51
|
A novel CHSY1 gene mutation underlies Temtamy preaxial brachydactyly syndrome in a Pakistani family. Eur J Med Genet 2013; 57:21-4. [PMID: 24269551 DOI: 10.1016/j.ejmg.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/10/2013] [Indexed: 11/22/2022]
Abstract
Temtamy preaxial brachydactyly syndrome (TPBS) is an autosomal recessive rare disorder characterized by hyperphalangism of digits, facial dysmorphism, dental anomalies, sensorineural hearing loss, delayed motor and mental development, and growth retardation. Loss of function mutations have been recently reported in the CHSY1 gene to cause the TPBS. Here, we report a novel missense mutation (c.1897 G > A) in the CHSY1 gene in two TPBS patients from a consanguineous Pakistani family. The mutation predicted substitution of a highly conserved aspartate amino acid residue to asparagine at position 633 in the protein (D633N). Polyphen analysis supported the pathogenicity of D36N mutation. Our finding extends the body of recent evidence that supports the role of CHSY1 as a potential mediator of BMP signaling.
Collapse
|
52
|
Pedersen ME, Snieckute G, Kagias K, Nehammer C, Multhaupt HAB, Couchman JR, Pocock R. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science 2013; 341:1404-8. [PMID: 24052309 DOI: 10.1126/science.1242528] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.
Collapse
Affiliation(s)
- Mikael Egebjerg Pedersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
53
|
Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:4719-33. [DOI: 10.1016/j.bbagen.2013.06.006] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
54
|
Guo MH, Stoler J, Lui J, Nilsson O, Bianchi DW, Hirschhorn JN, Dauber A. Redefining the progeroid form of Ehlers-Danlos syndrome: report of the fourth patient with B4GALT7 deficiency and review of the literature. Am J Med Genet A 2013; 161A:2519-27. [PMID: 23956117 DOI: 10.1002/ajmg.a.36128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/15/2013] [Indexed: 11/11/2022]
Abstract
Proteoglycans are a component of the extracellular matrix and are critical for cellular and tissue function. Mutations in proteoglycan components and enzymes involved in proteoglycan synthesis have been implicated in several growth disorders, with common features including short stature and skeletal dysplasia. For example, mutations in B4GALT7, a gene whose protein product catalyzes proteoglycan synthesis, have been associated with the rare progeroid variant of Ehlers-Danlos syndrome. Here, we conducted exome sequencing in a patient with a previously undiagnosed growth disorder and identified compound heterozygous mutations in B4GALT7. This patient is just the fourth individual with genetically confirmed progeroid variant of Ehlers-Danlos syndrome. The mutations include a previously characterized c.808C>T p.Arg270Cys substitution, and a novel c.122T>C p.Leu41Pro substitution. We demonstrate that the novel mutation caused decreased levels of the enzyme, supporting the pathogenicity of the mutation. Our report identifies a novel mutation in B4GALT7 causing the progeroid variant of Ehlers-Danlos syndrome and contributes an extensive phenotypic characterization of a patient with the syndrome. We also reviewed the previous literature in addition to the present patient, and conclude that the key features associated with B4GALT7 deficiency are short stature, developmental anomalies of the forearm bones and elbow, and bowing of the extremities, in addition to the classic features of Ehlers-Danlos syndrome. This report helps define the phenotype of the progeroid variant of Ehlers-Danlos syndrome and furthers our understanding of the effect of proteoglycan defects in growth disorders.
Collapse
Affiliation(s)
- Michael H Guo
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
55
|
Izumikawa T, Saigoh K, Shimizu J, Tsuji S, Kusunoki S, Kitagawa H. A chondroitin synthase-1 (ChSy-1) missense mutation in a patient with neuropathy impairs the elongation of chondroitin sulfate chains initiated by chondroitin N-acetylgalactosaminyltransferase-1. Biochim Biophys Acta Gen Subj 2013; 1830:4806-12. [PMID: 23811343 DOI: 10.1016/j.bbagen.2013.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previously, we identified two missense mutations in the chondroitin N-acetylgalactosaminyltransferase-1 gene in patients with neuropathy. These mutations are associated with a profound decrease in chondroitin N-acetylgalactosaminyltransferase-1 enzyme activity. Here, we describe a patient with neuropathy who is heterozygous for a chondroitin synthase-1 mutation. Chondroitin synthase-1 has two glycosyltransferase activities: it acts as a GlcUA and a GalNAc transferase and is responsible for adding repeated disaccharide units to growing chondroitin sulfate chains. METHODS Recombinant wild-type chondroitin synthase-1 enzyme and the F362S mutant were expressed. These enzymes and cells expressing them were then characterized. RESULTS The mutant chondroitin synthase-1 protein retained approximately 50% of each glycosyltransferase activity relative to the wild-type chondroitin synthase-1 protein. Furthermore, unlike chondroitin polymerase comprised of wild-type chondroitin synthase-1 protein, the non-reducing terminal 4-O-sulfation of GalNAc residues synthesized by chondroitin N-acetylgalactosaminyltransferase-1 did not facilitate the elongation of chondroitin sulfate chains when chondroitin polymerase that consists of the mutant chondroitin synthase-1 protein was used as the enzyme source. CONCLUSIONS The chondroitin synthase-1 F362S mutation in a patient with neuropathy resulted in a decrease in chondroitin polymerization activity and the mutant protein was defective in regulating the number of chondroitin sulfate chains via chondroitin N-acetylgalactosaminyltransferase-1. Thus, the progression of peripheral neuropathies may result from defects in these regulatory systems. GENERAL SIGNIFICANCE The elongation of chondroitin sulfate chains may be tightly regulated by the cooperative expression of chondroitin synthase-1 and chondroitin N-acetylgalactosaminyltransferase-1 in peripheral neurons and peripheral neuropathies may result from synthesis of abnormally truncated chondroitin sulfate chains.
Collapse
Affiliation(s)
- Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Filipek-Górniok B, Holmborn K, Haitina T, Habicher J, Oliveira MB, Hellgren C, Eriksson I, Kjellén L, Kreuger J, Ledin J. Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev Dyn 2013; 242:964-75. [PMID: 23703795 DOI: 10.1002/dvdy.23981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. RESULTS Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. CONCLUSIONS There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells, and dysregulation of Notch signaling is associated with human diseases affecting the skeleton. Inherited or sporadic mutations in components of the Notch signaling pathway are associated with spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases characterized by skeletal patterning defects. Inactivating mutations of the Notch ligand JAG1 or of NOTCH2 are associated with Alagille syndrome, and activating mutations in NOTCH2 are associated with Hajdu-Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important skeletal diseases.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Ernesto Canalis, M.D. Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT 06105-1299, Tel: (860)714-4068, Fax: (860)714-8053,
| |
Collapse
|
58
|
Chang VY, Federman N, Martinez-Agosto J, Tatishchev SF, Nelson SF. Whole exome sequencing of pediatric gastric adenocarcinoma reveals an atypical presentation of Li-Fraumeni syndrome. Pediatr Blood Cancer 2013; 60:570-4. [PMID: 23015295 PMCID: PMC4170733 DOI: 10.1002/pbc.24316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/14/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastric adenocarcinoma is a rare diagnosis in childhood. A 14-year-old male patient presented with metastatic gastric adenocarcinoma, and a strong family history of colon cancer. Clinical sequencing of CDH1 and APC were negative. Whole exome sequencing was therefore applied to capture the majority of protein-coding regions for the identification of single-nucleotide variants, small insertion/deletions, and copy number abnormalities in the patient's germline as well as primary tumor. MATERIALS AND METHODS DNA was extracted from the patient's blood, primary tumor, and the unaffected mother's blood. DNA libraries were constructed and sequenced on Illumina HiSeq2000. Data were post-processed using Picard and Samtools, then analyzed with the Genome Analysis Toolkit. Variants were annotated using an in-house Ensembl-based program. Copy number was assessed using ExomeCNV. RESULTS Each sample was sequenced to a mean depth of coverage of greater than 120×. A rare non-synonymous coding single-nucleotide variant (SNV) in TP53 was identified in the germline. There were 10 somatic cancer protein-damaging variants that were not observed in the unaffected mother genome. ExomeCNV comparing tumor to the patient's germline, identified abnormal copy number, spanning 6,946 genes. CONCLUSION We present an unusual case of Li-Fraumeni detected by whole exome sequencing. There were also likely driver somatic mutations in the gastric adenocarcinoma. These results highlight the need for more thorough and broad scale germline and cancer analyses to accurately inform patients of inherited risk to cancer and to identify somatic mutations.
Collapse
Affiliation(s)
- Vivian Y Chang
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
59
|
Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 2013; 288:10953-61. [PMID: 23457301 DOI: 10.1074/jbc.r112.437038] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 Japan
| | | | | |
Collapse
|
60
|
De Ingeniis J, Ratnikov B, Richardson AD, Scott DA, Aza-Blanc P, De SK, Kazanov M, Pellecchia M, Ronai Z, Osterman AL, Smith JW. Functional specialization in proline biosynthesis of melanoma. PLoS One 2012; 7:e45190. [PMID: 23024808 PMCID: PMC3443215 DOI: 10.1371/journal.pone.0045190] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of (13)C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.
Collapse
Affiliation(s)
- Jessica De Ingeniis
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Boris Ratnikov
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Adam D. Richardson
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - David A. Scott
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Pedro Aza-Blanc
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Surya K. De
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Marat Kazanov
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Maurizio Pellecchia
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ze'ev Ronai
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrei L. Osterman
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeffrey W. Smith
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
61
|
Ogawa H, Hatano S, Sugiura N, Nagai N, Sato T, Shimizu K, Kimata K, Narimatsu H, Watanabe H. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development. PLoS One 2012; 7:e43806. [PMID: 22952769 PMCID: PMC3429490 DOI: 10.1371/journal.pone.0043806] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2−/− mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2−/− chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.
Collapse
Affiliation(s)
- Hiroyasu Ogawa
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Takashi Sato
- Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, Nagakute, Japan
| | - Katsuji Shimizu
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
| | - Koji Kimata
- Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- * E-mail:
| |
Collapse
|
62
|
Definition of the phenotypic spectrum of Temtamy preaxial brachydactyly syndrome associated with autosomal recessive CHYS1 mutations. ACTA ACUST UNITED AC 2012. [DOI: 10.1097/01.mxe.0000414918.78299.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. Nat Genet 2012; 44:709-13. [PMID: 22581230 DOI: 10.1038/ng.2259] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/02/2012] [Indexed: 12/18/2022]
Abstract
Using homozygosity mapping and locus resequencing, we found that alterations in the homeodomain of the IRX5 transcription factor cause a recessive congenital disorder affecting face, brain, blood, heart, bone and gonad development. We found through in vivo modeling in Xenopus laevis embryos that Irx5 modulates the migration of progenitor cell populations in branchial arches and gonads by repressing Sdf1. We further found that transcriptional control by Irx5 is modulated by direct protein-protein interaction with two GATA zinc-finger proteins, GATA3 and TRPS1; disruptions of these proteins also cause craniofacial dysmorphisms. Our findings suggest that IRX proteins integrate combinatorial transcriptional inputs to regulate key signaling molecules involved in the ontogeny of multiple organs during embryogenesis and homeostasis.
Collapse
|
64
|
Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int 2012; 90:69-75. [PMID: 22002679 PMCID: PMC3272107 DOI: 10.1007/s00223-011-9541-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
Notch signaling mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal. In the canonical signaling pathway, the Notch receptor is cleaved following ligand binding, resulting in the release and nuclear translocation of the Notch intracellular domain (NICD). NICD induces gene expression by forming a ternary complex with the DNA binding protein CBF1/Rbp-Jk, Suppressor of Hairless, Lag1, and Mastermind-Like (Maml). Hairy Enhancer of Split (Hes) and Hes related with YRPW motif (Hey) are classic Notch targets. Notch canonical signaling plays a central role in skeletal development and bone remodeling by suppressing the differentiation of skeletal cells. The skeletal phenotype of mice misexpressing Hes1 phenocopies partially the effects of Notch misexpression, suggesting that Hey proteins mediate most of the skeletal effects of Notch. Dysregulation of Notch signaling is associated with diseases affecting human skeletal development, such as Alagille syndrome, brachydactyly and spondylocostal dysostosis. Somatic mutations in Notch receptors and ligands are found in tumors of the skeletal system. Overexpression of NOTCH1 is associated with osteosarcoma, and overexpression of NOTCH3 or JAGGED1 in breast cancer cells favors the formation of osteolytic bone metastasis. Activating mutations in NOTCH2 cause Hajdu-Cheney syndrome, which is characterized by skeletal defects and fractures, and JAG1 polymorphisms, are associated with variations in bone mineral density. In conclusion, Notch is a regulator of skeletal development and bone remodeling, and abnormal Notch signaling is associated with developmental and postnatal skeletal disorders.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Department of Research Saint Francis Hospital and Medical Center 114 Woodland Street Hartford, CT 06105-1299 Tel: (860)714-4068 Fax: (860)714-8053
| |
Collapse
|
65
|
Wilson DG, Phamluong K, Lin WY, Barck K, Carano RAD, Diehl L, Peterson AS, Martin F, Solloway MJ. Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biol 2012; 363:413-25. [PMID: 22280990 DOI: 10.1016/j.ydbio.2012.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Joint and skeletal development is highly regulated by extracellular matrix (ECM) proteoglycans, of which chondroitin sulfate proteoglycans (CSPGs) are a major class. Despite the requirement of joint CSPGs for skeletal flexibility and structure, relatively little is understood regarding their role in establishing joint positioning or in modulating signaling and cell behavior during joint formation. Chondroitin sulfate synthase 1 (Chsy1) is one of a family of enzymes that catalyze the extension of chondroitin and dermatan sulfate glycosaminoglycans. Recently, human syndromic brachydactylies have been described to have loss-of-function mutations at the CHSY1 locus. In concordance with these observations, we demonstrate that mice lacking Chsy1, though viable, display chondrodysplasia and decreased bone density. Notably, Chsy1(-/-) mice show a profound limb patterning defect in which orthogonally shifted ectopic joints form in the distal digits. Associated with the digit-patterning defect is a shift in cell orientation and an imbalance in chondroitin sulfation. Our results place Chsy1 as an essential regulator of joint patterning and provide a mouse model of human brachydactylies caused by mutations in CHSY1.
Collapse
|
66
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 724] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
67
|
Cornes BK, Khor CC, Nongpiur ME, Xu L, Tay WT, Zheng Y, Lavanya R, Li Y, Wu R, Sim X, Wang YX, Chen P, Teo YY, Chia KS, Seielstad M, Liu J, Hibberd ML, Cheng CY, Saw SM, Tai ES, Jonas JB, Vithana EN, Wong TY, Aung T. Identification of four novel variants that influence central corneal thickness in multi-ethnic Asian populations. Hum Mol Genet 2011; 21:437-45. [PMID: 21984434 DOI: 10.1093/hmg/ddr463] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Central corneal thickness (CCT) is a highly heritable trait. Genes that significantly influence CCT can be candidate genes for common disorders in which CCT has been implicated, such as primary open-angle glaucoma (POAG) and keratoconus. Because the genetic factors controlling CCT in different Asian populations are unclear, we have built on previous work conducted on Singaporean Indians and Malays and extended our hypothesis to individuals of Chinese descent. We have followed up on all suggestive signals of association with CCT (P < 10(-4)) from the previously reported meta-analysis comprising Indians and Malays in a sample of Chinese individuals (n= 2681). In the combined sample (n= 7711), strong evidence of association was observed at four novel loci: IBTK on chromosome 6q14.1; CHSY1 on chromosome 15q26.3; and intergenic regions on chromosomes 7q11.2 and 9p23 (8.01 × 10(-11) < λ(GC) corrected P(meta) < 8.72 × 10(-8)). These four new loci explain an additional 4.3% of the total CCT variance across the sample cohorts over and above that of previously identified loci. We also extend on a previous finding at a fifth locus (AKAP13) where a new single-nucleotide polymorphism (rs1821481, P(meta) = 9.99 × 10(-9)) was found to be significantly more informative compared with the previously reported rs6496932 (P(meta) = 3.64 × 10(-5)). Performing association analysis in Asians may lead to the discovery of ethnic-specific genes that control CCT, offering further mechanistic insights into the regulation of CCT. In addition, it may also provide several candidate genes for interrogation for POAG, keratoconus and possible racial/ethnic variations.
Collapse
Affiliation(s)
- Belinda K Cornes
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Baasanjav S, Al-Gazali L, Hashiguchi T, Mizumoto S, Fischer B, Horn D, Seelow D, Ali B, Aziz S, Langer R, Saleh A, Becker C, Nürnberg G, Cantagrel V, Gleeson J, Gomez D, Michel JB, Stricker S, Lindner T, Nürnberg P, Sugahara K, Mundlos S, Hoffmann K. Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet 2011; 89:15-27. [PMID: 21763480 PMCID: PMC3135799 DOI: 10.1016/j.ajhg.2011.05.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/14/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023] Open
Abstract
Proteoglycans are a major component of extracellular matrix and contribute to normal embryonic and postnatal development by ensuring tissue stability and signaling functions. We studied five patients with recessive joint dislocations and congenital heart defects, including bicuspid aortic valve (BAV) and aortic root dilatation. We identified linkage to chromosome 11 and detected a mutation (c.830G>A, p.Arg277Gln) in B3GAT3, the gene coding for glucuronosyltransferase-I (GlcAT-I). The enzyme catalyzes an initial step in the synthesis of glycosaminoglycan side chains of proteoglycans. Patients' cells as well as recombinant mutant protein showed reduced glucuronyltransferase activity. Patient fibroblasts demonstrated decreased levels of dermatan sulfate, chondroitin sulfate, and heparan sulfate proteoglycans, indicating that the defect in linker synthesis affected all three lines of O-glycanated proteoglycans. Further studies demonstrated that GlcAT-I resides in the cis and cis-medial Golgi apparatus and is expressed in the affected tissues, i.e., heart, aorta, and bone. The study shows that reduced GlcAT-I activity impairs skeletal as well as heart development and results in variable combinations of heart malformations, including mitral valve prolapse, ventricular septal defect, and bicuspid aortic valve. The described family constitutes a syndrome characterized by heart defects and joint dislocations resulting from altered initiation of proteoglycan synthesis (Larsen-like syndrome, B3GAT3 type).
Collapse
Affiliation(s)
- Sevjidmaa Baasanjav
- Institute of Medical Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Division of Nephrology, Department of Internal Medicine, University Clinic Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Lihadh Al-Gazali
- Department of Pediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Taishi Hashiguchi
- Laboratory of Proteoglycan Signaling and Therapeutics, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Frontier Research Center for Post-Genomic Science and Technology, West-11, North-21, Kita-ku, Sapporo 001-0021, Japan
| | - Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Frontier Research Center for Post-Genomic Science and Technology, West-11, North-21, Kita-ku, Sapporo 001-0021, Japan
| | - Bjoern Fischer
- Institute of Medical Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Horn
- Institute of Medical Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dominik Seelow
- Institute of Medical Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bassam R. Ali
- Department of Pathology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Samir A.A. Aziz
- Department of Pediatrics, Saqr Hospital, P.O. Box 5450, Ras Al Khaimah, United Arab Emirates
| | - Ruth Langer
- Department of Radiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ahmed A.H. Saleh
- Department of Pediatrics, Saqr Hospital, P.O. Box 5450, Ras Al Khaimah, United Arab Emirates
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Vincent Cantagrel
- Neurogenetics Laboratory, Department of Neurosciences, University of California, San Diego, Leichtag 3A16, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph G. Gleeson
- Neurogenetics Laboratory, Department of Neurosciences, University of California, San Diego, Leichtag 3A16, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Delphine Gomez
- INSERM Unit 698, Cardiovascular remodeling, 46, rue Henri Huchard, 75018 Paris, France
| | - Jean-Baptiste Michel
- INSERM Unit 698, Cardiovascular remodeling, 46, rue Henri Huchard, 75018 Paris, France
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, Development and Disease, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Tom H. Lindner
- Division of Nephrology, Department of Internal Medicine, University Clinic Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Frontier Research Center for Post-Genomic Science and Technology, West-11, North-21, Kita-ku, Sapporo 001-0021, Japan
| | - Stefan Mundlos
- Institute of Medical Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Max Planck Institute for Molecular Genetics, Development and Disease, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Katrin Hoffmann
- Institute of Medical Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Max Planck Institute for Molecular Genetics, Development and Disease, Ihnestraße 63-73, 14195 Berlin, Germany
- The Berlin Aging Study II, Research Group on Geriatrics, Charité University Medicine, Reinickendorfer Str. 61, 13347 Berlin, Germany
- Institute of Human Genetics, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany
| |
Collapse
|
69
|
|
70
|
Vissers L, Lausch E, Unger S, Campos-Xavier A, Gilissen C, Rossi A, Del Rosario M, Venselaar H, Knoll U, Nampoothiri S, Nair M, Spranger J, Brunner H, Bonafé L, Veltman J, Zabel B, Superti-Furga A. Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet 2011; 88:608-15. [PMID: 21549340 DOI: 10.1016/j.ajhg.2011.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/25/2022] Open
Abstract
We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.
Collapse
|
71
|
Li Y, Laue K, Temtamy S, Aglan M, Kotan LD, Yigit G, Canan H, Pawlik B, Nürnberg G, Wakeling EL, Quarrell OW, Baessmann I, Lanktree MB, Yilmaz M, Hegele RA, Amr K, May KW, Nürnberg P, Topaloglu AK, Hammerschmidt M, Wollnik B. Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am J Hum Genet 2010; 87:757-67. [PMID: 21129728 PMCID: PMC2997369 DOI: 10.1016/j.ajhg.2010.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 01/09/2023] Open
Abstract
Altered Bone Morphogenetic Protein (BMP) signaling leads to multiple developmental defects, including brachydactyly and deafness. Here we identify chondroitin synthase 1 (CHSY1) as a potential mediator of BMP effects. We show that loss of human CHSY1 function causes autosomal-recessive Temtamy preaxial brachydactyly syndrome (TPBS), mainly characterized by limb malformations, short stature, and hearing loss. After mapping the TPBS locus to chromosome 15q26-qterm, we identified causative mutations in five consanguineous TPBS families. In zebrafish, antisense-mediated chsy1 knockdown causes defects in multiple developmental processes, some of which are likely to also be causative in the etiology of TPBS. In the inner ears of zebrafish larvae, chsy1 is expressed similarly to the BMP inhibitor dan and in a complementary fashion to bmp2b. Furthermore, unrestricted Bmp2b signaling or loss of Dan activity leads to reduced chsy1 expression and, during epithelial morphogenesis, defects similar to those that occur upon Chsy1 inactivation, indicating that Bmp signaling affects inner-ear development by repressing chsy1. In addition, we obtained strikingly similar zebrafish phenotypes after chsy1 overexpression, which might explain why, in humans, brachydactyly can be caused by mutations leading either to loss or to gain of BMP signaling.
Collapse
Affiliation(s)
- Yun Li
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kathrin Laue
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Samia Temtamy
- Departments of Clinical and Molecular Genetics, Division of Human Genetics and Human Genome Research, National Research Centre, Cairo, Egypt
| | - Mona Aglan
- Departments of Clinical and Molecular Genetics, Division of Human Genetics and Human Genome Research, National Research Centre, Cairo, Egypt
| | - L. Damla Kotan
- Department of Biotechnology, Institute of Sciences, Cukurova University, Adana, Turkey
| | - Gökhan Yigit
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Husniye Canan
- Department of Forensic Medicine, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Barbara Pawlik
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gudrun Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Oliver W. Quarrell
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | | | - Matthew B. Lanktree
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Mustafa Yilmaz
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Robert A. Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Khalda Amr
- Departments of Clinical and Molecular Genetics, Division of Human Genetics and Human Genome Research, National Research Centre, Cairo, Egypt
| | | | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - A. Kemal Topaloglu
- Department of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Matthias Hammerschmidt
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|