51
|
Abstract
The analyses of previously described 5S rRNA gene sequences show that some of the expressed 5S rRNA genes present in the mouse and rat genomes were derived from the retrotransposition of 5S rRNA transcripts. These analyses demonstrate that new 5S rRNA gene copies can originate by retrotransposition and that some of these retrotranscribed genes are expressed.
Collapse
Affiliation(s)
- G Drouin
- Département de biologie, Université d'Ottawa, ON, Canada.
| |
Collapse
|
52
|
Kimura RH, Choudary PV, Schmid CW. Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res 1999; 27:3380-7. [PMID: 10454647 PMCID: PMC148573 DOI: 10.1093/nar/27.16.3380] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of cell stresses upon the expression of the Bm1 short interspersed element (SINE) family in cultured silk worm cells is examined. Primer extension analysis shows that Bm1 repeats are transcribed by RNA polymerase III (Pol III) into cytoplasmic RNAs. Five consecutive T residues, which would normally terminate Pol III transcription, occur within the Bm1 consensus and are included within cDNA sequences representing these transcripts. In analogy to mammalian SINEs, the level of the Bm1 transcripts increases in response to either heat shock, inhibiting protein synthesis by cycloheximide or viral infection. The lifetime of Bm1 RNA increases following cell insults so that post-transcriptional events partially account for stress induced increases in its abundance. In the case of heat shock, the increase in Bm1 RNA follows the transient increase in hsp70 mRNA indicating that this response is temporally regulated to occur later in heat shock recovery. These results support the proposal that SINE RNAs serve a role in the cell stress response that predates the divergence of insects and mammals implying that SINEs are essentially a class of cell stress genes.
Collapse
Affiliation(s)
- R H Kimura
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
53
|
Pombo A, Jackson DA, Hollinshead M, Wang Z, Roeder RG, Cook PR. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J 1999; 18:2241-53. [PMID: 10205177 PMCID: PMC1171307 DOI: 10.1093/emboj/18.8.2241] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian nuclei contain three different RNA polymerases defined by their characteristic locations and drug sensitivities; polymerase I is found in nucleoli, and polymerases II and III in the nucleoplasm. As nascent transcripts made by polymerases I and II are concentrated in discrete sites, the locations of those made by polymerase III were investigated. HeLa cells were lysed with saponin in an improved 'physiological' buffer that preserves transcriptional activity and nuclear ultrastructure; then, engaged polymerases were allowed to extend nascent transcripts in Br-UTP, before the resulting Br-RNA was immunolabelled indirectly with fluorochromes or gold particles. Biochemical analysis showed that approximately 10 000 transcripts were being made by polymerase III at the moment of lysis, while confocal and electron microscopy showed that these transcripts were concentrated in only approximately 2000 sites (diameter approximately 40 nm). Therefore, each site contains approximately five active polymerases. These sites contain specific subunits of polymerase III, but not the hyperphosphorylated form of the largest subunit of polymerase II. The results indicate that the active forms of all three nuclear polymerases are concentrated in their own dedicated transcription sites or 'factories', suggesting that different regions of the nucleus specialize in the transcription of different types of gene.
Collapse
Affiliation(s)
- A Pombo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
54
|
Hopman AH, Ramaekers FC, Speel EJ. Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J Histochem Cytochem 1998; 46:771-7. [PMID: 9603790 DOI: 10.1177/002215549804600611] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A one-step procedure for the synthesis of different tyramide conjugates, which can be utilized in the catalyzed reporter deposition (CARD) amplification system, is described. Succinimidyl esters of biotin, digoxigenin, and of the fluorochromes fluorescein, rhodamine, aminomethylcoumarine acetic acid, and Cy3 were coupled to tyramine in dimethylformamide (DMF) adjusted to a pH of 7.0-8.0 with triethylamine (TEA). The coupling reaction can be performed within 2 hr and the reaction mixture can be applied without further purification steps. Furthermore, trinitrophenyl (TNP)-tyramide was prepared by adding 2,4,6,-trinitrobenzenesulfonic acid to tyramine dissolved in either MilliQ/DMF basified with TEA or in an NaHCO3 (pH 9.5) buffer. A subsequent precipitation of the TNP-tyramide resulted in a high-yield isolation of this conjugate. The synthesized tyramide conjugates were applied successfully in single- and multiple-target in situ hybridization (ISH) procedures to detect both repetitive and single-copy DNA target sequences in cell preparations with high efficiency. The described approach provides an easy and fast method to prepare a variety of tyramide conjugates in bulk amounts at relatively low cost.
Collapse
Affiliation(s)
- A H Hopman
- Department of Molecular Cell Biology and Genetics, University Maastricht, Maastricht, The Netherlands
| | | | | |
Collapse
|
55
|
de Belle I, Cai S, Kohwi-Shigematsu T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol 1998; 141:335-48. [PMID: 9548713 PMCID: PMC2148460 DOI: 10.1083/jcb.141.2.335] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Revised: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1-1. 1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island-containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear "halos" with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type-specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell-specific gene regulation.
Collapse
Affiliation(s)
- I de Belle
- Ernest Orlando Lawrence Berkeley National Laboratory, Life Science Division, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
56
|
Bailey AD, Pavelitz T, Weiner AM. The microsatellite sequence (CT)n x (GA)n promotes stable chromosomal integration of large tandem arrays of functional human U2 small nuclear RNA genes. Mol Cell Biol 1998; 18:2262-71. [PMID: 9528797 PMCID: PMC121475 DOI: 10.1128/mcb.18.4.2262] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/1997] [Accepted: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
The multigene family encoding human U2 small nuclear RNA (snRNA) is organized as a single large tandem array containing 5 to 25 copies of a 6.1-kb repeat unit (the RNU2 locus). Remarkably, each of the repeat units within an individual U2 tandem array appears to be identical except for an irregular dinucleotide tract, known as the CT microsatellite, which exhibits minor length and sequence polymorphism. Using a somatic cell genetic assay, we previously noticed that the CT microsatellite appeared to stabilize artificial tandem arrays of U2 snRNA genes. We now demonstrate that the CT microsatellite is required to establish large tandem arrays of transcriptionally active U2 genes, increasing both the average and maximum size of the resulting arrays. In contrast, the CT microsatellite has no effect on the average or maximal size of artificial arrays containing transcriptionally inactive U2 genes that lack key promoter elements. Our data reinforce the connection between recombination and transcription. Active U2 transcription interferes with establishment or maintenance of the U2 tandem array, and the CT microsatellite opposes these effects, perhaps by binding GAGA or GAGA-related factors which alter local chromatin structure. We speculate that the mechanisms responsible for maintenance of tandem arrays containing active promoters may differ from those that maintain tandem arrays of transcriptionally inactive sequences.
Collapse
Affiliation(s)
- A D Bailey
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
57
|
Pombo A, Cuello P, Schul W, Yoon JB, Roeder RG, Cook PR, Murphy S. Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J 1998; 17:1768-78. [PMID: 9501098 PMCID: PMC1170524 DOI: 10.1093/emboj/17.6.1768] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PTF (PSE-binding transcription factor) activates transcription of snRNA and related genes. We investigated its distribution in HeLa nuclei by immunofluorescence, and found it spread throughout the nucleoplasm in small foci. In some cells, PTF is also concentrated in one, or very few, discrete regions (diameter approximately 1.3 micron) that appear during G1 phase and disappear in S phase. Oct1, a transcription factor that interacts with PTF, is also enriched in these domains; RNA polymerase II, TBP and Sp1 are also present. Each domain typically contains 2 or 3 transcription 'factories' where Br-UTP is incorporated into nascent transcripts. Accordingly, we have christened this region the Oct1/PTF/transcription (OPT) domain. It colocalizes with some, but not all, PIKA domains. It is distinct from other nuclear domains, including coiled bodies, gemini bodies, PML bodies and the perinucleolar compartment. A small region on chromosome 6 (band 6p21) containing only approximately 30 Mbp DNA, and chromosomes 6 and 7, associate with the domain significantly more than other chromosomes. The domains may act like nucleoli to bring particular genes on specific chromosomes together to a region where the appropriate transcription and processing factors are concentrated, thereby facilitating the expression of those genes.
Collapse
Affiliation(s)
- A Pombo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | |
Collapse
|
58
|
Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 1998; 18:58-68. [PMID: 9418853 PMCID: PMC121451 DOI: 10.1128/mcb.18.1.58] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA by cotransient transfection increased the expression of a reporter construct, which is consistent with an inhibitory effect on PKR. Alu RNA formed stable, discrete complexes with PKR in vitro, bound PKR in vivo, and antagonized PKR activation both in vitro and in vivo. Alu RNAs produced by either overexpression or exposure of cells to heat shock bound PKR, whereas transiently overexpressed Alu RNA antagonized virus-induced activation of PKR in vivo. Cycloheximide treatment of cells decreased PKR activity, coincident with an increase in Alu RNA. These observations suggest that the increased levels of Alu RNAs caused by cellular exposure to different stresses regulate protein synthesis by antagonizing PKR activation. This provides a functional role for mammalian short interspersed elements, prototypical junk DNA.
Collapse
Affiliation(s)
- W M Chu
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
59
|
Speel EJ, Ramaekers FC, Hopman AH. Sensitive multicolor fluorescence in situ hybridization using catalyzed reporter deposition (CARD) amplification. J Histochem Cytochem 1997; 45:1439-46. [PMID: 9313806 DOI: 10.1177/002215549704501013] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We describe the simultaneous localization of DNA sequences in cell and chromosome preparations by means of differently fluorochrome-labeled (AMCA, FITC, TRITC) tyramides using the catalyzed reporter deposition (CARD) procedure. For this purpose, repeated as well as single-copy DNA probes were labeled with biotin, digoxigenin, and FITC, hybridized, and visualized with three different cytochemical detection systems based on horseradish peroxidase conjugates. These were sequentially applied to interphase nuclei and metaphase chromosomes at low concentrations to prevent crossreaction and nonspecific background. In situ localized peroxidase activity was visualized by the deposition of fluorochrome-labeled tyramide molecules. To allow specific deposition of a second and a third tyramide conjugate for multiple-target fluorescence in situ hybridization (FISH), remaining peroxidase activity was always completely inactivated by a mild acid treatment before application of the next peroxidase conjugate. The CARD reactions were optimized for maximal signal-to-noise ratio and discrete localization by tuning reaction time, H2O2, and tyramide concentrations. For both repeated and single-copy DNA targets, high FISH signal intensities were obtained, providing improvement of sensitivity over conventional indirect detection systems. In addition, the fluorescence CARD detection system proved to be highly efficient and easy to implement in multiple-labeling studies, such as reported here for FISH.
Collapse
Affiliation(s)
- E J Speel
- Department of Molecular Cell Biology & Genetics, University of Maastricht, The Netherlands
| | | | | |
Collapse
|
60
|
Chu WM, Wang Z, Roeder RG, Schmid CW. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J Biol Chem 1997; 272:14755-61. [PMID: 9169441 DOI: 10.1074/jbc.272.23.14755] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma susceptibility gene product (Rb) generally represses RNA polymerase III (Pol III)-directed transcription. This implies that Rb interacts with essential transcription factors. Mutations in either the A or B subdomains in the Rb pocket interfere with Rb-mediated repression of Pol III-directed transcription, which indicates that both subdomains are directly involved in this activity. Addition of either purified TFIIIB or purified TFIIIC2 partially relieves Rb-mediated repression and restores activity to nuclear extracts that had been depleted of essential factors by binding to Rb. Pull down and coimmunoprecipitation experiments as well as functional assays indicate that Rb interacts with both TFIIIB and TFIIIC2 and that the A subdomain is primarily required for binding TFIIIB and the B subdomain for binding TFIIIC2. While Rb interacts with both factors, the A subdomain is more important than the B subdomain in directing Rb-mediated repression, and TFIIIB is the principal target of that activity.
Collapse
Affiliation(s)
- W M Chu
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
61
|
Affiliation(s)
- F Pelliccia
- Dipartimento di Genetica e Biologia Molecolare, Facoltà di Scienze MFN, Università La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
62
|
Chesnokov I, Chu WM, Botchan MR, Schmid CW. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 1996; 16:7084-8. [PMID: 8943363 PMCID: PMC231711 DOI: 10.1128/mcb.16.12.7084] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wild-type p53 represses Alu template activity in vitro and in vivo. However, upstream activating sequence elements from both the 7SL RNA gene and an Alu source gene relieve p53-mediated repression. p53 also represses the template activity of the U6 RNA gene both in vitro and in vivo but has no effect on in vitro transcription of genes encoding 5S RNA, 7SL RNA, adenovirus VAI RNA, and tRNA. The N-terminal activation domain of p53, which binds TATA-binding protein (TBP), is sufficient for repressing Alu transcription in vitro, and mutation of positions 22 and 23 in this region impairs p53-mediated repression of an Alu template both in vitro and in vivo. p53's N-terminal domain binds TFIIIB, presumably through its known interaction with TBP, and mutation of positions 22 and 23 interferes with TFIIIB binding. These results extend p53's transcriptional role to RNA polymerase III-directed templates and identify an additional level of Alu transcriptional regulation.
Collapse
Affiliation(s)
- I Chesnokov
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
63
|
Lomholt B, Frederiksen S, Jensen LR, Christensen K, Hallenberg C. 5S rRNA genes in Macaca fascicularis map to chromosome 1p in three loci. Mamm Genome 1996; 7:451-3. [PMID: 8662229 DOI: 10.1007/s003359900131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- B Lomholt
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
64
|
Michael WM, Dreyfuss G. Distinct domains in ribosomal protein L5 mediate 5 S rRNA binding and nucleolar localization. J Biol Chem 1996; 271:11571-4. [PMID: 8626719 DOI: 10.1074/jbc.271.19.11571] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ribosomal protein L5, a 34-kDa large ribosomal subunit protein, binds to 5 S rRNA and has been implicated in the intracellular transport of 5 S rRNA. By immunofluorescence microscopy, L5 is detected mostly in the nucleolus with a fainter signal in the nucleoplasm, and it is known to also be a component of large ribosomal subunits in the cytoplasm. 5 S rRNA is transcribed in the nucleoplasm, and L5 is thought to play an important role in delivering 5 S rRNA to the nucleolus. Using RNA-binding assays and transfection experiments, we have delineated the domains within L5 that confer its 5 S rRNA binding activity and that localize it to the nucleolus. We found that the amino-terminal 93 amino acids are necessary and sufficient to bind 5 S rRNA in vitro, while the carboxyl-terminal half of the protein, comprising amino acids 151-296, serves to localize the protein to the nucleolus. L5, therefore, has a modular domain structure reminiscent of other RNA transport proteins where one region of the molecule serves to bind RNA while another determines subcellular localization.
Collapse
Affiliation(s)
- W M Michael
- Howard Hughes Medical Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
65
|
Kaplan FS, O'Connor JP. Topographic changes in a heterochromatic chromosome block in humans (15P) during formation of the nucleolus. Chromosome Res 1995; 3:309-14. [PMID: 7551545 DOI: 10.1007/bf00713069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorescence in situ hybridization and multispectral confocal laser scanning microscopy revealed a highly dynamic nucleolar-associated chromosome 15 satellite III heterochromatin cluster in humans. This nucleolar-associated DNA was highly decondensed at the metaphase plate compared with its topography at interphase and appeared to act as a centre for the post-mitotic reorganization of the nucleolus. Our data showed unexpected trans-mitotic changes in the topography of this nucleolar-associated satellite III DNA that suggest that this locus-specific heterochromatin superstructure may be involved in nucleolar organization.
Collapse
Affiliation(s)
- F S Kaplan
- Department of Orthopaedics, Hospital of the University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
66
|
Lomholt B, Christensen K, Hallenberg C, Frederiksen S. Porcine 5S rRNA genes map to 14q23 revealing syntenic relation to human HSPA6- and 7. Mamm Genome 1995; 6:439-41. [PMID: 7647470 DOI: 10.1007/bf00355649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- B Lomholt
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
67
|
Matera AG, Frey MR, Margelot K, Wolin SL. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 1995; 129:1181-93. [PMID: 7539809 PMCID: PMC2120477 DOI: 10.1083/jcb.129.5.1181] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the subcellular organization of the four human Y RNAs. These RNAs, which are transcribed by RNA polymerase III, are usually found complexed with the Ro autoantigen, a 60-kD protein. We designed 2'-OMe oligoribonucleotides that were complementary to accessible single-stranded regions of Y RNAs within Ro RNPs and used them in fluorescence in situ hybridization. Although all four Y RNAs were primarily cytoplasmic, oligonucleotides directed against three of the RNAs hybridized to discrete structures near the nucleolar rim. We have termed these structures "perinucleolar compartments" (PNCs). Double labeling experiments with appropriate antisera revealed that PNCs are distinct from coiled bodies and fibrillar centers. Co-hybridization with a genomic DNA clone spanning the human Y1 and Y3 genes showed that PNCs are not stably associated with the transcription site for these Y RNAs. Although 5S rDNA was often located near the nucleolar periphery, PNCs are not associated with 5S gene loci. Two additional pol III transcripts, the RNA components of RNase P and RNase MRP, did colocalize within PNCs. Most interestingly, the polypyrimidine tract-binding protein hnRNP I/PTB was also concentrated in this compartment. Possible roles for this novel nuclear subdomain in macromolecular assembly and/or nucleocytoplasmic shuttling of these five pol III transcripts, along with hnRNP I/PTB, are discussed.
Collapse
Affiliation(s)
- A G Matera
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA
| | | | | | | |
Collapse
|
68
|
Moorefield B, Roeder R. Purification and characterization of human transcription factor IIIA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
69
|
Gerdes MG, Carter KC, Moen PT, Lawrence JB. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J Cell Biol 1994; 126:289-304. [PMID: 8034736 PMCID: PMC2200020 DOI: 10.1083/jcb.126.2.289] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel approach to study the higher level packaging of specific DNA sequences has been developed by coupling high-resolution fluorescence hybridization with biochemical fractionation to remove histones and distend DNA loops to form morphologically reproducible nuclear "halos." Results demonstrate consistent differences in the organization of specific sequences, and further suggest a relationship to functional activity. Pulse-incorporated bromodeoxyuridine representing nascent replicating DNA localized with the base of the chromatin loops in discrete clustered patterns characteristic of intact cells, whereas at increasing chase times, the replicated DNA was consistently found further out on the extended region of the halo. Fluorescence hybridization to unique loci for four transcriptionally inactive sequences produced long strings of signal extending out onto the DNA halo or "loop," whereas four transcriptionally active sequences remained tightly condensed as single spots within the residual nucleus. In contrast, in non-extracted cells, all sequences studied typically remained condensed as single spots of fluorescence signal. Interestingly, two transcriptionally active, tandemly repeated gene clusters exhibited strikingly different packaging by this assay. Analysis of specific genes in single cells during the cell cycle revealed changes in packaging between S-phase and non S-phase cells, and further suggested a dramatic difference in the structural associations in mitotic and interphase chromatin. These results are consistent with and suggestive of a loop domain organization of chromatin packaging involving both stable and transient structural associations, and provide precedent for an approach whereby different biochemical fractionation methods may be used to unravel various aspects of the complex higher-level organization of the genome.
Collapse
Affiliation(s)
- M G Gerdes
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
70
|
Abstract
In order to characterize the transcriptional regulation of the 5S rRNA genes we have isolated a bona fide gene and a pseudogene from mouse cells. These 5S rRNA genes contain a 12-bp sequence designated as the D-box, located in position -33 to -22 bp, and two Sp1-binding sites in the 5'-flanking region. The D-box is conserved in human and hamster 5S rRNA genes although in slightly different upstream positions. The bona fide mouse 5S rRNA gene was transcribed in a HeLa S-100 extract. The transcriptional activity of this gene was only 50% of that of the human gene, indicating the involvement of species-specific transcription factors and/or polymerases. The pseudogene which contains the D-box, but with position +25 to +35 bp deleted, showed no transcriptional activity. Deletion of the D-box in the 5'-flanking sequence abolished transcriptional activity, indicating that this conserved sequence is of importance for gene expression.
Collapse
Affiliation(s)
- C Hallenberg
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
71
|
Nielsen JN, Hallenberg C, Frederiksen S, Sørensen PD, Lomholt B. Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acids Res 1993; 21:3631-6. [PMID: 8367278 PMCID: PMC309857 DOI: 10.1093/nar/21.16.3631] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Six human 5S rRNA genes and gene variants and one pseudogene have been sequenced. The six genes/variants were transcribed in a HeLa cell extract with about equal efficiency. Three genes contain the Sp1 binding sequence GGGCGG in position -43 to -38 and three genes contain the Sp1 like sequence GGGCCG in this position. The six genes contain furthermore one Sp1 binding site in a position about -245 and one ATF recognition site in a position about -202. A 12 bp sequence (GGCTCTTGGGGC) found in position -32 to -21 strongly influenced the transcriptional efficiency in vitro. This 12-mer, designated the D box, has also been found upstream a 5S rRNA gene from hamster and mouse. Removal of the Sp1 binding sites had no effect on the transcription in vitro whereas the transcriptional efficiency decreased to 10% if the D box was removed from the human 5S rRNA gene.
Collapse
Affiliation(s)
- J N Nielsen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
72
|
|
73
|
Srivastava AK, Hagino Y, Schlessinger D. Ribosomal DNA clusters in pulsed-field gel electrophoretic analysis of human acrocentric chromosomes. Mamm Genome 1993; 4:445-50. [PMID: 8374207 DOI: 10.1007/bf00296819] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For determination of the extent to which ribosomal DNA (rDNA) is organized in tandemly repeated arrays, cellular DNA was digested with a restriction enzyme (EcoRV) that does not cut within the single 44-kb rDNA unit, and fragments separated by PFGE were hybridized to specific rDNA probes. A series of bands large enough to contain 15 to more than 30 rDNA repeat units was observed. In YACs containing cloned rDNA, however, such clusters were not observed, presumably because, as shown here for a clone starting with 1.5 tandem repeat units, there is a tendency for repeat units to delete out of the insert. By comparative gel electrophoretic analyses of DNAs from rodent hybrid cells containing singly isolated human chromosomes, most of the bands seen in total human DNA were assigned to at least one of the acrocentric chromosomes. Thus, large characteristic assemblies of DNA containing rDNA and lacking EcoRV sites were stable enough to be conserved in some human/rodent hybrid lines. When further digested with HindIII, which cuts rDNA at several points, the rDNA in each band yielded the expected fragments. If the large species consist completely of clusters of tandemly repeated rDNA units, they account for about half of the total cellular rDNA content estimated by saturation hybridization measurements.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Chromosomes, Fungal
- Chromosomes, Human/ultrastructure
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 22
- Cloning, Molecular
- DNA, Recombinant
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Library
- Humans
- Hybrid Cells
- Multigene Family
- Nucleolus Organizer Region/chemistry
- Nucleolus Organizer Region/ultrastructure
- Repetitive Sequences, Nucleic Acid
- Rodentia
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- A K Srivastava
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
74
|
Lobo SM, Tanaka M, Sullivan ML, Hernandez N. A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 1992; 71:1029-40. [PMID: 1458534 DOI: 10.1016/0092-8674(92)90397-u] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The TATA box-binding protein TBP directs transcription by all three eukaryotic RNA polymerases. In mammalian cells, TBP is found in at least three different complexes: SL1, D-TFIID, and B-TFIID. While SL1 and D-TFIID are involved in RNA polymerase I and II transcription, respectively, no unique function has been assigned to the B-TFIID complex. Here we show that the TFIIIB fraction required for RNA polymerase III transcription contains two separable components, one of which is a TBP-containing complex that may correspond to B-TFIID. For transcription of TATA-less RNA polymerase III genes such as the VAI, 5S, and 7SL genes, this complex cannot be replaced by either TBP alone or the D-TFIID complex. In contrast, TBP alone is active for basal transcription from the TATA-containing U6 promoter. This indicates different requirements for recruiting TBP to TATA-less and TATA-containing RNA polymerase III promoters.
Collapse
Affiliation(s)
- S M Lobo
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
75
|
Abstract
The rodent 4.5 S RNA is an RNA polymerase III product with a sequence related to the Alu family of interspersed repeated DNA. A previous study identified a tandem array of 4.2-kb repeating units that contain the 4.5 S RNA coding sequence as well as many short repetitive sequences. To understand the genomic organization of this gene family, we have isolated and characterized 4.5 S RNA sequences that are part of the tandem array as well as identified members that are not part of the array. One variant 4.5 S RNA gene family member exhibits length polymorphisms in its minisatellite sites relative to the single previously reported gene. The 4.5 S RNA sequences that are not part of the tandem array possess many of the features of processed pseudogenes and are found adjacent to other interspersed repeated elements. These findings suggest that the mouse 4.5 S RNA can behave as a retroposon, resulting in the accumulation of 4.5 S RNA-like elements at many sites in the genome.
Collapse
Affiliation(s)
- R Kraft
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
76
|
Abstract
The human 5S rRNA genes are found in clusters of tandem repeated units. We have cloned and partially characterized six restriction fragments from two clusters of 2.3 kb and 1.6 kb repeats, respectively. Four fragments from the cluster of 2.3 kb repeats contain a 5S rRNA gene and one fragment contains a gene variant with an additional nucleotide in the internal control region. A fragment from the 1.6 kb cluster contains a gene and is highly homologous to the 2.3 kb repeats, except for a large deletion in the 3'-flanking region starting 12 bp downstream of the gene. The number of genes and closely related gene variants is found to be 300-400 per haploid human genome. 100-150 of these are found in 2.3 kb repeats and 5-10 are found in 1.6 kb repeats. The total number of 5S rRNA sequences, including pseudogenes, is 1700-2000 per haploid genome. The genes and the gene variant are transcribed equally efficient in a HeLa cell extract. If 5'-flanking sequences, including a GC-motif in the -40 region, are removed from the genes, transcription is reduced with a factor 10 or more, suggesting that sequences upstream of the coding region are important for the level of transcription.
Collapse
Affiliation(s)
- P D Sørensen
- Department of Biochemistry B, University of Copenhagen, Denmark
| | | |
Collapse
|
77
|
Abstract
Three trends are seen in the organization of ribosomal DNA genes during evolution: 1) gradual separation and separability of the regulation of transcription of 5S and larger subunit rRNAs; 2) retention of a transcription unit containing both large and small rRNAs; and 3) clustering of genes for both 5S and 18S-28S rDNAs, with the possible association of other 'non-rDNA' in the clusters of 18S-28S rDNA genes by the time mammals evolve.
Collapse
MESH Headings
- Animals
- Biological Evolution
- DNA, Ribosomal/genetics
- Escherichia coli/genetics
- Mammals/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5S/genetics
- Transcription, Genetic
- Yeasts/genetics
- rRNA Operon/genetics
Collapse
Affiliation(s)
- A K Srivastava
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
78
|
Furth JJ, Wroth TH, Ackerman S. Genes for collagen types I, IV, and V are transcribed in HeLa cells but a postinitiation block prevents the accumulation of type I mRNA. Exp Cell Res 1991; 192:118-21. [PMID: 1984407 DOI: 10.1016/0014-4827(91)90165-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Collagen mRNA synthesis in HeLa cells was evaluated by in vitro transcription of type I collagen DNA, nuclear run-on studies, and steady-state mRNA analysis. Type I collagen mRNA was accurately initiated by HeLa cell RNA polymerase II in nuclear extracts, and run-on analysis indicted that mRNAs for collagen types alpha 1(I), alpha 2(I), alpha 1(III), alpha 1(IV), and alpha 2(V) were synthesized in HeLa cells. However, on assessing the steady-state levels of mRNAs of collagen types alpha 1(I), alpha 2(I), alpha 1(IV), and alpha 2(V), no type I mRNA was found in HeLa cells while types alpha 1(IV) and alpha 2(V) collagen mRNAs were observed. These results suggest that a postinitiation process prevents the accumulation of type I collagen mRNAs in HeLa cells. Persistence of types IV and V collagen mRNAs is consistent with the involvement of types IV and V collagen in adhesion of HeLa cells to glass or plastic.
Collapse
Affiliation(s)
- J J Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6082
| | | | | |
Collapse
|
79
|
Matera AG, Hellmann U, Hintz MF, Schmid CW. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 1990; 18:6019-23. [PMID: 2172925 PMCID: PMC332399 DOI: 10.1093/nar/18.20.6019] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A human Alu repeat subfamily (the PV subfamily) whose members include insertional polymorphisms is found, as predicted, to differ by five tightly linked mutations relative to another subfamily of recently inserted Alu repeats. Based on these sequence differences some of the small number of polymorphic Alus can be selected from the background of nearly one million member sequences which are fixed in the human genome. Shared patterns of mutations suggest that PV subfamily members are the progeny of several different founder sequences. The additional observation that all members of the PV subfamily end in a stretch of uninterrupted polyadenine residues rather than merely A-rich sequences is evidence for post-transcriptional polyadenylation of the presumptive RNA intermediate. The drift of polyadenine sequences toward tandemly repeated A-rich motifs suggests a biological function that may select for the fixation of dispersed Alu repeats.
Collapse
Affiliation(s)
- A G Matera
- Department of Chemistry, University of California, Davis 95616
| | | | | | | |
Collapse
|
80
|
Abstract
Human ribosomal DNA has been inferred to be organized in tandem repeat units of 44 kb, of which only 13 kb is transcribed into preribosomal RNA. Unfortunately, it has remained difficult to examine the intact repeat structure directly, because even a single repeat unit is too large to be accommodated in conventional cloning systems. Here we report the isolation of intact repeat units using yeast artificial chromosomes as a cloning tool. With a spacer sequence specific to human ribosomal DNA used as a probe, 27 clones were identified among 17,000 YACs (about 0.7 genomic equivalent of total human DNA). Fourteen clones contained only a small portion of rDNA; the other 13 contained most or all of the rDNA repeat unit, and 8 of those were studied in further detail. They contained 1 to 1.5 repeat units of rDNA with all of the expected EcoRI and HindIII fragments. These clones provide possible starting material for the analysis of expression of a single unit of rDNA. Unexpectedly, however, only the four smaller clones (70 to 90 kb) were completely composed of standard rDNA sequences; four larger clones (up to 950 kb in length) contained additional "non-rDNA" sequences, at either one or both ends of the repeat unit. Analysis of these atypical rDNA clones suggests that their inserts either are scattered in the genome or are localized in a nucleolar organizer region that is more complex than previously recognized.
Collapse
Affiliation(s)
- T Labella
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|