51
|
Hsu LJ, Chiang MF, Sze CI, Su WP, Yap YV, Lee IT, Kuo HL, Chang NS. HYAL-2-WWOX-SMAD4 Signaling in Cell Death and Anticancer Response. Front Cell Dev Biol 2016; 4:141. [PMID: 27999774 PMCID: PMC5138198 DOI: 10.3389/fcell.2016.00141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response.
Collapse
Affiliation(s)
- Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, and Graduate Institute of Injury Prevention and Control, Taipei Medical University Taipei, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Wan-Pei Su
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Hsiang-Ling Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Advanced Optoelectronic Technology Center, National Cheng Kung UniversityTainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Neurochemistry, New York State Institute for Basic Research in Developmental DisabilitiesStaten Island, NY, USA; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
52
|
Hyaluronan synthase 2 expressed by cancer-associated fibroblasts promotes oral cancer invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:181. [PMID: 27884164 PMCID: PMC5123319 DOI: 10.1186/s13046-016-0458-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hyaluronan synthases (HAS) control the biosynthesis of hyaluronan (HA) and critically modulate the tumor microenviroment. Cancer-associated fibroblasts (CAFs) affect the progression of a tumor by remolding the matrix. However, little is known about the role of HAS from CAFs in this process. This study aimed to determine the role of hyaluronan synthase 2 (HAS2) from CAFs in the progression of oral squamous cell carcinoma (OSCC) invasion. METHODS HAS isoforms 1, 2, and 3 in paired sets of CAFs and normal fibroblasts (NFs) were examined by real-time PCR, and the expression of HAS2 and α-SMA in OSCC tissue sections was further evaluated using immunohistochemical staining. Furthermore, we used a conditioned culture medium model to evaluate the effects of HAS2 from CAFs on the invasion and epithelial-mesenchymal transition (EMT) of the oral cancer cells Cal27. Finally, we compared the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) between CAFs and NF, and between CAFs with or without HAS2 knockdown using an antibody array and western blotting. RESULTS CAFs expressed higher levels of HAS2 than the paired NFs. HAS2 expression was consistent with α-SMA-positive myofibroblasts in the stroma of OSCC, and these were significantly correlated advanced clinical stages and cervical lymph node metastasis. Knocking down HAS2 with a specific siRNA or treatment with a HAS inhibitor markedly attenuated CAF-induced invasion and EMT of Cal27 cells. Higher MMP1 and lower TIMP1 levels were detected in the supernatants of CAFs relative to NFs. Knocking down HAS2 could decrease the expression of MMP1 and increase that of TIMP1 in CAFs. CONCLUSIONS HAS2 is one of the key regulators responsible for CAF-mediated OSCC progression and acts by modulating the balance of MMP1 and TIMP1.
Collapse
|
53
|
Hammarsten P, Dahl Scherdin T, Hägglöf C, Andersson P, Wikström P, Stattin P, Egevad L, Granfors T, Bergh A. High Caveolin-1 Expression in Tumor Stroma Is Associated with a Favourable Outcome in Prostate Cancer Patients Managed by Watchful Waiting. PLoS One 2016; 11:e0164016. [PMID: 27764093 PMCID: PMC5072718 DOI: 10.1371/journal.pone.0164016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
In the present study we have investigated whether Caveolin-1 expression in non-malignant and malignant prostate tissue is a potential prognostic marker for outcome in prostate cancer patients managed by watchful waiting. Caveolin-1 was measured in prostate tissues obtained through transurethral resection of the prostate from 395 patients diagnosed with prostate cancer. The majority of the patients (n = 298) were followed by watchful waiting after diagnosis. Tissue microarrays constructed from malignant and non-malignant prostate tissue were stained with an antibody against Caveolin-1. The staining pattern was scored and related to clinicopathologic parameters and outcome. Microdissection and qRT-PCR analysis of Cav-1 was done of the prostate stroma from non-malignant tissue and stroma from Gleason 3 and 4 tumors. Cav-1 RNA expression was highest in non-malignant tissue and decreased during cancer progression. High expression of Caveolin-1 in tumor stroma was associated with significantly longer cancer specific survival in prostate cancer patients. This association remained significant when Gleason score and local tumor stage were combined with Caveolin-1 in a Cox regression model. High stromal Caveolin-1 immunoreactivity in prostate tumors is associated with a favourable prognosis in prostate cancer patients managed by watchful waiting. Caveolin-1 could possibly become a useful prognostic marker for prostate cancer patients that are potential candidates for active surveillance.
Collapse
Affiliation(s)
- Peter Hammarsten
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Tove Dahl Scherdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Andersson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Lars Egevad
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
54
|
Canella A, Cordero Nieves H, Sborov DW, Cascione L, Radomska HS, Smith E, Stiff A, Consiglio J, Caserta E, Rizzotto L, Zanesi N, Stefano V, Kaur B, Mo X, Byrd JC, Efebera YA, Hofmeister CC, Pichiorri F. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide. Oncotarget 2016; 6:31134-50. [PMID: 26429859 PMCID: PMC4741593 DOI: 10.18632/oncotarget.5290] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.
Collapse
Affiliation(s)
- Alessandro Canella
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hector Cordero Nieves
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Douglas W Sborov
- Department of Internal Medicine, Oncology/Hematology Fellowship, The Ohio State University, Columbus, OH, USA
| | - Luciano Cascione
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Hanna S Radomska
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Emily Smith
- Department of Internal Medicine, Biomedical Sciences Graduate Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrew Stiff
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jessica Consiglio
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Present Address: Sanford Burnham Prebys Medical Discovery Insitute, La Jolla, CA, USA
| | - Enrico Caserta
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lara Rizzotto
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Nicola Zanesi
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Volinia Stefano
- Department of Internal Medicine, Biosystems Analysis, LTTA, Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, Ferrara, Italy
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - John C Byrd
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Yvonne A Efebera
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Craig C Hofmeister
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Flavia Pichiorri
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
55
|
Halin Bergström S, Nilsson M, Adamo H, Thysell E, Jernberg E, Stattin P, Widmark A, Wikström P, Bergh A. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth. PLoS One 2016; 11:e0157280. [PMID: 27280718 PMCID: PMC4900522 DOI: 10.1371/journal.pone.0157280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Maria Nilsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Hanibal Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
56
|
Chanmee T, Ontong P, Itano N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett 2016; 375:20-30. [DOI: 10.1016/j.canlet.2016.02.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
|
57
|
Adamo HH, Strömvall K, Nilsson M, Halin Bergström S, Bergh A. Adaptive (TINT) Changes in the Tumor Bearing Organ Are Related to Prostate Tumor Size and Aggressiveness. PLoS One 2015; 10:e0141601. [PMID: 26536349 PMCID: PMC4633147 DOI: 10.1371/journal.pone.0141601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022] Open
Abstract
In order to grow, tumors need to induce supportive alterations in the tumor-bearing organ, by us named tumor instructed normal tissue (TINT) changes. We now examined if the nature and magnitude of these responses were related to tumor size and aggressiveness. Three different Dunning rat prostate tumor cells were implanted into the prostate of immune-competent rats; 1) fast growing and metastatic MatLyLu tumor cells 2) fast growing and poorly metastatic AT-1 tumor cells, and 3) slow growing and non-metastatic G tumor cells. All tumor types induced increases in macrophage, mast cell and vascular densities and in vascular cell-proliferation in the tumor-bearing prostate lobe compared to controls. These increases occurred in parallel with tumor growth. The most pronounced and rapid responses were seen in the prostate tissue surrounding MatLyLu tumors. They were, also when small, particularly effective in attracting macrophages and stimulating growth of not only micro-vessels but also small arteries and veins compared to the less aggressive AT-1 and G tumors. The nature and magnitude of tumor-induced changes in the tumor-bearing organ are related to tumor size but also to tumor aggressiveness. These findings, supported by previous observation in patient samples, suggest that one additional way to evaluate prostate tumor aggressiveness could be to monitor its effect on adjacent tissues.
Collapse
Affiliation(s)
- Hanibal Hani Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Kerstin Strömvall
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Nilsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
58
|
High Lysyl Oxidase (LOX) in the Non-Malignant Prostate Epithelium Predicts a Poor Outcome in Prostate Cancer Patient Managed by Watchful Waiting. PLoS One 2015; 10:e0140985. [PMID: 26501565 PMCID: PMC4621025 DOI: 10.1371/journal.pone.0140985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022] Open
Abstract
Lysyl oxidase (LOX) has been shown to both promote and suppress tumor progression, but its role in prostate cancer is largely unknown. LOX immunoreactivity was scored in prostate tumor epithelium, tumor stroma and in the tumor-adjacent non-malignant prostate epithelium and stroma. LOX scores in tumor and non-malignant prostate tissues were then examined for possible associations with clinical characteristics and survival in a historical cohort of men that were diagnosed with prostate cancer at transurethral resection and followed by watchful waiting. Men with a low LOX score in the non-malignant prostate epithelium had significantly longer cancer specific survival than men with a high score. Furthermore, LOX score in non-malignant prostate epithelium remained prognostic in a multivariable analysis including Gleason score. LOX score in prostate tumor epithelium positively correlated to Gleason score and metastases but was not associated with cancer survival. LOX score in tumor and non-malignant prostate stroma appeared unrelated to these tumor characteristics. In radical prostatectomy specimens, LOX immune-staining corresponded to LOX in-situ hybridization and LOX mRNA levels were found to be similar between tumor and adjacent non-malignant areas, but significantly increased in bone metastases samples. LOX levels both in tumors and in the surrounding tumor-bearing organ are apparently related to prostate cancer aggressiveness.
Collapse
|
59
|
Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. Int J Cell Biol 2015; 2015:834893. [PMID: 26448760 PMCID: PMC4581578 DOI: 10.1155/2015/834893] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM) production that leads to a dense and functionally abnormal connective tissue compartment (dermis). In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes), the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed.
Collapse
|
60
|
Engel BJ, Constantinou PE, Sablatura LK, Doty NJ, Carson DD, Farach-Carson MC, Harrington DA, Zarembinski TI. Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. Adv Healthc Mater 2015; 4:1664-74. [PMID: 26059746 PMCID: PMC4545642 DOI: 10.1002/adhm.201500258] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/14/2015] [Indexed: 12/27/2022]
Abstract
Validation of a high-throughput compatible 3D hyaluronic acid hydrogel coculture of cancer cells with stromal cells. The multilayered hyaluronic acid hydrogels improve drug screening predictability as evaluated with a panel of clinically relevant chemotherapeutics in both prostate and endometrial cancer cell lines compared to 2D culture.
Collapse
Affiliation(s)
- Brian J Engel
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Pamela E Constantinou
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lindsey K Sablatura
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Nathaniel J Doty
- BioTime, Incorporated, 1301 Harbor Bay Parkway, Alameda, California 94502, USA
| | - Daniel D Carson
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Mary C Farach-Carson
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Daniel A Harrington
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | |
Collapse
|
61
|
Adamo HH, Halin Bergström S, Bergh A. Characterization of a Gene Expression Signature in Normal Rat Prostate Tissue Induced by the Presence of a Tumor Elsewhere in the Organ. PLoS One 2015; 10:e0130076. [PMID: 26076453 PMCID: PMC4468243 DOI: 10.1371/journal.pone.0130076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/19/2015] [Indexed: 01/25/2023] Open
Abstract
Implantation of rat prostate cancer cells into the normal rat prostate results in tumor-stimulating changes in the tumor-bearing organ, for example growth of the vasculature, an altered extracellular matrix, and influx of inflammatory cells. To investigate this response further, we compared prostate morphology and the gene expression profile of tumor-bearing normal rat prostate tissue (termed tumor-instructed/indicating normal tissue (TINT)) with that of prostate tissue from controls. Dunning rat AT-1 prostate cancer cells were injected into rat prostate and tumors were established after 10 days. As controls we used intact animals, animals injected with heat-killed AT-1 cells or cell culture medium. None of the controls showed morphological TINT-changes. A rat Illumina whole-genome expression array was used to analyze gene expression in AT-1 tumors, TINT, and in medium injected prostate tissue. We identified 423 upregulated genes and 38 downregulated genes (p<0.05, ≥2-fold change) in TINT relative to controls. Quantitative RT-PCR analysis verified key TINT-changes, and they were not detected in controls. Expression of some genes was changed in a manner similar to that in the tumor, whereas other changes were exclusive to TINT. Ontological analysis using GeneGo software showed that the TINT gene expression profile was coupled to processes such as inflammation, immune response, and wounding. Many of the genes whose expression is altered in TINT have well-established roles in tumor biology, and the present findings indicate that they may also function by adapting the surrounding tumor-bearing organ to the needs of the tumor. Even though a minor tumor cell contamination in TINT samples cannot be ruled out, our data suggest that there are tumor-induced changes in gene expression in the normal tumor-bearing organ which can probably not be explained by tumor cell contamination. It is important to validate these changes further, as they could hypothetically serve as novel diagnostic and prognostic markers of prostate cancer.
Collapse
Affiliation(s)
- Hanibal Hani Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
62
|
The established and future biomarkers of malignant pleural mesothelioma. Cancer Treat Rev 2015; 41:486-95. [DOI: 10.1016/j.ctrv.2015.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 12/18/2022]
|
63
|
Rilla K, Siiskonen H, Tammi M, Tammi R. Hyaluronan-coated extracellular vesicles--a novel link between hyaluronan and cancer. Adv Cancer Res 2015; 123:121-48. [PMID: 25081528 DOI: 10.1016/b978-0-12-800092-2.00005-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of hyaluronan (HA) on the plasma membrane is a unique and still partly mysterious way of macromolecular biosynthesis. HA forms pericellular coats around many cell types and accumulates in the extracellular matrix (ECM) of growing and renewing tissues. It is secreted to high concentrations in body fluids with antifriction properties like pleural, peritoneal, and synovial fluids, but is also detectable in plasma, saliva, and urine. In pathological states, like cancer and inflammation, the amount of HA is increased around cells, in the ECM, and in the body fluids. HA is an indicator of poor prognosis for cancer patients and creates a favorable environment for cellular growth and motility. The recent finding that HA-coated extracellular vesicles act both as a product of HA synthase activity and as special vehicles for HA, and perhaps carry signals important for malignant growth, provides a novel link between HA and cancer. HA could be carried on the surface of these vesicles in tissues and body fluids, creating beneficial environments by itself, or by associated molecules, for the invasion and metastasis of cancer cells. The HA-coated plasma membrane protrusions and vesicles shed from them are potential biomarkers in cancer and other HA-associated disease states.
Collapse
Affiliation(s)
- Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Hanna Siiskonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Markku Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raija Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
64
|
Xing G, Ren M, Verma A. Divergent Temporal Expression of Hyaluronan Metabolizing Enzymes and Receptors with Craniotomy vs. Controlled-Cortical Impact Injury in Rat Brain: A Pilot Study. Front Neurol 2014; 5:173. [PMID: 25309501 PMCID: PMC4161003 DOI: 10.3389/fneur.2014.00173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/26/2014] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) triggers many secondary changes in tissue biology, which ultimately determine the extent of injury and clinical outcome. Hyaluronan [hyaluronic acid (HA)] is a protective cementing gel present in the intercellular spaces whose degradation has been reported as a causative factor in tissue damage. Yet little is known about the expression and activities of genes involved in HA catabolism after TBI. Young adult male Sprague-Dawley rats were assigned to three groups: naïve control, craniotomy, and controlled-cortical impact-induced TBI (CCI-TBI). Four animals per group were sacrificed at 4 h, 1, 3, and 7 days post-CCI. The mRNA expression of hyaluronan synthases (HAS1-3), hyaluronidases (enzymes for HA degradation, HYAL 1–4, and PH20), and CD44 and RHAMM (membrane receptors for HA signaling and removal) were determined using real-time PCR. Compared to the naïve controls, expression of HAS1 and HAS2 mRNA, but not HAS3 mRNA increased significantly following craniotomy alone and following CCI with differential kinetics. Expression of HAS2 mRNA increased significantly in the ipsilateral brain at 1 and 3 days post-CCI. HYAL1 mRNA expression also increased significantly in the craniotomy group and in the contralateral CCI at 1 and 3 days post-CCI. CD44 mRNA expression increased significantly in the ipsilateral CCI at 4 h, 1, 3, and 7 days post-CCI (up to 25-fold increase). These data suggest a dynamic regulation and role for HA metabolism in secondary responses to TBI.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Ming Ren
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Ajay Verma
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
65
|
Häggström J, Cipriano M, Forshell LP, Persson E, Hammarsten P, Stella N, Fowler CJ. Potential upstream regulators of cannabinoid receptor 1 signaling in prostate cancer: a Bayesian network analysis of data from a tissue microarray. Prostate 2014; 74:1107-17. [PMID: 24913716 PMCID: PMC4145668 DOI: 10.1002/pros.22827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/30/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. RESULTS Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. CONCLUSIONS The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors.
Collapse
Affiliation(s)
- Jenny Häggström
- Department of Statistics, Umeå School of Business and Economics, Umeå UniversityUmeå, Sweden
| | - Mariateresa Cipriano
- Department of Pharmacology and Clinical Neuroscience, Umeå UniversityUmeå, Sweden
| | - Linus Plym Forshell
- Department of Pharmacology and Clinical Neuroscience, Umeå UniversityUmeå, Sweden
| | - Emma Persson
- Department of Radiation Sciences, Oncology, Umeå UniversityUmeå, Sweden
| | - Peter Hammarsten
- Department of Medical Biosciences, Pathology, Umeå UniversityUmeå, Sweden
| | - Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences, University of WashingtonSeattle, Washington
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå UniversityUmeå, Sweden
- *Correspondence to: Professor Christopher J. Fowler, Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden. E-mail:
| |
Collapse
|
66
|
Tidehag V, Hammarsten P, Egevad L, Granfors T, Stattin P, Leanderson T, Wikström P, Josefsson A, Hägglöf C, Bergh A. High density of S100A9 positive inflammatory cells in prostate cancer stroma is associated with poor outcome. Eur J Cancer 2014; 50:1829-1835. [DOI: 10.1016/j.ejca.2014.03.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/28/2023]
|
67
|
TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 2014; 9:e86824. [PMID: 24505269 PMCID: PMC3914792 DOI: 10.1371/journal.pone.0086824] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/15/2013] [Indexed: 11/19/2022] Open
Abstract
The TMPRSS2-ERG gene fusion is found in approximately half of all prostate cancers. The functional and prognostic significance of TMPRSS2-ERG is, however, not fully understood. Based on a historical watchful waiting cohort, an association between TMPRSS2-ERG, evaluated as positive immune staining, and shorter survival of prostate cancer patients was identified. Expression of ERG was also associated with clinical markers such as advanced tumor stage, high Gleason score, presence of metastasis and prognostic tumor cell markers such as high Ki67, pEGFR and pAkt. Novel associations between TMPRSS2-ERG and alterations in the tumor stroma, for example, increased vascular density, hyaluronan and PDGFRβ and decreased Caveolin-1, all known to be associated with an aggressive disease, were found. The present study suggests that the TMPRSS2-ERG fusion gene is associated with a more aggressive prostate cancer phenotype, supported by changes in the tumor stroma.
Collapse
|
68
|
Creaney J, Dick IM, Segal A, Musk AW, Robinson BW. Pleural effusion hyaluronic acid as a prognostic marker in pleural malignant mesothelioma. Lung Cancer 2013; 82:491-8. [DOI: 10.1016/j.lungcan.2013.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/13/2013] [Accepted: 09/29/2013] [Indexed: 12/18/2022]
|
69
|
Zheng M, Xu D. Catalytic Mechanism of Hyaluronate Lyase from Spectrococcus pneumonia: Quantum Mechanical/Molecular Mechanical and Density Functional Theory Studies. J Phys Chem B 2013; 117:10161-72. [DOI: 10.1021/jp406206s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Zheng
- MOE Key Laboratory of Green
Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Dingguo Xu
- MOE Key Laboratory of Green
Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
70
|
Development and validation of H11B2C2 monoclonal antibody-reactive hyaluronic acid binding protein: overexpression of HABP during human tumor progression. Tumour Biol 2012; 34:597-608. [DOI: 10.1007/s13277-012-0563-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022] Open
|
71
|
Kultti A, Li X, Jiang P, Thompson CB, Frost GI, Shepard HM. Therapeutic targeting of hyaluronan in the tumor stroma. Cancers (Basel) 2012; 4:873-903. [PMID: 24213471 PMCID: PMC3712709 DOI: 10.3390/cancers4030873] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/12/2022] Open
Abstract
The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associated with a negative disease prognosis. Hyaluronan interacts with other extracellular molecules as well as cellular receptors to form a complex interaction network influencing physicochemical properties, signal transduction, and biological behavior of cancer cells. In preclinical animal models, enzymatic removal of hyaluronan is associated with remodeling of the tumor stroma, reduction of tumor interstitial fluid pressure, expansion of tumor blood vessels and facilitated delivery of chemotherapy. This leads to inhibition of tumor growth and increased survival. Current evidence shows that abnormal accumulation of hyaluronan may be an important stromal target for cancer therapy. In this review we highlight the role of hyaluronan and hyaluronan-mediated interactions in cancer, and discuss historical and recent data on hyaluronidase-based therapies and the effect of hyaluronan removal on tumor growth.
Collapse
Affiliation(s)
- Anne Kultti
- Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (H.M.S.)
| | - Xiaoming Li
- Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (X.L.); (P.J.); (C.B.T.)
| | - Ping Jiang
- Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (X.L.); (P.J.); (C.B.T.)
| | - Curtis B. Thompson
- Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (X.L.); (P.J.); (C.B.T.)
| | - Gregory I. Frost
- Department of General and Administrative, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mail: (G.I.F.)
| | - H. Michael Shepard
- Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (H.M.S.)
| |
Collapse
|
72
|
Florczyk SJ, Liu G, Kievit FM, Lewis AM, Wu JD, Zhang M. 3D porous chitosan-alginate scaffolds: a new matrix for studying prostate cancer cell-lymphocyte interactions in vitro. Adv Healthc Mater 2012; 1:590-9. [PMID: 23184794 PMCID: PMC3682216 DOI: 10.1002/adhm.201100054] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/20/2012] [Indexed: 12/13/2022]
Abstract
The treatment of castration-resistant prostate cancer (CRPC) remains palliative. Immunotherapy offers a potentially effective therapy for CRPC; however, its advancement into the clinic has been slow, in part because of the lack of representative in vitro tumor models that resemble the in vivo tumor microenvironment for studying interactions of CRPC cells with immune cells and other potential therapeutics. This study evaluates the use of 3D porous chitosan-alginate (CA) scaffolds for culturing human prostate cancer (PCa) cells and studying tumor cell interaction with human peripheral blood lymphocytes (PBLs) ex vivo. CA scaffolds and Matrigel matrix samples support in vitro tumor spheroid formation over 15 d of culture, and CA scaffolds support live-cell fluorescence imaging with confocal microscopy using stably transfected PCa cells for 55 d. PCa cells grown in Matrigel matrix and CA scaffolds for 15 d are co-cultured with PBLs for 2 and 6 d in vitro and evaluated with scanning electron microscopy (SEM), immunohistochemistry (IHC), and flow cytometry. Both the Matrigel matrix and CA scaffolds support interaction of PBLs with PCa tumors, with CA scaffolds providing a more robust platform for subsequent analyses. This study demonstrates the use of 3D natural polymer scaffolds as a tissue culture model for supporting long-term analysis of interaction of prostate cancer tumor cells with immune cells, providing an in vitro platform for rapid immunotherapy development.
Collapse
Affiliation(s)
- Stephen J. Florczyk
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Box 352120, Seattle, WA, 98195, USA
| | - Gang Liu
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Forrest M. Kievit
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Box 352120, Seattle, WA, 98195, USA
| | - Allison M. Lewis
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Box 352120, Seattle, WA, 98195, USA
| | - Jennifer D. Wu
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Box 352120, Seattle, WA, 98195, USA
| |
Collapse
|
73
|
Hägglöf C, Bergh A. The stroma-a key regulator in prostate function and malignancy. Cancers (Basel) 2012; 4:531-48. [PMID: 24213323 PMCID: PMC3712705 DOI: 10.3390/cancers4020531] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a very common and highly unpredictable form of cancer. Whereas many prostate cancers are slow growing and could be left without treatment, others are very aggressive. Additionally, today there is no curative treatment for prostate cancer patients with local or distant metastasis. Identification of new, improved prognostic and diagnostic biomarkers for prostate cancer and the finding of better treatment strategies for metastatic prostate cancer is therefore highly warranted. Interactions between epithelium and stroma are known to be important already during prostate development and this interplay is critical also in development, progression of primary tumors and growth of metastases. It is therefore reasonable to expect that future biomarkers and therapeutic targets can be identified in the prostate tumor and metastasis stroma and this possibility should be further explored.
Collapse
Affiliation(s)
- Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå 90185, Sweden.
| | | |
Collapse
|
74
|
Josefsson A, Wikström P, Egevad L, Granfors T, Karlberg L, Stattin P, Bergh A. Low endoglin vascular density and Ki67 index in Gleason score 6 tumours may identify prostate cancer patients suitable for surveillance. ACTA ACUST UNITED AC 2012; 46:247-57. [PMID: 22452635 DOI: 10.3109/00365599.2012.669791] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to explore whether vascular density and tumour cell proliferation are related to the risk of prostate cancer death in patients managed by watchful waiting. MATERIAL AND METHODS From a consecutive series of men diagnosed with prostate cancer at transurethral resection in 1975-1990, tissue microarrays (TMAs) were constructed. A majority of men had no metastases at diagnosis and were followed by watchful waiting (n = 295). The TMAs were stained for Ki67, endoglin and factor VIII-related antigen (vWf). RESULTS In univariate Cox analyses, increased Ki67 index, endoglin vascular density and vWf vascular density were associated with shorter cancer-specific survival. Ki67 index and endoglin vascular density added independent prognostic information to clinical stage, estimated tumour size and Gleason score (GS) in multivariate Cox analysis. In GS 6 tumours, high Ki67 index and high endoglin vascular density identified patients with poor outcome. After 15 years of follow-up not a single man out of 34 men with low staining for both markers (35% of all GS 6 tumours) had died of prostate cancer, in contrast to 15 prostate cancer deaths among the remaining 63 men with GS 6 tumours (65% cumulative risk of prostate cancer death). vWf vascular density in benign areas was a prognostic marker in GS 6 and 7 tumours. CONCLUSIONS Men with GS 6 tumours with both low Ki67 index and endoglin vascular density staining scores have a low risk of progression. Additional studies are needed to test whether these two markers can be applied to core biopsies to select patients suitable for surveillance.
Collapse
Affiliation(s)
- Andreas Josefsson
- Department of Medical Biosciences, Pathology, Umeå University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
75
|
Tatokoro M, Koga F, Yoshida S, Kawakami S, Fujii Y, Neckers L, Kihara K. Potential role of Hsp90 inhibitors in overcoming cisplatin resistance of bladder cancer-initiating cells. Int J Cancer 2011; 131:987-96. [PMID: 21964864 DOI: 10.1002/ijc.26475] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/14/2011] [Indexed: 01/12/2023]
Abstract
For metastatic bladder cancer patients, systemic cisplatin (CDDP)-based combination chemotherapy is the first-line choice of treatment. Although up to 70% of advanced bladder cancer patients initially show good tumor response to this form of combination chemotherapy, over 90% of good responders relapse and eventually die of the disease. According to the cancer stem cell theory, this phenomenon is attributable to the re-growth of bladder cancer-initiating cells (BCICs) that have survived chemotherapy. In this study, the authors have isolated BCICs from cultured human bladder cancer cells to analyze their sensitivity to CDDP and to investigate whether heat-shock protein 90 (Hsp90) inhibitors potentiate the cytotoxicity of CDDP on BCICs. First, the authors have confirmed that a CD44+ subpopulation of 5637 cells met the requirements to be considered tumor-initiating cells. These BCICs were more resistant to CDDP and exhibited more activity in the Akt and ERK oncogenic signaling pathways when compared with their CD44- counterparts. The Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), which simultaneously inactivated both Akt and ERK signaling at noncytocidal concentrations, synergistically potentiated the cytotoxicity of CDDP against BCICs by enhancing CDDP-induced apoptosis in vitro. The potentiating effect of 17-DMAG was more effective than a combination of the two inhibitors specific for the Akt and ERK pathways. Finally, the authors have confirmed that, though human BCIC xenografts exhibited resistance to a single administration of CDDP and the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), 17-AAG sensitized them to CDDP in a mouse model. These data encourage clinical trials of Hsp90 inhibitors as they may improve therapeutic outcomes of CDDP-based combination chemotherapy against advanced bladder cancer.
Collapse
Affiliation(s)
- Manabu Tatokoro
- Department of Urology, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|