory and fever syndromes, sJIA patients have markedly higher levels of S100A8/9 and S100A12 proteins which may assist with diagnosis. S100 levels slightly outperformed CRP in distinguishing sJIA from other diagnoses and in sJIA disease activity. S100 proteins may aid in monitoring disease activity in sJIA patients.
Collapse
Affiliation(s)
- Najla Aljaberi
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| | - Elena Tronconi
- 0000 0004 1757 1758grid.6292.fPediatric Unit, Department of Medical and Surgical Sciences, University of Bologna Hospital of Bologna Sant’Orsola-Malpighi Polyclinic, Bologna, Emilia-Romagna Italy
| | - Grant Schulert
- 0000 0000 9025 8099grid.239573.9Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Alexei A. Grom
- 0000 0000 9025 8099grid.239573.9Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Daniel J. Lovell
- 0000 0000 9025 8099grid.239573.9Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Jennifer L. Huggins
- 0000 0000 9025 8099grid.239573.9Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Michael Henrickson
- 0000 0000 9025 8099grid.239573.9Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Hermine I. Brunner
- 0000 0000 9025 8099grid.239573.9Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| |
Collapse
|
56
|
Au AK, Bell MJ, Fink EL, Aneja RK, Kochanek PM, Clark RSB. Brain-Specific Serum Biomarkers Predict Neurological Morbidity in Diagnostically Diverse Pediatric Intensive Care Unit Patients. Neurocrit Care 2019; 28:26-34. [PMID: 28612133 DOI: 10.1007/s12028-017-0414-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Unexpected neurological morbidity in Pediatric Intensive Care Units (PICUs) remains high and is difficult to detect proactively. Brain-specific biomarkers represent a novel approach for early detection of neurological injury. We sought to determine whether serum concentrations of neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, specific for neurons, oligodendrocytes, and glia, respectively, were predictive of neurological morbidity in critically ill children. METHODS Serum was prospectively collected on days 1-7 from diagnostically diverse PICU patients (n = 103). Unfavorable neurological outcome at hospital discharge was defined as Pediatric Cerebral Performance Category (PCPC) score of 3-6 with a deterioration from baseline. NSE, MBP, and S100B concentrations were measured by enzyme-linked immunosorbent assay. RESULTS Peak biomarker levels were greater in patients with unfavorable versus favorable neurological outcome [NSE 39.4 ± 44.1 vs. 12.2 ± 22.9 ng/ml (P = 0.005), MBP 9.1 ± 11.5 vs. 0.6 ± 1.3 ng/ml (P = 0.003), S100B 130 ± 232 vs. 34 ± 70 pg/ml (P = 0.04), respectively; mean ± SD]. Peak levels were each independently associated with unfavorable neurological outcome when controlling for presence of primary neurologic admission diagnosis and poor baseline PCPC using logistic regression analysis (NSE, P = 0.04; MBP, P = 0.004; S100B, P = 0.04), and had the following receiver operating characteristics: NSE 0.75 (0.58, 0.92), MBP 0.81 (0.66, 0.94), and S100B 0.80 (0.67, 0.93) (area under the curve [95% confidence intervals]). CONCLUSIONS Prospectively collected brain-specific serum biomarkers predict unfavorable neurological outcome in critically ill children. Serum biomarkers used in conjunction with clinical data could be used to generate models predicting early detection of neurological injury, allowing for more timely diagnostic and therapeutic interventions, potentially reducing neurological morbidity in the PICU.
Collapse
Affiliation(s)
- Alicia K Au
- Departments of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, 4401 Penn Avenue, Faculty Pavilion, Suite 2000, Pittsburgh, PA, 15224, USA. .,Departments of Pediatrics, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Michael J Bell
- Departments of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, 4401 Penn Avenue, Faculty Pavilion, Suite 2000, Pittsburgh, PA, 15224, USA.,Departments of Pediatrics, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Departments of Neurological Surgery, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ericka L Fink
- Departments of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, 4401 Penn Avenue, Faculty Pavilion, Suite 2000, Pittsburgh, PA, 15224, USA.,Departments of Pediatrics, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rajesh K Aneja
- Departments of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, 4401 Penn Avenue, Faculty Pavilion, Suite 2000, Pittsburgh, PA, 15224, USA.,Departments of Pediatrics, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Departments of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, 4401 Penn Avenue, Faculty Pavilion, Suite 2000, Pittsburgh, PA, 15224, USA.,Departments of Pediatrics, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert S B Clark
- Departments of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, 4401 Penn Avenue, Faculty Pavilion, Suite 2000, Pittsburgh, PA, 15224, USA.,Departments of Pediatrics, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
57
|
Koutlas IG, Dolan M, Lingen MW, Argyris PP. Plasmacytoid cells in salivary pleomorphic adenoma: an alternative interpretation of their immunohistochemical characteristics highlights function and capability for epithelial-mesenchymal transition. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:515-529. [PMID: 31400990 DOI: 10.1016/j.oooo.2019.01.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Plasmacytoid cells (PLCs) in salivary pleomorphic adenoma (SPA) are regarded as modified neoplastic myoepithelia and define plasmacytoid myoepithelioma (pMYO). However, histochemically, immunohistochemically and ultrastructurally, PLCs fail to demonstrate frank myogenous properties. Epithelial-mesenchymal transition (EMT) may explain the phenotypes in SPA. Our aim was to evaluate (1) PLCs with accepted or purported myoepithelial and EMT-related markers; and (2) pMYOs for PLAG1 aberrations by using fluorescence in situ hybridization. STUDY DESIGN Eight SPAs with or without PLC-predominance and 3 pMYOs were immunohistochemically studied. RESULTS PLCs in SPA and pMYO exhibited strong, scattered to diffuse positivity for K7, rare K14 positivity and were mostly negative for α-smooth muscle actin, h-caldesmon, and p63/p40. S100 staining was strong and diffuse, whereas calponin was variable. DOG1 was negative. PLCs in pMYO and PLC-rich SPA exhibited selective or diffuse WT1 and D2-40 immunoreactivity. EMT markers SNAIL/SLUG exhibited strong and variable immunoreactivity in PLCs in contrast to weak or absent E-cadherin expression. SOX10 was diffusely and strongly positive. PLAG1 rearrangement was present in 1 pMYO. CONCLUSIONS PLCs mostly fail to express myoepithelial markers; PLCs are neoplastic cells adapting to microenvironmental changes and capable of EMT; and tumors composed solely of PLCs are apparently SPAs depleted of a ductal component.
Collapse
Affiliation(s)
- Ioannis G Koutlas
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Michelle Dolan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA; Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
58
|
Oris C, Chabanne R, Durif J, Kahouadji S, Brailova M, Sapin V, Bouvier D. Measurement of S100B protein: evaluation of a new prototype on a bioMérieux Vidas® 3 analyzer. ACTA ACUST UNITED AC 2019; 57:1177-1184. [DOI: 10.1515/cclm-2018-1217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023]
Abstract
Abstract
Background
The addition of S100B protein to guidelines for the management of mild traumatic brain injury (mTBI) decreases the amount of unnecessary computed tomography (CT) scans with a significant decrease in radiation exposure and an increase in cost savings. Both DiaSorin and Roche Diagnostics have developed automated assays for S100B determination. Recently, bioMérieux developed a prototype immunoassay for serum S100B determination. For the first time, we present the evaluation of the S100B measurement using a bioMérieux Vidas® 3 analyzer.
Methods
We evaluated the matrix effects of serum and plasma, and their stability after storage at 2–8 °C, −20 °C and −80 °C. The new measurement prototype (bioMérieux) was compared with an established one (Roche Diagnostics), and a precision study was also conducted. Lastly, clinical diagnostics performance of the bioMérieux and Roche Diagnostics methods were compared for 80 patients referred to the Emergency Department for mTBI.
Results
Stability after storage at 2–8 °C, −20 °C, and −80 °C and validation of the serum matrix were demonstrated. The bioMérieux analyzer was compared to the Roche Diagnostics system, and the analytical precision was found to be efficient. Clinical diagnosis performance evaluation confirmed the predictive negative value of S100B in the management of mTBI.
Conclusions
The study’s data are useful for interpreting serum S100B results on a bioMérieux Vidas® 3 analyzer.
Collapse
|
59
|
Abstract
Malignant melanoma is a cancer with increasing incidence worldwide with relevant socioeconomic impact. Despite progress in prevention and early detection, it is one of the most lethal forms of skin cancer. Therefore it is urgent need to identify suitable biomarkers in order to improve early diagnosis, precise staging, and prognosis, as well as for therapy selection and monitoring. In this book chapter, we are focusing on S100B and discuss its clinical relevance in melanoma.
Collapse
Affiliation(s)
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
60
|
Bouvier D, Balayssac D, Durif J, Mourgues C, Sarret C, Pereira B, Sapin V. Assessment of the advantage of the serum S100B protein biomonitoring in the management of paediatric mild traumatic brain injury-PROS100B: protocol of a multicentre unblinded stepped wedge cluster randomised trial. BMJ Open 2019; 9:e027365. [PMID: 31129587 PMCID: PMC6537998 DOI: 10.1136/bmjopen-2018-027365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION S100B serum analysis in clinical routine could reduce the number of cranial CT (CCT) scans performed on children with mild traumatic brain injury (mTBI). Sampling should take place within 3 hours of trauma and cut-off levels should be based on paediatric reference ranges. The aim of this study is to evaluate the utility of measuring serum S100B in the management of paediatric mTBI by demonstrating a decrease in the number of CCT scans prescribed in an S100B biomonitoring group compared with a 'conventional management' control group, with the assumption of a 30% relative decrease of the number of CCT scans between the two groups. METHODS AND ANALYSIS The protocol is a randomised, multicentre, unblinded, prospective, interventional study (nine centres) using a stepped wedge cluster design, comparing two groups (S100B biomonitoring and control). Children in the control group will have CCT scans or be hospitalised according to the current recommendations of the French Society of Paediatrics (SFP). In the S100B biomonitoring group, blood sampling to determine serum S100B protein levels will take place within 3 hours after mTBI and subsequent management will depend on the assay. If S100B is in the normal range according to age, the children will be discharged from the emergency department after 6 hours' observation. If the result is abnormal, CCT scans or hospitalisation will be prescribed in accordance with current SFP recommendations. The primary outcome measure will be the proportion of CCT scans performed (absence/presence of CCT scan for each patient) in the 48 hours following mTBI. ETHICS AND DISSEMINATION The protocol presented (Version 5, 03 November 2017) has been approved by the ethics committee Comité de Protection des Personnes sud-est 6 (first approval 08 June 2016, IRB: 00008526). Participation in the study is voluntary and anonymous. The study findings will be disseminated in international peer-reviewed journals and presented at relevant conferences. TRIAL REGISTRATION NUMBER NCT02819778.
Collapse
Affiliation(s)
- Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - David Balayssac
- DRCI, CHU Clermont-Ferrand, Université Clermont-Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Catherine Sarret
- Pediatric Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
61
|
Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget 2019; 10:2996-3012. [PMID: 31105881 PMCID: PMC6508202 DOI: 10.18632/oncotarget.26861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 12/17/2022] Open
Abstract
S100A14 is one of the new members of the multi-functional S100 protein family. Expression of S100A14 is highly heterogeneous among normal human tissues, suggesting that the regulation of S100A14 expression and its function may be tissue- and context-specific. Compared to the normal counterparts, S100A14 mRNA and protein levels have been found to be deregulated in several cancer types, indicating a functional link between S100A14 and malignancies. Accordingly, S100A14 is functionally linked with a number of key signaling molecules such as p53, p21, MMP1, MMP9, MMP13, RAGE, NF-kB, JunB, actin and HER2. Of interest, S100A14 seems to have seemingly opposite functions in malignancies arising from the gastrointestional tract (tissues rich in epithelial components) compared to cancers in the other parts of the body (tissues rich in mesenchymal components). The underlying mechanism for these observations are currently unclear and may be related to the relative abundance and differences in the type of interaction partners (effector protein) in different cancer types and tissues. In addition, several studies indicate that the expression pattern of S100A14 has a potential to be clinically useful as prognostic biomarker in several cancer types. This review attempts to provide a comprehensive summary on the expression pattern and functional roles/related molecular pathways in different cancer types. Additionally, the prognostic potential of S100A14 in the management of human malignancies will be discussed.
Collapse
Affiliation(s)
- Suyog Basnet
- Department of BioSciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sunita Sharma
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Chen L, Hu X, Wu H, Jia Y, Liu J, Mu X, Wu H, Zhao Y. Over-expression of S100B protein as a serum marker of brain metastasis in non-small cell lung cancer and its prognostic value. Pathol Res Pract 2019; 215:427-432. [DOI: 10.1016/j.prp.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 11/26/2022]
|
63
|
Reviewing the Crystal Structure of S100Z and Other Members of the S100 Family: Implications in Calcium-Regulated Quaternary Structure. Methods Mol Biol 2019; 1929:487-499. [PMID: 30710292 DOI: 10.1007/978-1-4939-9030-6_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper takes the cue from the previously solved crystal structure of human apo-S100Z and compares it with that of the calcium-bound S100Z from zebrafish in order to stress, for this particular S100, the significant role of the presence of calcium in promoting supramolecular assemblies with likely biological meaning. This consideration is then expanded through a wider review on analogous situations concerning all other S100s for which there is crystallographic o biochemical evidence of how the presence of calcium promotes the formation of quaternary complexes.The paper also deals with some considerations on the quality of the crystals obtained for the solved members of this family and on the need for experimental phasing for solving some of the structures where the good general sequence homology among the members of the family would have suggested molecular replacement (MR) as the easiest way to solve them.These considerations, along with the PCA analysis carried out on all the known S100s, further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation for several members of this family of proteins.
Collapse
|
64
|
Singla A, Leineweber B, Monteith S, Oskouian RJ, Tubbs RS. The anatomy of concussion and chronic traumatic encephalopathy: A comprehensive review. Clin Anat 2018; 32:310-318. [DOI: 10.1002/ca.23313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Singla
- Swedish Neuroscience Institute; Seattle Washington
| | | | | | | | - R. Shane Tubbs
- Seattle Science Foundation; Seattle Washington
- Department of Anatomical Sciences; St. Georges University; St. Georges Grenada
| |
Collapse
|
65
|
The associations between serum vascular endothelial growth factor, tumor necrosis factor and interleukin 4 with the markers of blood-brain barrier breakdown in patients with paraneoplastic neurological syndromes. J Neural Transm (Vienna) 2018; 126:149-158. [PMID: 30374596 PMCID: PMC6373237 DOI: 10.1007/s00702-018-1950-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
The blood–brain barrier (BBB) disruption is a critical step in paraneoplastic neurological syndrome (PNS) development. Several cytokines have been implicated in BBB breakdown. However, the exact step-by-step mechanism in which PNS develops is unknown, and the relationship between a systemic neoplasm and BBB is multilevel. The aim of the present study was to examine serum markers of BBB breakdown (S100B protein, neuron-specific enolase, NSE) and concentrations of proinflammatory (TNF-alpha, VEGF) and anti-inflammatory/immunosuppressive cytokines (IL-4), and to establish their interrelationship in patients with PNS. We analyzed 84 patients seropositive for onconeural antibodies that originated from a cohort of 250 cases with suspected PNS. Onconeural antibodies were estimated with indirect immunofluorescence and confirmed with Western blotting. Serum S-100B was estimated using electrochemiluminescence immunoassay. NSE, VEGF, TNF-alpha and IL-4 were analyzed with ELISA. We found that S-100B protein and NSE serum concentrations were elevated in PNS patients without diagnosed malignancy, and S-100B additionally in patients with peripheral nervous system manifestation of PNS. Serum VEGF levels showed several abnormalities, including a decrease in anti-Hu positive patients and increase in PNS patients with typical manifestation and/or central nervous system involvement. Increase in TNF-alpha was observed in patients with undetermined antibodies. To conclude, the presence of paraneoplastic neurological syndrome in seropositive patients does not affect serum markers of BBB breakdown, with the exception of the group without clinically demonstrated malignancy and patients with peripheral manifestation of PNS. S-100B and NSE might increase during early phase of PNS. VEGF may be involved in typical PNS pathophysiology.
Collapse
|
66
|
Allouchery G, Moustafa F, Roubin J, Pereira B, Schmidt J, Raconnat J, Pic D, Sapin V, Bouvier D. Clinical validation of S100B in the management of a mild traumatic brain injury: issues from an interventional cohort of 1449 adult patients. ACTA ACUST UNITED AC 2018; 56:1897-1904. [DOI: 10.1515/cclm-2018-0471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Background:
This study’s primary objective was to validate the routine use of S100B via a prospective study. The aim was a reduction of cranial computed tomography (CCT) scans by 30%. The secondary goal was to investigate the influence of age and associated risk factors on the reduction of CCT.
Methods:
S100B (sampling within 3 h postinjury) was used for patients with mild traumatic brain injury (mTBIs) presenting a medium risk of complications and requiring a CCT scan. Patients with negative S100B (S100B−) were discharged without a CCT scan.
Results:
Of the 1449 patients included in this study, 468 (32.3%) had S100B− with a sensitivity of 96.4% (95% CI: 87.5%–99.6%), a specificity of 33.4% (95% CI: 31%–36%) and a negative predictive value of 99.6% (95% CI: 98.5%–99.9%). No significant difference in serum levels or the S100B+ rate was observed if patients had retrograde amnesia (0.16 μg/L; 63.8%), loss of consciousness (0.13; 63.6%) or antiplatelet therapy (0.20; 77.9%). Significant differences were found between the S100B concentrations and S100B positivity rates in patients >65 years old and all the groups with patients <55 years old (18–25, 26–35, 36–45 and 46–55). From 18 to 65 years old (n=874), the specificity is 39.3% (95% CI: 36%–42.6%) compared to 18.7% (95% CI: 15.3%–22.3%) for patients >65 years old (n=504).
Conclusions:
The clinical use of S100B in mTBI management reduces the use of CCTs by approximately one-third; furthermore, the percentage of CCTs reduction is influenced by the age of the patient.
Collapse
|
67
|
Rogatzki MJ, Keuler SA, Harris AE, Ringgenberg SW, Breckenridge RE, White JL, Baker JS. Response of protein S100B to playing American football, lifting weights, and treadmill running. Scand J Med Sci Sports 2018; 28:2505-2514. [DOI: 10.1111/sms.13297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Matthew J. Rogatzki
- Department of Health and Exercise Science; Appalachian State University; Boone North Carolina
| | - Sydney A. Keuler
- Department of Health and Human Performance; University of Wisconsin-Platteville; Platteville Wisconsin
| | - Abigail E. Harris
- Department of Health and Human Performance; University of Wisconsin-Platteville; Platteville Wisconsin
- Palmer College of Chiropractic; Port Orange Florida
| | - Scott W. Ringgenberg
- Department of Health and Human Performance; University of Wisconsin-Platteville; Platteville Wisconsin
| | | | | | - Julien S. Baker
- Institute of Clinical Exercise and Health Sciences, School of Science and Sport; University of the West of Scotland; Hamilton UK
| |
Collapse
|
68
|
Houtman M, Ekholm L, Hesselberg E, Chemin K, Malmström V, Reed AM, Lundberg IE, Padyukov L. T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients. Arthritis Res Ther 2018; 20:188. [PMID: 30157932 PMCID: PMC6116372 DOI: 10.1186/s13075-018-1688-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Polymyositis (PM) and dermatomyositis (DM) are two distinct subgroups of idiopathic inflammatory myopathies, a chronic inflammatory disorder clinically characterized by muscle weakness and inflammatory cell infiltrates in muscle tissue. In PM, a major component of inflammatory cell infiltrates is CD8+ T cells, whereas in DM, CD4+ T cells, plasmacytoid dendritic cells, and B cells predominate. In this study, with the aim to differentiate involvement of CD4+ and CD8+ T-cell subpopulations in myositis subgroups, we investigated transcriptomic profiles of T cells from peripheral blood of patients with myositis. METHODS Total RNA was extracted from CD4+ T cells (PM = 8 and DM = 7) and CD8+ T cells (PM = 4 and DM = 5) that were isolated from peripheral blood mononuclear cells via positive selection using microbeads. Sequencing libraries were generated using the Illumina TruSeq Stranded Total RNA Kit and sequenced on an Illumina HiSeq 2500 platform, yielding about 50 million paired-end reads per sample. Differential gene expression analyses were conducted using DESeq2. RESULTS In CD4+ T cells, only two genes, ANKRD55 and S100B, were expressed significantly higher in patients with PM than in patients with DM (false discovery rate [FDR] < 0.05, model adjusted for age, sex, HLA-DRB1*03 status, and RNA integrity number [RIN]). On the contrary, in CD8+ T cells, 176 genes were differentially expressed in patients with PM compared with patients with DM. Of these, 44 genes were expressed significantly higher in CD8+ T cells from patients with PM, and 132 genes were expressed significantly higher in CD8+ T cells from patients with DM (FDR < 0.05, model adjusted for age, sex, and RIN). Gene Ontology analysis showed that genes differentially expressed in CD8+ T cells are involved in lymphocyte migration and regulation of T-cell differentiation. CONCLUSIONS Our data strongly suggest that CD8+ T cells represent a major divergence between PM and DM patients compared with CD4+ T cells. These alterations in the gene expression in T cells from PM and DM patients might advocate for distinct immune mechanisms in these subphenotypes of myositis.
Collapse
Affiliation(s)
- Miranda Houtman
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Louise Ekholm
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Hesselberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ann M Reed
- Department of Pediatrics, Duke Children's Hospital, Duke University Medical Center, Durham, USA
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
69
|
Oris C, Pereira B, Durif J, Simon-Pimmel J, Castellani C, Manzano S, Sapin V, Bouvier D. The Biomarker S100B and Mild Traumatic Brain Injury: A Meta-analysis. Pediatrics 2018; 141:peds.2018-0037. [PMID: 29716980 DOI: 10.1542/peds.2018-0037] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 11/24/2022] Open
Abstract
CONTEXT The usefulness of S100B has been noted as a biomarker in the management of mild traumatic brain injury (mTBI) in adults. However, S100B efficacy as a biomarker in children has previously been relatively unclear. OBJECTIVE A meta-analysis is conducted to assess the prognostic value of S100B in predicting intracerebral lesions in children after mTBI. DATA SOURCES Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, Scopus, and Google Scholar. STUDY SELECTION Studies including children suffering mTBI who underwent S100B measurement and computed tomography (CT) scans were included. DATA EXTRACTION Of 1030 articles screened, 8 studies met the inclusion criteria. RESULTS The overall pooled sensitivity and specificity were 100% (95% confidence interval [CI]: 98%-100%) and 34% (95% CI: 30%-38%), respectively. A second analysis was based on the collection of 373 individual data points from 4 studies. Sensitivity and specificity results, obtained from reference ranges in children with a sampling time <3 hours posttrauma, were 97% (95% CI: 84.2%-99.9%) and 37.5% (95% CI: 28.8%-46.8%), respectively. Only 1 child had a low S100B level and a positive CT scan result without clinically important traumatic brain injury. LIMITATIONS Only patients undergoing both a CT scan and S100B testing were selected for evaluation. CONCLUSIONS S100B serum analysis as a part of the clinical routine could significantly reduce the number of CT scans performed on children with mTBI. Sampling should take place within 3 hours of trauma. Cutoff levels should be based on pediatric reference ranges.
Collapse
Affiliation(s)
| | - Bruno Pereira
- Biostatistics Unit, Direction de la Recherche Clinique, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Julie Durif
- Department of Biochemistry and Molecular Biology, and
| | - Jeanne Simon-Pimmel
- Department of Pediatric Emergency Medicine, University Hospital, Nantes, France
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Sergio Manzano
- Department of Pediatric Emergency Medicine, University Hospital, Geneva, Switzerland; and
| | - Vincent Sapin
- Department of Biochemistry and Molecular Biology, and.,GReD, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Clermont-Ferrand, France
| | - Damien Bouvier
- Department of Biochemistry and Molecular Biology, and .,GReD, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Clermont-Ferrand, France
| |
Collapse
|
70
|
Li F, Niu B, Zhu M. Ablation of NTPDase2+ cells inhibits the formation of filiform papillae in tongue tip. Animal Model Exp Med 2018; 1:143-151. [PMID: 30891559 PMCID: PMC6388074 DOI: 10.1002/ame2.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lingual epithelia in the tongue tip are among the most rapidly regenerating tissues, but the mechanism of cell genesis in this tissue is still unknown. Previous study has suggested the existence of multiple stem cell pools in lingual epithelia and papillae. Like K14+ and Sox2+ cells, NTPDase2+ cells have characteristics of stem cells. METHODS We employed a system using doxycycline to conditionally ablate NTPDase2+ cells in lingual epithelia and papillae by regulated expression of the diphtheria toxin A (DTA) gene. Transgenic lines, which expressed the rtTA gene in NTPDase2+ cells, were produced by pronuclear injection of zygotes from C57BL/6 mice using the BAC clone RP23-47P18. The NTPDase2-rtTA transgenic mice were crossed with the TetO-DTA transgenic animals. The double transgenic mice were treated with doxycycline. Doxycycline (Dox) was diluted in 5% sucrose in water to a final concentration of 0.3-0.5 mg/mL and supplied as drinking water. RESULTS After 15 days of Dox induction, the expression of NTPDase2, Sox2 and K14 was ablated from lingual epithelia. DTA expression in NTPDase2+ cells did not inhibit the turnover of GNAT3+ or PLCβ2+ cells in taste buds, nor the expression of S100β beneath lingual epithelia and papillae. After 35 days ablation of NTPDase2+ cells, the basic structure of lingual epithelia and papillae remained intact. However, the ratio of cell to total tissue area was decreased in lingual epithelia and circumvallate (CV) papillae. DTA expression also inhibited the regeneration of filiform papillae on the dorsal surface of the tongue tip. CONCLUSIONS These studies provide important insights into the understanding of dynamic equilibrium among the multiple stem cell populations present in the lingual epithelia and papillae.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Bo‐Wen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Meng‐Min Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| |
Collapse
|
71
|
Zhao Y, Lin Z, Chen L, Ouyang L, Gu L, Chen F, Zhang Q. Hippocampal astrocyte atrophy in a mouse depression model induced by corticosterone is reversed by fluoxetine instead of benzodiazepine diazepam. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:99-109. [PMID: 29369777 DOI: 10.1016/j.pnpbp.2018.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Astrocytes have become promising new agents against major depressive disorders (MDD) primarily due to the crucial role they play in the pathogenesis of such disorders. However, a simple and reliable animal model that can be used to screen for astrocyte-targeting antidepressants has not yet been developed. In this study, we utilized a repeated corticosterone (CORT) injection paradigm to develop a mouse depression model wherein we examined the occurrence of alterations in hippocampal astrocyte population by using two astrocytic markers, namely, glial fibrillary acidic protein (GFAP) and S100β. Moreover, we determined the effects of fluoxetine and diazepam on CORT-induced astrocytic alterations to assess the predictive validity. Results showed that repeated CORT injections showed no effects on the number of GFAP+ and S100β+ astrocytes, but they decreased the protrusion length of GFAP+ astrocytes and GFAP protein expression in the hippocampus. Furthermore, repeated CORT injections produced a sustained increase of S100β protein levels in the entire hippocampus of male mice. CORT-induced hippocampal astrocyte disruption was antagonized by chronic fluoxetine treatment. By contrast, the anxiolytic drug diazepam was ineffective in the same experimental setting. All these findings suggest that the repeated CORT injection paradigm produces the astrocytic alterations similar to those in MDD and can serve as a useful mouse model to screen antidepressants meant to target astrocytes. These observations can also help in further discussing the underlying mechanisms of CORT-induced astrocytic alterations.
Collapse
Affiliation(s)
- Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Lin Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Liufeng Ouyang
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an 716000, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Feiyan Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
72
|
Stigbrand T, Nyberg L, Ullén A, Haglid K, Sandström E, Brundell J. A New Specific Method for Measuring S-100B in Serum. Int J Biol Markers 2018; 15:33-40. [PMID: 10763138 DOI: 10.1177/172460080001500106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The S-100 family of proteins are acidic calcium and zinc binding low molecular weight proteins mainly present in astrocytes and in a population of oligodendrocytes of the CNS. S100b, an acidic low weight and zinc binding protein, has attracted considerable interest due to its release into the cerebrospinal fluid and blood from brain tissue following brain damage and from malignant melanomas. A new simple two-step incubation assay has now been elaborated in which two catcher and one tracer monoclonal antibodies are used. The specificity of this assay is high because all the MAbs used bind exclusively to S-100B, as shown by real-time biospecific interaction analyses. Moreover, the working range of the assay is 0.2–60 μg/L with a CV of less than 10%; the resulting high sensitivity has been confirmed by clinical studies. Time dependence, shaking conditions, lower limit of detection limits, effects of dilution, hook effect, recovery, impression as intra- and interassay variations, and crossreactivities with S-100A1 were tested in order to obtain a highly reproducible assay. Sera from healthy blood donors and patients undergoing cardiopulmonary bypass operations were tested with the assay. Several of the patients undergoing open heart surgery presented measurable values in this IRMA S-100 assay, indicating cerebral effects of open heart surgery. The test may be used for postoperative monitoring of these patients.
Collapse
Affiliation(s)
- T Stigbrand
- Department of Immunology, University of Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
73
|
Le THT, Oki A, Goto M, Shimizu K. Protein O-mannosyltransferases are required for sterigmatocystin production and developmental processes in Aspergillus nidulans. Curr Genet 2018; 64:1043-1056. [DOI: 10.1007/s00294-018-0816-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
|
74
|
Škrlj B, Kunej T, Konc J. Insights from Ion Binding Site Network Analysis into Evolution and Functions of Proteins. Mol Inform 2018; 37:e1700144. [PMID: 29418080 DOI: 10.1002/minf.201700144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023]
Abstract
Many biological phenomena can be represented as complex networks. Using a protein binding site comparison approach, we generated a network of ion binding sites on the scale of all known protein structures from the Protein Data Bank. We found that this ion binding site similarity network is scale-free, indicating a network in which a few ion binding site scaffolds are the network hubs, and these are connected to hundreds of nodes, whereas the vast majority of nodes have only a few neighbors. Enrichment and statistical analysis of the network components and communities yielded insights into underlying processes from the functional and the structural perspective. Largest components and communities were observed to be closely related to basic metabolic processes and some of the most common structural folds, which, from the evolutionary point of view, indicates that they may be the oldest ones. Further, we derived the first comprehensive map of ion interchangeability, based on binding site similarity. Several highly interchangeable protein-ion binding site pairs emerged (e.g., Ca2+ and Mg2+ ), as well as structurally distinct ones. The constructed network of ion binding site similarities will aid in understanding the general principles of protein-ion binding sites structure, function and evolution. We demonstrate potential uses of the network on proteins involved in cancer development and immune response, where individual ions play prominent roles in disease development.
Collapse
Affiliation(s)
- Blaž Škrlj
- Department of molecular modeling, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Janez Konc
- Department of molecular modeling, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| |
Collapse
|
75
|
Smit LHM, Korse CM, Bonfrer JMG. Comparison of Four Different Assays for Determination of Serum S-100B. Int J Biol Markers 2018; 20:34-42. [PMID: 15832771 DOI: 10.1177/172460080502000106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background S-100B determination has been shown to be clinically useful in the management of melanoma patients. After the development of a test for determination of the isoforms S100-A1B and S100-BB in serum (S-100B), several sensitive assays for the detection of serum S-100B have become available. We compared four S-100B assays, two automated (LIAISON®Sangtec®100 and Elecsys®S100) and two manual ones (Sangtec®100 ELISA and CanAg S100 EIA), with respect to clinical data, reference values and correlation. Methods In a total of 280 samples from 155 melanoma patients and 98 healthy individuals S-100B values were measured simultaneously with the different assays. Results The inter and intra coefficients of variation were best for the automated assays. The functional sensitivity of both manual assays was 0.15 μg/L. Method comparison revealed satisfactory correlation coefficients of 0.9 or higher, but the slopes ranged from 0.29 to 3.36. Except for the Sangtec®100 ELISA, the linearity between the assays was acceptable. The overall sensitivity for melanoma ranged from 37% (Elecsys®S100) to 47% (LIAISON®Sangtec®100) and the sensitivity increased with stage. ROC curves showed the best accuracy for the LIAISON®Sangtec®100 assay. Conclusions All assays gave satisfactory results, but it is advisable to improve the performance of the manual assays for better sensitivity. Agreement about an international reference standard is needed.
Collapse
Affiliation(s)
- L H M Smit
- Department of Surgical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
76
|
S100B Levels in Patients with Type 2 Diabetes Mellitus and Co-Occurring Depressive Symptoms. DEPRESSION RESEARCH AND TREATMENT 2018; 2018:5304759. [PMID: 30581620 PMCID: PMC6276443 DOI: 10.1155/2018/5304759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
Abstract
Depression is a comorbid condition in patients with Type 2 Diabetes mellitus (T2DM). S100B, a glia derived protein, is linked to depression and has been suggested as a biomarker for depression outcomes in several populations. However, to date there is no data about S100B levels and depression in patients with T2DM. Objective. We hypothesized that S100B serum levels are increased in patients with T2DM and recently diagnosed, drug-free depressive symptoms, and could be used for the diagnosis of depression in T2DM. Methods. Overall 52 patients (62 ± 12 years, female 66, 7%) with no history of depression deriving from the Diabetes out-patient clinic of our University Hospital underwent a one-to-one interview with a psychiatrist and filled a self-assessment (Zung) questionnaire. Serum S00B levels were compared between 30 (63±12 years, female 66, 7%) diabetic patients without depressive symptoms vs 22 patients (62 ±12 years, female 68, 2%) with T2DM and depressive symptoms. Results. There was no difference in serum levels of S100B between patients with T2DM without depressive symptoms vs diabetic patients suffering from depressive symptoms (2.1 (1.9-10.9) pg/ml vs 2.4 (1.9-14.8) pg/ml, p=0. 637+). Moreover, linear regression analysis did not show any association between lnS100B levels and depressive symptoms (β = 0.084, 95% CI 0.470-0.871, and p=0.552), Zung self-assessment score (β = 0.048, 95% CI -0.024-0.033, and p=0.738), and other patients' characteristics. Conclusions. In patients with T2DM there is no correlation between S100B serum levels and newly detected mild depressive symptoms. The brain biochemistry pathways of depression in T2DM warrant further investigation in a larger scale population.
Collapse
|
77
|
Nazari A, Khorramdelazad H, Hassanshahi G, Day AS, Sardoo AM, Fard ET, Abedinzadeh M, Nadimi AE. S100A12 in renal and cardiovascular diseases. Life Sci 2017; 191:253-258. [PMID: 29080693 DOI: 10.1016/j.lfs.2017.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
Expression of S100A12, a small calcium-binding protein, by neutrophils and monocytes/macrophages induces proinflammatory responses via ligation with the receptor for advanced glycation end-products (RAGE) and subsequent activation of intracellular signal transduction pathways such as the nuclear factor (NF)-κB pathway. Although S100A12 has been demonstrated to be a useful biomarker during inflammatory conditions, its precise role in the pathogenesis of renal and cardiovascular diseases has not been fully understood. Recently, several studies have employed S100A12 transgenic mice to investigate its pathological effects. Further studies using these models are required before we can translate these findings to human diseases such as renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Alireza Nazari
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Andrew S Day
- Department of Pediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - Atlas Mashayekhi Sardoo
- School of Engineering and Design and Physical Sciences, Brunel University London, London, United Kingdom
| | | | - Mehdi Abedinzadeh
- Department of Urology, Shahid Rahnemoon Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Esmaeili Nadimi
- Non Communicable Diseases Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran; Department of Cardiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
78
|
Paiola M, Knigge T, Picchietti S, Duflot A, Guerra L, Pinto PIS, Scapigliati G, Monsinjon T. Oestrogen receptor distribution related to functional thymus anatomy of the European sea bass, Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:106-120. [PMID: 28756001 DOI: 10.1016/j.dci.2017.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
In jawed vertebrates, the crosstalk between immune and endocrine system as well as many fundamental mechanisms of T cell development are evolutionary conserved. Oestrogens affect mammalian thymic function and plasticity, but the mechanisms of action and the oestrogen receptors involved remain unclear. To corroborate the oestrogenic regulation of thymic function in teleosts and to identify the implicated oestrogen receptor subtypes, we examined the distribution of nuclear and membrane oestrogen receptors within the thymus of the European Sea bass, Dicentrarchus labrax, in relation to its morpho-functional organisation. Immunohistological analysis specified thymus histology and organisation in teleosts and described, for the first time, Hassall's corpuscle like structures in the medulla of sea bass. All oestrogen receptors were expressed at the transcript and protein level, both in T cells and in stromal cells belonging to specific functional areas. These observations suggest complex regulatory actions of oestrogen on thymic function, notably through the stromal microenvironment, comprising both, genomic and non-genomic pathways that are likely to affect T cell maturation and trafficking processes. Comparison with birds, rodents and humans supports the thymic localization of oestrogen receptors and suggests that oestrogens modulate T cell maturation in all gnathostomes.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Laura Guerra
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France.
| |
Collapse
|
79
|
Kojima D, Nakamura T, Banno M, Umemoto Y, Kinoshita T, Ishida Y, Tajima F. Head-out immersion in hot water increases serum BDNF in healthy males. Int J Hyperthermia 2017; 34:834-839. [PMID: 29157042 DOI: 10.1080/02656736.2017.1394502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is an important neurotrophin. The present study investigated the effects of head-out water immersion (HOI) on serum BDNF concentrations. METHODS Eight healthy men performed 20 min head-out water immersion at 42 °C (hot-HOI) and 35 °C (neutral-HOI). These experimental trials were administered in a randomised order separated by at least 7 days. Venous blood samples were withdrawn at rest, immediately after the 20-min HOI, as well as at 15 and 30 min after the end of the HOI. Serum BDNF and S100β, plasma cortisol, platelet and monocyte counts, and core body temperature (Tcb) were measured. RESULTS Tcb was higher at the end of the hot-HOI and 15 min after hot-HOI (p < 0.01), but recovered to pre-HOI level at 30 min after hot-HOI. No change in Tcb was recorded during neutral-HOI. BDNF level was higher (p < 0.05) at the end of the hot-HOI and at 15 min after the end of hot-HOI, and returned to the baseline at 30 min after hot-HOI. S100β, platelet count and monocyte count remained stable throughout the study. Cortisol level was lower at the end of the hot-HOI and returned to pre-HOI level during the recovery period. BDNF and S100β, cortisol, and platelet and monocyte counts did not change throughout the neutral-HOI study. CONCLUSIONS The present findings suggested that the increase in BDNF during 20-min hot-HOI was induced by hyperthermia through enhanced production, rather than by changes in permeability of the blood-brain barrier (BBB), platelet clotting mechanisms or secretion from monocytes.
Collapse
Affiliation(s)
- Daisuke Kojima
- a Department of Rehabilitation Medicine, School of Medicine , Wakayama Medical University , Wakayama , Japan
| | - Takeshi Nakamura
- b Department of Rehabilitation Medicine, School of Medicine , Yokohama City University , Yokohama , Kanagawa , Japan
| | - Motohiko Banno
- a Department of Rehabilitation Medicine, School of Medicine , Wakayama Medical University , Wakayama , Japan
| | - Yasunori Umemoto
- a Department of Rehabilitation Medicine, School of Medicine , Wakayama Medical University , Wakayama , Japan
| | - Tokio Kinoshita
- a Department of Rehabilitation Medicine, School of Medicine , Wakayama Medical University , Wakayama , Japan
| | - Yuko Ishida
- c Department of Forensic Medicine, School of Medicine , Wakayama Medical University , Wakayama , Japan
| | - Fumihiro Tajima
- a Department of Rehabilitation Medicine, School of Medicine , Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
80
|
Evaluation of the Roche® Elecsys and the Diasorin® Liaison S100 kits in the management of mild head injury in the emergency room. Clin Biochem 2017; 52:123-130. [PMID: 29122642 DOI: 10.1016/j.clinbiochem.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The aim of this single-center prospective study is to compare two commercially available S100ß kits (the Roche® Elecsys and the Diasorin® Liaison S100 kits) in terms of analytical and clinical performances in a population admitted in the emergency room for mild traumatic brain injury (mTBI). MATERIAL AND METHOD 110 patients were enrolled from September 2014 to May 2015. Blood sample draws were performed within 3h after head trauma and the study population was split into pediatric and adult subpopulations (>18years of age). RESULTS Although both kits correlated well, we observed a significant difference in terms of S100ß levels (P value<0.05) in both subpopulations. In the pediatric subpopulation, both kits showed elevated S100ß levels for the only patient (3.5%) who displayed abnormal findings on a CT-scan. However, we observed a poor agreement between both kits (Cohen's kappa=0.345, P value=0.077). In the adult subpopulation, a total of 10 patients (12.2%) had abnormal head computed tomography scans. Using the Roche® (cut off=0.1μg/L) and the Diasorin® (cut off=0.15μg/L) S100ß kits, brain injuries were detected with a sensitivity of 100% (95% CI: 65-100%) and 100% (95% CI: 63-100%) and a specificity of 15.28% (95% CI: 7.9-25.7%) and 24.64% (95% CI: 15-36.5) respectively. Finally, a moderate agreement was concluded between both kits (Cohen's kappa=0.569, P value=0.001). CONCLUSION Although a good correlation could be found between both kits, emergency physicians should be aware of discrepancies observed between both methods, making those immunoassays not interchangeable. Furthermore, more studies are still needed to validate cut off used according to technique and to age, especially in the population below the age of 2years.
Collapse
|
81
|
Stefanović B, Đurić O, Stanković S, Mijatović S, Doklestić K, Stefanović B, Jovanović B, Marjanović N, Kalezić N. Elevated Serum Protein S100B and Neuron Specific Enolase Values as Predictors of Early Neurological Outcome After Traumatic Brain Injury. J Med Biochem 2017; 36:314-321. [PMID: 30581328 PMCID: PMC6294083 DOI: 10.1515/jomb-2017-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/25/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The objective of our study was to determine the serum concentrations of protein S100B and neuron specific enolase (NSE) as well as their ability and accuracy in the prediction of early neurological outcome after a traumatic brain injury. METHODS A total of 130 polytraumatized patients with the associated traumatic brain injuries were included in this prospective cohort study. Serum protein S100B and NSE levels were measured at 6, 24, 48 and 72 hours after the injury. Early neurological outcome was scored by Glasgow Outcome Scale (GOS) on day 14 after the brain injury. RESULTS The protein S100B concentrations were maximal at 6 hours after the injury, which was followed by an abrupt fall, and subsequently slower release in the following two days with continual and significantly increased values (p<0.0001) in patients with poor outcome. Secondary increase in protein S100B at 72 hours was recorded in patients with lethal outcome (GOS 1). Dynamics of NSE changes was characterized by a secondary increase in concentrations at 72 hours after the injury in patients with poor outcome. CONCLUSION Both markers have good predictive ability for poor neurological outcome, although NSE provides better discriminative potential at 72 hours after the brain injury, while protein S100B has better discriminative potential for mortality prediction.
Collapse
Affiliation(s)
- Branislava Stefanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Olivera Đurić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Epidemiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Center for Medical Biochemistry, Clinical Center of Serbia, Belgrade, Serbia
| | - Srđan Mijatović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Krstina Doklestić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Branislav Stefanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Bojan Jovanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Nataša Marjanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Clinic for Digestive Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Nevena Kalezić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Clinic for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
82
|
Jones A, Jarvis P. Review of the potential use of blood neuro-biomarkers in the diagnosis of mild traumatic brain injury. Clin Exp Emerg Med 2017; 4:121-127. [PMID: 29026884 PMCID: PMC5635461 DOI: 10.15441/ceem.17.226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/05/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023] Open
Abstract
Head injury is a common presenting complaint amongst emergency department patients. To date, there has been no widespread utilization of neuro-biomarkers to aid the diagnosis of traumatic brain injury. This review article explores which neuro-biomarkers could be used in the emergency department in aiding the clinical diagnosis of mild traumatic brain injury. Based on the available evidence, the most promising neuro-biomarkers appear to be Glial fibrillary acidic protein (GFAP) and Ubiquitin C-Terminal Hydrolase Isozyme L1 (UCH-L1) as these show significant rises in peripheral blood levels shortly after injury and these have been demonstrated to correlate with long-term clinical outcomes. Treatment strategies for minor traumatic brain injury in the emergency department setting are not well developed. The introduction of blood neuro-biomarkers could reduce unnecessary radiation exposure and provide an opportunity to improve the care of this patient group.
Collapse
Affiliation(s)
- Alastair Jones
- Department of Emergency Medicine, Bradford Royal Infirmary, Bradford, UK
| | - Paul Jarvis
- Global Medical Affairs, Abbott Point of Care, Princeton, NJ, USA
| |
Collapse
|
83
|
Meier TB, Nelson LD, Huber DL, Bazarian JJ, Hayes RL, McCrea MA. Prospective Assessment of Acute Blood Markers of Brain Injury in Sport-Related Concussion. J Neurotrauma 2017; 34:3134-3142. [PMID: 28699381 DOI: 10.1089/neu.2017.5046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is a pressing need to identify objective biomarkers for the assessment of sport-related concussion (SRC) to reduce the reliance on clinical judgment for the management of these injuries. The goal of the current study was to prospectively establish the acute effects of SRC on serum levels of S100 calcium-binding protein beta (S100B), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). Collegiate and high school football players were enrolled and provided blood at pre-season. Injured athletes participated in follow-up visits at ∼6 and 24-48 h following documented SRC (n = 32). Uninjured football players participated in similar follow-up visits and served as controls (n = 29). The median time between injury and blood collection was 2 h (6 h visit) and 22.5 h (24-48 h visit) in concussed athletes. Concussed athletes had significantly elevated UCH-L1 levels at the 6 h visit relative to pre-season levels (Z = 2.22, p = 0.03) and levels in control athletes (Z = 3.02, p = 0.003). Concussed athletes also had elevated S100B at 6 h relative to pre-season (Z = 2.07, p = 0.04) and controls (Z = 2.75, p = 0.006). Both markers showed fair discrimination between concussed and control athletes (UCH-L1 area under receiver operating characteristic curve [AUC] [95% CI] = 0.74 [0.61-0.88], S100B AUC = 0.72 [0.58-0.87]). Percent-change of UCH-L1 and S100B at 6 h relative to pre-season also showed fair discrimination (AUC = 0.79 [0.66-0.92] and AUC = 0.77 [0.64-0.90]). GFAP levels did not differ between groups or in concussed athletes relative to pre-season. This study provides prospective evidence of significant increases in serum levels of UCH-L1 and S100B during the early acute period following SRC, and lays the foundation for future studies examining the clinical potential for blood-based biomarkers in the early detection of concussion.
Collapse
Affiliation(s)
- Timothy B Meier
- 1 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,2 Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Lindsay D Nelson
- 1 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,3 Neurology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Daniel L Huber
- 1 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Jeffrey J Bazarian
- 4 Department of Emergency Medicine, University of Rochester School of Medicine , Rochester, New York
| | - Ronald L Hayes
- 5 Banyan Labs, Banyan Biomarkers Inc. , Alachua, Florida
| | - Michael A McCrea
- 1 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,3 Neurology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
84
|
Andrei SA, Sijbesma E, Hann M, Davis J, O’Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov 2017; 12:925-940. [DOI: 10.1080/17460441.2017.1346608] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sebastian A. Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michael Hann
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Jeremy Davis
- Department of Chemistry, UCB Celltech, Slough, UK
| | - Gavin O’Mahony
- CVMD Medicinal Chemistry, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Pepparedsleden, Mölndal, Sweden
| | - Matthew W. D. Perry
- RIA Medicinal Chemistry, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Pepparedsleden, Mölndal, Sweden
| | - Anna Karawajczyk
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Dortmund, Germany
| | - Jan Eickhoff
- Assay development & screening, Lead Discovery Center GmbH, Dortmund, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G. Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
85
|
Pitcovski J, Shahar E, Aizenshtein E, Gorodetsky R. Melanoma antigens and related immunological markers. Crit Rev Oncol Hematol 2017; 115:36-49. [DOI: 10.1016/j.critrevonc.2017.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
|
86
|
Stammet P, Dankiewicz J, Nielsen N, Fays F, Collignon O, Hassager C, Wanscher M, Undèn J, Wetterslev J, Pellis T, Aneman A, Hovdenes J, Wise MP, Gilson G, Erlinge D, Horn J, Cronberg T, Kuiper M, Kjaergaard J, Gasche Y, Devaux Y, Friberg H. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017. [PMID: 28629472 PMCID: PMC5477102 DOI: 10.1186/s13054-017-1729-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND We aimed to investigate the diagnostic performance of S100 as an outcome predictor after out-of-hospital cardiac arrest (OHCA) and the potential influence of two target temperatures (33 °C and 36 °C) on serum levels of S100. METHODS This is a substudy of the Target Temperature Management after Out-of-Hospital Cardiac Arrest (TTM) trial. Serum levels of S100 were measured a posteriori in a core laboratory in samples collected at 24, 48, and 72 h after OHCA. Outcome at 6 months was assessed using the Cerebral Performance Categories Scale (CPC 1-2 = good outcome, CPC 3-5 = poor outcome). RESULTS We included 687 patients from 29 sites in Europe. Median S100 values were higher in patients with a poor outcome at 24, 48, and 72 h: 0.19 (IQR 0.10-0.49) versus 0.08 (IQR 0.06-0.11) μg/ml, 0.16 (IQR 0.10-0.44) versus 0.07 (IQR 0.06-0.11) μg/L, and 0.13 (IQR 0.08-0.26) versus 0.06 (IQR 0.05-0.09) μg/L (p < 0.001), respectively. The ability to predict outcome was best at 24 h with an AUC of 0.80 (95% CI 0.77-0.83). S100 values were higher at 24 and 72 h in the 33 °C group than in the 36 °C group (0.12 [0.07-0.22] versus 0.10 [0.07-0.21] μg/L and 0.09 [0.06-0.17] versus 0.08 [0.05-0.10], respectively) (p < 0.02). In multivariable analyses including baseline variables and the allocated target temperature, the addition of S100 improved the AUC from 0.80 to 0.84 (95% CI 0.81-0.87) (p < 0.001), but S100 was not an independent outcome predictor. Adding S100 to the same model including neuron-specific enolase (NSE) did not further improve the AUC. CONCLUSIONS The allocated target temperature did not affect S100 to a clinically relevant degree. High S100 values are predictive of poor outcome but do not add value to present prognostication models with or without NSE. S100 measured at 24 h and afterward is of limited value in clinical outcome prediction after OHCA. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01020916 . Registered on 25 November 2009.
Collapse
Affiliation(s)
- Pascal Stammet
- Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier de Luxembourg, 4, rue Barblé, L-1210, Luxembourg, Luxembourg.
| | - Josef Dankiewicz
- Department of Cardiology, Skåne University Hospital, Lund, Sweden
| | - Niklas Nielsen
- Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - François Fays
- Competence Centre for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Olivier Collignon
- Competence Centre for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Christian Hassager
- Department of Cardiology B, The Heart Centre, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Michael Wanscher
- Department of Thoracic Anesthesiology, The Heart Centre, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Johan Undèn
- Department of Anesthesia and Intensive Care, Hallands Hospital, Lund University, Halmstad, Sweden
| | - Jorn Wetterslev
- Copenhagen Trial Unit, Centre of Clinical Intervention Research, Rigshospitalet, Copenhagen, Denmark
| | - Tommaso Pellis
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera 'Card. G. Panico', Tricase, Italy
| | - Anders Aneman
- Department of Intensive Care, Liverpool Hospital, Sydney, NSW, Australia
| | - Jan Hovdenes
- Department of Anesthesia and Intensive Care, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Matt P Wise
- Department of Intensive Care, University Hospital of Wales, Cardiff, UK
| | - Georges Gilson
- Department of Clinical Biology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - David Erlinge
- Department of Cardiology, Skåne University Hospital, Lund, Sweden
| | - Janneke Horn
- Department of Intensive Care, Academic Medical Centrum, Amsterdam, The Netherlands
| | - Tobias Cronberg
- Section of Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Michael Kuiper
- Department of Intensive Care, Leeuwarden Medical Centrum, Leeuwarden, The Netherlands
| | - Jesper Kjaergaard
- Department of Cardiology B, The Heart Centre, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Yvan Gasche
- Department of Intensive Care, Geneva University Hospital, Geneva, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Hans Friberg
- Department of Anesthesia and Intensive Care, Skåne University Hospital, Lund University, Lund, Sweden
| | | |
Collapse
|
87
|
Abstract
Mounting research in the field of sports concussion biomarkers has led to a greater understanding of the effects of brain injury from sports. A recent systematic review of clinical studies examining biomarkers of brain injury following sports-related concussion established that almost all studies have been published either in or after the year 2000. In an effort to prevent chronic traumatic encephalopathy and long-term consequences of concussion, early diagnostic and prognostic tools are becoming increasingly important; particularly in sports and in military personnel, where concussions are common occurrences. Early and tailored management of athletes following a concussion with biomarkers could provide them with the best opportunity to avoid further injury. Should blood-based biomarkers for concussion be validated and become widely available, they could have many roles. For instance, a point-of-care test could be used on the field by trained sport medicine professionals to help detect a concussion. In the clinic or hospital setting, it could be used by clinicians to determine the severity of concussion and be used to screen players for neuroimaging (computed tomography and/or magnetic resonance imaging) and further neuropsychological testing. Furthermore, biomarkers could have a role in monitoring progression of injury and recovery and in managing patients at high risk of repeated injury by being incorporated into guidelines for return to duty, work, or sports activities. There may even be a role for biomarkers as surrogate measures of efficacy in the assessment of new treatments and therapies for concussion.
Collapse
|
88
|
Melville Z, Aligholizadeh E, McKnight LE, Weber DJ, Pozharski E, Weber DJ. X-ray crystal structure of human calcium-bound S100A1. Acta Crystallogr F Struct Biol Commun 2017; 73:215-221. [PMID: 28368280 PMCID: PMC5379171 DOI: 10.1107/s2053230x17003983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/11/2017] [Indexed: 01/02/2023] Open
Abstract
S100A1 is a member of the S100 family of Ca2+-binding proteins and regulates several cellular processes, including those involved in Ca2+ signaling and cardiac and skeletal muscle function. In Alzheimer's disease, brain S100A1 is overexpressed and gives rise to disease pathologies, making it a potential therapeutic target. The 2.25 Å resolution crystal structure of Ca2+-S100A1 is solved here and is compared with the structures of other S100 proteins, most notably S100B, which is a highly homologous S100-family member that is implicated in the progression of malignant melanoma. The observed structural differences in S100A1 versus S100B provide insights regarding target protein-binding specificity and for targeting these two S100 proteins in human diseases using structure-based drug-design approaches.
Collapse
Affiliation(s)
- Zephan Melville
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Ehson Aligholizadeh
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Laura E. McKnight
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Dylan J. Weber
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Edwin Pozharski
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
89
|
Tsai MC, Huang TL. Decreased S100B serum levels after treatment in bipolar patients in a manic phase. Compr Psychiatry 2017; 74:27-34. [PMID: 28088747 DOI: 10.1016/j.comppsych.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies have suggested that patients with bipolar disorder might have brain damage. The aim of this study was to investigate the serum levels of brain injury biomarkers and S100A10 in bipolar patients in a manic phase, and evaluate the changes in S100B, neuron specific enolase (NSE), heat shock protein 70 (HSP70) and S100A10 after treatment. METHOD We consecutively enrolled 17 bipolar inpatients in a manic phase and 30 healthy subjects. Serum brain injury biomarkers and S100A10 were measured with assay kits. All patients were evaluated by examining the correlation between brain injury biomarkers and Young Mania Rating Scale (YMRS) scores. RESULT We found significantly decreased S100B levels only in bipolar manic patients after treatment (p=0.002), but S100B levels were not significantly different from those in healthy controls (p>0.05). CONCLUSION Our results indicate there were decreased S100B serum levels in bipolar patients in a manic phase after treatment and that increased serum S100B levels might be a possible indicator of transient disruption of the blood-brain barrier in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
90
|
Choe N, Kwon DH, Shin S, Kim YS, Kim YK, Kim J, Ahn Y, Eom GH, Kook H. The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4). FEBS Lett 2017; 591:1041-1052. [PMID: 28235243 DOI: 10.1002/1873-3468.12606] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
S100 calcium-binding protein A4 (S100A4) induces proliferation and migration of vascular smooth muscle cells (VSMCs). We aimed to find the microRNA regulating S100A4 expression. S100A4 transcripts are abruptly increased in the acute phase of carotid arterial injury 1 day later (at day 1) but gradually decreases at days 7 and 14. Bioinformatics analysis reveals that miR-124 targets S100A4. VSMC survival is attenuated by miR-124 mimic but increased by miR-124 inhibitor. miR-124 decreases immediately after carotid arterial injury but dramatically increases at days 7 and 14. miR-124 inhibitor-induced cell proliferation is blocked by S100A4 siRNA, whereas miR-124-induced cell death is recovered by S100A4. Our findings suggest that miR-124 is a novel regulator of VSMC proliferation and may play a role in the development of neointimal proliferation.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Yong Sook Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.,Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Gwang H Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
91
|
Wu T, Li D, Wang Y, Sun B, Li D, Morsi Y, El-Hamshary H, Al-Deyab SS, Mo X. Laminin-coated nerve guidance conduits based on poly(l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration. J Mater Chem B 2017; 5:3186-3194. [DOI: 10.1039/c6tb03330j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A laminin-coated and yarn-encapsulated PLGA nerve guidance conduit for Schwann cells’ proliferation and migration.
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Dandan Li
- College of Material Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Yuanfei Wang
- State Key Laboratory of Bioreactor Engineering
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Binbin Sun
- State Key Lab for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Dawei Li
- College of Textiles
- Donghua University
- Shanghai 201620
- China
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences
- Swinburne University of Technology
- Hawthorn
- Australia
| | - Hany El-Hamshary
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Salem S. Al-Deyab
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
92
|
Cognitive dysfunction correlates with elevated serum S100B concentration in drug-free acutely relapsed patients with schizophrenia. Psychiatry Res 2017; 247:6-11. [PMID: 27863321 DOI: 10.1016/j.psychres.2016.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
Abstract
S100B, a biomarker of glial dysfunction and blood-brain barrier (BBB) disruption, has been proposed to be involved in the pathophysiology of schizophrenia. In the present study, we aimed at exploring the association of serum S100B levels with cognitive deficits using MATRICS Consensus Cognitive Battery (MCCB) in schizophrenia, by excluding the impact of antipsychotics. Sixty-two unmedicated patients with schizophrenia during their acute phases were divided into a drug-naïve group (n=34) and a drug-free group (n=28). S100B serum concentrations were measured and MCCB was administered to all of the patients. Forty healthy controls donated their blood samples for S100B assessment. The results indicated that serum S100B was significantly elevated in the drug-naive/free acute-stage schizophrenic patients when compared to the healthy controls. In the drug-free group, the serum S100B level was an independent contributor to the global cognitive dysfunctions, particularly for the speed of processing, attention/vigilance, visual learning and reasoning/problem solving subscores. Nevertheless, no significant associations between S100B and MCCB composite score or any cognitive domain subscore were observed in the drug-naïve group. These findings support the hypothesis that glial dysfunction and associated marker protein S100B may contribute to the pathophysiologic development of neurocognitive deficits in the relapsed individuals with schizophrenia.
Collapse
|
93
|
Ganina KK, Dugina YL, Zhavbert KS, Ertuzun IA, Epshtein OI, Abdurasulova IN. Release-Active Antibodies to S100 Protein Can Correct the Course of Experimental Allergic Encephalomyelitis. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11055-016-0380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
94
|
Wheeler LC, Donor MT, Prell JS, Harms MJ. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family. PLoS One 2016; 11:e0164740. [PMID: 27764152 PMCID: PMC5072561 DOI: 10.1371/journal.pone.0164740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs-as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica-bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Micah T. Donor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
95
|
Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast. PLoS One 2016; 11:e0162000. [PMID: 27598566 PMCID: PMC5012620 DOI: 10.1371/journal.pone.0162000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a transmembrane receptor in the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE induces cellular signaling pathways upon binding with various ligands, such as advanced glycation end products (AGEs), β-amyloids, and S100 proteins. The solution structure of S100A12 and the V ligand-binding region of RAGE have been reported previously. Using heteronuclear NMR spectroscopy to conduct 1H–15N heteronuclear single quantum coherence (HSQC) titration experiments, we identified and mapped the binding interface between S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the constraints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to generate a structural model of the S100A12–V domain complex. In addition, tranilast (an anti-allergic drug) showed strong interaction with S100A12 in the 1H–15N HSQC titration, fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was located at the binding site between S100A12 and the V domain, blocking interaction between these two proteins. Our results provide the mechanistic details for a structural model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which could be useful for the development of new drugs.
Collapse
|
96
|
Bouvier D, Duret T, Abbot M, Stiernon T, Pereira B, Coste A, Chazal J, Sapin V. Utility of S100B Serum Level for the Determination of Concussion in Male Rugby Players. Sports Med 2016; 47:781-789. [DOI: 10.1007/s40279-016-0579-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
97
|
Graham EM, Burd I, Everett AD, Northington FJ. Blood Biomarkers for Evaluation of Perinatal Encephalopathy. Front Pharmacol 2016; 7:196. [PMID: 27468268 PMCID: PMC4942457 DOI: 10.3389/fphar.2016.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products, and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the "liquid brain biopsy." A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.
Collapse
Affiliation(s)
- Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Irina Burd
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Allen D. Everett
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
98
|
Chiu HC, Fu MMJ, Yang TS, Fu E, Chiang CY, Tu HP, Chin YT, Lin FG, Shih KC. Effect of high glucose,Porphyromonas gingivalislipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts. J Periodontal Res 2016; 52:268-276. [DOI: 10.1111/jre.12391] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- H-C. Chiu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - M. M-J. Fu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - T-S. Yang
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - E. Fu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - C-Y. Chiang
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - H-P. Tu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - Y-T. Chin
- Institutes for Cancer Biology and Drug Discovery; Taipei Medical University; Taipei Taiwan
| | - F-G. Lin
- School of Public Health; National Defense Medical Center; Taipei Taiwan
| | - K-C. Shih
- Division of Endocrinology & Metabolism; Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Division of Endocrinology & Metabolism; Taipei-Veteran General Hospital; Taipei Taiwan
| |
Collapse
|
99
|
Abstract
Injury of peripheral nerve in mammals leads to a complex but stereotypical pattern of histological events that comprise a highly reproducible sequence of degenerative reactions (Wallerian degeneration) succeeded by regenerative responses. These reactions are based on a corresponding sequence of cellular and mo lecular interactions that, in turn, reflect the differential expression of specific genes with functions in nerve degeneration and repair. We report on more than 60 genes and their products that show a specific pattern of regulation following peripheral nerve lesion. The group of regulated genes encoding, e.g., transcription factors, growth factors and their receptors, cytokines, neuropeptides, myelin proteins and lipid carriers, and cytoskeletal proteins as well as extracellular matrix and cell adhesion molecules. We describe and compare the distinct time-courses and cellular origin of expression and further discuss established or putative mo lecular interrelationships and functions with respect to the contribution of these genes/gene products to the molecular regeneration program of the PNS. NEUROSCIENTIST 3:112-122, 1997
Collapse
Affiliation(s)
- Clemens Gillen
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| | - Christian Korfhage
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| |
Collapse
|
100
|
Zhang Y, Wang S, Li L. EF Hand Protein IBA2 Promotes Cell Proliferation in Breast Cancers via Transcriptional Control of Cyclin D1. Cancer Res 2016; 76:4535-45. [DOI: 10.1158/0008-5472.can-15-2927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
|