51
|
Rodrigues CF, Fernandes N, de Melo‐Diogo D, Correia IJ, Moreira AF. Cell-Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy. Adv Healthc Mater 2022; 11:e2201214. [PMID: 36121767 PMCID: PMC11481079 DOI: 10.1002/adhm.202201214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/11/2022] [Indexed: 01/28/2023]
Abstract
Cancer nanomedicines are designed to encapsulate different therapeutic agents, prevent their premature release, and deliver them specifically to cancer cells, due to their ability to preferentially accumulate in tumor tissue. However, after intravenous administration, nanoparticles immediately interact with biological components that facilitate their recognition by the immune system, being rapidly removed from circulation. Reports show that less than 1% of the administered nanoparticles effectively reach the tumor site. This suboptimal pharmacokinetic profile is pointed out as one of the main factors for the nanoparticles' suboptimal therapeutic effectiveness and poor translation to the clinic. Therefore, an extended blood circulation time may be crucial to increase the nanoparticles' chances of being accumulated in the tumor and promote a site-specific delivery of therapeutic agents. For that purpose, the understanding of the forces that govern the nanoparticles' interaction with biological components and the impact of the physicochemical properties on the in vivo fate will allow the development of novel and more effective nanomedicines. Therefore, in this review, the nano-bio interactions are summarized. Moreover, the application of cell-derived vesicles for extending the blood circulation time and tumor accumulation is reviewed, focusing on the advantages and shortcomings of each cell source.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Natanael Fernandes
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Ilídio J. Correia
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - André F. Moreira
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
- CPIRN‐UDI/IPG – Center of Potential and Innovation in Natural Resources, Research Unit for Inland DevelopmentInstituto Politécnico da GuardaAvenida Dr. Francisco de Sá CarneiroGuarda6300‐559Portugal
| |
Collapse
|
52
|
Yang Z, Shi C, Cheng D, Wang Y, Xing Y, Du F, Wu F, Jin Y, Dong Y, Li M. Biomimetic nanomaterial-facilitated oxygen generation strategies for enhancing tumour treatment outcomes. Front Bioeng Biotechnol 2022; 10:1007960. [PMID: 36277398 PMCID: PMC9581162 DOI: 10.3389/fbioe.2022.1007960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Hypoxia, as a typical hallmark of the tumour microenvironment (TME), has been verified to exist in most malignancies and greatly hinders the outcome of tumour treatments, including chemotherapy, photodynamic therapy, radiotherapy, and immunotherapy. Various approaches to alleviate tumour hypoxia have been reported. Among them, biomimetic nanomaterial-facilitated tumour oxygenation strategies, based on the engagement of human endogenous proteins, red blood cells, the cell membrane, and catalase, are the most impressive due to their excellent tumour active-targeting ability and superior tumour-selective capability, which, however, have not yet been systematically reviewed. Herein, we are ready to describe the current progress in biomimetic nanomaterial-facilitated tumour oxygenation strategies and corresponding improvements in tumour treatment outputs. In this review, the underlying mechanism behind the superior effect of these biomimetic nanomaterials, compared with other materials, on alleviating the hypoxic TME is highlighted. Additionally, the ongoing problems and potential solutions are also discussed.
Collapse
|
53
|
Zhou Z, Gao Z, Chen W, Wang X, Chen Z, Zheng Z, Chen Q, Tan M, Liu D, Zhang Y, Hou Z. Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu 9S 5 nanozymes. Acta Biomater 2022; 151:600-612. [PMID: 35953045 DOI: 10.1016/j.actbio.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Therefore, how to construct a CDT treatment nanosystem with high yield and full utilization of ROS in tumor site is the main issue of CDT. Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (LA), abbreviated as m-MCS@LA, is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS based on the catalytic performance of multivalent metal ions, which were served as nanozymes, exhibit enhanced Fenton-like and glutathione (GSH) peroxidase-like activities in comparison to Cu9S5 nanoparticles without Mo-doping. Once placed in tumor microenvironment (TME), the existence of redox couples (Cu+/Cu2+ and Mo4+/Mo6+) in m-MCS enabled it to react with hydrogen peroxide (H2O2) to generate ·OH for achieving CDT effect via Fenton-like reaction. Meanwhile, m-MCS could consume overexpressed GSH in tumor microenvironment (TME) to alleviate antioxidant capability for enhancing CDT effect. Moreover, m-MCS with mesoporous structure could be employed as the carrier to load natural nitric oxide (NO) donor LA. US as the excitation source with high tissue penetration can trigger m-MCS@LA to produce NO. As the gas transmitter with physiological functions, NO could play dual roles to kill cancer cells through gas therapy directly, and enhance CDT effect by inhibiting protective autophagy simultaneously. As a result, this US-triggered and NO-mediated synergetic cancer chemodynamic/gas therapy based on m-MCS@LA NPs can effectively eliminate primary tumor and achieved tumor-specific treatment, which provide a possible strategy for developing more effective CDT in future practical applications. STATEMENT OF SIGNIFICANCE: The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (m-MCS@LA) is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS with double redox couples presents the enhanced enzyme-like activities to perform cascade reactions for reducing GSH and generating ROS. LA loaded by m-MCS can produce NO triggered by US to inhibit the mitochondria protective autophagy for reactivating mitochondria involved apoptosis pathway. The US-triggered and NO-mediated CDT based on m-MCS@LA can effectively eliminate primary tumor through the high yield and full utilization of ROS.
Collapse
Affiliation(s)
- Zhaoru Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhimin Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Zhankun Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhaocong Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qianyi Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meiling Tan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Donglian Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| | - Yaru Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| | - Zhiyao Hou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| |
Collapse
|
54
|
Bin L, Yang Y, Wang F, Wang R, Fei H, Duan S, Huang L, Liao N, Zhao S, Ma X. Biodegradable Silk Fibroin Nanocarriers to Modulate Hypoxia Tumor Microenvironment Favoring Enhanced Chemotherapy. Front Bioeng Biotechnol 2022; 10:960501. [PMID: 35935500 PMCID: PMC9354019 DOI: 10.3389/fbioe.2022.960501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 01/01/2023] Open
Abstract
Biopolymer silk fibroin (SF) is a great candidate for drug carriers characterized by its tunable biodegradability, and excellent biocompatibility properties. Recently, we have constructed SF-based nano-enabled drug delivery carriers, in which doxorubicin (Dox) and atovaquone (Ato) were encapsulated with Arg-Gly-Asp-SF-Polylactic Acid (RSA) to form micellar-like nanoparticles (RSA-Dox-Ato NPs). The RGD peptide was decorated on micellar-like nanoparticles, promoting tumor accumulation of the drug. Meanwhile, Ato, as a mitochondrial complex III inhibitor inhibiting mitochondrial respiration, would reverse the hypoxia microenvironment and enhance chemotherapy in the tumor. In vitro, the biopolymer alone showed extremely low cytotoxicity to 4T1 cell lines, while the RSA-Dox-Ato demonstrated a higher inhibition rate than other groups. Most significantly, the ROS levels in cells were obviously improved after being treated with RSA-Dox-Ato, indicating that the hypoxic microenvironment was alleviated. Eventually, SF-based targeted drug carrier provides biocompatibility to reverse hypoxia microenvironment in vivo for enhancing chemotherapy, strikingly suppressing tumor development, and thereby suggesting a promising candidate for drug delivery system.
Collapse
Affiliation(s)
- Li Bin
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Yuxiao Yang
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Feiyu Wang
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Rong Wang
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Hongxin Fei
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Siliang Duan
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Linling Huang
- Second Clinical Medical College, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Na Liao
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
- *Correspondence: Na Liao, ; Shimei Zhao, ; Xinbo Ma,
| | - Shimei Zhao
- Second Clinical Medical College, Medical College, Guangxi University of Science and Technology, Liuzhou, China
- *Correspondence: Na Liao, ; Shimei Zhao, ; Xinbo Ma,
| | - Xinbo Ma
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
- *Correspondence: Na Liao, ; Shimei Zhao, ; Xinbo Ma,
| |
Collapse
|
55
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
56
|
Xiao G, Zhang Z, Chen Q, Wu T, Shi W, Gan L, Liu X, Huang Y, Lv M, Zhao Y, Wu P, Zhong L, He J. Platelets for cancer treatment and drug delivery. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1231-1237. [PMID: 35218523 DOI: 10.1007/s12094-021-02771-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Extensive research is currently being conducted into a variety of bio-inspired biomimetic nanoparticles (NPs) with new cell simulation functions across the fields of materials science, chemistry, biology, physics, and engineering. Cells such as erythrocytes, platelets, and stem cells have been engineered as new drug carriers. The platelet-derived drug delivery system, which is a new targeted drug delivery system (TDDS), can effectively navigate the blood circulatory system and interact with the complex tumor microenvironment; it appears to outperform traditional anticancer drugs; hence, it has attracted considerable research interest. In this review, we describe innovative studies and outline the latest progress regarding the use of platelets as tumor targeting and drug delivery vehicles; we also highlight opportunities and challenges relevant to the manufacture of tumor-related platelet TDDSs.
Collapse
Affiliation(s)
- Gaozhe Xiao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiaoying Chen
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 41500, China
| | - Wei Shi
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengyu Lv
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pan Wu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,The First People's Hospital of Changde City, Changde, 41500, China.
| |
Collapse
|
57
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
58
|
Zhao Z, Yang S, Yang P, Lin J, Fan J, Zhang B. Study of oxygen-deficient W 18O 49-based drug delivery system readily absorbed through cellular internalization pathways in tumor-targeted chemo-/photothermal therapy. BIOMATERIALS ADVANCES 2022; 136:212772. [PMID: 35929311 DOI: 10.1016/j.bioadv.2022.212772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
W18O49-mediated photothermal therapy (PTT) is affected by the easily oxidized property and its direct exposure to physiological environment can cause biological events, which limit its development in the biomedical field. Herein, a composite nanoparticle PVP-W18O49@C (PW@C), with significant antioxidant and excellent biocompatibility, was constructed to overcome the limitations of W18O49 in the medical field. Oxygen-deficient W18O49, with irregular defect structure, was combined with hollow carbon nanospheres treated by reflux to obtain W18O49@C (W@C) similar to sea urchins. Compared with W18O49, W@C shows stronger antioxidant properties, and it still has the ability to convert light energy to heat energy after 6 months. In addition, polyvinyl pyrrolidone is coated on the surface of W@C to construct PW@C, which significantly improves biocompatibility of W@C. The photothermal conversion efficiency of PW@C was 42.9 ± 1.3. PWD (PW@C loaded with DOX·HCl) showed controllable drug release behavior under pH and NIR stimulation, and the drug release rate reached 69.1 ± 1.6% at pH = 5.0. Notably, PWD was readily absorbed by cells through clathrin/caveolae-mediated internalization channels, and the viability of HeLa cells treated with PWD + NIR was only 21.5 ± 1.0%. Through photothermal, drug delivery/release and cytotoxicity evaluation, PWD was proved to be an effective platform for chemo-/photothermal combinational tumor therapy.
Collapse
Affiliation(s)
- Zhihuan Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Shasha Yang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Pengfei Yang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Jimin Fan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
59
|
Guo Y, Li W, Liu S, Jing D, Wang Y, Feng Q, Zhang K, Xu J. Construction of nanocarriers based on endogenous cell membrane and its application in nanomedicine. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Wenxin Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276005 China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yifan Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Qingfang Feng
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Centre of Chemistry for Life Sciences Nanjing University, 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
60
|
Gao R, Gu Y, Yang Y, He Y, Huang W, Sun T, Tang Z, Wang Y, Yang W. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma. J Nanobiotechnology 2022; 20:115. [PMID: 35248069 PMCID: PMC8898525 DOI: 10.1186/s12951-022-01316-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background Radioresistance inducing by hypoxic microenvironment of hepatocellular carcinoma is a major obstacle to clinical radiotherapy. Advanced nanomedicine provides an alternative to alleviate the hypoxia extent of solid tumor, even to achieve effective synergistic treatment when combined with chemotherapy or radiotherapy. Results Herein, we developed a self-assembled nanoparticle based on hemoglobin and curcumin for photoacoustic imaging and radiotherapy of hypoxic hepatocellular carcinoma. The fabricated nanoparticles inhibited hepatoma migration and vascular mimics, and enhanced the radiosensitivity of hypoxic hepatoma cells in vitro via repressing cell proliferation and DNA damage repair, as well as inducing apoptosis. Benefit from oxygen-carrying hemoglobin combined with polyphenolic curcumin, the nanoparticles also effectively enhanced the photoacoustic contrast and the efficacy of radiotherapy for hepatocellular carcinoma in vivo. Conclusions Together, the current study offered a radiosensitization platform for optimizing the efficacy of nanomedicines on hypoxic radioresistant tumor. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01316-w.
Collapse
|
61
|
Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, Wang G, Sun D, Wu W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio 2022; 14:100228. [PMID: 35265826 PMCID: PMC8898969 DOI: 10.1016/j.mtbio.2022.100228] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) modified by cell membranes represent an emerging biomimetic platform that can mimic the innate biological functions resulting from the various cell membranes in biological systems. researchers focus on constructing the cell membrane camouflaged NPs using a wide variety of cells, such as red blood cell membranes (RBC), macrophages and cancer cells. Cell membrane camouflaged NPs (CMNPs) inherit the composition of cell membranes, including specific receptors, antigens, proteins, for target delivering to the tumor, escaping immune from clearance, and prolonging the blood circulation time, etc. Combining cell membrane-derived biological functions and the NP cores acted cargo carriers to encapsulate the imaging agents, CMNPs are widely developed to apply in tumor imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence imaging (FL) and photoacoustic imaging (PA). Herein, in this review, we systematically summarize the superior functions of various CMNPs in tumor imaging, especially highlighting the advanced applications in different imaging techniques, which is to provide the theoretical supports for the development of precise guided imaging and tumor treatment.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
62
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|
63
|
Biomimetic platelet membrane-coated Nanoparticles for targeted therapy. Eur J Pharm Biopharm 2022; 172:1-15. [DOI: 10.1016/j.ejpb.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023]
|
64
|
Zhou M, Liu Y, Su Y, Su Q. Plasmonic Oxygen Defects in MO 3- x (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv Healthc Mater 2021; 10:e2101331. [PMID: 34549537 DOI: 10.1002/adhm.202101331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Nanomedicine is a promising technology with many advantages and provides exciting opportunities for cancer diagnosis and therapy. During recent years, the newly developed oxygen-deficiency transition metal oxides MO3- x (M = W or Mo) have received significant attention due to the unique optical properties, such as strong localized surface plasmon resonance (LSPR) , tunable and broad near-IR absorption, high photothermal conversion efficiency, and large X-ray attenuation coefficient. This review presents an overview of recent advances in the development of MO3- x nanomaterials for biomedical applications. First, the fundamentals of the LSPR effect are introduced. Then, the preparation and modification methods of MO3- x nanomaterials are summarized. In addition, the biological effects of MO3- x nanomaterials are highlighted and their applications in the biomedical field are outlined. This includes imaging modalities, cancer treatment, and antibacterial capability. Finally, the prospects and challenges of MO3- x and MO3- x -based nanomaterial for fundamental studies and clinical applications are also discussed.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yan Su
- Genome Institute of Singapore Agency of Science Technology and Research Singapore 138672 Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| |
Collapse
|
65
|
Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev 2021; 179:114006. [PMID: 34655662 DOI: 10.1016/j.addr.2021.114006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/19/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticle-based therapeutics have the potential to change the paradigm of how we approach the diagnosis and treatment of human disease. Employing naturally derived cell membranes as a surface coating has created a powerful new approach by which nanoparticles can be functionalized towards a wide range of biomedical applications. By using membranes derived from different cell sources, the resulting nanoparticles inherit properties that can make them well-suited for a variety of tasks. In recent years, stimuli-responsive platforms with the ability to release payloads on demand have received increasing attention due to their improved delivery, reduced side effects, and precision targeting. Nanoformulations have been developed to respond to external stimuli such as magnetic fields, ultrasound, and radiation, as well as local stimuli such as pH gradients, redox potentials, and other chemical conditions. Here, an overview of the novel cell membrane coating platform is provided, followed by a discussion of stimuli-responsive platforms that leverage this technology.
Collapse
|
66
|
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O2 during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O2 content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O2 to tumor directly, 2) generating O2 in situ, 3) reducing tumor cellular O2 consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O2 -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.
Collapse
Affiliation(s)
- Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunying Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
67
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
68
|
Choe HS, Shin MJ, Kwon SG, Lee H, Kim DK, Choi KU, Kim JH, Kim JH. Yolk-Shell-Type Gold Nanoaggregates for Chemo- and Photothermal Combination Therapy for Drug-Resistant Cancers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53519-53529. [PMID: 34730926 DOI: 10.1021/acsami.1c10036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Epithelial ovarian cancer is a gynecological cancer with the highest mortality rate, and it exhibits resistance to conventional drugs. Gold nanospheres have gained increasing attention over the years as photothermal therapeutic nanoparticles, owing to their excellent biocompatibility, chemical stability, and ease of synthesis; however, their practical application has been hampered by their low colloidal stability and photothermal effects. In the present study, we developed a yolk-shell-structured silica nanocapsule encapsulating aggregated gold nanospheres (aAuYSs) and examined the photothermal effects of aAuYSs on cell death in drug-resistant ovarian cancers both in vitro and in vivo. The aAuYSs were synthesized using stepwise silica seed synthesis, surface amino functionalization, gold nanosphere decoration, mesoporous organosilica coating, and selective etching of the silica template. Gold nanospheres were agglomerated in the confined silica interior of aAuYSs, resulting in the red-shifting of absorbance and enhancement of the photothermal effect under 808 nm laser irradiation. The efficiency of photothermal therapy was first evaluated by inducing aAuYS-mediated cell death in A2780 ovarian cancer cells, which were cultured in a two-dimensional culture and a three-dimensional spheroid culture. We observed that photothermal therapy using aAuYSs together with doxorubicin treatment synergistically induced the cell death of doxorubicin-resistant A2780 cancer cells in vitro. Furthermore, this type of combinatorial treatment with photothermal therapy and doxorubicin synergistically inhibited the in vivo tumor growth of doxorubicin-resistant A2780 cancer cells in a xenograft transplantation model. These results suggest that photothermal therapy using aAuYSs is highly effective in the treatment of drug-resistant cancers.
Collapse
Affiliation(s)
- Hyun-Seok Choe
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Gyu Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
69
|
Meng X, Song J, Lei Y, Zhang X, Chen Z, Lu Z, Zhang L, Wang Z. A metformin-based nanoreactor alleviates hypoxia and reduces ATP for cancer synergistic therapy. Biomater Sci 2021; 9:7456-7470. [PMID: 34609385 DOI: 10.1039/d1bm01303c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe hypoxia in solid tumors limits the efficacy of oxygen (O2)-dependent photodynamic therapy (PDT). The overexpressed heat shock proteins (HSPs) in tumor cells hamper the effect of photothermal therapy (PTT). Herein, a tumor oxygenation-enhanced and ATP-reduced gelatin nanoreactor (MCGPD ∼ RGD NPs) for PDT/PTT-augmented combination cancer therapy is reported. In this nanosystem, the Arg-Gly-Asp (RGD) peptides of MCGPD ∼ RGD NPs can ensure accurate recognition and sufficient accumulation in the tumor site. After accumulation, doxorubicin (DOX) can be released from MCGPD ∼ RGD NPs in a mild acidic tumor microenvironment (TME) for highly efficient chemotherapy. Upon 808 nm laser irradiation, the overexpressed matrix metalloproteinase-2 (MMP-2) in the TME and the heat produced from the PDA coating trigger Gel NP degradation to expose chlorin e6 (Ce6) and Met from the cavity of MCGPD ∼ RGD NPs. The exposed Met elevates the O2 content and reduces ATP production in tumor sites to spur the successful O2-dependent PDT and HSP-mediated PTT. The heat generated by the PDA coating directly kills the tumor cells to ensure PTT and amplifies the chemotherapeutic effect. In vitro and in vivo assays indicate that MCGPD ∼ RGD NPs have excellent ability to promote cell apoptosis and to inhibit tumor growth. Overall, this smart responsive hydrogel nanosystem with hypoxia-relieving capacity and ATP-decreasing performance provides a promising strategy against cancer.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| | - Yunfeng Lei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| | - Xuezhong Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| | - Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| | - Zhuoxuan Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou 571199, P. R. China.
| | - Liming Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou 571199, P. R. China.
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| |
Collapse
|
70
|
Zhao G, Li J, Fangfang Lv, Wang X, Dong Q, Liu D, Zhang J, Li Z, Zhou X, Liu H. Biomimetic Platform Based on Mesoporous Platinum for Multisynergistic Cancer Therapy. ACS Biomater Sci Eng 2021; 7:5154-5164. [PMID: 34636537 DOI: 10.1021/acsbiomaterials.1c00912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photothermal therapy (PTT) using nanoparticles is one of the research hotspots in the field of cancer therapy. However, the thermal resistance of tumor cells and the elimination of nanoparticles by the body's immune system reduce their therapeutic effect. Therefore, it is essential to reduce heat resistance, improve their biocompatibility, and reduce the clearance of the immune system. In this work, we constructed a biomimetic platform for cancer therapy based on heat shock protein (HSP) inhibitors, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG))-loaded and platelet membrane (PM)-coated mesoporous platinum nanoparticles (MPNPs). First, MPNPs with the properties of chemotherapy and PTT were synthesized to load 17-DMAG (17-DMAG/MPNPs). Then, they were coated with PM for tumor targeting and improved biocompatibility to obtain the final bionic nanotherapy platform 17-DMAG/MPNPs@PM. The results in vivo and in vitro showed that 17-DMAG/MPNPs@PM could accumulate in the tumor and effectively inhibit the growth of tumor cells. Therefore, the biomimetic nanotherapy system is expected to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Gaoqian Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fangfang Lv
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaochun Wang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Qing Dong
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.,College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.,College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Xiaohan Zhou
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
71
|
Lv W, Cao M, Liu J, Hei Y, Bai J. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. Acta Biomater 2021; 135:617-627. [PMID: 34407474 DOI: 10.1016/j.actbio.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS)-mediated antitumor modalities that induced oxidative damage of cancer cells have recently acquired increasing attention on account of their noninvasiveness, low systemic toxicity, and high specificity. However, their clinical efficacy was often constrained by complex and various tumor microenvironment (TME), especially hypoxia characteristic and antioxidation effect of glutathione (GSH). Herein, we constructed a multinanozyme system based on hyaluronic acid (HA)-stabilized CuMnOx nanoparticles (CMOH) loaded with indocyanine green (ICG) with high-efficient ROS generation, O2 self-evolving function, GSH depletion ability and hyperthermia effect for achieving hypoxic tumor therapy. The CMOH nanozymes exhibited peroxidase-like and oxidase-like activities, which could efficiently catalyze H2O2 or O2 to generate hydroxyl radicals (•OH) or superoxide radicals (•O2-) in acidic tumor microenvironment (TME), elevating oxidative stress of tumor. Indocyanine green (ICG) was further loaded into HA-CuMnOx to form HA-CuMnOx@ICG nanocomposites (CMOI NCs), which can effectively generate singlet oxygen (1O2) and local hyperthermia under light irradiation. The hyperthermia generated by CMOI NCs further enhances the catalytic activities of nanozymes for ROS generation. Meanwhile, the CMOI with catalase-like activity could catalyze H2O2 into O2 for relieving tumor hypoxia and elevate O2-dependent ROS generation. Notably, CMOI can consume endogenous GSH, thereby impairing tumor antioxidant system and enhancing ROS-based therapy efficacy. After modified with HA, CMOI NCs with tumor targeting ability realized synergistic PTT-enhanced tumor oxidation therapy based on their multimodal properties. Thus, this work contributes to design high-performance therapeutic reagent to overcome the limitation of hypoxia and high antioxidant defense of tumor. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS)-mediated antitumor modalities were often constrained by complex and various tumor microenvironment (TME), especially hypoxia characteristic and antioxidation effect of glutathione (GSH). In this work, a multinanozyme system based on hyaluronic acid (HA)-stabilized CuMnOx nanoparticles (CMOH) loaded with indocyanine green (ICG) was designed to realize PTT-enhanced multiple catalysis tumor therapy. Although antitumor modalities based on multienzyme catalysis have been developed. Here, we highlighted the responsive catalysis of multienzyme system on tumor microenvironment (TME) and the promoting effect of photothermal effect on ROS production. Both in vitro and in vivo manifested that the enhanced anticancer efficacy of CMOI NCs due to their thermally amplified catalytic activity and TME regulation ability.
Collapse
|
72
|
Bi S, Deng Z, Jiang Q, Jiang M, Zeng S. A H 2S-Triggered Dual-Modal Second Near-Infrared/Photoacoustic Intelligent Nanoprobe for Highly Specific Imaging of Colorectal Cancer. Anal Chem 2021; 93:13212-13218. [PMID: 34554729 DOI: 10.1021/acs.analchem.1c02200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An endogenous H2S-triggered intelligent optical nanoprobe combining second near-infrared (NIR-II) fluorescence with photoacoustic (PA) imaging can provide more comprehensive information to further improve the sensitivity and reliability of diagnosis for colorectal tumor, which is rarely explored. Herein, an endogenous H2S-triggered SiO2@Ag nanoprobe was designed for in situ dual-modal NIR-II/PA imaging of colorectal cancer. The designed dual-modal nanoprobe can be converted to SiO2@Ag2S after in situ biosynthesis via a sulfuration reaction with the over-expressed endogenous H2S in the colorectal tumor. More importantly, the designed SiO2@Ag nanoprobe exhibits high sensitivity and specificity for diagnosing colorectal cancer in vivo via dual-modal NIR-II/PA imaging. These results provide a new NIR-II/PA dual-modal imaging strategy for noninvasive intelligent detection of colorectal cancer.
Collapse
Affiliation(s)
- Shenghui Bi
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| | - Zhiming Deng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| | - Qing Jiang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Mingyang Jiang
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| | - Songjun Zeng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
73
|
Huang J, Wang J, Hao Z, Li C, Wang B, Qu Y. Fabrication of N-CQDs@W18O49 heterojunction with enhanced charge separation and photocatalytic performance under full-spectrum light irradiation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
74
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
75
|
Zhu YX, Jia HR, Guo Y, Liu X, Zhou N, Liu P, Wu FG. Repurposing Erythrocytes as a "Photoactivatable Bomb": A General Strategy for Site-Specific Drug Release in Blood Vessels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100753. [PMID: 34259382 DOI: 10.1002/smll.202100753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Tumor vasculature has long been considered as an extremely valuable therapeutic target for cancer therapy, but how to realize controlled and site-specific drug release in tumor blood vessels remains a huge challenge. Despite the widespread use of nanomaterials in constructing drug delivery systems, they are suboptimal in principle for meeting this demand due to their easy blood cell adsorption/internalization and short lifetime in the systemic circulation. Here, natural red blood cells (RBCs) are repurposed as a remote-controllable drug vehicle, which retains RBC's morphology and vessel-specific biodistribution pattern, by installing photoactivatable molecular triggers on the RBC membrane via covalent conjugation with a finely tuned modification density. The molecular triggers can burst the RBC vehicle under short and mild laser irradiation, leading to a complete and site-specific release of its payloads. This cell-based vehicle is generalized by loading different therapeutic agents including macromolecular thrombin, a blood clotting-inducing enzyme, and a small-molecule hypoxia-activatable chemodrug, tirapazamine. In vivo results demonstrate that the repurposed "anticancer RBCs" exhibit long-term stability in systemic circulation but, when tumors receive laser irradiation, precisely releases their cargoes in tumor vessels for thrombosis-induced starvation therapy and local deoxygenation-enhanced chemotherapy. This study proposes a general strategy for blood vessel-specific drug delivery.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ningxuan Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
76
|
Zhao M, Yang X, Fu H, Chen C, Zhang Y, Wu Z, Duan Y, Sun Y. Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32763-32779. [PMID: 34235912 DOI: 10.1021/acsami.1c07323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to a special pathological type of triple-negative breast cancer (TNBC) and the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her 2), targeted therapies are not effective. The lack of effective treatment drugs and insensitivity to the current single-treatment methods are the biggest problems that we face with the TNBC treatment. Therefore, new strategies to achieve selective treatment and further visual efficacy evaluation will be powerful tools against TNBC. Herein, a novel tumor-targeted nanosized ultrasound contrast nanobubble loaded with chlorin e6 (Ce6), metformin (MET), and perfluorohexane (PFH) and covalently connected to the anti-PD-L1 peptide (DPPA-1) in the outer shell was fabricated. When accumulated in acidic tumor tissues, poly(ethylene glycol) (PEG) ligands detach, and DPPA-1 is exposed for programmed death-ligand 1 (PD-L1) targeting and blocking. The released metformin can relieve hypoxia by inhibiting mitochondrial complex I in the tumor microenvironment (TME) and enhance the therapeutic efficacy of Ce6 while synergizing with DPPA-1 by reducing PD-L1 expression. More significantly, photodynamic therapy (PDT) using multifunctional tumor-targeted nanosized ultrasound contrast agents (PD-L1-targeted pH-sensitive chlorin e6 (Ce6) and metformin (MET) drug-loaded phase transitional nanoparticles (Ce6/MET NPs-DPPA-1)) combined with PD-L1 checkpoint blocking can not only reduce tumor-mediated immunosuppression but also produce strong antitumor immunity. This finding provides a new idea for constructing multifunctional TNBC therapeutic nanoagents.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
77
|
Li X, Wu Y, Zhang R, Bai W, Ye T, Wang S. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions. Front Mol Biosci 2021; 8:683519. [PMID: 34277702 PMCID: PMC8281198 DOI: 10.3389/fmolb.2021.683519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.
Collapse
Affiliation(s)
- Xianqiang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Bai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
78
|
Li Q, Zhang J, Li J, Ye H, Li M, Hou W, Li H, Wang Z. Glutathione-Activated NO-/ROS-Generation Nanoparticles to Modulate the Tumor Hypoxic Microenvironment for Enhancing the Effect of HIFU-Combined Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26808-26823. [PMID: 34085524 DOI: 10.1021/acsami.1c07494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of high-intensity focused ultrasound (HIFU) and chemotherapy has promising potential in the synergistic treatment of various types of solid tumors. However, the clinical efficacy of HIFU in combination chemotherapy is often impeded by the pre-existing hypoxia tumor microenvironment-induced multidrug resistance (MDR). Therefore, it is imperative for HIFU combined with chemotherapy to overcome MDR by improving the tumor hypoxic microenvironment. Hence, we developed highly stable nanoparticles (P@BDOX/β-lapachone-NO-NPs) with intracellular nitric oxide (NO)- and reactive oxygen species (ROS)-generating capabilities at the tumor site to relieve the hypoxic tumor microenvironment in solid tumors. Doxorubicin prodrug (boronate-DOX, BDOX) and β-lapachone were concurrently loaded onto actively targeted pH (low) insertion peptides (pHLIPs)-poly(ethylene glycol) and nitrated gluconic acid copolymers. Our results showed that the ability of P@BDOX/β-lapachone-NO-NPs to generate NO and ROS simultaneously is vital for the sensitization of hypoxic solid tumors for chemotherapy, as evidenced by the suppression of tumor cells and tissues (in vitro and in the nude mice model). Thus, this combined therapy holds considerable potential in the management of hypoxic solid tumors.
Collapse
Affiliation(s)
- Qianyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingnan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Hemin Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Meixuan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Wei Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
79
|
Smith CB, Days LC, Alajroush DR, Faye K, Khodour Y, Beebe SJ, Holder AA. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer †. Photochem Photobiol 2021; 98:17-41. [PMID: 34121188 DOI: 10.1111/php.13467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitizer and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species such as cytotoxic singlet oxygen (1 O2 ) to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic complexes as photosensitizing agents. This review covers several in vitro and in vivo studies, as well as clinical trials that reported on the anticancer properties of inorganic pharmaceuticals used in PDT against different types of cancer.
Collapse
Affiliation(s)
- Chloe B Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Lindsay C Days
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Duaa R Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Khadija Faye
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Yara Khodour
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Stephen J Beebe
- Frank Reidy Research Centre for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
80
|
Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021; 9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle-based therapeutic and detectable modalities can augment anticancer efficiency, holding potential in capable target and suppressive metastases post administration. However, the individual discrepancies of the current "one-size-fits-all" strategies for anticancer nanotherapeutics have heralded the need for "personalized therapy". Benefiting from the special inherency of various cells, diverse cell membrane-coated nanoparticles (CMCNs) were established on a patient-by-patient basis, which would facilitate the personalized treatment of individual cancer patients. CMCNs in a complex microenvironment can evade the immune system and target homologous tumors with a suppressed immune response, as well as a prolonged circulation time, consequently increasing the drug accumulation at the tumor site and anticancer therapeutic efficacy. This review focuses on the emerging strategies and advances of CMCNs to synergistically integrate the merit of source cells with nanoparticulate delivery systems for the orchestration of personalized anticancer nanotherapeutics, thus discussing their rationalities in facilitating chemotherapy, imaging, immunotherapy, phototherapy, radiotherapy, sonodynamic, magnetocaloric, chemodynamic and gene therapy. Furthermore, the mechanism, challenges and opportunities of CMCNs in personalized anticancer therapy were highlighted to further boost cooperation from different fields, including materials science, chemistry, medicine, pharmacy and biology for the lab-to-clinic translation of CMCNs combined with the individual advantages of source cells and nanotherapeutics.
Collapse
Affiliation(s)
- Xuerui Chen
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhan
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Luo
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen He
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
81
|
Zhou F, Yang S, Zhao C, Liu W, Yao X, Yu H, Sun X, Liu Y. γ-Glutamyl transpeptidase-activatable near-infrared nanoassembly for tumor fluorescence imaging-guided photothermal therapy. Theranostics 2021; 11:7045-7056. [PMID: 34093870 PMCID: PMC8171106 DOI: 10.7150/thno.60586] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: Precise treatment of tumors is attracting increasing attention. Molecular probes simultaneously demonstrating the diagnostic signal and pharmacological effect in response to tumor microenvironment are highly desired. γ-glutamyl transpeptidase (GGT) is a biomarker with significantly up-regulated expression in the tumor area. We developed a GGT responsive near-infrared (NIR) nanoassembly for tumor-specific fluorescence imaging-guided photothermal therapy. Methods: The GGT responsive NIR probe was constructed by conjugating GGT-specific substrate γ-glutamic acid (γ-Glu) with cyanine fluorophore (NRh-NH2) via amide reaction. The resulting NRh-G spontaneously assembled into nanoparticles (NRh-G-NPs) around 50 nm. The NPs were characterized and the properties evaluated in the presence or absence of GGT. Subsequently, we studied fluorescence imaging and photothermal therapy of NRh-G-NPs in vitro and in vivo. Results: NRh-G-NPs, upon specific reaction with GGT, turned into NRh-NH2-NPs, showing a ~180-fold fluorescence enhancement and excellent photothermal effect recovery. NRh-G-NPs could selectively light up U87MG tumor cells while their fluorescence was weak in L02 human normal liver cells. The NPs also showed excellent tumor cell ablation upon laser irradiation. After intravenous injection into tumor-bearing mice, NRh-G-NPs could arrive in the tumor area and specifically light up the tumor. Following laser irradiation, the tumor could be completely erased with no tumor reoccurrence for up to 40 days. Conclusions: NRh-G-NPs were specifically responsive to GGT overexpressed in U87MG tumor cells and selectively lit up the tumor for imaging-guided therapy. Besides, the recovery of photothermal property in the tumor area could improve cancer therapy precision and decreased side effects in normal tissues.
Collapse
Affiliation(s)
- Fangyuan Zhou
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shikui Yang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wangwang Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xufeng Yao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
82
|
Zhou Z, Xie J, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Construction of Smart Nanotheranostic Platform Bi-Ag@PVP: Multimodal CT/PA Imaging-Guided PDT/PTT for Cancer Therapy. ACS OMEGA 2021; 6:10723-10734. [PMID: 34056226 PMCID: PMC8153791 DOI: 10.1021/acsomega.1c00225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
High-efficiency nanotheranostic agents with multimodal imaging guidance have attracted considerable interest in the field of cancer therapy. Herein, novel silver-decorated bismuth-based heterostructured polyvinyl pyrrolidone nanoparticles (NPs) with good biocompatibility (Bi-Ag@PVP NPs) were synthesized for accurate theranostic treatment, which can integrate computed tomography (CT)/photoacoustic (PA) imaging and photodynamic therapy/photothermal therapy (PDT/PTT) into one platform. The Bi-Ag@PVP NPs can enhance light absorption and achieve a better photothermal effect than bismuth NPs. Moreover, after irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can efficiently induce the generation of reactive oxygen species (ROS), thereby synergizing PDT/PTT to exert an efficient tumor ablation effect both in vitro and in vivo. Furthermore, Bi-Ag@PVP NPs can also be employed to perform enhanced CT/PA imaging because of their high X-ray absorption attenuation and enhanced photothermal conversion. Thus, they can be utilized as a highly effective CT/PA imaging-guided nanotheranostic agent. In addition, an excellent antibacterial effect was achieved. After irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can destroy the integrity of Escherichia coli, thereby inhibiting E. coli growth, which can minimize the risk of infection during cancer therapy. In conclusion, our study provides a novel nanotheranostic platform that can achieve CT/PA-guided PDT/PTT synergistic therapy and have potential antibacterial properties. Thus, this work provides an effective strategy for further broad clinical application prospects.
Collapse
Affiliation(s)
- Zonglang Zhou
- The
174th Clinic College of People’s Liberation Army, Anhui Medical University, Hefei 230031, China
- The
73rd Army Hospital of the Chinese People’s Liberation Army, Xiamen 361003, China
| | - Jun Xie
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Sihan Ma
- College
of Energy, Xiamen University, Xiamen 361005, China
| | - Xian Luo
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Jiajing Liu
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Shengyu Wang
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Yuqiang Chen
- The
174th Clinic College of People’s Liberation Army, Anhui Medical University, Hefei 230031, China
- The
73rd Army Hospital of the Chinese People’s Liberation Army, Xiamen 361003, China
| | - Jianghua Yan
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Fanghong Luo
- School
of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
83
|
Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Acta Biomater 2021; 125:1-28. [PMID: 33639310 DOI: 10.1016/j.actbio.2021.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The past several years have witnessed the blooming of emerging immunotherapy, as well as their therapeutic potential in remodeling the immune system. Nevertheless, with the development of biological mechanisms in oncology, it has been demonstrated that hypoxic tumor microenvironment (TME) seriously impairs the therapeutic outcomes of immunotherapy. Hypoxia, caused by Warburg effect and insufficient oxygen delivery, has been considered as a primary construction element of TME and drawn tremendous attention in cancer therapy. Multiple hypoxia-modulatory theranostic agents have been facing many obstacles and challenges while offering initial therapeutic effect. Inspired by versatile nanomaterials, great efforts have been devoted to design hypoxia-based nanoplatforms to preserve drug activity, reduce systemic toxicity, provide adequate oxygenation, and eventually ameliorate hypoxic-tumor management. Besides these, recently, some curative and innovative hypoxia-related nanoplatforms have been applied in synergistic immunotherapy, especially in combination with immune checkpoint blockade (ICB), immunomodulatory therapeutics, cancer vaccine therapy and immunogenic cell death (ICD) effect. Herein, the paramount impact of hypoxia on tumor immune escape was initially described and discussed, followed by a comprehensive overview on the design tactics of multimodal nanoplatforms based on hypoxia-enabled theranostic agents. A variety of nanocarriers for relieving tumor hypoxic microenvironment were also summarized. On this basis, we presented the latest progress in the use of hypoxia-modulatory nanomaterials for synergistic immunotherapy and highlighted current challenges and plausible promises in this area in the near future. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy, emerging as a novel treatment to eradicate malignant tumors, has achieved a measure of success in clinical popularity and transition. However, over the last decades, hypoxia-induced tumor immune escape has attracted enormous attention in cancer treatment. Limitations of free targeting agents have paved the path for the development of multiple nanomaterials with the hope of boosting immunotherapy. In this review, the innovative design tactics and multifunctional nanocarriers for hypoxia alleviation are summarized, and the smart nanomaterial-assisted hypoxia-modulatory therapeutics for synergistic immunotherapy and versatile biomedical applications are especially highlighted. In addition, the challenges and prospects of clinical transformation are further discussed.
Collapse
|
84
|
Zhang C, Chen W, Zhang T, Jiang X, Hu Y. Hybrid nanoparticle composites applied to photodynamic therapy: strategies and applications. J Mater Chem B 2021; 8:4726-4737. [PMID: 32104868 DOI: 10.1039/d0tb00093k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT), as a robust strategy, has long been applied to cancer treatment owing to the meaningful breakthroughs and unique advantages, including ignorable invasiveness and spatio-temporal selectivity. Numerous PDT agents, especially hybrid nanoparticle composite (hybrid)-based sensitizers consisting of an organic polymer and inorganic nanoparticles (NPs), feature the synergetic pros of the components, which have unlocked the additional potentials of PDT. Although reviews relating to the applications of hybrids to PDT have been previously reported, most of them only focus on the designs of smart hybrids integrating multimodal imaging-guided multiple treatment modalities. Traditional PDT treatment has several limitations, such as inadequate PDT agents accumulating in cancer tissues, inferior PDT effect due to the devastating cancer hypoxia environment, relevant systemic toxicity in non-intelligent stimulation response treatment systems, and serious dependence of PDT on external light sources. Many strategies have been developed for overcoming these limitations, including improvement of cancer-homing ability by introducing active targeting groups, remodeling of the cancer hypoxia environment through oxygen regulators, intratumor release of ROS through activatable molecules, and replacement of laser light by X-rays or self-luminescence. This review aims to summarize the most recent advances in designing hybrids for improving the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China. and Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| | - Weizhi Chen
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Taixing Zhang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China. and Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| |
Collapse
|
85
|
Gong C, Yu X, Zhang W, Han L, Wang R, Wang Y, Gao S, Yuan Y. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. J Nanobiotechnology 2021; 19:58. [PMID: 33632231 PMCID: PMC7905864 DOI: 10.1186/s12951-021-00805-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of an immuno-metabolic adjuvant and immune checkpoint inhibitors holds great promise for effective suppression of tumor growth and invasion. In this study, a pH-responsive co-delivery platform was developed for metformin (Met), a known immuno-metabolic modulator, and short interfering RNA (siRNA) targeting fibrinogen-like protein 1 mRNA (siFGL1), using a hybrid biomimetic membrane (from macrophages and cancer cells)-camouflaged poly (lactic-co-glycolic acid) nanoparticles. To improve the endo-lysosomal escape of siRNA for effective cytosolic siRNA delivery, a pH-triggered CO2 gas-generating nanoplatform was developed using the guanidine group of Met. It can react reversibly with CO2 to form Met-CO2 for the pH-dependent capture/release of CO2. The introduction of Met, a conventional anti-diabetic drug, promotes programmed death-ligand 1 (PD-L1) degradation by activating adenosine monophosphate-activated protein kinase, subsequently blocking the inhibitory signals of PD-L1. As a result, siFGL1 delivery by the camouflaged nanoparticles of the hybrid biomimetic membrane can effectively silence the FGL1 gene, promoting T-cell-mediated immune responses and enhancing antitumor immunity. We found that a combination of PD-L1/programmed death 1 signaling blockade and FGL1 gene silencing exhibited high synergistic therapeutic efficacy against breast cancer in vitro and in vivo. Additionally, Met alleviated tumor hypoxia by reducing oxygen consumption and inducing M1-type differentiation of tumor-related macrophages, which improved the tumor immunosuppressive microenvironment. Our results indicate the potential of hybrid biomimetic membrane-camouflaged nanoparticles and combined Met-FGL1 blockade in breast cancer immunotherapy.![]()
Collapse
Affiliation(s)
- Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Lu Han
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yujie Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
86
|
Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy. Int J Pharm 2021; 598:120395. [PMID: 33639226 DOI: 10.1016/j.ijpharm.2021.120395] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Cell membrane coating strategy is one of the promising techniques for biomimetic functionalization of nanoparticle. The biomimetic nanoparticles camouflage themselves utilizing the fundamental properties of native cells. Cell membranes are extracted from various cells to cloak the nanoparticles for targeted drug delivery. Platelet membrane is one such cell membrane proposing itself as a potential camouflager to escape the immune surveillance and aid prolonged blood circulation with minimum systemic cytotoxicity. Platelets play a very important role in the physiological functions of the body and also feature in few pathological disorders like cancer, atherosclerosis and rheumatoid arthritis. This review comprises of preparation and characterization of platelet membrane camouflaged nanoparticles and also focuses on their recent developments towards targeted therapy in cancer, immune diseases, atherosclerosis and phototherapy. Although platelet membrane camouflaged nanoparticles are currently in the preliminary stage of development, there is huge potential to explore this biodegradable and biocompatible delivery system.
Collapse
|
87
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
88
|
Powsner EH, Harris JC, Day ES. Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Emily H. Powsner
- Department of Biomedical Engineering University of Delaware 161 Colburn Lab Newark DE 19716 USA
| | - Jenna C. Harris
- Department of Materials Science and Engineering University of Delaware 127 The Green Newark DE 19716 USA
| | - Emily S. Day
- Department of Biomedical Engineering University of Delaware 161 Colburn Lab Newark DE 19716 USA
- Department of Materials Science and Engineering University of Delaware 127 The Green Newark DE 19716 USA
- Center for Translational Cancer Research Helen F. Graham Cancer Center and Research Institute 4701 Ogletown Stanton Road Newark DE 19713 USA
| |
Collapse
|
89
|
Prá M, Ferreira GK, de Mello AH, Uberti MF, Engel NA, Costa AB, Zepon KM, Francisco GG, Hlavac NRC, Terra SR, Garcez ML, Zaccaron RP, Mendes C, Tschoeke ACP, Kanis LA, Budni J, Silveira PCL, Petronilho F, da Silva Paula MM, Rezin GT. Treatment with isolated gold nanoparticles reverses brain damage caused by obesity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111392. [PMID: 33545808 DOI: 10.1016/j.msec.2020.111392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 12/30/2022]
Abstract
In this study, we performed two experiments. In the first experiment, the objective was to link gold nanoparticles (GNPs) with sodium diclofenac and/or soy lecithin and to determine their concentration in tissues and their toxicity using hepatic and renal analyzes in mice to evaluate their safety as therapeutic agents in the subsequent treatment of obesity. In the second experiment, we evaluated the effect of GNPs on inflammatory and biochemical parameters in obese mice. In the first experiment, we synthesized and characterized 18 nm GNPs that were administered intraperitoneally in isolation or in association with sodium diclofenac and/or soy lecithin in mice once daily for 1 or 14 days. Twenty-four hours after the single or final administration, the animals were euthanized, following which the tissues were removed for evaluating the concentration of GNPs, and serum samples were collected for hepatic and renal analysis. Hepatic damage was evaluated based on the levels of alanine aminotransferase (ALT), whereas renal damage was evaluated based on creatinine levels. A higher concentration of GNPs was detected in the tissues upon administration for 14 days, and there were no signs of hepatic or renal damage. In the second experiment, the mice were used as animal models of obesity and were fed a high-fat diet (obese group) and control diet (control group). After eight weeks of high-fat diet administration, the mice were treated with saline or with GNPs (average size of 18 nm) at a concentration of 70 mg/L (70 mg/kg) once a day, for 14 days, for 10 weeks. Body weight and food intake were measured frequently. After the experiment ended, the animals were euthanized, serum samples were collected for glucose and lipid profile analysis, the mesenteric fat content was weighed, and the brains were removed for inflammatory and biochemical analysis. In obese mice, although GNP administration did not reduce body and mesenteric fat weight, it reduced food intake. The glucose levels were reversed upon administration of GNPs, whereas the lipid profile was not altered in any of the groups. GNPs exerted a beneficial effect on inflammation and oxidative stress parameters, without reverting mitochondrial dysfunction. Our results indicate that the intraperitoneal administration of GNPs for 14 days results in a significant GNP concentration in adipose tissues, which could be an interesting finding for the treatment of inflammation associated with obesity. Based on the efficacy of GNPs in reducing dietary intake, inflammation, and oxidative stress, they can be considered potential alternative agents for the treatment of obesity.
Collapse
Affiliation(s)
- Morgana Prá
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | | | - Aline Haas de Mello
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Marcela Fornari Uberti
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Nicole Alessandra Engel
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Ana Beatriz Costa
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Karine Modolon Zepon
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Guzatti Francisco
- Laboratório de Patologia Clínica, Faculdade de Medicina Veterinária, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Nicole Regina Capacchi Hlavac
- Laboratório de Patologia Clínica, Faculdade de Medicina Veterinária, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Silvia Resende Terra
- Laboratório de Patologia Clínica, Faculdade de Medicina Veterinária, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Michelle Lima Garcez
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Carolini Mendes
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Luiz Alberto Kanis
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Josiane Budni
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Marcos Marques da Silva Paula
- Departamento de Física, Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Gislaine Tezza Rezin
- Laboratório de Neurobiologia dos Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
90
|
Zhang C, Yan Q, Li J, Zhu Y, Zhang Y. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. ACS APPLIED BIO MATERIALS 2021; 4:277-294. [PMID: 35014284 DOI: 10.1021/acsabm.0c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy, which initiates or strengthens innate immune responses to attack cancer cells, has shown great promise in cancer treatment. However, low immune response impacted by immunosuppressive tumor microenvironment (TME) remains a key challenge, which has been found related to tumor hypoxia. Recently, nanomaterial systems are proving to be excellent platforms for tumor oxygenation, which can reverse hypoxia-associated immunosuppression, strengthen the systemic antitumor immune responses, and thus afford a striking abscopal effect to clear metastatic cancer cells. In this review, we would like to survey recent progress in utilizing nanomaterials for tumor oxygenation through approaches such as in situ O2 generation, O2 delivery, tumor vasculature normalization, and mitochondrial-respiration inhibition. Their effects on tumor hypoxia-associated immunosuppression are highlighted. We also discuss the ongoing challenges and how to further improve the clinical prospect of cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Yan
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ying Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Zhang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
91
|
Yang J, Fang HJ, Cao Q, Mao ZW. The design of cyclometalated iridium(iii)-metformin complexes for hypoxic cancer treatment. Chem Commun (Camb) 2021; 57:1093-1096. [PMID: 33434260 DOI: 10.1039/d0cc07104h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the hypoxic microenvironment is the priority for tumor treatment. Cytometalated iridium(iii)-metformin conjugates were synthesized for treating hypoxic cancer cells for the first time, which alleviate hypoxia via mitochondria respiration inhibition, thus displaying 10-fold higher cytotoxicity, emerging anti-metastasis and anti-inflammatory activities than a metformin-free Ir(iii) complex and cisplatin against hypoxic cancer cells.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
92
|
Guo X, Wen C, Xu Q, Ruan C, Shen XC, Liang H. A full-spectrum responsive B-TiO2@SiO2–HA nanotheranostic system for NIR-II photoacoustic imaging-guided cancer phototherapy. J Mater Chem B 2021; 9:2042-2053. [DOI: 10.1039/d0tb02952a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A full-spectrum responsive B-TiO2@SiO2–HA nanotheranostic system has been successfully fabricated for second near-infrared photoacoustic imaging-guided synergistic cancer targeting phototherapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Qianxin Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Changping Ruan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xing-Can Shen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
93
|
Li Y, Tang R, Liu X, Gong J, Zhao Z, Sheng Z, Zhang J, Li X, Niu G, Kwok RTK, Zheng W, Jiang X, Tang BZ. Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS NANO 2020; 14:16840-16853. [PMID: 33197171 DOI: 10.1021/acsnano.0c05610] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT), a noninvasive therapeutic strategy for cancer treatment, which always suffers from the low reactive oxygen species (ROS) yield of traditional organic dyes. Herein, we present lipid-encapsulated aggregation-induced emission nanoparticles (AIE NPs) that have a high quantum yield (23%) and a maximum two-photon absorption (TPA) cross-section of 560 GM irradiated by near-infrared light (800 nm). The AIE NPs can serve as imaging agents for spatiotemporal imaging of tumor tissues with a penetration depth up to 505 μm on mice melanoma model. Importantly, the AIE NPs can simultaneously generate singlet oxygen (1O2) and highly toxic hydroxyl radicals (•OH) upon irradiation with 800 nm irradiation for photodynamic tumor ablation. In addition, the AIE NPs can be effectively cleared from the mouse body after the imaging and therapy. This study provides a strategy to develop theranostic agents for cancer image-guided PDT with high brightness, superior photostability, and high biosafety.
Collapse
Affiliation(s)
- Ying Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou 730000, China
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, BeiYiTiao, Zhongguancun, Beijing 100190, China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, BeiYiTiao, Zhongguancun, Beijing 100190, China
| | - Junyi Gong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
| | - Xuanyu Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
| | - Guangle Niu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wenfu Zheng
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, BeiYiTiao, Zhongguancun, Beijing 100190, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
94
|
Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 2020; 327:546-570. [DOI: 10.1016/j.jconrel.2020.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/08/2023]
|
95
|
Liu B, Qiao G, Han Y, Shen E, Alfranca G, Tan H, Wang L, Pan S, Ma L, Xiong W, Liu Y, Cui D. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater 2020; 117:361-373. [PMID: 33007481 DOI: 10.1016/j.actbio.2020.09.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/27/2023]
Abstract
Peptide modified nanoparticles have emerged as powerful tools for enhanced cancer diagnosis and novel treatment strategies. Here, human programmed death-ligand 1 (PD-L1) peptides were used for the first time for the modification of gold nanoprisms (GNPs) to enhance targeting efficiency. A multifunctional nanoprobe was developed that the GNPs@PEG/Ce6-PD-L1 peptide (GNPs@PEG/Ce6-P) was used for imaging-guided photothermal/photodynamic therapy by using the targeting effect of PD-L1. Both confocal imaging and flow cytometry experiments demonstrated a remarkable affinity of the as-prepared nanoprobes GNPs@PEG/Ce6-P to lung cancer cells (HCC827), which have a high PD-L1 expression. Subsequent in vitro and in vivo experiments further demonstrated that the nanoprobes GNPs@PEG/Ce6-P not only allowed for real-time visualization via fluorescence (FL) imaging and photoacoustic (PA) imaging, but also served as phototherapy agents for synergistic photothermal therapy (PTT) and photodynamic therapy (PDT). Furthermore, treatments on human lung cancer cells-derived tumors demonstrated that the nanoprobes GNPs@PEG/Ce6-P could significantly suppress tumor growth through PTT and PDT from GNPs and Ce6, respectively. In conclusion, the as-prepared new nanoprobes show promising potential for nanomedicine with remarkable targeting ability for dual-mode imaging and enhanced PDT and PTT effects on lung cancer.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanglei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Yu Han
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600Xishan Road, Shanghai 200233, China
| | - Gabriel Alfranca
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Manufacturing Bureau Road, Shanghai 200011, China
| | - Lirui Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaojun Pan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Lijun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Wujun Xiong
- Department of Hepatology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
96
|
He F, Ji H, Feng L, Wang Z, Sun Q, Zhong C, Yang D, Gai S, Yang P, Lin J. Construction of thiol-capped ultrasmall Au-Bi bimetallic nanoparticles for X-ray CT imaging and enhanced antitumor therapy efficiency. Biomaterials 2020; 264:120453. [PMID: 33069138 DOI: 10.1016/j.biomaterials.2020.120453] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 01/27/2023]
Abstract
Thiol capped gold nanoparticles with small size, high dispersity, and broad light absorption covering ultraviolet (UV) to near infrared (NIR) region have been developed for catalysis, fluorescence imaging and photodynamic therapy (PDT). The constitution of the metal core in such nanoparticles can strongly influence the luminescence, catalysis, and stability properties. However, to date, a corresponding investigation of the influence of the metallic core on the generation of reaction oxygen species (ROS) and its therapeutic efficiency towards tumor cells remains to be lacking. Herein, we fabricated bimetallic nanoparticles by introducing bismuth into captopril capped gold nanoparticles. Surprisingly, the introduction of the Bi was found enhance the photothermal effect of the nanoparticles to a great extent, and the variation trends for the thermal effect, ROS generation rate, and tumor cell inhibition effect were found to disparate with the changes in the Au and Bi composition. The origin of the photothermal effect was deduced through density functional theory calculations based on microscopic construction. Combined with the intrinsic photodynamic effect, the bimetallic nanoparticles showed an outstanding tumor cell inhibition effect. Furthermore, due to the excellent CT imaging property, our designed nanoparticles provide the exciting possibility to realize CT imaging guided and light-mediated tumor therapy.
Collapse
Affiliation(s)
- Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Hongjiao Ji
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
97
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
98
|
Wang S, Duan Y, Zhang Q, Komarla A, Gong H, Gao W, Zhang L. Drug Targeting via Platelet Membrane-Coated Nanoparticles. SMALL STRUCTURES 2020; 1:2000018. [PMID: 33817693 PMCID: PMC8011559 DOI: 10.1002/sstr.202000018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Platelets possess distinct surface moieties responsible for modulating their adhesion to various disease-relevant substrates involving vascular damage, immune evasion, and pathogen interactions. Such broad biointerfacing capabilities of platelets have inspired the development of platelet-mimicking drug carriers that preferentially target drug payloads to disease sites for enhanced therapeutic efficacy. Among these carriers, platelet membrane-coated nanoparticles (denoted 'PNPs') made by cloaking synthetic substrates with the plasma membrane of platelets have emerged recently. Their 'top-down' design combines the functionalities of natural platelet membrane and the engineering flexibility of synthetic nanomaterials, which together create synergy for effective drug delivery and novel therapeutics. Herein, we review the recent progress of engineering PNPs with different structures for targeted drug delivery, focusing on three areas, including targeting injured blood vessels to treat vascular diseases, targeting cancer cells for cancer treatment and detection, and targeting drug-resistant bacteria to treat infectious diseases. Overall, current studies have established PNPs as versatile nanotherapeutics for drug targeting with strong potentials to improve the treatment of various diseases.
Collapse
Affiliation(s)
- Shuyan Wang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Anvita Komarla
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
99
|
Song L, Wang G, Hou X, Kala S, Qiu Z, Wong KF, Cao F, Sun L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater 2020; 108:313-325. [PMID: 32268236 DOI: 10.1016/j.actbio.2020.03.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Tumor hypoxia is believed to be a factor limiting successful outcomes of oxygen-consuming cancer therapy, thereby reducing patient survival. A key strategy to overcome tumor hypoxia is to increase the prevalence of oxygen at the tumor site. Oxygen-containing microbubbles/nanobubbles have been developed to supply oxygen and enhance the effects of therapies such as radiotherapy and photodynamic therapy. However, the application of these bubbles is constrained by their poor stability, requiring major workarounds to increase their half-lives. In this study, we explore the potential of biogenic gas vesicles (GVs) as a new kind of oxygen carrier to alleviate tumor hypoxia. GVs, which are naturally formed, gas-filled, protein-shelled compartments, were modified on the surface of their protein shells by a layer of liposome. A substantial improvement of oxygen concentration was observed in hypoxic solution, in hypoxic cells, as well as in subcutaneous tumors when lipid-GVs(O2) were added/tail-injected. Significant enhancement of tumor cell apoptosis and necrosis was also observed during photodynamic therapy (PDT) in the presence of lipid-GVs(O2) both in vitro and in vivo. Lipid-GVs(O2) alone induced no obvious change in cell viability in vitro or any apparent pathological abnormalities after mice were tail-injected with them. In all, lipid-GVs exhibited promising performance for intravenous gas delivery, enhanced PDT efficacy and low toxicity, a quality that may be applied to alleviate hypoxia in cancers, as well as hypoxia-related clinical treatments. STATEMENT OF SIGNIFICANCE: The development of stable oxygen-filled micro/nanobubbles capable of delivering oxygen to tumor sites is a major hurdle to enhancing the efficacy of cancer therapy. Currently, micro/nanobubbles are limited by their instability when oxygen is encapsulated, creating a large pressure gradient and surface tension. To improve stability, we modified the surfaces of GVs, a biogenic stable nanoscale hollow structure, as a new class of oxygen carriers. Lipid-coated GVs were found to be stable in solution and effective O2 carriers. This will overcome the limitations of coalescence, short circulation time of synthetic bubbles during application. Our surface-modified GVs demonstrated low toxicity in vitro cell in vivo, while also being able to overcome hypoxia-associated therapy resistance when combined with photodynamic therapy.
Collapse
|
100
|
Wang J, Zhang H, Xiao X, Liang D, Liang X, Mi L, Wang J, Liu J. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. Acta Biomater 2020; 107:260-271. [PMID: 32147471 DOI: 10.1016/j.actbio.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023]
Abstract
Various types of photodynamic agents have been explored for photodynamic therapy (PDT) to destroy cancers located in deep tissues. However, these agents are generally limited by low singlet oxygen (1O2) yields owing to weak absorption in the optical transparent window of biological tissues. Accordingly, in this work, we developed a nanocomposite through the assembly of gold nanobipyramids (GNBPs) on black phosphorus nanosheets (BPNSs). This nanocomposite could simultaneously enhance 1O2 generation and hyperthermia by localized surface plasmon resonance in cancer therapy. As two-dimensional inorganic photosensitizers, BPNSs were hybridized with GNBPs to form BPNS-GNBP hybrid nanosheets. The hybridization markedly increased 1O2 production by the BPNSs through plasmon-enhanced light absorption. The nanocomposite exhibited a higher photothermal conversion efficiency than the BPNSs alone. In vitro and in vivo assays indicated that the BPNS-GNBP hybrid nanocomposite exhibited good tumor inhibition efficacy owing to simultaneous dual-modality phototherapy. In vivo, the nanocomposite suppressed deep-seated tumor growth with minimal adverse effects in mice bearing orthotopic A549 human lung tumors. Taken together, these results demonstrated that our BPNS-GNBP nanocomposite could function as a promising dual-modality phototherapeutic agent for enhanced cancer therapy in future cancer treatments. STATEMENT OF SIGNIFICANCE: In this study, we established a new nanocomposite by assembly of gold nanobipyramids (GNBPs) on black phosphorus nanosheets (BPNSs). Characterization of this nanocomposite showed that BPNS-GNBP enhanced 1O2 generation and hyperthermia. BPNS-GNBP exhibited good tumor inhibition efficacy in vivo and in vitro owing to simultaneous dual-modal phototherapy functions. Moreover, BPNS-GNBP suppressed deep-seated tumor growth in vivo and did not show adverse effects in mice bearing orthotopic A549 human lung tumors. Overall, these results showed that BPNS-GNBP may be used as a promising dual-modal phototherapeutic agent for enhanced cancer therapy in future clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, PR China.
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Xiao Xiao
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Dong Liang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Xinyue Liang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Fudan University, Shanghai 200433, PR China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Fudan University, Shanghai 200433, PR China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China.
| | - Jun Liu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|