51
|
Vicent S, Lieshout R, Saborowski A, Verstegen MMA, Raggi C, Recalcati S, Invernizzi P, van der Laan LJW, Alvaro D, Calvisi DF, Cardinale V. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:79-97. [PMID: 30851232 DOI: 10.1111/liv.14094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.
Collapse
Affiliation(s)
- Silvestre Vicent
- Program in Solid Tumors, Center for Applied Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospita, l, University of Milano, Bicocca, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
52
|
de Jong IE, Matton AP, van Praagh JB, van Haaften WT, Wiersema‐Buist J, van Wijk LA, Oosterhuis D, Iswandana R, Suriguga S, Overi D, Lisman T, Carpino G, Gouw AS, Olinga P, Gaudio E, Porte RJ. Peribiliary Glands Are Key in Regeneration of the Human Biliary Epithelium After Severe Bile Duct Injury. Hepatology 2019; 69:1719-1734. [PMID: 30506902 PMCID: PMC6594148 DOI: 10.1002/hep.30365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex-determining region Y-box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia-inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.
Collapse
Affiliation(s)
- Iris E.M. de Jong
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Alix P.M. Matton
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Jasper B. van Praagh
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Wouter T. van Haaften
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janneke Wiersema‐Buist
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Louise A. van Wijk
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Raditya Iswandana
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands,Faculty of PharmacyUniversitas IndonesiaIndonesia
| | - Su Suriguga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Ton Lisman
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | - Annette S.H. Gouw
- Department of PathologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
53
|
Elßner C, Goeppert B, Longerich T, Scherr AL, Stindt J, Nanduri LK, Rupp C, Kather JN, Schmitt N, Kautz N, Breuhahn K, Ismail L, Heide D, Hetzer J, García-Beccaria M, Hövelmeyer N, Waisman A, Urbanik T, Mueller S, Gdynia G, Banales JM, Roessler S, Schirmacher P, Jäger D, Schölch S, Keitel V, Heikenwalder M, Schulze-Bergkamen H, Köhler BC. Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice. Gastroenterology 2019; 156:1190-1205.e14. [PMID: 30445013 DOI: 10.1053/j.gastro.2018.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Cholangiocyte proliferation and ductular reaction contribute to the onset and progression of liver diseases. Little is known about the role of the transcription factor nuclear factor-κB (NF-κB) in this process. We investigated the activities of the RELB proto-oncogene NF-κB subunit in human cholangiocytes and in mouse models of liver disease characterized by a ductular reaction. METHODS We obtained liver tissue samples from patients with primary sclerosing cholangitis, primary biliary cholangitis, hepatitis B or C virus infection, autoimmune hepatitis, alcoholic liver disease, or without these diseases (controls) from a tissue bank in Germany. Tissues were analyzed by immunohistochemistry for levels of RELB and lymphotoxin β (LTB). We studied mice with liver parenchymal cell (LPC)-specific disruption of the cylindromatosis (CYLD) lysine 63 deubiquitinase gene (Cyld), with or without disruption of Relb (CyldΔLPC mice and Cyld/RelbΔLPC mice) and compared them with C57BL/6 mice (controls). Mice were fed 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or standard chow diets to induce biliary injury or were given injections of CCl4 to induce non-cholestatic liver fibrosis. Liver tissues were analyzed by histology, immunohistochemistry, immunoblots, in situ hybridization, and quantitative real-time polymerase chain reaction. Cholangiocytes were isolated from normal human liver, incubated with LTB receptor agonist, and transfected with small interfering RNAs to knock down RELB. RESULTS In liver tissues from patients with primary sclerosing cholangitis, primary biliary cholangitis, chronic infection with hepatitis B or C virus, autoimmune hepatitis, or alcoholic liver disease, we detected increased nuclear translocation of RELB and increased levels of LTB in cholangiocytes that formed reactive bile ducts compared with control liver tissues. Human cholangiocytes, but not those with RELB knockdown, proliferated with exposure to LTB. The phenotype of CyldΔLPC mice, which included ductular reaction, oval cell activation, and biliary fibrosis, was completely lost from Cyld/RelbΔLPC mice. Compared with livers from control mice, livers from CyldΔLPC mice (but not Cyld/RelbΔLPC mice) had increased levels of mRNAs encoding cytokines (LTB; CD40; and tumor necrosis factor superfamily [TNFSF] members TNFSF11 [RANKL], TNFSF13B [BAFF], and TNFSF14 [LIGHT]) produced by reactive cholangiocytes. However, these strains of mice developed similar levels of liver fibrosis in response to CCl4 exposure. CyldΔLPC mice and Cyld/RelbΔLPC mice had improved liver function on the DDC diet compared with control mice fed the DDC diet. CONCLUSION Reactive bile ducts in patients with chronic liver diseases have increased levels of LTB and nuclear translocation of RELB. RELB is required for the ductular reaction and development of biliary fibrosis in CyldΔLPC mice. Deletion of RELB and CYLD from LPCs protects mice from DDC-induced cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Christin Elßner
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lahiri Kanth Nanduri
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Christian Rupp
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Jakob Nikolas Kather
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Kautz
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Ismail
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Toni Urbanik
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Department of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Georg Gdynia
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV-EHU) CIBERehd, IKERBASQUE, San Sebastian, Spain
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Schölch
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Bruno Christian Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
54
|
Carpino G, Cardinale V, Folseraas T, Overi D, Grzyb K, Costantini D, Berloco PB, Di Matteo S, Karlsen TH, Alvaro D, Gaudio E. Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology 2019; 69:622-638. [PMID: 30102768 DOI: 10.1002/hep.30210] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory cholangiopathy frequently complicated by cholangiocarcinoma (CCA). Massive proliferation of biliary tree stem/progenitor cells (BTSCs), expansion of peribiliary glands (PBGs), and dysplasia were observed in PSC. The aims of the present study were to evaluate the involvement of PBGs and BTSCs in CCA which emerged in PSC patients. Specimens from normal liver (n = 5), PSC (n = 20), and PSC-associated CCA (n = 20) were included. Samples were processed for histology, immunohistochemistry, and immunofluorescence. In vitro experiments were performed on human BTSCs, human mucinous primary CCA cell cultures, and human cholangiocyte cell lines (H69). Our results indicated that all CCAs emerging in PSC patients were mucin-producing tumors characterized by PBG involvement and a high expression of stem/progenitor cell markers. Ducts with neoplastic lesions showed higher inflammation, wall thickness, and PBG activation compared to nonneoplastic PSC-affected ducts. CCA showed higher microvascular density and higher expression of nuclear factor kappa B, interleukin-6, interleukin-8, transforming growth factor β, and vascular endothelial growth factor-1 compared to nonneoplastic ducts. CCA cells were characterized by a higher expression of epithelial-to-mesenchymal transition (EMT) traits and by the absence of primary cilia compared to bile ducts and PBG cells in controls and patients with PSC. Our in vitro study demonstrated that lipopolysaccharide and oxysterols (PSC-related stressors) induced the expression of EMT traits, the nuclear factor kappa B pathway, autophagy, and the loss of primary cilia in human BTSCs. Conclusion: CCA arising in patients with PSC is characterized by extensive PBG involvement and by activation of the BTSC niche in these patients, the presence of duct lesions at different stages suggests a progressive tumorigenesis.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Daniele Costantini
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Sabina Di Matteo
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
55
|
M1-Polarized Macrophages Promote Self-Renewing Phenotype of Hepatic Progenitor Cells with Jagged1-Notch Signalling Involved: Relevance in Primary Sclerosing Cholangitis. J Immunol Res 2018; 2018:4807145. [PMID: 30671485 PMCID: PMC6323443 DOI: 10.1155/2018/4807145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
The immunologic interaction between parenchyma cells and encircling inflammatory cells is thought to be the most important mechanism of biliary damage and repair in primary sclerosing cholangitis (PSC). Monocytes/macrophages as master regulators of hepatic inflammation have been demonstrated to contribute to PSC pathogenesis. Macrophages coordinate with liver regeneration, and multiple phenotypes have been identified with diverse expressions of surface proteins and cytokine productions. We analyzed the expression of Notch ligand Jagged1 in polarized macrophages and investigated the relevance of Notch signalling activation in liver regeneration. M1 or M2 macrophages were generated from mouse bone marrow-derived macrophages (BMDMs) by classical or alternative activation, respectively. Then, the expression levels of Jagged1 (Jag1) of each phenotype were measured. The effects of polarized BMDMs on the expression of hepatic progenitor cell- (HPC-) specific markers and hairy and enhancer of split-1 (HES1) in HPCs in coculture were also analyzed. Monocyte-macrophage and Notch signalling-associated gene signatures were evaluated in the GEO database (access ID: GSE61260) by gene set enrichment analysis (GSEA). M1 macrophages were found associated with elevated Jag1 expression, which increased the fraction of HPC with self-renewing phenotypes (CD326+CD44+ or CD324+CD44+) and HES1 expression level in cocultured HPC. Blocking Jagged1 by siRNA or antibody in the coculture system attenuates HPC self-renewing phenotypes as well as HES1 expression in HPC. GSEA data show that macrophage activation and Notch signalling-associated gene signatures are enriched in PSC patients. These findings suggest that M1 macrophages promote an HPC self-renewing phenotype which is associated with Notch signalling activation within HPC. In the liver of PSC patients, the prevalence of activated macrophages, with M1 polarized accounting for the main part, is associated with increment of Notch signalling and enhancement of HPC self-renewal.
Collapse
|
56
|
Hukkinen M, Kerola A, Lohi J, Jahnukainen T, Heikkilä P, Pakarinen MP. Very low bilirubin after portoenterostomy improves survival of the native liver in patients with biliary atresia by deferring liver fibrogenesis. Surgery 2018; 165:843-850. [PMID: 30514566 DOI: 10.1016/j.surg.2018.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Progression of fibrosis and ensuing complications determine the postoperative course of patients operated on for biliary atresia. We evaluated predictors of the progression of fibrosis in the native liver after operative treatment. METHODS Among patients whose bilirubin decreased to <34 µmol/L after portoenterostomy (n = 41), predictors of follow-up cirrhosis and the progression of fibrosis were analyzed with logistic regression and survival of their native liver was evaluated with the Kaplan-Meier method. Areas under receiving operating characteristic were used to define optimal cutoffs. RESULTS After median follow-up of 5.2 years (interquartile range 1.6-10.2) after portoenterostomy, liver biopsies showed cirrhosis in 53% of patients, and the Metavir stage remained stable or decreased in 38%. The development of cirrhosis was predicted by total or conjugated bilirubin ≥170/120 µmol/L at the time of portoenterostomy (P ≤ .009); normalization of bilirubin within 1.9 months (P = .002); total or conjugated bilirubin ≥ 12.5/7.5 µmol/L (P = .002) and aspartate aminotransferase-to-platelet ratio ≥ 0.55 at 3 months postoperatively (P = .001); and total or conjugated bilirubin ≥ 7.5/2.5 µmol/L (P ≤ .001), aspartate aminotransferase-to-platelet ratio ≥ 0.63 (P = .004), and gamma glutamyl transferase ≥ 266 U/L (P = .007) at 6 months postoperatively. In multiple regression analysis, conjugated bilirubin ≥ 2.5 µmol/L at 6 months increased the risk of cirrhosis 35-fold (P = .020), and other predictors were not predictive. Total or conjugated bilirubin < 12.5/7.5 µmol/L (P ≤ .014), aspartate aminotransferase-to-platelet ratio < 0.55 at 3 months (P = .006), and total or conjugated bilirubin < 7.5/2.5 µmol/L at 6 months postoperatively (P ≤ .014) were the strongest predictors of a stable, nonprogressive fibrosis. Decreases in total or conjugated bilirubin to < 12.5/7.5 µmol/L by 3 months and to < 7.5/2.5 µmol/L by 6 months improved survival of the native liver (log-rank P ≤ .025). Age at follow-up or at portoenterostomy, anatomic type of biliary atresia, use of postoperative steroids, and episodes of cholangitis were unrelated to the progression of fibrosis or the development of cirrhosis (P = not significant). CONCLUSION Among patients whose serum bilirubin normalizes after portoenterostomy, its rapid decrease to very low levels prolongs the survival of their native liver by delaying the progression of fibrosis.
Collapse
Affiliation(s)
- Maria Hukkinen
- Pediatric Liver and Gut Research Group and Section of Pediatric Surgery, Children's Hospital, Helsinki University Hospital, Finland
| | - Anna Kerola
- Pediatric Liver and Gut Research Group and Section of Pediatric Surgery, Children's Hospital, Helsinki University Hospital, Finland
| | - Jouko Lohi
- Department of Pathology, HUSLAB, Helsinki University Hospital, Finland
| | - Timo Jahnukainen
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Hospital, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB, Helsinki University Hospital, Finland
| | - Mikko P Pakarinen
- Pediatric Liver and Gut Research Group and Section of Pediatric Surgery, Children's Hospital, Helsinki University Hospital, Finland.
| |
Collapse
|
57
|
Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. Int J Mol Sci 2018; 19:ijms19102917. [PMID: 30257529 PMCID: PMC6213374 DOI: 10.3390/ijms19102917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Samira Safarikia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| |
Collapse
|
58
|
Carbone M, Nardi A, Flack S, Carpino G, Varvaropoulou N, Gavrila C, Spicer A, Badrock J, Bernuzzi F, Cardinale V, Ainsworth HF, Heneghan MA, Thorburn D, Bathgate A, Jones R, Neuberger JM, Battezzati PM, Zuin M, Taylor-Robinson S, Donato MF, Kirby J, Mitchell-Thain R, Floreani A, Sampaziotis F, Muratori L, Alvaro D, Marzioni M, Miele L, Marra F, Giannini E, Gaudio E, Ronca V, Bonato G, Cristoferi L, Malinverno F, Gerussi A, Stocken DD, Cordell HJ, Hirschfield GM, Alexander GJ, Sandford RN, Jones DE, Invernizzi P, Mells GF. Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. Lancet Gastroenterol Hepatol 2018; 3:626-634. [PMID: 30017646 PMCID: PMC6962055 DOI: 10.1016/s2468-1253(18)30163-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Treatment guidelines recommend a stepwise approach to primary biliary cholangitis: all patients begin treatment with ursodeoxycholic acid (UDCA) monotherapy and those with an inadequate biochemical response after 12 months are subsequently considered for second-line therapies. However, as a result, patients at the highest risk can wait the longest for effective treatment. We determined whether UDCA response can be accurately predicted using pretreatment clinical parameters. METHODS We did logistic regression analysis of pretreatment variables in a discovery cohort of patients in the UK with primary biliary cholangitis to derive the best-fitting model of UDCA response, defined as alkaline phosphatase less than 1·67 times the upper limit of normal (ULN), measured after 12 months of treatment with UDCA. We validated the model in an external cohort of patients with primary biliary cholangitis and treated with UDCA in Italy. Additionally, we assessed correlations between model predictions and key histological features, such as biliary injury and fibrosis, on liver biopsy samples. FINDINGS 2703 participants diagnosed with primary biliary cholangitis between Jan 1, 1998, and May 31, 2015, were included in the UK-PBC cohort for derivation of the model. The following pretreatment parameters were associated with lower probability of UDCA response: higher alkaline phosphatase concentration (p<0·0001), higher total bilirubin concentration (p=0·0003), lower aminotransferase concentration (p=0·0012), younger age (p<0·0001), longer interval from diagnosis to the start of UDCA treatment (treatment time lag, p<0·0001), and worsening of alkaline phosphatase concentration from diagnosis (p<0·0001). Based on these variables, we derived a predictive score of UDCA response. In the external validation cohort, 460 patients diagnosed with primary biliary cholangitis were treated with UDCA, with follow-up data until May 31, 2016. In this validation cohort, the area under the receiver operating characteristic curve for the score was 0·83 (95% CI 0·79-0·87). In 20 liver biopsy samples from patients with primary biliary cholangitis, the UDCA response score was associated with ductular reaction (r=-0·556, p=0·0130) and intermediate hepatocytes (probability of response was 0·90 if intermediate hepatocytes were absent vs 0·51 if present). INTERPRETATION We have derived and externally validated a model based on pretreatment variables that accurately predicts UDCA response. Association with histological features provides face validity. This model provides a basis to explore alternative approaches to treatment stratification in patients with primary biliary cholangitis. FUNDING UK Medical Research Council and University of Milan-Bicocca.
Collapse
Affiliation(s)
- Marco Carbone
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK; Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.
| | - Alessandra Nardi
- Department of Mathematics, University of Rome Tor Vergata, Rome, Italy
| | - Steve Flack
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Ann Spicer
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Jonathan Badrock
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Bernuzzi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Holly F Ainsworth
- Institute of Health & Society, Newcastle University, Newcastle-upon-Tyne, UK
| | - Michael A Heneghan
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Douglas Thorburn
- Sheila Sherlock Liver Centre, The Royal Free London NHS Foundation Trust, London, UK
| | - Andrew Bathgate
- Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Rebecca Jones
- Liver Unit, St James's University Hospital, Leeds, UK
| | | | | | - Massimo Zuin
- Division of Internal Medicine and Liver Unit, Ospedale San Paolo, Milan, Italy
| | - Simon Taylor-Robinson
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Maria F Donato
- CRC "AM e A Migliavacca" Center for the Study of Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - John Kirby
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Fotios Sampaziotis
- Department of Surgery, Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK
| | - Luigi Muratori
- Liver Unit, Policlinico di Sant'Orsola-Malpighi, Bologna, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Division of Gastroenterology and Hepatology, Ospedali Riuniti University Hospital, Ancona, Italy
| | - Luca Miele
- Department of Internal Medicine and Gastroenterology, Gemelli University Hospital, Rome, Italy
| | - Fabio Marra
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edoardo Giannini
- Division of Gastroenterology, Department of Internal Medicine, IRCCS-Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Legal Medicine, and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Ronca
- Division of Internal Medicine and Liver Unit, Ospedale San Paolo, Milan, Italy
| | - Giulia Bonato
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Federica Malinverno
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Deborah D Stocken
- Institute of Health & Society, Newcastle University, Newcastle-upon-Tyne, UK
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gideon M Hirschfield
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - David E Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Pietro Invernizzi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - George F Mells
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|