51
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
52
|
Hogwood J, Pitchford S, Mulloy B, Page C, Gray E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS One 2020; 15:e0233644. [PMID: 32469940 PMCID: PMC7259574 DOI: 10.1371/journal.pone.0233644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic and pro-inflammatory histones are present in neutrophil extracellular traps (NETs) and are elevated in blood in several inflammatory conditions, sepsis being a major example. Compounds which can attenuate activities of histones are therefore of interest, with heparin being one such material that has previously been shown to bind to histones. Heparin, a successful anticoagulant for nearly a century, has been shown experimentally to bind to histones and exhibit a protective effect in inflammatory conditions. In the present study carried out in whole blood, heparin and selectively desulfated heparin reduced histone induced inflammatory markers such as interleukin 6 (IL 6), interleukin 8 (IL 8) and tissue factor and C3a, a complement component. The selectively desulfated heparins, with reduced anticoagulant activities, retained a high degree of effectiveness as an anti-histone agent, whereas fully desulfated heparin was found to be ineffective. The results from this study indicate that the presence of sulfate and other specific structural features are required for heparin to attenuate the inflammatory action of histones in whole blood.
Collapse
Affiliation(s)
- John Hogwood
- National Institute for Biological Standards and Control, South Mimms, Ridge, Herts, United Kingdom
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
- * E-mail:
| | - Simon Pitchford
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Barbara Mulloy
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Clive Page
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Elaine Gray
- National Institute for Biological Standards and Control, South Mimms, Ridge, Herts, United Kingdom
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
53
|
Effects of Circulating HMGB-1 and Histones on Cardiomyocytes-Hemadsorption of These DAMPs as Therapeutic Strategy after Multiple Trauma. J Clin Med 2020; 9:jcm9051421. [PMID: 32403440 PMCID: PMC7291040 DOI: 10.3390/jcm9051421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background and purpose: The aim of the study was to determine the effects of post-traumatically released High Mobility Group Box-1 protein (HMGB1) and extracellular histones on cardiomyocytes (CM). We also evaluated a therapeutic option to capture circulating histones after trauma, using a hemadsorption filter to treat CM dysfunction. Experimental Approach: We evaluated cell viability, calcium handling and mitochondrial respiration of human cardiomyocytes in the presence of HMGB-1 and extracellular histones. In a translational approach, a hemadsorption filter was applied to either directly eliminate extracellular histones or to remove them from blood samples obtained from multiple injured patients. Key results: Incubation of human CM with HMGB-1 or histones is associated with changes in calcium handling, a reduction of cell viability and a substantial reduction of the mitochondrial respiratory capacity. Filtrating plasma from injured patients with a hemadsorption filter reduces histone concentration ex vivo and in vitro, depending on dosage. Conclusion and implications: Danger associated molecular patterns such as HMGB-1 and extracellular histones impair human CM in vitro. A hemadsorption filter could be a therapeutic option to reduce high concentrations of histones.
Collapse
|
54
|
Akatsuka M, Masuda Y, Tatsumi H, Yamakage M. Recombinant human soluble thrombomodulin is associated with attenuation of sepsis-induced renal impairment by inhibition of extracellular histone release. PLoS One 2020; 15:e0228093. [PMID: 31971961 PMCID: PMC6977725 DOI: 10.1371/journal.pone.0228093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple organ dysfunction induced by sepsis often involves kidney injury. Extracellular histones released in response to damage-associated molecular patterns are known to facilitate sepsis-induced organ dysfunction. Recombinant human soluble thrombomodulin (rhTM) and its lectin-like domain (D1) exert anti-inflammatory effects and neutralize damage-associated molecular patterns. However, the effects of rhTM and D1 on extracellular histone H3 levels and kidney injury remain poorly understood. Our purpose was to investigate the association between extracellular histone H3 levels and kidney injury, and to clarify the effects of rhTM and D1 on extracellular histone H3 levels, kidney injury, and survival in sepsis-induced rats. Rats in whom sepsis was induced via cecal ligation and puncture were used in this study. Histone H3 levels, histopathology of the kidneys, and the survival rate of rats at 24 h after cecal ligation and puncture were investigated. Histone H3 levels increased over time following cecal ligation and puncture. Histopathological analyses indicated that the distribution of degeneration foci among tubular epithelial cells of the kidney and levels of histone H3 increased simultaneously. Administration of rhTM and D1 significantly reduced histone H3 levels compared with that in the vehicle-treated group and improved kidney injury. The survival rates of rats in rhTM- and D1-treated groups were significantly higher than that in the vehicle-treated group. The results of this study indicated that rhTM and its D1 similarly reduce elevated histone H3 levels, thereby reducing acute kidney injury. Our findings also proposed that rhTM and D1 show potential as new treatment strategies for sepsis combined with acute kidney injury.
Collapse
Affiliation(s)
- Masayuki Akatsuka
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
55
|
Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury. Sci Rep 2020; 10:289. [PMID: 31937858 PMCID: PMC6959219 DOI: 10.1038/s41598-019-57205-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury (AKI) complicated by acute lung injury has a detrimental effect on mortality among critically ill patients. Recently, a renal ischemia-reperfusion (IR) model suggested the involvement of histones and neutrophil extracellular traps (NETs) in the development of distant lung injury after renal IR. Given that recombinant thrombomodulin (rTM) has anti-inflammatory roles by binding to circulating histones, we aimed to clarify its effect on distant lung injury induced by AKI in a murine bilateral renal IR model. Both pretreatment and delayed treatment with rTM significantly decreased pulmonary myeloperoxidase activity, but they did not affect renal dysfunction at 24 h after renal IR. Additionally, rTM mitigated the renal IR-augmented expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and keratinocyte-derived chemokine), and vascular leakage, as well as the degree of lung damage. Intense histone accumulation and active NET formation occurred in both the kidneys and the lungs; however, rTM significantly decreased the histone and NET accumulation only in the lungs. Administration of rTM may have protective impact on the lungs after renal IR by blocking histone and NET accumulation in the lungs, although no protection was observed in the kidneys. Treatment with rTM may be an adjuvant strategy to attenuate distant lung injury complicating AKI.
Collapse
|
56
|
Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin Transl Med 2020; 10:199-223. [PMID: 32508035 PMCID: PMC7240866 DOI: 10.1002/ctm2.24] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Surgical resection remains the mainstay treatment for solid cancers, especially for localized disease. However, the postoperative immunosuppression provides a window for cancer cell proliferation and awakening dormant cancer cells, leading to rapid recurrences or metastases. This immunosuppressive status after surgery is associated with the severity of surgical trauma since immunosuppression induced by minimally invasive surgery is less than that of an extensive open surgery. The systemic response to tissue damages caused by surgical operations and the subsequent wound healing induced a cascade alteration in cellular immunity. After surgery, patients have a high level of circulating damage-associated molecular patterns (DAMPs), triggering a local and systemic inflammation. The inflammatory metrics in the immediate postoperative period was associated with the prognosis of cancer patients. Neutrophils provide the first response to surgical trauma, and the production of neutrophil extracellular traps (NETs) promotes cancer progression. Activated macrophage during wound healing presents a tumor-associated phenotype that cancers can exploit for their survival advantage. In addition, the amplification and activation of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) or the elevated programmed death ligand-1 and vascular endothelial growth factor expression under surgical trauma, exacerbate the immunosuppression and favor of the formation of the premetastatic niche. Therapeutic strategies to reduce the cellular immunity impairment after surgery include anti-DAMPs, anti-postoperative inflammation or inflammatory/pyroptosis signal, combined immunotherapy with surgery, antiangiogenesis and targeted therapies for neutrophils, macrophages, MDSCs, and Tregs. Further, the application of enhanced recovery after surgery also has a feasible outcome for postoperative immunity restoration. Overall, current therapies to improve the cellular immunity under the special condition after surgery are relatively lacking. Further understanding the underlying mechanisms of surgical trauma-related immunity dysfunction, phenotyping the immunosuppressive cells, and developing the related therapeutic intervention should be explored.
Collapse
Affiliation(s)
- Fan Tang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
- Department of OrthopeadicsWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yan Tie
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanPeople's Republic of China
| | - Chongqi Tu
- Department of OrthopeadicsWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
57
|
Recombinant Thrombomodulin on Neutrophil Extracellular Traps in Murine Intestinal Ischemia–Reperfusion. Anesthesiology 2019; 131:866-882. [DOI: 10.1097/aln.0000000000002898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
In multiple-organ dysfunction, an injury affecting one organ remotely impacts others, and the injured organs synergistically worsen outcomes. Recently, several mediators, including extracellular histones and neutrophil extracellular traps, were identified as contributors to distant organ damage. This study aimed to elucidate whether these mediators play a crucial role in remote organ damage induced by intestinal ischemia–reperfusion. This study also aimed to evaluate the protective effects of recombinant thrombomodulin, which has been reported to neutralize extracellular histones, on multiple-organ dysfunction after intestinal ischemia–reperfusion.
Methods
Intestinal ischemia was induced in male C57BL/6J mice via clamping of the superior mesenteric artery. Recombinant thrombomodulin (10 mg/kg) was administered intraperitoneally with the initiation of reperfusion. The mice were subjected to a survival analysis, histologic injury scoring, quantitative polymerase chain reaction analysis of tumor necrosis factor-α and keratinocyte-derived chemokine expression, Evans blue dye vascular permeability assay, and enzyme-linked immunosorbent assay analysis of histones in the jejunum, liver, lung, and kidney after 30- or 45-min ischemia. Neutrophil extracellular trap formation was evaluated by immunofluorescence staining.
Results
Recombinant thrombomodulin yielded statistically significant improvements in survival after 45-min ischemia (ischemia–reperfusion without vs. with 10 mg/kg recombinant thrombomodulin: 0% vs. 33%, n = 21 per group, P = 0.001). Recombinant thrombomodulin reduced the histologic injury score, expression of tumor necrosis factor-α and keratinocyte-derived chemokine, and extravasation of Evans blue dye, which were augmented by 30-min ischemia–reperfusion, in the liver, but not in the intestine. Accumulated histones and neutrophil extracellular traps were found in the livers and intestines of 30-min ischemia–reperfusion–injured mice. Recombinant thrombomodulin reduced these accumulations only in the liver.
Conclusions
Recombinant thrombomodulin improved the survival of male mice with intestinal ischemia–reperfusion injury. These findings suggest that histone and neutrophil extracellular trap accumulation exacerbate remote liver injury after intestinal ischemia–reperfusion. Recombinant thrombomodulin may suppress these accumulations and attenuate liver injury.
Collapse
|
58
|
Eppensteiner J, Kwun J, Scheuermann U, Barbas A, Limkakeng AT, Kuchibhatla M, Elster EA, Kirk AD, Lee J. Damage- and pathogen-associated molecular patterns play differential roles in late mortality after critical illness. JCI Insight 2019; 4:127925. [PMID: 31434802 DOI: 10.1172/jci.insight.127925] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Multiple organ failure (MOF) is the leading cause of late mortality and morbidity in patients who are admitted to intensive care units (ICUs). However, there is an epidemiologic discrepancy in the mechanism of underlying immunologic derangement dependent on etiology between sepsis and trauma patients in MOF. We hypothesized that damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), while both involved in the development of MOF, contribute differently to the systemic innate immune derangement and coagulopathic changes. We found that DAMPs not only produce weaker innate immune activation than counterpart PAMPs, but also induce less TLR signal desensitization, contribute to less innate immune cell death, and propagate more robust systemic coagulopathic effects than PAMPs. This differential contribution to MOF provides further insight into the contributing factors to late mortality in critically ill trauma and sepsis patients. These findings will help to better prognosticate patients at risk of MOF and may provide future therapeutic molecular targets in this disease process.
Collapse
Affiliation(s)
- John Eppensteiner
- Department of Surgery and.,Division of Emergency Medicine, Duke University, Durham, North Carolina, USA.,Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA
| | | | | | | | - Alexander T Limkakeng
- Department of Surgery and.,Division of Emergency Medicine, Duke University, Durham, North Carolina, USA.,Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA
| | - Maggie Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Eric A Elster
- Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Allan D Kirk
- Department of Surgery and.,Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA
| | | |
Collapse
|
59
|
Stensballe J, Ulrich AG, Nilsson JC, Henriksen HH, Olsen PS, Ostrowski SR, Johansson PI. Resuscitation of Endotheliopathy and Bleeding in Thoracic Aortic Dissections: The VIPER-OCTA Randomized Clinical Pilot Trial. Anesth Analg 2019; 127:920-927. [PMID: 29863610 PMCID: PMC6135474 DOI: 10.1213/ane.0000000000003545] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND: Thoracic aorta dissection is an acute critical condition associated with shock-induced endotheliopathy, coagulopathy, massive bleeding, and significant morbidity and mortality. Our aim was to compare the effect of coagulation support with solvent/detergent-treated pooled plasma (OctaplasLG) versus standard fresh frozen plasma (FFP) on glycocalyx and endothelial injury, bleeding, and transfusion requirements. METHODS: Investigator-initiated, single-center, blinded, randomized clinical pilot trial of adult patients undergoing emergency surgery for thoracic aorta dissection. Patients were randomized to receive OctaplasLG or standard FFP as coagulation factor replacement related to bleeding. The primary outcome was glycocalyx and endothelial injury. Other outcomes included bleeding, transfusions and prohemostatics at 24 hours, organ failure, length of stay in the intensive care unit and in the hospital, safety, and mortality at 30 and 90 days. RESULTS: Fifty-seven patients were included to obtain 44 evaluable on the primary outcome. The OctaplasLG group displayed significantly reduced damage to the endothelial glycocalyx (syndecan-1) and reduced endothelial tight junction injury (sVE-cadherin) compared to standard FFP. In the OctaplasLG group compared to the standard FFP, days on ventilator (1 day [interquartile range, 0–1] vs 2 days [1–3]; P = .013), bleeding during surgery (2150 [1600–3087] vs 2750 [2130–6875]; P = .046), 24-hour total transfusion and platelet transfusion volume (3975 mL [2640–6828 mL] vs 6220 mL [4210–10,245 mL]; P = .040, and 1400 mL [1050–2625 mL] vs 2450 mL [1400–3500 mL]; P = .027), and goal-directed use of prohemostatics (7/23 [30.4%] vs 13/21 [61.9%]; P = .036) were all significantly lower. Among the 57 patients randomized, 30-day mortality was 20.7% (6/29) in the OctaplasLG group and 25% (7/28) in the standard FFP group (P = .760). No safety concern was raised. CONCLUSIONS: In this randomized, clinical pilot trial of patients undergoing emergency surgery for thoracic aorta dissections, we found that OctaplasLG reduced glycocalyx and endothelial injury, reduced bleeding, transfusions, use of prohemostatics, and time on ventilator after surgery compared to standard FFP. An adequately powered multicenter trial is warranted to confirm the clinical importance of the findings.
Collapse
Affiliation(s)
- Jakob Stensballe
- From the Section for Transfusion Medicine, Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Anesthesia, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | | | - Hanne H Henriksen
- From the Section for Transfusion Medicine, Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Peter S Olsen
- Cardiothoracic Surgery, Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Sisse R Ostrowski
- From the Section for Transfusion Medicine, Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Pär I Johansson
- From the Section for Transfusion Medicine, Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Surgery, Division of Acute Care Surgery, Centre for Translational Injury Research (CeTIR), University of Texas Medical School at Houston, Houston, Texas.,Center for Systems Biology, the School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
60
|
Zhang D, Gao M, Jin Q, Ni Y, Zhang J. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B 2019; 9:455-468. [PMID: 31193829 PMCID: PMC6543088 DOI: 10.1016/j.apsb.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cell death plays important roles in living organisms and is a hallmark of numerous disorders such as cardiovascular diseases, sepsis and acute pancreatitis. Moreover, cell death also plays a pivotal role in the treatment of certain diseases, for example, cancer. Noninvasive visualization of cell death contributes to gained insight into diseases, development of individualized treatment plans, evaluation of treatment responses, and prediction of patient prognosis. On the other hand, cell death can also be targeted for the treatment of diseases. Although there are many ways for a cell to die, only apoptosis and necrosis have been extensively studied in terms of cell death related theranostics. This review mainly focuses on molecular imaging and therapeutic strategies directed against necrosis. Necrosis shares common morphological characteristics including the rupture of cell membrane integrity and release of cellular contents, which provide potential biomarkers for visualization of necrosis and necrosis targeted therapy. In the present review, we summarize the updated joint efforts to develop molecular imaging probes and therapeutic strategies targeting the biomarkers exposed by necrotic cells. Moreover, we also discuss the challenges in developing necrosis imaging probes and propose several biomarkers of necrosis that deserve to be explored in future imaging and therapy research.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
61
|
Urak KT, Blanco GN, Shubham S, Lin LH, Dassie JP, Thiel WH, Chen Y, Sonkar VK, Lei B, Murthy S, Gutierrez WR, Wilson ME, Stiber JA, Klesney-Tait J, Dayal S, Miller FJ, Giangrande PH. RNA inhibitors of nuclear proteins responsible for multiple organ dysfunction syndrome. Nat Commun 2019; 10:116. [PMID: 30631065 PMCID: PMC6328615 DOI: 10.1038/s41467-018-08030-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
The development of multiple organ dysfunction syndrome (MODS) following infection or tissue injury is associated with increased patient morbidity and mortality. Extensive cellular injury results in the release of nuclear proteins, of which histones are the most abundant, into the circulation. Circulating histones are implicated as essential mediators of MODS. Available anti-histone therapies have failed in clinical trials due to off-target effects such as bleeding and toxicity. Here, we describe a therapeutic strategy for MODS based on the neutralization of histones by chemically stabilized nucleic acid bio-drugs (aptamers). Systematic evolution of ligands by exponential enrichment technology identified aptamers that selectively bind those histones responsible for MODS and do not bind to serum proteins. We demonstrate the efficacy of histone-specific aptamers in human cells and in a murine model of MODS. These aptamers could have a significant therapeutic benefit in the treatment of multiple diverse clinical conditions associated with MODS.
Collapse
Affiliation(s)
- Kevin T Urak
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Giselle N Blanco
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Li-Hsien Lin
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Justin P Dassie
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - William H Thiel
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Yani Chen
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Beilei Lei
- Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - Shubha Murthy
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Wade R Gutierrez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary E Wilson
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, 52242, USA.,Veteran's Affairs Medical Center, University of Iowa, Iowa City, IA, 52241, USA
| | | | | | - Sanjana Dayal
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC, 27708, USA. .,Pharmacology and Cancer Biology Program, Duke University, Durham, NC, 27708, USA. .,Deptartment of Medicine, Veterans Administration Medical Center, Durham, NC, 27705, USA.
| | - Paloma H Giangrande
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, 52242, USA. .,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. .,Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA. .,Environmental Health Sciences Research Center (EHSRC), University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
62
|
Li X, Gou C, Pang Y, Wang Y, Liu Y, Wen T. Extracellular histones are clinically associated with primary graft dysfunction in human liver transplantation. RSC Adv 2019; 9:10264-10271. [PMID: 35520915 PMCID: PMC9062399 DOI: 10.1039/c9ra00425d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/22/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular histones have been involved in numerous inflammatory conditions such as ischemia/reperfusion (I/R) injury, trauma, and infection. There is growing evidence of I/R injury associated with primary graft dysfunction (PGD) following organ transplantation. Here we investigated whether extracellular histones are clinically involved with PGD in human liver transplantation. In total 58 patients undergoing liver transplantation were studied. We collected blood samples from the recipients before and serially after transplantation (24 h, 72 h). We measured extracellular histones, myeloperoxidase (MPO), S100A8/A9, and multiple inflammatory cytokines. Additionally, we exposed human L02 hepatocytes or U937 monocytic cells to the recipient's sera overnight, and assessed cellular viability and cytokine production respectively. Lastly, we assessed the effect of histone-targeted interventions by administration of heparin or an anti-histone antibody. It showed that extracellular histones increased immediately after transplantation, peaked within 24 hours and remained at high levels up to 72 hours (all p < 0.01). Notably, extracellular histone levels were significantly higher in recipients with PGD (n = 9) than recipients without PGD (n = 49, p = 0.004). Extracellular histones correlated positively with MPO, S100A8/A9 and most detected cytokines. Ex vivo analysis demonstrated that the patients' sera after graft markedly induced L02 cell death and caused profound cytokine production in cultured U937 cells, which could be abrogated by heparin or an anti-histone antibody. Collectively, extracellular histones were increased significantly after liver transplantation, which may contribute to the occurrence of PGD through direct cytotoxicity and enhancement of systemic inflammation. Targeting extracellular histones may provide a promising approach for preventing PGD or other complications in clinical practice. Extracellular histones have been involved in numerous inflammatory conditions such as ischemia/reperfusion (I/R) injury, trauma, and infection.![]()
Collapse
Affiliation(s)
- Xiuhui Li
- Department of Liver Diseases
- Beijing Youan Hospital
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Chunyan Gou
- Department of Liver Diseases
- Beijing Youan Hospital
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Yanhua Pang
- Department of Gastroenterology
- Beijing Chaoyang Hospital
- Capital Medical University
- Beijing 100020
- P. R. China
| | - Yakun Wang
- Medical Research Center
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing 100020
- P. R. China
| | - Yan Liu
- Department of Liver Diseases
- Beijing Youan Hospital
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Tao Wen
- Medical Research Center
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing 100020
- P. R. China
| |
Collapse
|
63
|
Survival After Cardiac Arrest With Instantaneous Rigorlike Stiffness: A Case Report. Ann Emerg Med 2018; 73:393-396. [PMID: 30528057 DOI: 10.1016/j.annemergmed.2018.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Instantaneous rigor is the immediate appearance of rigor mortis after cardiac arrest. To our knowledge, no previous reports exist on resuscitation of such patients. A young athlete suddenly collapsed with cardiac arrest during a marathon; his legs stiffened with instantaneous rigorlike stiffness. This stiffening provoked hyperkalemia, rhabdomyolysis, and multiple organ failure. We decided to amputate both legs, with venoarterial extracorporeal membrane oxygenation support. The patient recovered and was discharged without neurologic impairment. This rare case highlights the potentially significant effect of instantaneous rigor.
Collapse
|
64
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
65
|
Wen Z, Jin Y, Jiang X, Sun M, Arman N, Wen T, Lv X. Extracellular histones indicate the prognosis in patients undergoing extracorporeal membrane oxygenation therapy. Perfusion 2018; 34:211-216. [PMID: 30370815 DOI: 10.1177/0267659118809557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Extracellular histones have been recently identified as damage-associated molecular-pattern (DAMP) molecules involved with the pathogenesis of various inflammatory diseases. This study intended to investigate whether extracellular histones can indicate the prognosis in critically ill patients supported by extracorporeal membrane oxygenation (ECMO) therapy. Methods: A total of 56 patients undergoing ECMO were analysed retrospectively. Median concentrations of extracellular histones in patients before ECMO were assessed and used to divide the patients into two groups (Group 1 <48 µg/ml and Group 2 ⩾48 µg/ml). Mortality rate, Sequential Organ Failure Assessment (SOFA) scores and systemic inflammation were compared between the groups. Results: There were relatively higher concentrations of extracellular histones in Group 2 patients (57.78 µg/ml [48.4, 71.3]) than in Group 1 patients (36.76 µg/ml [28.5, 39.3], p<0.0001). The hospital mortality rate was 55.4% for the entire study subjects, with significantly worsened mortality in Group 2 in contrast to Group 1 (58.8% vs. 50%, p=0.031). Moreover, Group 2 patients had significantly higher SOFA scores and more pronounced systemic inflammation than Group 1 patients prior to ECMO initialization. Conclusions: Extracellular histones are known contributors to cell damage and organ injury. Our study showed that extracellular histones have a predictive value in the assessment of outcome of patients undergoing ECMO therapy and may be helpful for risk stratification in clinical settings.
Collapse
Affiliation(s)
- Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yang Jin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Meng Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | | | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
66
|
Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med 2018; 22:4617-4629. [PMID: 30085397 PMCID: PMC6156248 DOI: 10.1111/jcmm.13797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Histones are positively charged nuclear proteins that facilitate packaging of DNA into nucleosomes common to all eukaryotic cells. Upon cell injury or cell signalling processes, histones are released passively through cell necrosis or actively from immune cells as part of extracellular traps. Extracellular histones function as microbicidal proteins and are pro‐thrombotic, limiting spread of infection or isolating areas of injury to allow for immune cell infiltration, clearance of infection and initiation of tissue regeneration and repair. Histone toxicity, however, is not specific to microbes and contributes to tissue and end‐organ injury, which in cases of systemic inflammation may lead to organ failure and death. This review details the processes of histones release in acute inflammation, the mechanisms of histone‐related tissue toxicity and current and future strategies for therapy targeting histones in acute inflammatory diseases.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, China
| | - David Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Alexei Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
67
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist 2018; 25:288-297. [PMID: 30051750 DOI: 10.1177/1073858418791128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deposition of amyloid plaques in limbic and associative cortices is amongst the most recognized histopathologic hallmarks of Alzheimer's disease. Despite decades of research, there is a lack of consensus over the impact of plaques on neuronal function, with their role in cognitive decline and memory loss undecided. Evidence has emerged suggesting complex and localized axonal pathology around amyloid plaques, with a significant fraction of swellings and dystrophies becoming enriched with putative synaptic vesicles and presynaptic proteins normally colocalized at hotspots of transmitter release. In the absence of hallmark active zone proteins and postsynaptic receptive elements, the axonal swellings surrounding amyloid plaques have been suggested as sites for ectopic release of glutamate, which under reduced clearance can lead to elevated local excitatory drive. Throughout this review, we consider the emerging data suggestive of amyloid plaques as hotspots of compulsive glutamatergic activity. Evidence for local and long-range effects of nonsynaptic glutamate is discussed in the context of circuit dysfunctions and neurodegenerative changes of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Munich School of Bioengineering, Technical University Munich, Munich, Germany.,International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
68
|
Ding L, Zhang X, Li L, Gou C, Luo X, Yang Y, Wen T, Li X. Qingchangligan formula alleviates acute liver injury by attenuating extracellular histone-associated inflammation. Biomed Pharmacother 2018; 103:140-146. [DOI: 10.1016/j.biopha.2018.01.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
|
69
|
Li RHL, Johnson LR, Kohen C, Tablin F. A novel approach to identifying and quantifying neutrophil extracellular trap formation in septic dogs using immunofluorescence microscopy. BMC Vet Res 2018; 14:210. [PMID: 29945605 PMCID: PMC6020318 DOI: 10.1186/s12917-018-1523-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Canine neutrophils release neutrophil extracellular traps (NETs) in response to lipopolysaccharide but NETs from clinical septic dogs had not been identified. The primary aim is to describe the methodology of identifying and quantifying neutrophil extracellular traps (NETs) in cytology samples of septic foci in dogs with sepsis using immunofluorescence microscopy. Cytology samples including endotracheal tracheal wash (ETW), bronchoalveolar lavage (BAL), abdominal and pleural effusion collected from 5 dogs (3 septic, 2 non-septic) were fixed, permeabilized and stained for myeloperoxidase (MPO), citrullinated histone H3 (citH3) and cell-free DNA (cfDNA). Fluorescence microscopy was used to identify and quantify NETs in 10 random views at 40× magnification. NETs were identified based on co-localization of MPO, citH3 and cfDNA. NETs were quantified as a ratio (number of NETs: number of neutrophils). Neutrophils were identified based on cytoplasmic MPO, cellular diameter and nuclear morphology. Results NETs were identified and quantified in all cytology samples collected from septic dogs. A small number of NETs was documented in one dog with sterile chronic bronchitis. No NETs were found in sterile abdominal effusion collected from one dog with congestive heart failure. Conclusions Immunofluorescence microscopy could be a useful tool for the study of NETs in dogs with clinical sepsis.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, One Shield Avenue, Davis, California, 95161, USA.
| | - Lynelle R Johnson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Casey Kohen
- William Pritchard Veterinary Medical Teach Hospital, University of California, Davis, California, USA
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
70
|
Abstract
This review summarizes a short list of currently discussed trauma-induced danger-associated molecular patterns (DAMP). Due to the bivalent character and often pleiotropic effects of a DAMP, it is difficult to describe its "friend or foe" role in post-traumatic inflammation and regeneration, both systemically as well locally in tissues. DAMP can be used as biomarkers to indicate or monitor disease or injury severity, but also may serve as clinically applicable parameters for better indication and timing of surgery. Due to the inflammatory processes at the local tissue level or the systemic level, the precise role of DAMP is not always clear to define. While in vitro and experimental studies allow for the detection of these biomarkers at the different levels of an organism-cellular, tissue, circulation-this is not always easily transferable to the human setting. Increased knowledge exploring the dual role of DAMP after trauma, and concentrating on their nuclear functions, transcriptional targets, release mechanisms, cellular sources, multiple functions, their interactions and potential therapeutic targeting is warranted.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany.
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| |
Collapse
|
71
|
Qaddoori Y, Abrams ST, Mould P, Alhamdi Y, Christmas SE, Wang G, Toh CH. Extracellular Histones Inhibit Complement Activation through Interacting with Complement Component 4. THE JOURNAL OF IMMUNOLOGY 2018; 200:4125-4133. [PMID: 29752310 DOI: 10.4049/jimmunol.1700779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/16/2018] [Indexed: 01/15/2023]
Abstract
Complement activation leads to membrane attack complex formation, which can lyse not only pathogens but also host cells. Histones can be released from the lysed or damaged cells and serve as a major type of damage-associated molecular pattern, but their effects on the complement system are not clear. In this study, we pulled down two major proteins from human serum using histone-conjugated beads: one was C-reactive protein and the other was C4, as identified by mass spectrometry. In surface plasmon resonance analysis, histone H3 and H4 showed stronger binding to C4 than other histones, with KD around 1 nM. The interaction did not affect C4 cleavage to C4a and C4b. Because histones bind to C4b, a component of C3 and C5 convertases, their activities were significantly inhibited in the presence of histones. Although it is not clear whether the inhibition was achieved through blocking C3 and C5 convertase assembly or just through reducing their activity, the outcome was that both classical and mannose-binding lectin pathways were dramatically inhibited. Using a high concentration of C4 protein, histone-suppressed complement activity could not be fully restored, indicating C4 is not the only target of histones in those pathways. In contrast, the alternative pathway was almost spared, but the overall complement activity activated by zymosan was inhibited by histones. Therefore, we believe that histones inhibiting complement activation is a natural feedback mechanism to prevent the excessive injury of host cells.
Collapse
Affiliation(s)
- Yasir Qaddoori
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Simon T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Paul Mould
- Biomolecular Analysis Core Facility, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Yasir Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Stephen E Christmas
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom;
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom; .,Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, United Kingdom
| |
Collapse
|
72
|
Nagano F, Mizuno T, Mizumoto S, Yoshioka K, Takahashi K, Tsuboi N, Maruyama S, Yamada S, Nagamatsu T. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones. Eur J Pharmacol 2018; 826:48-55. [DOI: 10.1016/j.ejphar.2018.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
|
73
|
Pivotal roles of Kupffer cells in the progression and regression of DDC-induced chronic cholangiopathy. Sci Rep 2018; 8:6415. [PMID: 29686325 PMCID: PMC5913224 DOI: 10.1038/s41598-018-24825-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Kupffer cells (KCs) are key players in maintaining tissue homeostasis and are involved in various liver diseases. However, the roles of KCs in the pathogenesis of cholangiopathy are largely unknown. We aimed to investigate the precise roles of KCs in both the progression and regression phases of the 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced cholangiopathy model. In the early phase of DDC-induced cholangiopathy, the number of KCs significantly increased over time. Moreover, KCs were associated with abnormal phenotypic changes in other liver cells, such as hepatocytes, biliary epithelial cells, liver sinusoidal endothelial cells, and hepatic stellate cells. In contrast, KC depletion by clodronate administration suppressed the progression of the disease, and maintained the phenotypes of other cells. In the regression phase, the numbers of KCs significantly decreased, and the cells redifferentiated to their quiescent state. In contrast, KC depletion delayed the recovery of cells by maintaining other liver cells in an active state. These findings suggest that KCs play detrimental roles in the progression phase; however, they are beneficial in the regression phase by mediating interactions between other liver cells. Our data provide new insights into the roles of KCs in the pathogenesis of cholangiopathy.
Collapse
|
74
|
Histone-Complexed DNA Fragments Levels are Associated with Coagulopathy, Endothelial Cell Damage, and Increased Mortality after Severe Pediatric Trauma. Shock 2018; 49:44-52. [DOI: 10.1097/shk.0000000000000902] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
75
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
76
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
77
|
Li RHL, Ng G, Tablin F. Lipopolysaccharide-induced neutrophil extracellular trap formation in canine neutrophils is dependent on histone H3 citrullination by peptidylarginine deiminase. Vet Immunol Immunopathol 2017; 193-194:29-37. [PMID: 29129225 DOI: 10.1016/j.vetimm.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023]
Abstract
Neutrophils release neutrophil extracellular traps (NETs), which are extracellular chromatin decorated with histones and antimicrobial proteins. Although known for antimicrobial properties, overzealous production of NETs (NETosis) may lead to cytotoxicity and multiple organ failure in sepsis. Pathogen-induced NETosis has been extensively studied in mice but its importance in dogs remains largely unknown. This study sought to characterize in vitro NETosis induced by E.coli LPS, including assessing the role of peptidylarginine deiminase (PAD) in canine NETosis. Neutrophils (1×106 cells/ml) from healthy dogs were isolated and treated with 100μg/ml LPS, 100nM phorbol 12-myristate 13-acetate (PMA), or buffer for either 90 or 180min. NETs were assessed using fluorescence microscopy of living neutrophils and immunofluorescent microscopy. Supernatant and cellular debris were purified and cell-free DNA was quantified by spectrophotometry. The role of PAD was assessed by treating LPS- and PMA-activated neutrophils with 50, 100 or 200μM of the PAD inhibitor, Cl-amidine. In vitro NETosis was characterized by co-localization of cell-free DNA, citrullinated histone H3, and myeloperoxidase. LPS stimulation resulted in intracellular citrullination of histone H3. Compared to PMA chemically-induced NETosis, LPS resulted in smaller NETs with less extracellular citrullinated histone H3. Cl-amidine decreased citrullination of histones and NET production in either LPS- or PMA-stimulated neutrophils demonstrating that neutrophil PAD is essential for these cellular processes.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States.
| | - Geena Ng
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
78
|
Li T, Lee W, Hara H, Long C, Ezzelarab M, Ayares D, Huang H, Wang Y, Cooper DK, Iwase H. An Investigation of Extracellular Histones in Pig-To-Baboon Organ Xenotransplantation. Transplantation 2017; 101:2330-2339. [PMID: 28157735 PMCID: PMC5856196 DOI: 10.1097/tp.0000000000001676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Serum (extracellular) histone levels are increased in inflammatory states and in the presence of coagulation dysfunction, for example, trauma, chemical/ischemic injury, infection. There is increasing evidence of a systemic inflammatory response associated with the presence of a pig xenograft in a nonhuman primate. We evaluated extracellular histone levels in baboons with various pig xenografts. METHODS We measured serum histones in baboons with pig heterotopic heart (n = 8), life-supporting kidney (n = 5), orthotopic liver (n = 4), and artery patch (n = 9) grafts by enzyme-linked immunosorbent assay. C-reactive protein (CRP), free triiodothyronine (fT3), serum amyloid A (SAA), and platelet counts were also measured, all of which may provide an indication of an inflammatory state. We investigated the effect of histones on platelet aggregation and on cytotoxicity of pig cells in vitro. RESULTS Serum histones increased when baboons developed consumptive coagulopathy (eg, thrombocytopenia) or infection. CRP levels tended to be higher and fT3 levels lower when consumptive coagulopathy developed. Measurement of SAA correlated fairly well with CRP and indicated the state of inflammation. Treatment of the recipient with tocilizumab reduced the level of serum histones, CRP, and SAA, and increased the level of fT3 and platelet counts. In vitro, histone-induced platelet aggregation and endothelial cell apoptosis were both significantly reduced by the NF-κB pathway inhibitor, parthenolide. CONCLUSIONS These noninvasive assays may be useful for monitoring the health status of nonhuman primate recipients of pig organ grafts and may help in management after xenotransplantation. Tocilizumab and NF-κB inhibitors might prove valuable in reducing the inflammatory response to a pig xenograft.
Collapse
Affiliation(s)
- Tao Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Hai Huang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
79
|
Alarcón P, Manosalva C, Conejeros I, Carretta MD, Muñoz-Caro T, Silva LMR, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. d(-) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression. Front Immunol 2017; 8:975. [PMID: 28861083 PMCID: PMC5559443 DOI: 10.3389/fimmu.2017.00975] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(−) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(−) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(−) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(−) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(−) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(−) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.
Collapse
Affiliation(s)
- Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Conejeros
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María D Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Tamara Muñoz-Caro
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M R Silva
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
80
|
Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis 2017; 8:e2812. [PMID: 28542146 PMCID: PMC5520745 DOI: 10.1038/cddis.2017.52] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Histones are intra-nuclear cationic proteins that are present in all eukaryotic cells and are highly conserved across species. Within the nucleus, they provide structural stability to chromatin and regulate gene expression. Histone may be released into the extracellular space in three forms: freely, as a DNA-bound nucleosome or as part of neutrophil extracellular traps, and all three can be detected in serum after significant cellular death such as sepsis, trauma, ischaemia/reperfusion injury and autoimmune disease. Once in the extracellular space, histones act as damage-associated molecular pattern proteins, activating the immune system and causing further cytotoxicity. They interact with Toll-like receptors (TLRs), complement and the phospholipids of cell membranes inducing endothelial and epithelial cytotoxicity, TLR2/TLR4/TLR9 activation and pro-inflammatory cytokine/chemokine release via MyD88, NFκB and NLRP3 inflammasome-dependent pathways. Drugs that block the release of histone, neutralise circulating histone or block histone signal transduction provide significant protection from mortality in animal models of acute organ injury but warrant further research to inform future clinical applications.
Collapse
Affiliation(s)
- Eleanor Silk
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hao Weng
- Department of Anesthesiology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Fengxian District, Shanghai, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
81
|
Pérez-Cremades D, Bueno-Betí C, García-Giménez JL, Ibañez-Cabellos JS, Hermenegildo C, Pallardó FV, Novella S. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells. J Cell Mol Med 2017; 21:1584-1592. [PMID: 28244682 PMCID: PMC5543457 DOI: 10.1111/jcmm.13088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Bueno-Betí
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
| | - José Santiago Ibañez-Cabellos
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
82
|
Piao X, Yamazaki S, Komazawa-Sakon S, Miyake S, Nakabayashi O, Kurosawa T, Mikami T, Tanaka M, Van Rooijen N, Ohmuraya M, Oikawa A, Kojima Y, Kakuta S, Uchiyama Y, Tanaka M, Nakano H. Depletion of myeloid cells exacerbates hepatitis and induces an aberrant increase in histone H3 in mouse serum. Hepatology 2017; 65:237-252. [PMID: 27770461 DOI: 10.1002/hep.28878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Tissue-resident macrophages and bone marrow (BM)-derived monocytes play a crucial role in the maintenance of tissue homeostasis; however, their contribution to recovery from acute tissue injury is not fully understood. To address this issue, we generated an acute murine liver injury model using hepatocyte-specific Cflar-deficient (CflarHep-low ) mice. Cellular FLICE-inhibitory protein expression was down-regulated in Cflar-deficient hepatocytes, which thereby increased susceptibility of hepatocytes to death receptor-induced apoptosis. CflarHep-low mice developed acute hepatitis and recovered with clearance of apoptotic hepatocytes at 24 hours after injection of low doses of tumor necrosis factor α (TNFα), which could not induce hepatitis in wild-type (WT) mice. Depletion of Kupffer cells (KCs) by clodronate liposomes did not impair clearance of dying hepatocytes or exacerbate hepatitis in CflarHep-low mice. To elucidate the roles of BM-derived monocytes and neutrophils in clearance of apoptotic hepatocytes, we examined the effect of depletion of these cells on TNFα-induced hepatitis in CflarHep-low mice. We reconstituted CflarHep-low mice with BM cells from transgenic mice in which human diphtheria toxin receptor (DTR) was expressed under control of the lysozyme M (LysM) promoter. TNFα-induced infiltration of myeloid cells, including monocytes and neutrophils, was completely ablated in LysM-DTR BM-reconstituted CflarHep-low mice pretreated with diphtheria toxin, whereas KCs remained present in the livers. Under these experimental conditions, LysM-DTR BM-reconstituted CflarHep-low mice rapidly developed severe hepatitis and succumbed within several hours of TNFα injection. We found that serum interleukin-6 (IL-6), TNFα, and histone H3 were aberrantly increased in LysM-DTR BM-reconstituted, but not in WT BM-reconstituted, CflarHep-low mice following TNFα injection. CONCLUSION These findings indicate an unexpected role of myeloid cells in decreasing serum IL-6, TNFα, and histone H3 levels via the suppression of TNFα-induced hepatocyte apoptosis. (Hepatology 2017;65:237-252).
Collapse
Affiliation(s)
- Xuehua Piao
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | | | - Sanae Miyake
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Osamu Nakabayashi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Takeyuki Kurosawa
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Tetsuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, Amsterdam, Netherlands
| | - Masaki Ohmuraya
- Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Yuko Kojima
- Laboratory of Biomedical Imaging Research, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Soichiro Kakuta
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Tanaka
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|