51
|
Wang S, Tian S, Zhang P, Ye J, Tao X, Li F, Zhou Z, Nabi M. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109682. [PMID: 31610444 DOI: 10.1016/j.jenvman.2019.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
When dual-chamber microbial fuel cell (MFC) is used to detect biochemical oxygen demand (BOD), dissolved oxygen is traditionally used as cathodic electron acceptor. The detection limit of this MFC-based BOD biosensor is usually lower than 200 mg/L. In this paper, the startup of MFC-based BOD biosensor was researched and the external resistor of MFC was optimized. Results showed that the MFC started up with the dissolved oxygen as cathodic electron acceptor within 10 d, and the external resistor was optimized as 500 Ω to ensure the maximum output power of MFC. Dissolved oxygen and potassium permanganate (KMnO4) were used as cathodic electron acceptor to run MFC for detection of wastewater BOD, and the performances of two kinds of BOD biosensors were compared. The MFC-based BOD biosensor using KMnO4 (10 mmol/L) as cathodic electron acceptor exhibited an excellent performance, compared with that using dissolved oxygen. The upper limit of BOD detection was greatly broadened to 500 mg/L, the response time was shortened by 50% for artificial wastewater with a BOD of 100 mg/L, and the relative error of BOD detection was reduced to less than 10%. The MFC-based BOD biosensor using KMnO4 as cathodic electron acceptor showed a better linear relationship (R2 > 0.992) between the electric charge and BOD concentration within a BOD range of 25-500 mg/L. The MFC-based BOD biosensor using the KMnO4 as cathodic electron acceptor is promising with a better application prospect.
Collapse
Affiliation(s)
- Siqi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Shuai Tian
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Junpei Ye
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xue Tao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Fan Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Zeyan Zhou
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
52
|
Qi X, Liu P, Liang P, Hao W, Li M, Huang X. Dual-signal-biosensor based on luminescent bacteria biofilm for real-time online alert of Cu(II) shock. Biosens Bioelectron 2019; 142:111500. [DOI: 10.1016/j.bios.2019.111500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023]
|
53
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|
54
|
Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta 2019; 1076:32-47. [PMID: 31203962 DOI: 10.1016/j.aca.2019.05.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022]
Abstract
Electroactive microorganisms possess the unique ability to transfer electrons to or from solid phase electron conductors, e.g., electrodes or minerals, through various physiological mechanisms. The processes are commonly known as extracellular electron transfer and broadly harnessed in microbial electrochemical systems, such as microbial biosensors, microbial electrosynthesis, or microbial fuel cells. Apart from a few model microorganisms, the nature of the microbe-electrode conductive interaction is poorly understood for most of the electroactive species. The interaction determines the efficiency and a potential scaling up of bioelectrochemical systems. Gram-positive bacteria generally have a thick electron non-conductive cell wall and are believed to exhibit weak extracellular electron shuttling activity. This review highlights reported research accomplishments on electroactive Gram-positive bacteria. The use of electron-conducting polymers as mediators is considered as one promising strategy to enhance the electron transfer efficiency up to application scale. In view of the recent progress in understanding the molecular aspects of the extracellular electron transfer mechanisms of Enterococcus faecalis, the electron transfer properties of this bacterium are especially focused on. Fundamental knowledge on the nature of microbial extracellular electron transfer and its possibilities can provide insight in interspecies electron transfer and biogeochemical cycling of elements in nature. Additionally, a comprehensive understanding of cell-electrode interactions may help in overcoming insufficient electron transfer and restricted operational performance of various bioelectrochemical systems and facilitate their practical applications.
Collapse
|
55
|
Hassan RA, Heng LY, Ahmad A, Tan LL. Rapid determination of kappa-carrageenan using a biosensor from immobilized Pseudomonas carrageenovora cells. PLoS One 2019; 14:e0214580. [PMID: 30990847 PMCID: PMC6467376 DOI: 10.1371/journal.pone.0214580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/17/2019] [Indexed: 11/18/2022] Open
Abstract
A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
Collapse
Affiliation(s)
- Riyadh Abdulmalek Hassan
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor Darul Ehsan, Malaysia
- Department of Chemistry, Faculty of Science, Ibb University, Ibb, Republic of Yemen
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor Darul Ehsan, Malaysia
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), LESTARI, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Asmat Ahmad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), LESTARI, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
56
|
Optical Biomarker-based Biosensors for Cancer/Infectious Disease Medical Diagnoses. Appl Immunohistochem Mol Morphol 2019; 27:278-286. [DOI: 10.1097/pai.0000000000000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
57
|
Bilal M, Iqbal HM. Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2019; 124:8-17. [DOI: 10.1016/j.psep.2019.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
58
|
Apetrei RM, Cârâc G, Bahrim G, Camurlu P. Sensitivity enhancement for microbial biosensors through cell Self-Coating with polypyrrole. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Roxana-Mihaela Apetrei
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galati, Domnească Street, 47, Galati, RO-800008, Romania
| | - Geta Cârâc
- Faculty of Science and Environment, “Dunărea de Jos” University of Galati, Domnească Street, 47, Galati, RO-800008, Romania
| | - Gabriela Bahrim
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galati, Domnească Street, 47, Galati, RO-800008, Romania
| | - Pinar Camurlu
- Department of Chemistry, Akdeniz University, Antalya, 07058, Turkey
| |
Collapse
|
59
|
An Environmental Friendly Perspective of Microbial Degradation. JOURNAL OF PHARMACEUTICAL RESEARCH 2018. [DOI: 10.33140/jpr/03/02/00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the recent years attempt to find cost-effective and ecological ways to deal with noxious waste led mankind to focus on the use of microbes for the degradation of pollutants. These environmental friendly remediation methods employs the microbial naturally occurring catabolic capabilities to alter, vitiate or accrue a large number of pollutants including poly aromatic hydrocarbons, polychlorinated biphenyls, radio nuclides ,heavy metals etc. High-through put analyses of environmentally relevant microbes provides an insight of their major degradative pathways as well as their competence to acclimate to altering environmental conditions.
Collapse
|
60
|
A Portable Biosensor for 2,4-Dinitrotoluene Vapors. SENSORS 2018; 18:s18124247. [PMID: 30513956 PMCID: PMC6308836 DOI: 10.3390/s18124247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
Buried explosive material, e.g., landmines, represent a severe issue for human safety all over the world. Most explosives consist of environmentally hazardous chemicals like 2,4,6-trinitrotoluene (TNT), carcinogenic 2,4-dinitrotoluene (2,4-DNT) and related compounds. Vapors leaking from buried landmines offer a detection marker for landmines, presenting an option to detect landmines without relying on metal detection. 2,4-Dinitrotoluene (DNT), an impurity and byproduct of common TNT synthesis, is a feasible detection marker since it is extremely volatile. We report on the construction of a wireless, handy and cost effective 2,4-dinitrotoluene biosensor combining recombinant bioluminescent bacterial cells and a compact, portable optical detection device. This biosensor could serve as a potential alternative to the current detection technique. The influence of temperature, oxygen and different immobilization procedures on bioluminescence were tested. Oxygen penetration depth in agarose gels was investigated, and showed that aeration with molecular oxygen is necessary to maintain bioluminescence activity at higher cell densities. Bioluminescence was low even at high cell densities and 2,4-DNT concentrations, hence optimization of different prototypes was carried out regarding radiation surface of the gels used for immobilization. These findings were applied to sensor construction, and 50 ppb gaseous 2,4-DNT was successfully detected.
Collapse
|
61
|
Chawla P, Kaushik R, Shiva Swaraj V, Kumar N. Organophosphorus pesticides residues in food and their colorimetric detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Kannan P, Su SS, Mannan MS, Castaneda H, Vaddiraju S. A Review of Characterization and Quantification Tools for Microbiologically Influenced Corrosion in the Oil and Gas Industry: Current and Future Trends. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pranav Kannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Shei Sia Su
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - M. Sam Mannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Homero Castaneda
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Sreeram Vaddiraju
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| |
Collapse
|
63
|
Zhang Z, Liu J, Fan J, Wang Z, Li L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal Chim Acta 2018; 1009:65-72. [PMID: 29422133 DOI: 10.1016/j.aca.2018.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
In this study, we report an electrochemical microbial biosensor that was made by immobilizing a bacterial laccase on the surface of Escherichia coli cells followed by adsorption of modified live cells onto a glassy-carbon electrode. Expression and surface localization of laccase on target cells were confirmed by Western blotting, flow cytometry assays and immunofluorescence microscopy observation. Increased tandem-aligned anchors with three repeats of the N-terminal domain of an ice nucleation protein were used to construct a highly active E. coli whole cell laccase-based catalytic system. When the proposed biosensor was used to detect catechol, the electrochemical response under optimized pH conditions was linear within a concentration range of 0.5 μM-300.0 μM catechol. Metal ions (Mn2+, Fe3+, Cu2+, Mg2+, Al3+ and Zn2+) at concentrations from 1 to 10 mg L-1, bovine serum albumin and glucose at concentrations from 0.1 to 10 g L-1, and ascorbic acid at concentrations from 0.01 to 0.1 g L-1 did not cause a noticeable interference effect. The detection limit of 0.1 μM catechol was comparable to those of other biosensors based on purified chemically modified laccases. When used to detect catechol in real red wine and tea samples, the biosensor offered a considerable level of accuracy comparable to the HPLC method as well as high recovery rates (98.2%-103.8%) towards all of the tested samples. Moreover, the developed system also exhibited high stability and reproducibility.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Biology Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
64
|
Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A microbial fuel cell (MFC) is a type of bio-electrochemical system with novel features, such as electricity generation, wastewater treatment, and biosensor applications. In recent years, progressive trends in MFC research on its chemical, electrochemical, and microbiological aspects has resulted in its noticeable applications in the field of sensing. This review was consequently aimed to provide an overview of the most interesting new applications of MFCs in sensors, such as providing the required electrical current and power for remote sensors (energy supply device for sensors) and detection of pollutants, biochemical oxygen demand (BOD), and specific DNA strands by MFCs without an external analytical device (self-powered biosensors). Moreover, in this review, procedures of MFC operation as a power supply for pH, temperature, and organic loading rate (OLR) sensors, and also self-powered biosensors of toxicity, pollutants, and BOD have been discussed.
Collapse
|
65
|
Pham HT. Biosensors based on lithotrophic microbial fuel cells in relation to heterotrophic counterparts: research progress, challenges, and opportunities. AIMS Microbiol 2018; 4:567-583. [PMID: 31294234 PMCID: PMC6604947 DOI: 10.3934/microbiol.2018.3.567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/05/2018] [Indexed: 11/23/2022] Open
Abstract
Biosensors based on the microbial fuel cell (MFC) platform have been receiving increasing attention from researchers owing to their unique properties. The lithotrophic MFC, operated with a neutrophilic iron-oxidizing bacterial community, has recently been developed and proposed to be used as a biosensor to detect iron, and likely metals in general, in water samples. Therefore, in this review, important aspects of the lithotrophic MFC-based biosensor, including its configuration, fabrication, microbiology, electron transfer mechanism, sensing performance, etc. were carefully discussed in comparison with those of heterotrophic (organotrophic) counterparts. Particularly, the challenges for the realization of the practical application of the device were determined. Furthermore, the application potentials of the device were also considered and positioned in the context of technologies for metal monitoring and bioremediation.
Collapse
Affiliation(s)
- Hai The Pham
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research, Faculty of Biology, Vietnam National University-University of Science, Nguyen Trai 334, Thanh Xuan, Hanoi, Vietnam.,Department of Microbiology, Faculty of Biology, Vietnam National University-University of Science, Nguyen Trai 334, Thanh Xuan, Hanoi, Vietnam
| |
Collapse
|
66
|
Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, Ibrahim F, Leo BF, Thong KL. Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella. Anal Biochem 2018; 554:34-43. [PMID: 29870692 DOI: 10.1016/j.ab.2018.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s-1 to 90 mV s-1. The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 101 cfu mL-1 and 6.7 × 101 cfu mL-1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jimmy Nelson Appaturi
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Nadyra Zifruddin
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Teck Wei Lim
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
67
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
68
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
69
|
Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H. Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 2018; 37:1021-1037. [DOI: 10.1007/s10096-018-3230-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
|
70
|
Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel Biosensors for the Rapid Detection of Toxicants in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:57-102. [PMID: 29555073 DOI: 10.1016/bs.afnr.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modern environmental and food analysis requires sensitive, accurate, and rapid methods. The growing field of biosensors represents an answer to this demand. Unfortunately, most biosensor systems have been tested only on distilled water or buffered solutions, although applications to real samples are increasingly appearing in recent years. In this context, biosensors for potential food applications continue to show advances in areas such as genetic modification of enzymes and microorganisms, improvement of recognition element immobilization, and sensor interfaces. This chapter investigates the progress in the development of biosensors for the rapid detection of food toxicants for online applications. Recent progress in nanotechnology has produced affordable, mass-produced devices, and to integrate these into components and systems (including portable ones) for mass market applications for food toxicants monitoring. Sensing includes chemical and microbiological food toxicants, such as toxins, insecticides, pesticides, herbicides, microorganisms, bacteria, viruses and other microorganisms, phenolic compounds, allergens, genetically modified foods, hormones, dioxins, etc. Therefore, the state of the art of recent advances and future targets in the development of biosensors for food monitoring is summarized as follows: biosensors for food analysis will be highly sensitive, selective, rapidly responding, real time, massively parallel, with no or minimum sample preparation, and platform suited to portable and handheld nanosensors for the rapid detection of food toxicants for online uses even by nonskilled personnel.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | | | - Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, School of Maritime and Industry, University of Piraeus, Piraeus, Greece
| | - Stephanos Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | - Theo Varzakas
- Laboratory of Inorganic Chemistry, University of Athens, Athens, Greece; Technological Educational Institute of Peloponnese, Kalamata, Greece
| |
Collapse
|
71
|
Problems analysis and new fabrication strategies of mediated electrochemical biosensors for wastewater toxicity assessment. Biosens Bioelectron 2018; 108:82-88. [PMID: 29501051 DOI: 10.1016/j.bios.2018.02.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Conventional mediated electrochemical biosensors for toxicity assessment were almost based on 'one-pot' principle, i.e., mediators and the under-test chemicals were mixed together in the same vessel. In this process, the electron mediator is assumed to be merely an electron acceptor and cannot react with under-test toxicants. Actually,some under-test pollutants (such as metal ions) could react with the electron mediators, thus affecting the detection accuracy and sensitivity of the sensors. It was also found that at least two other interference factors have been ignored in present'one-pot' mediated electrochemical biosensor systems, i.e., (1) the electrochemical sensitivity of mediators to pH; and (2) the potential reactions between under-test chemicals and buffers and the consequent pH changes. In this study, the three ignored interference factors have been investigated systematically and demonstrated by significance tests. Moreover, a solving strategy, an isolation method, is proposed for fabrication of novel mediated electrochemical biosensor to avoid the interference factors existing at present mediated electrochemical biosensor. According to the testing results obtained from the isolation method, IC50 values of Cu2+, Cd2+, Zn2+, Fe3+, Ni2+ and Cr3+ were 21.3 mg/L, 3.7 mg/L, 26.7 mg/L, 4.4 mg/L and 10.7 mg/L, respectively. The detection results of four real water samples also suggested this method could be applied for the practical and complex samples.
Collapse
|
72
|
Zhao S, Liu P, Niu Y, Chen Z, Khan A, Zhang P, Li X. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater. SENSORS 2018; 18:s18020642. [PMID: 29470394 PMCID: PMC5855485 DOI: 10.3390/s18020642] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 01/25/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R2 = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu2+, Zn2+, and Pb2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria (Geobacter and Pseudomonas) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at −111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters.
Collapse
Affiliation(s)
- Shuai Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
- Department of Developmental Biology, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Yongyan Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Zhengjun Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Aman Khan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
| | - Pengyun Zhang
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730020, Gansu, China.
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
| |
Collapse
|
73
|
Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Luan X, Tang H. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. CHEMOSPHERE 2017; 184:384-392. [PMID: 28609744 DOI: 10.1016/j.chemosphere.2017.05.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China; School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| | - Zhisong Cui
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Xiao Luan
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Hui Tang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| |
Collapse
|
74
|
Zhou T, Han H, Liu P, Xiong J, Tian F, Li X. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review. SENSORS 2017; 17:s17102230. [PMID: 28956857 PMCID: PMC5677232 DOI: 10.3390/s17102230] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022]
Abstract
With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; (T.Z.); (H.H.)
| | - Huawen Han
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; (T.Z.); (H.H.)
| | - Pu Liu
- Department of Development Biology Sciences, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China;
| | - Jian Xiong
- Wuhan Optics Valley Bluefire New Energy Co., Ltd., Three Hubei Road, Wuhan East Lake Development Zone #29, Wuhan 430205, China; (J.X.); (F.T.)
| | - Fake Tian
- Wuhan Optics Valley Bluefire New Energy Co., Ltd., Three Hubei Road, Wuhan East Lake Development Zone #29, Wuhan 430205, China; (J.X.); (F.T.)
| | - Xiangkai Li
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; (T.Z.); (H.H.)
- Correspondence: ; Tel.: +86-931-891-2560; Fax: +86-931-891-2561
| |
Collapse
|
75
|
A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS One 2017; 12:e0184994. [PMID: 28915277 PMCID: PMC5600388 DOI: 10.1371/journal.pone.0184994] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023] Open
Abstract
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. However, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. Here we demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new way of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.
Collapse
|
76
|
Drachuk I, Harbaugh S, Geryak R, Kaplan DL, Tsukruk VV, Kelley-Loughnane N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomater Sci Eng 2017; 3:2278-2292. [DOI: 10.1021/acsbiomaterials.7b00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Irina Drachuk
- UES Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
- Air Force Research Laboratory, 711th Human Performance Wing, Airmen Systems Directorate, 2510 Fifth Street, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Svetlana Harbaugh
- The Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
- Air Force Research Laboratory, 711th Human Performance Wing, Airmen Systems Directorate, 2510 Fifth Street, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Ren Geryak
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Nancy Kelley-Loughnane
- Air Force Research Laboratory, 711th Human Performance Wing, Airmen Systems Directorate, 2510 Fifth Street, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| |
Collapse
|
77
|
Yamagishi A, Tanabe K, Yokokawa M, Morimoto Y, Kinoshita M, Suzuki H. Microfluidic device coupled with a microfabricated oxygen electrode for the measurement of bactericidal activity of neutrophil-like cells. Anal Chim Acta 2017; 985:1-6. [DOI: 10.1016/j.aca.2017.07.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
|
78
|
Okada E, Nisenbaum M, Martínez Arca J, Murialdo SE. Chemotaxis detection towards chlorophenols using video processing analysis. J Microbiol Methods 2017; 142:15-19. [PMID: 28844722 DOI: 10.1016/j.mimet.2017.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022]
Abstract
To our knowledge, this communication is the first report of chemotaxis towards chlorophenols by any bacteria. We used a recently published method based on the agarose in-plug assay combined with video processing analysis and we also present a new index of bacterial mean speed for these assays.
Collapse
Affiliation(s)
- E Okada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Nisenbaum
- Grupo de Ingeniería Bioquímica (GIB), Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B Justo 4302, Mar del Plata y CONICET, Mar del Plata, Buenos Aires, Argentina.
| | - J Martínez Arca
- Instituto de Investigaciones Científicas y Tecnológicas en Electrónica, Laboratorio de Bioingeniería, Departamento de Ingeniería Electrónica, Facultad de Ingeniería, Universidad Nacional de Mar del Plata y CONICET, Juan B Justo 4302, Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Grupo de Ingeniería Bioquímica (GIB), Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B Justo 4302, Mar del Plata y La Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
| |
Collapse
|
79
|
Abstract
Microbial electrochemistry has from the onset been recognized for its sensing potential due to the microbial ability to enhance signals through metabolic cascades, its relative selectivity toward substrates, and the higher stability conferred by the microbial ability to self-replicate. The greatest challenge has been to achieve stable and efficient transduction between a microorganism and an electrode surface. Over the past decades, a new kind of microbial architecture has been observed to spontaneously develop on polarized electrodes: the electroactive biofilm (EAB). The EAB conducts electrons over long distances and performs quasi-reversible electron transfer on conventional electrode surfaces. It also possesses self-regenerative properties. In only a few years, EABs have inspired considerable research interest for use as biosensors for environmental or bioprocess monitoring. Multiple challenges still need to be overcome before implementation at larger scale of this new kind of biosensors can be realized. This perspective first introduces the specific characteristics of the EAB with respect to other electrochemical biosensors. It summarizes the sensing applications currently proposed for EABs, stresses their limitations, and suggests strategies toward potential solutions. Conceptual prospects to engineer EABs for sensing purposes are also discussed.
Collapse
Affiliation(s)
- Antonin Prévoteau
- Center for Microbial Ecology
and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology
and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
80
|
Dantism S, Takenaga S, Wagner T, Wagner P, Schöning MJ. Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
81
|
New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017; 175:435-442. [PMID: 28842013 DOI: 10.1016/j.talanta.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antibiotics are leading medicine asset for fighting against microbial infection, but also one of the important causes of death worldwide. Many antibiotics used as therapeutics and growth promotion agents in animals can lead to antibiotic residues in animal-derived food which harm the health of people. Hence, it is vital to screen antibiotic residues in animal derived foods. Typical methods for screening antibiotic residues are based on microbiological growth inhibition and immunological analyses. However these two methods have some disadvantages, such as poor sensitive, lack of specificity and etc. Therefore, it is necessary to develop simple, more efficient and high sensitive screening methods of antibiotic residues. These assays have been introduced for the screening of numerous food samples. Biosensors are emerging methods, applied in screening antibiotic residues in animal-derived foods. Two types of biosensors, whole-cell based biosensors and surface plasmon resonance-based sensors have been extensively used. Their advantages include portability, small sample requirement, high sensitivity and good specificity over the traditional screening methods.
Collapse
|
82
|
Li P, Müller M, Chang MW, Frettlöh M, Schönherr H. Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22321-22331. [PMID: 28627870 PMCID: PMC5741077 DOI: 10.1021/acsami.7b07166] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Quorum sensing, in which bacteria communities use signaling molecules for inter- and intracellular communication, has been intensively studied in recent decades. In order to fabricate highly sensitive easy-to-handle point of care biosensors that detect quorum sensing molecules, we have developed, as is reported here, reporter bacteria loaded alginate-methacrylate (alginate-MA) hydrogel beads. The alginate-MA beads, which were obtained by electrostatic extrusion, were reinforced by photo-cross-linking to increase stability and thereby to reduce bacteria leaching. In these beads the genetically engineered fluorescent reporter bacterium Escherichia coli pTetR-LasR-pLuxR-GFP (E. coli pLuxR-GFP) was encapsulated, which responds to the autoinducer N-(3-oxododecanoyl)homoserine lactone secreted by Pseudomonas aeruginosa. After encapsulation in alginate-MA hydrogel beads with diameters in the range of 100-300 μm that were produced by an electrostatic extrusion method and rapid photo-cross-linking, the E. coli pLuxR-GFP were found to possess a high degree of viability and sensing activity. The encapsulated bacteria could proliferate inside the hydrogel beads, when exposed to bacteria culture medium. In media containing the autoinducer N-(3-oxododecanoyl)homoserine lactone, the encapsulated reporter bacteria responded with a strong fluorescence signal due to an increased green fluorescent protein (GFP) expression. A prototype dipstick type sensor developed here underlines the potential of encapsulation of viable and functional reporter bacteria inside reinforced alginate-methacrylate hydrogel beads for whole cell sensors for bacteria detection.
Collapse
Affiliation(s)
- Ping Li
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mareike Müller
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Matthew Wook Chang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Martin Frettlöh
- Quh-Lab Food Safety, Siegener Str. 29, 57080 Siegen, Germany
| | - Holger Schönherr
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
83
|
Akyilmaz E, Canbay E, Dinçkaya E, Güvenç C, Yaşa İ, Bayram E. Simultaneous Determination of Epinephrine and Dopamine by Using Candida tropicalis
Yeast Cells Immobilized in a Carbon Paste Electrode Modified with Single Wall Carbon Nanotube. ELECTROANAL 2017. [DOI: 10.1002/elan.201700125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erol Akyilmaz
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir/ Turkey
| | - Erhan Canbay
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir/ Turkey
- Department of Medicinal Biochemistry; Faculty of Medicine; Ege University; 35100 Bornova-Izmir/ Turkey
| | - Erhan Dinçkaya
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir/ Turkey
| | - Cansu Güvenç
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir/ Turkey
| | - İhsan Yaşa
- Department of Microbiology; Faculty of Science; Ege University; 35100 Bornova-Izmir/ Turkey
| | - Ezgi Bayram
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir/ Turkey
| |
Collapse
|
84
|
Vitorino LC, Bessa LA. Technological Microbiology: Development and Applications. Front Microbiol 2017; 8:827. [PMID: 28539920 PMCID: PMC5423913 DOI: 10.3389/fmicb.2017.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services.
Collapse
Affiliation(s)
- Luciana C. Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal InstituteGoiás, Brazil
| | | |
Collapse
|
85
|
Zang F, Gerasopoulos K, Brown AD, Culver JN, Ghodssi R. Capillary Microfluidics-Assembled Virus-like Particle Bionanoreceptor Interfaces for Label-Free Biosensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8471-8479. [PMID: 28211673 DOI: 10.1021/acsami.6b14045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A capillary microfluidics-integrated sensor system is developed for rapid assembly of bionanoreceptor interfaces on-chip and label-free biosensing. Genetically engineered Tobacco mosaic virus (TMV) virus-like particles (VLPs), displaying thousands copies of identical receptor peptides FLAG-tags, are utilized as nanoceptors for antibody sensing. Controlled and accelerated assembly of VLP receptor layer on impedance sensor has been achieved using capillary action and surface evaporation from an open-channel capillary microfluidic system. VLPs create a dense and localized receptor monolayer on the impedance sensor using only 5 μL of VLP sample solution (0.2 mg/mL) in only 6 min at room temperature. The VLP-functionalized impedance sensor is capable of label-free detection of target antibodies down to 55 pM concentration within 5 min. These results highlight the significant potentials of an integrated microsystem for rapid and controlled receptor-transducer interface creation and the nanoscale VLP-based sensors for fast, accurate, and decentralized pathogen detection.
Collapse
Affiliation(s)
- Faheng Zang
- Department of Electrical Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | | | | | | | | |
Collapse
|
86
|
Prabhakaran DC, Riotte J, Sivry Y, Subramanian S. Electroanalytical Detection of Cr(VI) and Cr(III) Ions Using a Novel Microbial Sensor. ELECTROANAL 2017. [DOI: 10.1002/elan.201600458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Divyasree C. Prabhakaran
- Department of Materials Engineering; Indian Institute of Science; Bangalore-560012 Karnataka India
- Indo-French Cell for Water Sciences; Indian Institute of Science; Bangalore-560012 Karnataka India
| | - Jean Riotte
- Indo-French Cell for Water Sciences; Indian Institute of Science; Bangalore-560012 Karnataka India
| | - Yann Sivry
- Institut de Physique du Globe de Paris &; Université Paris Diderot Paris 7; UMR CNRS 7154, 1, Rue Jussieu 75238 Paris cedex 05 France
| | - Sankaran Subramanian
- Department of Materials Engineering; Indian Institute of Science; Bangalore-560012 Karnataka India
- Indo-French Cell for Water Sciences; Indian Institute of Science; Bangalore-560012 Karnataka India
| |
Collapse
|
87
|
Bueno J. Fungal Bionanotechnology, When Knowledge Merge into a New Discipline to Combat Antimicrobial Resistance. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
88
|
MATSUI Y, HAMAMOTO K, KITAZUMI Y, SHIRAI O, KANO K. Diffusion-controlled Mediated Electron Transfer-type Bioelectrocatalysis Using Microband Electrodes as Ultimate Amperometric Glucose Sensors. ANAL SCI 2017; 33:845-851. [DOI: 10.2116/analsci.33.845] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yukina MATSUI
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Katsumi HAMAMOTO
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
89
|
A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens Bioelectron 2016; 85:860-868. [DOI: 10.1016/j.bios.2016.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/27/2016] [Accepted: 06/04/2016] [Indexed: 11/13/2022]
|
90
|
Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. ENVIRONMENT INTERNATIONAL 2016; 92-93:106-18. [PMID: 27071051 DOI: 10.1016/j.envint.2016.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 05/23/2023]
Abstract
Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, 72511 Al-Kharja, Egypt
| | - Steven W Van Ginkel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 200-701 Chuncheon, Kangwon-do, South Korea.
| |
Collapse
|
91
|
Liu C, Li Z, Jiang D, Jia J, Zhang Y, Chai Y, Cheng X, Dong S. Demonstration study of biofilm reactor based rapid biochemical oxygen demand determination of surface water. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
92
|
Kim HJ, Lim JW, Jeong H, Lee SJ, Lee DW, Kim T, Lee SJ. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 2016; 79:701-8. [DOI: 10.1016/j.bios.2015.12.101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/08/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
|
93
|
Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque. Sci Rep 2016; 6:20702. [PMID: 26860259 PMCID: PMC4748228 DOI: 10.1038/srep20702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.
Collapse
|
94
|
Abstract
The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.
Collapse
Affiliation(s)
- Songzi Kou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Danhui Cheng
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fei Sun
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - I-Ming Hsing
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
95
|
Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv 2016. [DOI: 10.1039/c6ra22047a] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advantages, drawbacks and trends in nanomaterials for enzyme immobilization.
Collapse
Affiliation(s)
- Eliane P. Cipolatti
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
- Biochemistry Department
| | - Alexsandra Valério
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Rosana O. Henriques
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise E. Moritz
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Jorge L. Ninow
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise M. G. Freire
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | - Evelin A. Manoel
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | | | - Débora de Oliveira
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| |
Collapse
|
96
|
Renitta A, Vijayalakshmi K. A novel room temperature ethanol sensor based on catalytic Fe activated porous WO3 microspheres. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2015.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
97
|
Biosupercapacitors for powering oxygen sensing devices. Bioelectrochemistry 2015; 106:34-40. [DOI: 10.1016/j.bioelechem.2015.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 12/19/2022]
|
98
|
Mulyasuryani A, Prasetyawan S. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides. ANALYTICAL CHEMISTRY INSIGHTS 2015; 10:23-7. [PMID: 26483607 PMCID: PMC4599581 DOI: 10.4137/aci.s30656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 01/14/2023]
Abstract
The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm(2). The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm (A) and 7865 ppm (B). The organophosphate pesticide samples were 0-100 ppb in tris-acetate buffer 0.05 M, pH 8.5. The results showed that the best performance of the biosensor was achieved by the enzyme A with an electrode area of 5 mm(2). The sensitivity of the biosensor was between 3 and 32 µS/ppb, and the detection limit for the organophosphate pesticides was 40 ppb (diazinon), 30 ppb (malathion), 20 ppb (chlorpyrifos), and 40 ppm (profenofos).
Collapse
Affiliation(s)
- Ani Mulyasuryani
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Sasangka Prasetyawan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| |
Collapse
|
99
|
Yang H, Zhou M, Liu M, Yang W, Gu T. Microbial fuel cells for biosensor applications. Biotechnol Lett 2015; 37:2357-64. [PMID: 26272393 DOI: 10.1007/s10529-015-1929-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023]
Abstract
Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.
Collapse
Affiliation(s)
- Huijia Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Research Center for Sustainable Energy & Environmental Technologies, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Research Center for Sustainable Energy & Environmental Technologies, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Mengmeng Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Research Center for Sustainable Energy & Environmental Technologies, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Weilu Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Research Center for Sustainable Energy & Environmental Technologies, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
100
|
Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer? BIOSENSORS-BASEL 2015; 5:450-70. [PMID: 26193327 PMCID: PMC4600167 DOI: 10.3390/bios5030450] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.
Collapse
|