51
|
Patkar OL, Belmer A, Holgate JY, Tarren JR, Shariff MR, Morgan M, Fogarty MJ, Bellingham MC, Bartlett SE, Klenowski PM. The antihypertensive drug pindolol attenuates long-term but not short-term binge-like ethanol consumption in mice. Addict Biol 2017; 22:679-691. [PMID: 27273539 DOI: 10.1111/adb.12359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12 weeks) binge-ethanol intake, compared with short-term (4 weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency of BLA principal neurons from long-term ethanol-consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.
Collapse
Affiliation(s)
- Omkar L. Patkar
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Arnauld Belmer
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Joan Y. Holgate
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Josephine R. Tarren
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Masroor R. Shariff
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Michael Morgan
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Matthew J. Fogarty
- School of Biomedical Sciences The University of Queensland Brisbane Australia
| | - Mark C. Bellingham
- School of Biomedical Sciences The University of Queensland Brisbane Australia
| | - Selena E. Bartlett
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Paul M. Klenowski
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| |
Collapse
|
52
|
Koob GF. Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction. Psychopharmacology (Berl) 2017; 234:1315-1332. [PMID: 28050629 DOI: 10.1007/s00213-016-4484-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Abstract
RATIONALE AND OBJECTIVES Addiction is defined as a chronically relapsing disorder characterized by compulsive drug seeking that is hypothesized to derive from multiple sources of motivational dysregulation. METHODS AND RESULTS Dr. Athina Markou made seminal contributions to our understanding of the neurobiology of addiction with her studies on the dysregulation of reward function using animal models with construct validity. Repeated overstimulation of the reward systems with drugs of abuse decreases reward function, characterized by brain stimulation reward and presumbably reflecting dysphoria-like states. The construct of negative reinforcement, defined as drug taking that alleviates a negative emotional state that is created by drug abstinence, is particularly relevant as a driving force in both the withdrawal/negative affect and preoccupation/anticipation stages of the addiction cycle. CONCLUSIONS The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of key neurochemical circuits that drive incentive-salience/reward systems (dopamine, opioid peptides) in the ventral striatum and from the recruitment of brain stress systems (corticotropin-releasing factor, dynorphin) within the extended amygdala. As drug taking becomes compulsive-like, the factors that motivate behavior are hypothesized to shift to drug-seeking behavior that is driven not only by positive reinforcement but also by negative reinforcement. This shift in motivation is hypothesized to reflect the allostatic misregulation of hedonic tone such that drug taking makes the hedonic negative emotional state worse during the process of seeking temporary relief with compulsive drug taking.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, 5635 Fishers Lane, Room 2001, Suite 2000, Rockville, MD, 20852, USA.
| |
Collapse
|
53
|
Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF. Dysregulation of Brain Stress Systems Mediates Compulsive Alcohol Drinking. Curr Opin Behav Sci 2016; 13:85-90. [PMID: 28603755 DOI: 10.1016/j.cobeha.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The transition from moderate to compulsive alcohol drinking is driven by increasingly dysfunctional reward and stress systems. We review behavioral and pharmacological studies of alcohol self-administration in rats that were mainly conducted within the framework of the alcohol vapor model of dependence. We discuss neurotransmitter systems that are implicated in alcohol drinking, with a focus on contrasting those neurotransmitter systems that drive behavior in the dependent vs. nondependent states. We hypothesize that the identification of systems that become increasingly dysfunctional in alcohol dependence will reveal possible targets for successful interventions to reduce the motivation that drives compulsive alcohol drinking. In our opinion, drugs that (1) normalize, rather than block, a hypofunctional reward system via restoration of the function of hypothalamic stress systems, and (2) desensitize extrahypothalamic stress systems have the potential to selectively and effectively curb compulsive alcohol drinking.
Collapse
Affiliation(s)
- Brendan J Tunstall
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Stephanie A Carmack
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Leandro F Vendruscolo
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
54
|
Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. GENES BRAIN AND BEHAVIOR 2016; 16:15-43. [PMID: 27749004 DOI: 10.1111/gbb.12349] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact.
Collapse
Affiliation(s)
- N W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
55
|
Bergeson SE, Nipper MA, Jensen J, Helms ML, Finn DA. Tigecycline Reduces Ethanol Intake in Dependent and Nondependent Male and Female C57BL/6J Mice. Alcohol Clin Exp Res 2016; 40:2491-2498. [PMID: 27859429 DOI: 10.1111/acer.13251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The chronic intermittent ethanol (CIE) paradigm is valuable for screening compounds for efficacy to reduce drinking traits related to alcohol use disorder (AUD), as it measures alcohol consumption and preference under physical dependence conditions. Air control-treated animals allow simultaneous testing of similarly treated, nondependent animals. As a consequence, we used CIE to test the hypothesis that tigecycline, a semisynthetic tetracycline similar to minocycline and doxycycline, would reduce alcohol consumption regardless of dependence status. METHODS Adult C57BL/6J female and male mice were tested for tigecycline efficacy to reduce ethanol (EtOH) consumption using a standard CIE paradigm. The ability of tigecycline to decrease 2-bottle choice of 15% EtOH (15E) versus water intake in dependent (CIE vapor) and nondependent (air-treated) male and female mice was tested after 4 cycles of CIE vapor or air exposure using a within-subjects design and a dose-response. Drug doses of 0, 40, 60, 80, and 100 mg/kg in saline were administered intraperitoneally (0.01 ml/g body weight) and in random order, with a 1-hour pretreatment time. Baseline 15E intake was re-established prior to administration of subsequent injections, with a maximum of 2 drug injections tested per week. RESULTS Tigecycline was found to effectively reduce high alcohol consumption in both dependent and nondependent female and male mice. CONCLUSIONS Our data suggest that tigecycline may be a promising drug with novel pharmacotherapeutic characteristics for the treatment of mild-to-severe AUD in both sexes.
Collapse
Affiliation(s)
- Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Jeremiah Jensen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Research, Portland VA Health Care System, Portland, Oregon
| |
Collapse
|
56
|
Rasmussen DD, Kincaid CL, Froehlich JC. Prazosin Prevents Increased Anxiety Behavior That Occurs in Response to Stress During Alcohol Deprivations. Alcohol Alcohol 2016; 52:5-11. [PMID: 27797712 DOI: 10.1093/alcalc/agw082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
AIMS Stress-induced anxiety is a risk factor for relapse to alcohol drinking. The aim of this study was to test the hypothesis that the central nervous system (CNS)-active α1-adrenergic receptor antagonist, prazosin, would block the stress-induced increase in anxiety that occurs during alcohol deprivations. METHODS Selectively bred male alcohol-preferring (P) rats were given three cycles of 5 days of ad libitum voluntary alcohol drinking interrupted by 2 days of alcohol deprivation, with or without 1 h of restraint stress 4 h after the start of each of the first two alcohol deprivation cycles. Prazosin (1.0 or 1.5 mg/kg, IP) or vehicle was administered before each restraint stress. Anxiety-like behavior during alcohol deprivation following the third 5-day cycle of alcohol drinking (7 days after the most recent restraint stress ± prazosin treatment) was measured by performance in an elevated plus-maze and in social approach/avoidance testing. RESULTS Rats that received constant alcohol access, or alcohol access and deprivations without stress or prazosin treatments in the first two alcohol deprivations did not exhibit augmented anxiety-like behavior during the third deprivation. In contrast, rats that had been stressed during the first two alcohol deprivations exhibited increased anxiety-like behavior (compared with control rats) in both anxiety tests during the third deprivation. Prazosin given before stresses in the first two cycles of alcohol withdrawal prevented increased anxiety-like behavior during the third alcohol deprivation. CONCLUSION Prazosin treatment before stresses experienced during alcohol deprivations may prevent the increased anxiety during subsequent deprivation/abstinence that is a risk factor for relapse to alcohol drinking. SHORT SUMMARY Administration of prazosin before stresses during repetitive alcohol deprivations in male alcohol-preferring (P) rats prevents increased anxiety during a subsequent deprivation without further prazosin treatment. Prazosin treatment during repeated alcohol deprivations may prevent the increased anxiety that is a risk factor for relapse to alcohol drinking.
Collapse
Affiliation(s)
- Dennis D Rasmussen
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), Mental Health Service, VA Puget Sound Health Care System, Seattle, WA, USA .,Department of Psychiatry, University of Washington, Seattle, WA 98108, USA
| | - Carrie L Kincaid
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), Mental Health Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Janice C Froehlich
- Department of Medicine, Indiana University School of Medicine, Indinapolis, IN 46202, USA
| |
Collapse
|
57
|
Kleczkowska P, Smaga I, Filip M, Bujalska-Zadrozny M. Are Alcohol Anti-relapsing and Alcohol Withdrawal Drugs Useful in Cannabinoid Users? Neurotox Res 2016; 30:698-714. [PMID: 27484692 DOI: 10.1007/s12640-016-9655-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022]
Abstract
Cannabinoids are still classified as illegal psychoactive drugs despite their broad and increasingly acknowledged therapeutic potential. These substances are most famous for their wide recreational use, particularly among young adults to either alter the state of consciousness, intensify pleasure induced by other psychoactive substances or as an alternative to the previously abused drugs. It is important to emphasize that cannabinoids are often taken together with a variety of medications intended for the treatment of alcohol use disorder (AUD) or alcohol withdrawal syndrome (AWS). These medications include disulfiram, acamprosate, and naltrexone. In this paper, we summarize recent advances in the knowledge of possible beneficial effects and interactions between cannabinoids and drugs commonly used for treatment of AUD and AWS either comorbid or existing as a separate disorder.
Collapse
Affiliation(s)
- Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str, 02-097, Warsaw, Poland.
| | - Irena Smaga
- Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str, 02-097, Warsaw, Poland
| |
Collapse
|
58
|
Kenna GA, Haass-Koffler CL, Zywiak WH, Edwards SM, Brickley MB, Swift RM, Leggio L. Role of the α1 blocker doxazosin in alcoholism: a proof-of-concept randomized controlled trial. Addict Biol 2016; 21:904-14. [PMID: 26037245 DOI: 10.1111/adb.12275] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evidence suggests that the norepinephrine system represents an important treatment target for alcohol dependence (AD) and the α1 -blocker prazosin may reduce alcohol drinking in rodents and alcoholic patients. The α1 -blocker doxazosin demonstrates a more favorable pharmacokinetic profile than prazosin, but has never been studied for AD. A double-blind placebo-controlled randomized clinical trial was conducted in AD individuals seeking outpatient treatment. Doxazosin or matched placebo was titrated to 16 mg/day (or maximum tolerable dose). Drinks per week (DPW) and heavy drinking days (HDD) per week were the primary outcomes. Family history density of alcoholism (FHDA), severity of AD and gender were a priori moderators. Forty-one AD individuals were randomized, 30 (doxazosin = 15) completed the treatment phase and 28 (doxazosin = 14) also completed the follow-up. There were no significant differences between groups on DPW and HDD per week. With FHDA as a moderator, there were significant FHDA × medication interactions for both DPW (pcorrected = 0.001, d = 1.18) and HDD (pcorrected = 0.00009, d = 1.30). Post hoc analyses revealed that doxazosin significantly reduced alcohol drinking in AD patients with high FHDA and by contrast increased drinking in those with low FHDA. Doxazosin may be effective selectively in AD patients with high FHDA. This study provides preliminary evidence for personalized medicine using α1 -blockade to treat AD. However, confirmatory studies are required.
Collapse
Affiliation(s)
- George A. Kenna
- Department of Psychiatry and Human Behavior; Center for Alcohol and Addiction Studies; Brown University; Providence RI USA
| | - Carolina L. Haass-Koffler
- Department of Behavioral and Social Sciences; Center for Alcohol and Addiction Studies; Brown University; Providence RI USA
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; National Institutes of Health; Bethesda MD USA
| | - William H. Zywiak
- Department of Psychiatry and Human Behavior; Center for Alcohol and Addiction Studies; Brown University; Providence RI USA
- Decision Sciences Institute; PIRE; Pawtucket RI USA
| | - Steven M. Edwards
- Department of Psychology; University of Nebraska-Lincoln; Lincoln NE USA
| | - Michael B. Brickley
- Department of Behavioral and Social Sciences; Center for Alcohol and Addiction Studies; Brown University; Providence RI USA
| | - Robert M. Swift
- Department of Psychiatry and Human Behavior; Center for Alcohol and Addiction Studies; Brown University; Providence RI USA
- Veterans Affairs Medical Center; Providence RI USA
| | - Lorenzo Leggio
- Department of Behavioral and Social Sciences; Center for Alcohol and Addiction Studies; Brown University; Providence RI USA
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
59
|
Funk D, Coen K, Tamadon S, Li Z, Loughlin A, Lê AD. Effects of prazosin and doxazosin on yohimbine-induced reinstatement of alcohol seeking in rats. Psychopharmacology (Berl) 2016; 233:2197-2207. [PMID: 27020784 DOI: 10.1007/s00213-016-4273-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/05/2016] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVES Alpha-1 adrenoceptor antagonists, such as prazosin, show promise in treating alcoholism. In rats, prazosin reduces alcohol self-administration and relapse induced by footshock stress and the alpha-2 antagonist yohimbine, but the processes involved in these effects of prazosin are not known. Here, we present studies on the central mechanisms underlying the effects of prazosin on yohimbine-induced reinstatement of alcohol seeking. METHODS In experiment 1, we trained rats to self-administer alcohol (12 % w/v, 1 h/day), extinguished their responding, and tested the effects of prazosin, administered ICV (2 and 6 nmol) or systemically (1 mg/kg) on yohimbine (1.25 mg/kg)-induced reinstatement. In experiment 2, we determined potential central sites of action by analyzing effects of prazosin (1 mg/kg) on yohimbine (1.25 mg/kg)-induced Fos expression. In experiment 3, we determined the effects of doxazosin (1.25, 2.5, and 5 mg/kg), an alpha-1 antagonist with a longer half-life on yohimbine-induced reinstatement. RESULTS Yohimbine-induced reinstatement of alcohol seeking was reduced significantly by ICV and systemic prazosin (50 and 69 % decreases, respectively). Systemic prazosin reduced yohimbine-induced Fos expression in the prefrontal cortex, accumbens shell, ventral bed nucleus of the stria terminalis, and basolateral amygdala (46-67 % decreases). Doxazosin reduced yohimbine-induced reinstatement of alcohol seeking (78 % decrease). CONCLUSIONS Prazosin acts centrally to reduce yohimbine-induced alcohol seeking. The Fos mapping study suggests candidate sites where it may act. Doxazosin is also effective in reducing yohimbine-induced reinstatement. These data provide information on the mechanisms of alpha-1 antagonists on yohimbine-induced alcohol seeking and indicate their further investigation for the treatment of alcoholism.
Collapse
Affiliation(s)
- D Funk
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada.
| | - K Coen
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - S Tamadon
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - Z Li
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - A Loughlin
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
60
|
Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol 2016; 284:181-195. [PMID: 27222130 DOI: 10.1016/j.expneurol.2016.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
A central role for noradrenergic dysregulation in the pathophysiology of post-traumatic stress disorder (PTSD) is increasingly suggested by both clinical and basic neuroscience research. Here, we integrate recent findings from clinical and animal research with the earlier literature. We first review the evidence for net upregulation of the noradrenergic system and its responsivity to stress in individuals with PTSD. Next, we trace the evidence that the α1 noradrenergic receptor antagonist prazosin decreases many of the symptoms of PTSD from initial clinical observations, to case series, to randomized controlled trials. Finally, we review the basic science work that has begun to explain the mechanism for this efficacy, as well as to explore its possible limitations and areas for further advancement. We suggest a view of the noradrenergic system as a central, modifiable link in a network of interconnected stress-response systems, which also includes the amygdala and its modulation by medial prefrontal cortex. Particular attention is paid to the evidence for bidirectional signaling between noradrenaline and corticotropin-releasing factor (CRF) in coordinating these interconnected systems. The multiple different ways in which the sensitivity and reactivity of the noradrenergic system may be altered in PTSD are highlighted, as is the evidence for possible heterogeneity in the pathophysiology of PTSD between different individuals who appear clinically similar. We conclude by noting the importance moving forward of improved measures of noradrenergic functioning in clinical populations, which will allow better recognition of clinical heterogeneity and further assessment of the functional implications of different aspects of noradrenergic dysregulation.
Collapse
|
61
|
Froehlich JC, Hausauer B, Fischer S, Wise B, Rasmussen DD. Prazosin Reduces Alcohol Intake in an Animal Model of Alcohol Relapse. Alcohol Clin Exp Res 2016. [PMID: 26207767 DOI: 10.1111/acer.12789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Many alcoholics and heavy drinkers undergo repeated cycles of alcohol abstinence followed by relapse to alcohol drinking; a pattern that contributes to escalated alcohol intake over time. In rodents, alcohol drinking that is interspersed with periods of alcohol deprivation (imposed abstinence) increases alcohol intake during reaccess to alcohol. This is termed the "alcohol deprivation effect" or "ADE" and is a model of alcohol relapse in humans. We have previously reported that prazosin reduces alcohol drinking during both brief and prolonged treatment in rats selectively bred for alcohol preference ("P" rats). This study explores whether prazosin prevents alcohol "relapse" in P rats, as reflected by a reduced or abolished ADE. METHODS Adult male P rats were given 24-hour access to food and water and scheduled access to alcohol (15 and 30% v/v solutions presented concurrently) for 2 h/d. After 5 weeks, rats underwent imposed alcohol deprivation for 2 weeks, followed by alcohol reaccess for 2 weeks, and this pattern was repeated for a total of 3 cycles. Rats were injected with prazosin (0, 0.5, 1.0, or 2.0 mg/kg body weight, intraperitoneally) once a day for the first 5 days of each alcohol reaccess cycle. RESULTS Alcohol intake increased on the first day of each alcohol reaccess cycle, demonstrating the formation of an ADE. The ADE was short-lived, lasting only 1 day, during each of the 3 cycles. Prazosin, in all doses tested, prevented the expression of an ADE in all 3 alcohol reaccess cycles. CONCLUSIONS Prazosin decreases alcohol intake in P rats even in a situation that would be expected to increase alcohol drinking, namely following periods of alcohol deprivation. This suggests that prazosin may be effective in reducing alcohol relapse that often occurs during attempts to achieve permanent alcohol abstinence in treatment-seeking alcoholics and heavy drinkers.
Collapse
Affiliation(s)
| | - Brett Hausauer
- Indiana University School of Medicine , Indianapolis, Indiana
| | - Stephen Fischer
- Indiana University School of Medicine , Indianapolis, Indiana
| | - Bradley Wise
- Indiana University School of Medicine , Indianapolis, Indiana
| | - Dennis D Rasmussen
- VISN 20 Mental Illness Research Education and Clinical Center , VA Puget Sound Health Care System and University of Washington, Seattle, Washington
| |
Collapse
|
62
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
63
|
Becker HC, Lopez MF. An Animal Model of Alcohol Dependence to Screen Medications for Treating Alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:157-77. [PMID: 27055614 DOI: 10.1016/bs.irn.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the high prevalence of alcohol use disorders in the United States, only a relatively small percentage of those afflicted seek treatment. This is further compounded by the fact that there are too few medications available to effectively treat this significant public health problem. The need for identifying and evaluating more effective treatments that aid in preventing relapse and/or tempering risky and harmful alcohol consumption cannot be overstated. Use of animal models represents a critical step in the process of screening, identifying, and informing plans for prioritizing the most promising candidate medications that can be advanced to the next stage of evaluation (clinical laboratory paradigms and controlled clinical trials). Numerous animal models have been developed to study excessive levels of alcohol self-administration. In recent years, a large literature has amassed of studies in which rodent models of dependence have been linked with alcohol self-administration procedures. This chapter focuses on studies employing a dependence model that involves chronic exposure to alcohol vapor by inhalation, which yields in both mice and rats significant escalation of voluntary alcohol consumption. These animal models of dependence and alcohol self-administration have revealed valuable insights about underlying mechanisms that drive excessive drinking. Additionally, this preclinical approach is useful in evaluating the effects of medications on escalated drinking associated with dependence vs more stable levels displayed by nondependent animals.
Collapse
Affiliation(s)
- H C Becker
- Charleston Alcohol Research Center, Charleston, SC, United States; Medical University of South Carolina, Charleston, SC, United States; RHJ Department of Veterans Affairs Medical Center, Charleston, SC, United States.
| | - M F Lopez
- Charleston Alcohol Research Center, Charleston, SC, United States
| |
Collapse
|
64
|
Petrakis IL, Desai N, Gueorguieva R, Arias A, O'Brien E, Jane JS, Sevarino K, Southwick S, Ralevski E. Prazosin for Veterans with Posttraumatic Stress Disorder and Comorbid Alcohol Dependence: A Clinical Trial. Alcohol Clin Exp Res 2015; 40:178-86. [PMID: 26683790 DOI: 10.1111/acer.12926] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/10/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is an important and timely clinical issue particularly for combat veterans. Few pharmacologic options are available to treat PTSD, particularly among military personnel, and they are not based on rational neurobiology. The evidence for noradrenergic dysregulation in PTSD is strong, and the alpha-adrenergic agonist prazosin is one of the most promising medications to treat sleep disturbances associated with PTSD as well as PTSD symptoms among both veterans and civilians. Evidence also implicates noradrenergic dysregulation in the pathophysiology of alcohol dependence (AD); prazosin also may have efficacy in treating this disorder. The use of prazosin represents a rational and compelling approach for the treatment of PTSD and comorbid AD. Given the high rates of comorbid AD in trauma survivors with PTSD, and the enormous impact that these comorbid disorders have on psychosocial function and well-being, finding effective treatments for this population is of high clinical importance. METHODS Ninety-six veterans with PTSD and comorbid AD were randomized to receive prazosin (16 mg) or placebo in an outpatient, randomized, double-blind, clinical trial for 13 weeks. Main outcomes included symptoms of PTSD, sleep disturbances, and alcohol use. RESULTS Symptoms of PTSD improved over time, but contrary to the hypothesis, there was no medication effect on PTSD symptoms, or on sleep. Alcohol consumption also decreased over time, but there were no significant differences in outcomes between medication groups. CONCLUSIONS Prazosin was not effective in treating PTSD symptoms, improving sleep, or reducing alcohol consumption overall in this dually diagnosed group. This does not support the use of prazosin in an actively drinking population and suggests that the presence of a comorbid condition affects the efficacy of this medication. This study highlights the importance of conducting clinical trials in "real-world" patients, as results may vary based on comorbid conditions.
Collapse
Affiliation(s)
- Ismene L Petrakis
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| | | | - Ralitza Gueorguieva
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Albert Arias
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| | - Erin O'Brien
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| | - J Serrita Jane
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| | - Kevin Sevarino
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| | - Steven Southwick
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| | - Elizabeth Ralevski
- Department of Psychiatry, VISN I Mental Illness Research Education and Clinical Center (MIRECC), VA Connecticut Healthcare System and Yale University School of Medicine, West Haven, Connecticut
| |
Collapse
|
65
|
Koob GF, Mason BJ. Existing and Future Drugs for the Treatment of the Dark Side of Addiction. Annu Rev Pharmacol Toxicol 2015; 56:299-322. [PMID: 26514207 DOI: 10.1146/annurev-pharmtox-010715-103143] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of a heuristic framework for the stages of the addiction cycle that are linked to neurocircuitry changes in pathophysiology includes the binge/intoxication stage, the withdrawal/negative affect stage, and the preoccupation/anticipation (craving) stage, which represent neuroadaptations in three neurocircuits (basal ganglia, extended amygdala, and frontal cortex, respectively). The identification of excellent and validated animal models, the development of human laboratory models, and an enormous surge in our understanding of neurocircuitry and neuropharmacological mechanisms have provided a revisionist view of addiction that emphasizes the loss of brain reward function and gain of stress function that drive negative reinforcement (the dark side of addiction) as a key to compulsive drug seeking. Reversing the dark side of addiction not only explains much of the existing successful pharmacotherapies for addiction but also points to vast new opportunities for future medications to alleviate this major source of human suffering.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037; ,
| | - Barbara J Mason
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037; ,
| |
Collapse
|
66
|
Skelly MJ, Chappell AE, Carter E, Weiner JL. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling. Neuropharmacology 2015; 97:149-59. [PMID: 26044636 PMCID: PMC4537360 DOI: 10.1016/j.neuropharm.2015.05.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 11/21/2022]
Abstract
Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress.
Collapse
Affiliation(s)
- M J Skelly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - A E Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - E Carter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
67
|
Funk D, Lo S, Coen K, Lê AD. Effects of varenicline on operant self-administration of alcohol and/or nicotine in a rat model of co-abuse. Behav Brain Res 2015; 296:157-162. [PMID: 26365457 DOI: 10.1016/j.bbr.2015.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022]
Abstract
Alcohol and nicotine (in the form of tobacco) are often taken together, with increased negative health consequences. Co-use may modify intake of one or both of the drugs, or the effects of drugs used to treat nicotine or alcohol addiction. Varenicline is commonly prescribed as an aid to enhance quitting smoking. More recently it has been shown to reduce alcohol intake in humans and laboratory animals. There is little work investigating the role of co-exposure to alcohol and nicotine in the effects of varenicline. In pilot clinical studies, it has been reported that smoking enhances varenicline's effectiveness as a treatment for alcohol misuse, but this relationship has not been systematically investigated. To help resolve this, we examined if the effects of varenicline on alcohol and nicotine self-administration (SA) in rats are modified when the two drugs are taken together. Rats were trained on alcohol SA, and some were implanted with i.v. catheters for nicotine SA. Groups of animals then lever pressed for alcohol or nicotine alone, and another group lever pressed for alcohol and nicotine, using a two lever choice procedure. Varenicline did not affect alcohol SA. Varenicline reduced nicotine SA modestly. Access to both alcohol and nicotine reduced self-administration of either drug, but did not change the effects of varenicline. We found that in rats with a history of alcohol SA, varenicline reduced reinstatement of extinguished alcohol seeking induced by exposure to an alcohol prime combined with cues previously associated with alcohol.
Collapse
Affiliation(s)
- D Funk
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario M5S 2S1, Canada.
| | - S Lo
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario M5S 2S1, Canada
| | - K Coen
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario M5S 2S1, Canada.
| | - A D Lê
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario M5S 2S1, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, Rm. 4207, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
68
|
Rasmussen DD, Kincaid CL, Froehlich JC. Prazosin + Naltrexone Decreases Alcohol Drinking More Effectively Than Does Either Drug Alone in P Rats with a Protracted History of Extensive Voluntary Alcohol Drinking, Dependence, and Multiple Withdrawals. Alcohol Clin Exp Res 2015; 39:1832-41. [PMID: 26260061 PMCID: PMC4558320 DOI: 10.1111/acer.12828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prazosin (PRZ; an α1 -adrenergic receptor antagonist) and naltrexone (NTX; a nonspecific opioid receptor antagonist) each decrease alcohol drinking when administered to rats selectively bred for high voluntary alcohol drinking (alcohol-preferring or "P"), and the combination of PRZ + NTX decreases alcohol drinking more effectively than does either drug alone. As drug responsiveness can depend on history of alcohol drinking and dependence, we investigated whether various schedules of PRZ and NTX administration, alone or in combination, are effective in decreasing alcohol drinking in male P rats with a history of protracted voluntary alcohol drinking, dependence, and repeated withdrawals closely resembling human alcoholism. METHODS Male P rats became alcohol-dependent during 1 year of ad libitum 24 h/d access to food, water, and 20% alcohol with repetitive temporary alcohol withdrawals. Four sequential studies then addressed effects of oral PRZ (2 mg/kg) and NTX (10 mg/kg), alone or together, on alcohol drinking during: (i) daily alcohol access with daily drug treatment, (ii) intermittent alcohol access with daily drug treatment, (iii) intermittent alcohol access with occasional drug treatment, and (iv) postdeprivation reinstatement of alcohol access. RESULTS The combination of PRZ + NTX consistently suppressed alcohol drinking during daily or intermittent alcohol access conditions and when drug treatment was either daily or occasional. PRZ + NTX was consistently more effective than either drug alone. The reduction in alcohol drinking was not due to sedation, motor effects, or malaise. CONCLUSIONS Both daily and "as-needed" treatment with PRZ + NTX are highly effective in suppressing daily, intermittent, and postdeprivation alcohol drinking in male P rats with a protracted history of alcohol dependence and repeated withdrawals. This drug combination may be especially effective for treating individuals with long histories of heavy alcohol abuse, dependence, and repeated relapse, as commonly encountered in clinical practice.
Collapse
Affiliation(s)
- Dennis D Rasmussen
- VISN 20 Mental Illness Research, Education and Clinical Center, Seattle, WA 98108
- VA Puget Sound Health Care System, Seattle, WA 98108
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
| | - Carrie L Kincaid
- VA Puget Sound Health Care System, Seattle, WA 98108
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
| | - Janice C Froehlich
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5124
| |
Collapse
|
69
|
Verplaetse TL, Czachowski CL. Low-dose prazosin alone and in combination with propranolol or naltrexone: effects on ethanol and sucrose seeking and self-administration in the P rat. Psychopharmacology (Berl) 2015; 232:2647-57. [PMID: 25743758 PMCID: PMC4504773 DOI: 10.1007/s00213-015-3896-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 12/29/2022]
Abstract
RATIONALE Evidence suggests that the noradrenergic system mediates ethanol reinforcement. However, preclinical studies suggest that noradrenergic antagonists block other oral reinforcers indicating possible unwanted secondary medication effects. METHODS This study examined combinations of low-dose prazosin with propranolol or naltrexone using a behavioral paradigm that separately assesses reinforcer seeking and self-administration. Male alcohol-preferring (P) rats (n = 20/experiment) were trained to complete a response requirement (RR) resulting in access to 1 % sucrose (n = 10) or 10 % ethanol (n = 10) for 20 min. Rats received vehicle, prazosin alone (0.125, 0.25, 0.5, and 1.0 mg/kg, intraperitoneally (IP)), or prazosin in combination with propranolol (5 mg/kg (IP); Exp. 1) or in combination with naltrexone (0.03 mg/kg, subcutaneously (SC); Exp. 2). RESULTS For Exp. 1, prazosin alone effectively decreased sucrose seeking more than ethanol seeking, but decreased ethanol self-administration only. Propranolol alone effectively decreased ethanol seeking more than sucrose seeking and decreased ethanol intake only. At some dose combinations, there was a greater attenuation of ethanol and sucrose intake relative to either drug alone. For Exp. 2, prazosin alone and naltrexone alone were effective in decreasing ethanol seeking and intake only. Combination treatment was more effective than either drug alone at decreasing ethanol seeking and consumption and sucrose intake, but not sucrose seeking. CONCLUSIONS Propranolol and naltrexone alone were specific to ethanol indicating that low doses of either medication may be beneficial in treating alcohol use disorders. Prazosin in combination with propranolol or naltrexone was more effective than either drug alone and also reduced sucrose-reinforced behaviors. These data suggest that the noradrenergic system is a viable target for developing treatment approaches for problem drinkers.
Collapse
Affiliation(s)
- Terril L Verplaetse
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,
| | | |
Collapse
|
70
|
Karkhanis AN, Locke JL, McCool BA, Weiner JL, Jones SR. Social isolation rearing increases nucleus accumbens dopamine and norepinephrine responses to acute ethanol in adulthood. Alcohol Clin Exp Res 2015; 38:2770-9. [PMID: 25421514 DOI: 10.1111/acer.12555] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early-life stress is associated with increased vulnerability to alcohol addiction. However, the neural substrates linking chronic childhood/adolescent stress and increased risk of alcohol addiction are not well understood. In the nucleus accumbens (NAc), dopamine (DA) and norepinephrine (NE) signaling can be profoundly influenced by stress, anxiety, and drugs of abuse, including ethanol (EtOH). Here, we employed a rodent model of early-life stress that results in enduring increases in behavioral risk factors of alcoholism to gain a better understanding of how chronic adolescent stress may impact the EtOH sensitivity of DA and NE release in the NAc. METHODS Male Long-Evans rats were either group housed (GH; 4 rats/cage) or socially isolated (SI; 1 rat/cage) for 6 weeks beginning on postnatal day 28. SI and GH rats were tested in adulthood for anxiety-like behaviors (elevated plus maze), and the effects of EtOH (1 and 2 g/kg; intraperitoneally.) on NAc DA and NE were assessed by microdialysis. RESULTS SI animals showed increased anxiety-like behavior compared to GH animals. Although SI had no effect on baseline levels of DA or NE, baseline DA levels were positively correlated with anxiety measures. In addition, while no significant differences were observed with 1 g/kg EtOH, the 2 g/kg dose induced significantly greater DA release in SI animals. Moreover, EtOH (2 g/kg) only elevated NAc NE levels in SI rats. CONCLUSIONS These results suggest that chronic early-life stress sensitizes accumbal DA and NE release in response to an acute EtOH challenge. A greater EtOH sensitivity of DA and NE release dynamics in the NAc may contribute to increases in behavioral risk factors of alcoholism, like greater EtOH self-administration, that are observed in SI rats.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
71
|
Colombo G, Maccioni P, Vargiolu D, Loi B, Lobina C, Zaru A, Carai MAM, Gessa GL. The dopamine β-hydroxylase inhibitor, nepicastat, reduces different alcohol-related behaviors in rats. Alcohol Clin Exp Res 2015; 38:2345-53. [PMID: 25257286 DOI: 10.1111/acer.12520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent experimental data indicate that treatment with the selective dopamine β-hydroxylase inhibitor, nepicastat, suppressed different reward-related behaviors, including self-administration of chocolate and reinstatement of cocaine and chocolate seeking, in rats. This study was designed to extend to different alcohol-related behaviors the investigation on the "anti-addictive" properties of nepicastat. METHODS Sardinian alcohol-preferring (sP) rats, selectively bred for excessive alcohol consumption, were exposed to different procedures of alcohol drinking and self-administration. RESULTS Repeated treatment with nepicastat (0, 25, 50, and 100 mg/kg, intraperitoneally [i.p.], once daily for 10 consecutive days) produced a stable and dose-related reduction in daily alcohol intake in sP rats exposed to the homecage 2-bottle "alcohol (10% v/v) versus water" choice regimen with unlimited access. Acute treatment with nepicastat (0, 25, 50, and 100 mg/kg, i.p.) completely suppressed the "alcohol deprivation effect" (i.e., the temporary increase in alcohol intake occurring after a period of abstinence; model of alcohol relapse episodes) in sP rats exposed to the 2-bottle choice regimen. Acute treatment with nepicastat (0, 25, 50, and 100 mg/kg, i.p.) dose dependently and selectively reduced oral alcohol self-administration in sP rats trained to lever respond for alcohol (15% v/v) on a fixed ratio 4 schedule of reinforcement. Finally, combination of nepicastat (0, 50, and 100 mg/kg, i.p.) and alcohol (2 g/kg, intragastrically) did not alter spontaneous locomotor activity in sP rats. CONCLUSIONS Together, these data extend to alcohol the capacity of nepicastat to suppress different behaviors motivated by natural stimuli and drugs of abuse.
Collapse
Affiliation(s)
- Giancarlo Colombo
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy, Monserrato (CA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Karkhanis AN, Alexander NJ, McCool BA, Weiner JL, Jones SR. Chronic social isolation during adolescence augments catecholamine response to acute ethanol in the basolateral amygdala. Synapse 2015; 69:385-95. [PMID: 25963724 DOI: 10.1002/syn.21826] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 01/18/2023]
Abstract
Adolescent social isolation (SI) results in numerous behavioral alterations associated with increased risk of alcoholism. Notably, many of these changes involve the basolateral amygdala (BLA), including increased alcohol seeking. The BLA sends a strong glutamatergic projection to the nucleus accumbens and activation of this pathway potentiates reward-seeking behavior. Dopamine (DA) and norepinephrine (NE) exert powerful excitatory and inhibitory effects on BLA activity and chronic stress can disrupt the excitation-inhibition balance maintained by these catecholamines. Notably, the impact of SI on BLA DA and NE neurotransmission is unknown. Thus the aim of this study was to characterize SI-mediated catecholamine alterations in the BLA. Male Long Evans rats were housed in groups of four (GH) or in SI for 6 weeks during adolescence. DA and NE transporter levels were then measured using Western blot hybridization and baseline and ethanol-stimulated DA and NE levels were quantified using microdialysis. DA transporter levels were increased and baseline DA levels were decreased in SI compared to GH rats. SI also increased DA responses to an acute ethanol (2 g kg(-1)) challenge. While no group differences were noted in NE transporter or baseline NE levels, acute ethanol (2 g kg(-1)) only significantly increased NE levels in SI animals. Collectively, these SI-dependent changes in BLA catecholamine signaling may lead to an increase in BLA excitability and a strengthening of the glutamatergic projection between the BLA and NAc. Such changes may promote the elevated ethanol drinking behavior observed in rats subjected to chronic adolescent stress.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nancy J Alexander
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
73
|
Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharmacol 2015; 753:73-87. [PMID: 25583178 PMCID: PMC4380644 DOI: 10.1016/j.ejphar.2014.11.044] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. The present thesis is that drugs of abuse elicit powerful emotions that can be interwoven conceptually into this framework. Such emotions range from pronounced euphoria to a devastating negative emotional state that in the extreme can create a break with homeostasis and thus an allostatic hedonic state that has been considered key to the etiology and maintenance of the pathophysiology of addiction. Drug addiction can be defined as a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain incentive salience and stress systems. Specific neurochemical elements in these structures include not only decreases in incentive salience system function in the ventral striatum (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF), dynorphin-κ opioid systems, and norepinephrine, vasopressin, hypocretin, and substance P in the extended amygdala (between-system opponent processes). Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for drugs similar to a CRF1 receptor antagonist. Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued here is that the brain has specific neurochemical neurocircuitry coded by the hedonic extremes of pleasant and unpleasant emotions that have been identified through the study of opponent processes in the domain of addiction. These neurochemical systems need to be considered in the context of the framework that emotions involve the specific brain regions now identified to differentially interpreting emotive physiological expression.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA.
| |
Collapse
|
74
|
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder characterized by the intrusive re-experiencing of past trauma, avoidant behavior, enhanced fear, and hyperarousal following a traumatic event in vulnerable populations. Preclinical animal models do not replicate the human condition in its entirety, but seek to mimic symptoms or endophenotypes associated with PTSD. Although many models of traumatic stress exist, few adequately capture the complex nature of the disorder and the observed individual variability in susceptibility of humans to PTSD. In addition, various types of stressors may produce different molecular neuroadaptations that likely contribute to the various behavioral disruptions produced by each model, although certain consistent neurobiological themes related to PTSD have emerged. For example, animal models report traumatic stress-induced and trauma reminder-induced alterations in neuronal activity in the amygdala and prefrontal cortex, in agreement with the human PTSD literature. Models have also provided a conceptual framework for the often-observed combination of PTSD and comorbid conditions such as alcohol use disorder. Future studies will continue to refine preclinical PTSD models in hope of capitalizing on their potential to deliver new and more efficacious treatments for PTSD and associated psychiatric disorders.
Collapse
|
75
|
Weiland A, Garcia S, Knackstedt LA. Ceftriaxone and cefazolin attenuate the cue-primed reinstatement of alcohol-seeking. Front Pharmacol 2015; 6:44. [PMID: 25805996 PMCID: PMC4354333 DOI: 10.3389/fphar.2015.00044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
Alcohol consumption and the reinstatement of alcohol-seeking rely on glutamate and GABA transmission. Modulating these neurotransmitters may be a viable treatment strategy to prevent alcohol relapse. N-acetylcysteine (NAC) and the antibiotic ceftriaxone (CEF) alter the glial reuptake and release of glutamate while the antibiotic cefazolin (CEFAZ) modulates GABA signaling without affecting glutamate. Here, we used the extinction-reinstatement model of relapse to test the ability of these compounds to attenuate the reinstatement of alcohol-seeking. Male Sprague-Dawley rats were trained to self-administer 20% (v/v) alcohol in the home cage using an intermittent schedule (24 h on, 24 h off) for 12 sessions. Subsequently, animals self-administered alcohol during daily 45-min operant sessions for 26 sessions, followed by extinction training. We tested whether chronic administration of NAC, CEF, or CEFAZ attenuated the cue-primed reinstatement of alcohol-seeking. CEF and CEFAZ attenuated cue-primed reinstatement of alcohol-seeking while NAC had no effect. We subsequently investigated whether CEF and CEFAZ alter the self-administration of sucrose and chow pellets and if CEFAZ attenuates the reinstatement of cocaine-seeking. The operant self-administration of regular chow and sucrose was not altered by either CEF or CEFAZ. CEFAZ had no effect on cocaine reinstatement, a behavior that has been strongly tied to altered glutamate homeostasis in the nucleus accumbens. Thus the ability of CEFAZ to attenuate alcohol reinstatement likely does not involve the glial modulation of glutamate levels. The dampening of GABA transmission may be a common mechanism of action of cefazolin and ceftriaxone.
Collapse
Affiliation(s)
- Ana Weiland
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Steven Garcia
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Lori A Knackstedt
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
76
|
Seo D. Neuroplasticity and Predictors of Alcohol Recovery. Alcohol Res 2015; 37:143-52. [PMID: 26259094 PMCID: PMC4476600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Chronic alcohol-related neuroadaptations in key neural circuits of emotional and cognitive control play a critical role in the development of, and recovery from, alcoholism. Converging evidence in the neurobiological literature indicates that neuroplastic changes in the prefrontal-striatal-limbic circuit, which governs emotion regulation and decisionmaking and controls physiological responses in the autonomic nervous system and hypothalamic-pituitary-adrenal axis system, contribute to chronic alcoholism and also are significant predictors of relapse and recovery. This paper reviews recent evidence on the neuroplasticity associated with alcoholism in humans, including acute and chronic effects, and how these neurobiological adaptations contribute to alcohol recovery, along with the discussion of relevant clinical implications and future research directions.
Collapse
|
77
|
Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol 2015; 20:1-21. [PMID: 25403107 DOI: 10.1111/adb.12187] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
Collapse
Affiliation(s)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology; University of Heidelberg; Germany
- Department of Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
78
|
Rasmussen DD, Kincaid CL. Acoustic startle in alcohol-naïve male rats predicts subsequent voluntary alcohol intake and alcohol preference. Alcohol Alcohol 2014; 50:56-61. [PMID: 25305255 DOI: 10.1093/alcalc/agu065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Acoustic startle response in rats is used to model sensorimotor reactivity. The aim of the study was to determine whether acoustic startle response in alcohol-naïve rats predicts subsequent increased voluntary alcohol drinking or alcohol preference. METHODS Startle responses to 90, 95 and 100 decibel (dB) white noise stimuli presented in counterbalanced semi-randomized order were tested in alcohol-naïve young adult male Wistar rats before voluntary alcohol intake was established with an intermittent alcohol access (IAA) model. RESULTS Startle amplitude in response to 95 or 100 dB stimuli was positively correlated with subsequent alcohol intake and alcohol preference following 3 months of IAA. Rats with high (median split) pre-IAA startle amplitude in response to 95 or 100 dB stimuli developed increased alcohol intake as well as increased alcohol preference following 3 months of IAA, relative to rats with low pre-IAA startle amplitude. CONCLUSION Startle response to moderate acoustic stimuli can be a predictive index of vulnerability to developing increased alcohol drinking.
Collapse
Affiliation(s)
- Dennis D Rasmussen
- VISN 20 Mental Illness Research Education and Clinical Center, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98195, USA
| | - Carrie L Kincaid
- VISN 20 Mental Illness Research Education and Clinical Center, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
79
|
Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014; 77:382-400. [PMID: 23039267 DOI: 10.1111/j.1365-2125.2012.04474.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/23/2012] [Indexed: 12/20/2022] Open
Abstract
Substance use disorders represent a serious public health and social issue worldwide. Recent advances in our understanding of the neurobiological basis of the addictive processes have led to the development of a growing number of pharmacological agents to treat addictions. Despite this progress, there are no approved pharmacological treatments for cocaine, methamphetamine and cannabis addiction. Moving treatment development to the next stage will require novel ways of approaching substance use disorders. One such novel approach is to target individual vulnerabilities, such as cognitive function, sex differences and psychiatric comorbidities. This review provides a summary of promising pharmacotherapies for alcohol, opiate, stimulant and nicotine addictions. Many medications that target positive and negative reinforcement of drugs, as well as individual vulnerabilities to addiction, are in different phases of development. Clinical trials testing the efficacy of these medications for substance use disorder are warranted.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
80
|
Rasmussen DD, Alexander L, Malone J, Federoff D, Froehlich JC. The α2-adrenergic receptor agonist, clonidine, reduces alcohol drinking in alcohol-preferring (P) rats. Alcohol 2014; 48:543-9. [PMID: 25085719 DOI: 10.1016/j.alcohol.2014.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Evidence suggests that noradrenergic signaling may play a role in mediating alcohol-drinking behavior in both rodents and humans. We have investigated this possibility by administering clonidine to alcohol-drinking rats selectively bred for alcohol preference (P line). Clonidine is an α2-adrenergic receptor agonist which, at low doses, inhibits noradrenergic signaling by decreasing norepinephrine release from presynaptic noradrenergic neurons. Adult male P rats were given 24 h access to food and water and scheduled access to a 15% (v/v) alcohol solution for 2 h daily. Rats received intra-peritoneal (IP) injections with clonidine (0, 10, 20, 40, or 80 μg/kg body weight [BW], 10-11 rats/treatment group) once/day at 30 min prior to onset of the daily 2 h alcohol access period for 2 consecutive days. Clonidine, in doses of 40 or 80 μg/kg BW, significantly reduced alcohol intake on both days of treatment (p<0.001). Two weeks later, rats were treated with clonidine for 5 consecutive days and clonidine, in doses of 40 or 80 μg/kg BW, reduced alcohol intake on all 5 treatment days (p < 0.001). Clonidine did not alter water consumption during the daily 2 h free-choice between alcohol and water. In a separate group of male P rats, clonidine (40 μg/kg BW) suppressed intake of a saccharin solution (0.04 g/L). These results are consistent with and complement our previous findings that the α1-adrenergic receptor antagonist, prazosin, decreases voluntary alcohol drinking in alcohol-preferring rats, but suggests that effects of clonidine may not be specific for alcohol. The results suggest that although activation of the noradrenergic system plays an important role in mediating voluntary alcohol drinking, care is needed in selecting which drugs to use to suppress central noradrenergic signaling in order to maximize the selectivity of the drugs for treating alcohol-use disorders.
Collapse
|
81
|
Skelly MJ, Weiner JL. Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use. Brain Behav 2014; 4:468-83. [PMID: 25161814 PMCID: PMC4128029 DOI: 10.1002/brb3.230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Alcohol use disorders have been linked to increased anxiety, and enhanced central noradrenergic signaling may partly explain this relationship. Pharmacological interventions believed to reduce the excitatory effects of norepinephrine have proven effective in attenuating ethanol intake in alcoholics as well as in rodent models of ethanol dependence. However, most preclinical investigations into the effectiveness of these drugs in decreasing ethanol intake have been limited to acute observations, and none have concurrently assessed their anxiolytic effects. The purpose of these studies was to examine the long-term effectiveness of pharmacological interventions presumed to decrease norepinephrine signaling on concomitant ethanol self-administration and anxiety-like behavior in adult rats with relatively high levels of antecedent anxiety-like behavior. METHODS Adult male Long-Evans rats self-administered ethanol on an intermittent access schedule for eight to ten weeks prior to being implanted with osmotic minipumps containing either an a1-adrenoreceptor antagonist (prazosin, 1.5 mg/kg/day), a β1/2-adrenoreceptor antagonist (propranolol, 2.5 mg/kg/day), a serotonin/norepinephrine reuptake inhibitor (duloxetine, 1.5 mg/kg/day) or vehicle (10% dimethyl sulfoxide). These drugs were continuously delivered across four weeks, during which animals continued to have intermittent access to ethanol. Anxiety-like behavior was assessed on the elevated plus maze before treatment and again near the end of the drug delivery period. RESULTS Our results indicate that chronic treatment with a low dose of prazosin or duloxetine significantly decreases ethanol self-administration (P < 0.05). Furthermore, this decrease in drinking is accompanied by significant reductions in the expression of anxiety-like behavior (P < 0.05). CONCLUSIONS These findings suggest that chronic treatment with putative inhibitors of central noradrenergic signaling may attenuate ethanol intake via a reduction in anxiety-like behavior.
Collapse
Affiliation(s)
- Mary J Skelly
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard Winston-Salem, North Carolina, 27157
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard Winston-Salem, North Carolina, 27157
| |
Collapse
|
82
|
Rasmussen DD, Beckwith LE, Kincaid CL, Froehlich JC. Combining the α1 -adrenergic receptor antagonist, prazosin, with the β-adrenergic receptor antagonist, propranolol, reduces alcohol drinking more effectively than either drug alone. Alcohol Clin Exp Res 2014; 38:1532-9. [PMID: 24891220 PMCID: PMC4047654 DOI: 10.1111/acer.12441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/19/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Evidence suggests that activation of the noradrenergic system may contribute to alcohol drinking in animals and humans. Our previous studies demonstrated that blocking α1 -adrenergic receptors with the antagonist, prazosin, decreased alcohol drinking in rats under various conditions. As noradrenergic activation is also regulated by β-adrenergic receptors, we now examine the effects of the β-adrenergic receptor antagonist, propranolol, alone or in combination with prazosin, on alcohol drinking in rats selectively bred for high voluntary alcohol intake and alcohol preference (P line). METHODS Two studies were conducted with male P rats. In study 1, rats were allowed to become alcohol-dependent during 14 weeks of ad libitum access to food, water, and 20% alcohol, and the effect of propranolol (5 to 15 mg/kg, intraperitoneally [IP]) and prazosin (1 to 2 mg/kg, IP) on alcohol intake during withdrawal was assessed. In study 2, the effect of propranolol (5 mg/kg, IP) and prazosin (2 mg/kg, IP) on alcohol intake following prolonged imposed abstinence was assessed. RESULTS Alcohol drinking following propranolol treatment was variable, but the combination of propranolol + prazosin consistently suppressed alcohol drinking during both alcohol withdrawal and following prolonged imposed abstinence, and the combination of these 2 drugs was more effective than was treatment with either drug alone. CONCLUSIONS Treatment with prazosin + propranolol, or a combination of other centrally active α1 - and β-adrenergic receptor antagonists, may assist in preventing alcohol relapse in some individuals.
Collapse
Affiliation(s)
- Dennis D Rasmussen
- VISN 20 Mental Illness Research, Education and Clinical Center
- VA Puget Sound Health Care System, Seattle, WA 98108
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
| | - Lauren E Beckwith
- VA Puget Sound Health Care System, Seattle, WA 98108
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
| | - Carrie L Kincaid
- VA Puget Sound Health Care System, Seattle, WA 98108
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
| | - Janice C Froehlich
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5124
| |
Collapse
|
83
|
Vendruscolo LF, Roberts AJ. Operant alcohol self-administration in dependent rats: focus on the vapor model. Alcohol 2014; 48:277-86. [PMID: 24290310 DOI: 10.1016/j.alcohol.2013.08.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/28/2022]
Abstract
Alcoholism (alcohol dependence) is characterized by a compulsion to seek and ingest alcohol (ethanol), loss of control over intake, and the emergence of a negative emotional state during withdrawal. Animal models are critical in promoting our knowledge of the neurobiological mechanisms underlying alcohol dependence. Here, we review the studies involving operant alcohol self-administration in rat models of alcohol dependence and withdrawal with the focus on the alcohol vapor model. In 1996, the first articles were published reporting that rats made dependent on alcohol by exposure to alcohol vapors displayed increased operant alcohol self-administration during acute withdrawal compared with nondependent rats (i.e., not exposed to alcohol vapors). Since then, it has been repeatedly demonstrated that this model reliably produces physical and motivational symptoms of alcohol dependence. The functional roles of various systems implicated in stress and reward, including opioids, dopamine, corticotropin-releasing factor (CRF), glucocorticoids, neuropeptide Y (NPY), γ-aminobutyric acid (GABA), norepinephrine, and cannabinoids, have been investigated in the context of alcohol dependence. The combination of models of alcohol withdrawal and dependence with operant self-administration constitutes an excellent tool to investigate the neurobiology of alcoholism. In fact, this work has helped lay the groundwork for several ongoing clinical trials for alcohol dependence. Advantages and limitations of this model are discussed, with an emphasis on what future directions of great importance could be.
Collapse
Affiliation(s)
- Leandro F Vendruscolo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Molecular and Cellular Neuroscience Department, Mouse Behavioral Assessment Core, The Scripps Research Institute, 10550 North Torrey Pines Road, MB18, La Jolla, CA 92037, USA.
| |
Collapse
|
84
|
Haass-Koffler CL, Leggio L, Kenna GA. Pharmacological approaches to reducing craving in patients with alcohol use disorders. CNS Drugs 2014; 28:343-60. [PMID: 24573997 PMCID: PMC3990000 DOI: 10.1007/s40263-014-0149-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research on the concept of craving may lead to better understanding of the biobehavioural circuitries that contribute to the complexity of alcohol use disorders (AUDs). The experiences described as craving or desire to drink are often associated with physical responses such as increased salivation and heart rate, and alteration of stress hormones, as well as psychological responses such as anxiety and depression. Greater craving has been associated with an increased probability of alcohol relapse. Reversal of craving, which is understood as a symptom of protracted abstinence, offers the possibility of preventing relapses and treating alcoholism. Various medications have been studied to establish whether they are able to reduce craving; however, the results obtained from clinical studies have been inconsistent. Here, we review the interdisciplinary models developed to evaluate craving, then the different approaches used to assess and measure craving and, finally, the medications utilized and tested to lessen craving in patients suffering from AUDs.
Collapse
Affiliation(s)
| | - Lorenzo Leggio
- Center for Alcohol & Addiction Studies, Brown University, Providence, Rhode Island, USA
- Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - George A. Kenna
- Center for Alcohol & Addiction Studies, Brown University, Providence, Rhode Island, USA
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
85
|
Abstract
Alcohol dependence encompasses a serious medical and societal problem that constitutes a major public health concern. A serious consequence of dependence is the emergence of symptoms associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous system hyperexcitability, heightened autonomic nervous system activation, and a constellation of symptoms contributing to psychologic discomfort and negative affect. The development of alcohol dependence is a complex and dynamic process that ultimately reflects a maladaptive neurophysiologic state. Perturbations in a wide range of neurochemical systems, including glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion channels produced by the chronic presence of alcohol ultimately compromise the functional integrity of the brain. These neuroadaptations not only underlie the emergence and expression of many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, neuropeptide systems, and various ion channels) as they relate to the expression of various signs and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical problem of relapse and uncontrolled dangerous drinking.
Collapse
|
86
|
Abstract
Alcoholism, more generically drug addiction, can be defined as a chronically relapsing disorder characterized by: (1) compulsion to seek and take the drug (alcohol); (2) loss of control in limiting (alcohol) intake; and (3) emergence of a negative emotional state (e.g., dysphoria, anxiety, irritability), reflecting a motivational withdrawal syndrome, when access to the drug (alcohol) is prevented (defined here as dependence). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here, derived largely from animal models, is that a key component involves decreased brain reward function, increased brain stress function, and compromised executive function, all of which contribute to the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from decreases in reward neurotransmission in the ventral striatum, such as decreased dopamine and opioid peptide function in the nucleus accumbens (ventral striatum), but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Data from animal models that support this thesis show that acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. Alcoholism also involves substantial neuroadaptations that persist beyond acute withdrawal and trigger relapse and deficits in cognitive function that can also fuel compulsive drinking. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include increases in norepinephrine function, increases in dynorphin activity, and decreases in neuropeptide Y. The combination of impairment of function in reward circuitry and recruitment of brain stress system circuitry provides a powerful neurochemical basis for the negative emotional states that are responsible for the negative reinforcement that drives the compulsivity of alcoholism.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
87
|
Butler TR, Chappell AM, Weiner JL. Effect of β3 adrenoceptor activation in the basolateral amygdala on ethanol seeking behaviors. Psychopharmacology (Berl) 2014; 231:293-303. [PMID: 23955701 PMCID: PMC3877711 DOI: 10.1007/s00213-013-3238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/31/2013] [Indexed: 01/15/2023]
Abstract
RATIONALE The interaction between ethanol (EtOH) and anxiety plays an integral role in the development and maintenance of alcoholism. Many medications in pre-clinical or clinical trials for the treatment of alcoholism share anxiolytic properties. However, these drugs typically have untoward side effects, such as sedation or impairment of motor function that may limit their clinical use. We have recently demonstrated that BRL 37344 (BRL), a selective β3-adrenoceptor (AR) agonist, enhances a discrete population of GABAergic synapses in the basolateral amygdala (BLA) that mediates feed-forward inhibition from lateral paracapsular (LPC) GABAergic interneurons onto BLA pyramidal cells. Behavioral studies revealed that intra-BLA infusion of BRL significantly reduced measures of unconditioned anxiety-like behavior without locomotor depressant effects. OBJECTIVES The present studies tested the effect of BRL (0.1, 0.5, or 1.0 μg/side) on EtOH self-administration using an intermittent access home cage two-bottle choice procedure and limited access operant responding for EtOH or sucrose. RESULTS Intra-BLA infusion of BRL did not reduce home cage, intermittent EtOH self-administration. However, using an operant procedure that permits the discrete assessment of appetitive (seeking) and consummatory measures of EtOH self-administration, BRL reduced measures of EtOH and sucrose seeking, but selectively reduced operant responding for EtOH during extinction probe trials. BRL had no effect on consummatory behaviors for EtOH or sucrose. CONCLUSIONS Together, these data suggest that intra-BLA infusion of BRL significantly reduces motivation to seek EtOH and provide initial evidence that β3-ARs and LPC GABAergic synapses may represent promising targets for the development of novel pharmacotherapies for the treatment of alcoholism.
Collapse
Affiliation(s)
- T R Butler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | | |
Collapse
|
88
|
Muzyk AJ, Kerns S, Brudney S, Gagliardi JP. Dexmedetomidine for the treatment of alcohol withdrawal syndrome: rationale and current status of research. CNS Drugs 2013; 27:913-20. [PMID: 23975661 DOI: 10.1007/s40263-013-0106-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dexmedetomidine is currently used in the US in the treatment of alcohol withdrawal syndrome (AWS) in the intensive care unit (ICU) setting, although data to support this practice are limited. Dexmedetomidine targets the noradrenergic system, an important but frequently overlooked secondary mechanism in the development of AWS, and, in doing so, may reduce the need for excessive benzodiazepine use which can increase the risk of γ-aminobutyric acid (GABA)-mediated deliriogenesis and respiratory depression. The purpose of this narrative review is to evaluate available literature reporting on the safety and efficacy of dexmedetomidine for AWS in the ICU setting. An English-language MEDLINE search (1966 to July 2013) was performed to identify articles evaluating the efficacy and safety of dexmedetomidine for AWS. Case series, case reports and controlled trials were evaluated for topic relevance and clinical applicability. Reference lists of articles retrieved through this search were reviewed to identify any relevant publications. Studies focusing on the safety and efficacy of dexmedetomidine for AWS in humans were selected. Studies were included if they were published as full articles; abstracts alone were not included in this review. Eight published case studies and case series were identified. Based on a limited body of evidence, dexmedetomidine shows promise as a potentially safe and possibly effective adjuvant treatment for AWS in the ICU. Prospective, well-controlled studies are needed to confirm the safety and efficacy of the use of dexmedetomidine in AWS.
Collapse
Affiliation(s)
- Andrew J Muzyk
- Department of Pharmacy Practice, Campbell University School of Pharmacy and Health Sciences, P.O. Box 3089, Buies Creek, NC, 27710, USA,
| | | | | | | |
Collapse
|
89
|
Froehlich JC, Hausauer BJ, Rasmussen DD. Combining naltrexone and prazosin in a single oral medication decreases alcohol drinking more effectively than does either drug alone. Alcohol Clin Exp Res 2013; 37:1763-70. [PMID: 23875623 PMCID: PMC3795831 DOI: 10.1111/acer.12148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Naltrexone (NTX) is underutilized in clinical treatment settings because its efficacy is modest, and it is not effective for all alcoholics and, when it is effective, a significant number of alcoholics fail to maintain initial treatment gains and subsequently relapse to heavy drinking. This has slowed acceptance of NTX by the treatment community, and there is a clear need for additional treatments for alcoholism and alcohol use disorders. Given that NTX and prazosin can each reduce alcohol drinking in rats selectively bred for alcohol preference and high voluntary alcohol drinking (alcohol-preferring "P" rats), we tested whether a combination of NTX + prazosin is more effective in decreasing alcohol drinking than is either drug alone. METHODS P rats were given access to a 15% (v/v) alcohol solution for 2 hours daily. Rats were fed NTX and prazosin, alone or in combination, prior to onset of the daily 2-hour alcohol access period for 4 weeks and the effect of drug treatment on alcohol and water intake was assessed. RESULTS During the first week of treatment, neither a low dose of NTX, nor prazosin, was effective in decreasing alcohol intake when each drug was administered alone, but combining the 2 drugs in a single medication significantly reduced alcohol intake. The combination was as effective as was a higher dose of NTX. Using a low dose of NTX in combination with prazosin may reduce the potential for undesirable side effects early in treatment which, in turn, may improve patient compliance and result in a more successful outcome when NTX is used for treating alcoholism and alcohol use disorders. CONCLUSIONS Combining low-dose NTX and prazosin in a single medication may be more useful than is either drug alone for treating both inpatient and outpatient alcoholics and heavy drinkers early in the treatment process.
Collapse
|
90
|
Froehlich JC, Hausauer BJ, Federoff DL, Fischer SM, Rasmussen DD. Prazosin reduces alcohol drinking throughout prolonged treatment and blocks the initiation of drinking in rats selectively bred for high alcohol intake. Alcohol Clin Exp Res 2013; 37:1552-60. [PMID: 23731093 PMCID: PMC3775948 DOI: 10.1111/acer.12116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/20/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study examined whether prazosin reduces alcohol drinking over the course of prolonged treatment and whether it blocks the initiation of alcohol drinking in rats with a genetic predisposition toward high alcohol drinking, that is alcohol-preferring (P) rats. METHODS In study one, alcohol-experienced P rats that had been drinking alcohol for 2 h/d for several months were treated daily with prazosin (0, 0.5, 1.0, or 2.0 mg/kg body weight [BW]) for 7 weeks. In study two, alcohol-naïve P rats were treated daily with prazosin (0, 1.0, or 2.0 mg/kg BW) for 2 weeks prior to, or concomitantly with, the initiation of alcohol access and throughout 3 weeks of alcohol availability. Prazosin treatment and alcohol access were then discontinued for 2 weeks followed by reinstatement of alcohol access without prazosin treatment for 4 weeks, followed by resumption of daily prazosin treatment (2.0 mg/kg BW) for 3 weeks. RESULTS Prazosin reduced alcohol drinking throughout 7 weeks of treatment in P rats accustomed to drinking alcohol. Following termination of prazosin treatment, alcohol drinking slowly returned to pretreatment baseline. Reduced alcohol intake was accompanied by increased water intake. In alcohol-naïve P rats, prazosin administration prior to the first opportunity to drink alcohol and throughout 3 weeks of alcohol access retarded acquisition of alcohol drinking and reduced the amount of alcohol consumed. When prazosin was administered concomitantly with the first opportunity to drink alcohol, it abolished acquisition of alcohol drinking. Discontinuation of prazosin treatment allowed expression of a genetic predisposition toward high alcohol drinking to gradually emerge. Prazosin retained the ability to reduce alcohol intake with repeated treatments. CONCLUSIONS Prazosin decreased alcohol drinking during prolonged treatment and may be useful for treating alcoholism and alcohol-use disorders. Prazosin may also be useful for deterring the initiation of drinking in individuals with a family history of alcoholism.
Collapse
|
91
|
Houchi H, Persyn W, Legastelois R, Naassila M. The adenosine A2A receptor agonist CGS 21680 decreases ethanol self-administration in both non-dependent and dependent animals. Addict Biol 2013; 18:812-25. [PMID: 23301633 DOI: 10.1111/adb.12032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is emerging evidence that the adenosinergic system might be involved in drug addiction and alcohol dependence. We have already demonstrated the involvement of A2A receptors (A2AR) in ethanol-related behaviours in mice. Here, we investigated whether the A2AR agonist CGS 21680 can reduce ethanol operant self-administration in both non-dependent and ethanol-dependent Wistar rats. To rule out a potential involvement of the A1R in the effects of CGS 21680, we also tested its effectiveness to reduce ethanol operant self-administration in both heterozygous and homozygous A1R knockout mice. Our results demonstrated that CGS 21680 (0.065, 0.095 and 0.125 mg/kg, i.p.) had a bimodal effect on 10% ethanol operant self-administration in non-dependent rats. The intermediate dose was also effective in reducing 2% sucrose self-administration. Interestingly, the intermediate dose reduced 10% ethanol self-administration in dependent animals more effectively (75% decrease) when compared with non-dependent animals (57% decrease). These results suggest that the A2AR are involved in CGS 21680 effects since the reduction of ethanol self-administration was not dependent upon the presence of A1R in mice. In conclusion, our findings demonstrated the effectiveness of the A2AR agonist CGS 21680 in a preclinical model of alcohol addiction and suggested that the adenosinergic pathway is a promising target to treat alcohol addiction.
Collapse
Affiliation(s)
- Hakim Houchi
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| | | | - Rémi Legastelois
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| | - Mickaël Naassila
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| |
Collapse
|
92
|
Traumatic stress reactivity promotes excessive alcohol drinking and alters the balance of prefrontal cortex-amygdala activity. Transl Psychiatry 2013; 3:e296. [PMID: 23982628 PMCID: PMC3756295 DOI: 10.1038/tp.2013.70] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/05/2013] [Accepted: 07/15/2013] [Indexed: 11/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcoholism are highly comorbid in humans and have partially overlapping symptomatic profiles. The aim of these studies was to examine the effects of traumatic stress (and stress reactivity) on alcohol-related behaviors and neuronal activation patterns. Male Wistar rats were trained to respond for alcohol, were exposed to predator odor (bobcat urine) paired with context and were tested for short- and long-term avoidance of the predator odor-paired context, alcohol self-administration and compulsivity of alcohol responding. Rats were re-exposed to the odor-paired context for western blot analysis of ERK phosphorylation in subregions of the medial prefrontal cortex (mPFC) and the amygdala. Rats that avoided the predator-paired chamber (Avoiders) exhibited persistent avoidance up to 6 weeks post conditioning. Avoiders exhibited increases in operant alcohol responding over weeks, as well as more compulsive-like responding for alcohol adulterated with quinine. Following re-exposure to the predator odor-paired context, Avoiders and Non-Avoiders exhibited unique patterns of neuronal activation in subregions of the mPFC and the amygdala, which were correlated with changes in avoidance and alcohol drinking. Furthermore, activity of upstream regions was differentially predictive of downstream regional activity in the Avoiders versus Non-Avoiders. An animal model for assessing the effect of traumatic stress on alcohol drinking reveals individual differences in neuronal activation patterns associated with re-exposure to traumatic stress-related stimuli, and may provide insight into the neural mechanisms underlying excessive alcohol consumption in humans with PTSD.
Collapse
|
93
|
Seo D, Lacadie CM, Tuit K, Hong KI, Constable RT, Sinha R. Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk. JAMA Psychiatry 2013; 70:727-39. [PMID: 23636842 PMCID: PMC3788824 DOI: 10.1001/jamapsychiatry.2013.762] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE Alcohol dependence is a chronic relapsing illness; stress, alcohol-related cues, and neutral-relaxing states significantly influence craving and relapse risk. However, neural mechanisms underlying the association between these states and alcohol craving and relapse risk remain unclear. OBJECTIVES To identify neural correlates associated with alcohol craving and relapse outcomes in 45 treatment-engaged, 4- to 8-week abstinent alcohol-dependent (AD) patients, and to compare brain responses of 30 demographically matched AD patients and 30 healthy control subjects during stress, alcohol, and neutral-relaxing cues. DESIGN Functional magnetic resonance imaging study while participants were engaging in brief individualized script-driven imagery trials of stress, alcohol cues, and neutral-relaxing scenarios, and a prospective clinical outcome design to assess alcohol relapse 90 days postdischarge from inpatient treatment in the AD group. SETTINGS Inpatient treatment setting in a community mental health center and hospital-based research unit. PATIENTS Forty-five recovering AD patients in inpatient treatment for examining relapse, and 30 healthy control subjects demographically matched to 30 AD patients (subgroup of the relapse sample) for group comparisons. INTERVENTION Twelve-step recovery-based addiction treatment for the patient group. MAIN OUTCOMES AND MEASURES Brain response, alcohol craving, and relapse outcome measures (time to relapse and relapse severity). RESULTS Increased ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) activation during neutral-relaxing trials was correlated with high alcohol cue-induced and stress-induced craving in early recovering AD patients (x = 6, y = 43, z = -6; P < .01, whole-brain corrected). This vmPFC/ACC hyperactivity significantly predicted subsequent alcohol relapse, with a hazards ratio greater than 8 for increased relapse risk. Additionally, vmPFC/ACC hyperactivation during neutral trials and reduced activity during stress trials were each predictive of greater days of alcohol used after relapse (P < .01, whole-brain corrected). In contrast, matched control subjects showed the reverse pattern of vmPFC/ACC responses to stress, alcohol cues, and relaxed trials (F = 6.42; P < .01, whole-brain corrected). CONCLUSIONS AND RELEVANCE Findings indicate that disrupted vmPFC/ACC function plays a role in jeopardizing recovery from alcoholism and may serve as a neural marker to identify those at risk for alcohol relapse.
Collapse
Affiliation(s)
- Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
94
|
Mahoney MK, Olmstead MC. Neurobiology of an endophenotype: modeling the progression of alcohol addiction in rodents. Curr Opin Neurobiol 2013; 23:607-14. [PMID: 23541596 DOI: 10.1016/j.conb.2013.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/25/2013] [Accepted: 03/10/2013] [Indexed: 12/30/2022]
Abstract
Most adults in Western society consume alcohol on a regular basis with few or no negative consequences. However, for certain individuals, alcohol use escalates, leading to uncontrolled drinking bouts, craving, and repeated episodes of relapse. The transition from regulated to uncontrolled and compulsive drinking is a defining feature (i.e. an endophenotype) of alcohol addiction. This behavioral progression can be modeled in rodent paradigms that parallel the diagnostic criteria for addiction in humans. Using these criteria as a framework, this review outlines the neurobiological factors associated with increased vulnerability to excessive, compulsive, and dysregulated alcohol intake in rodents. We conclude by noting gaps in the literature and outline important directions for future research.
Collapse
Affiliation(s)
- Megan K Mahoney
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
95
|
Kim T, Hinton DJ, Johng S, Wang JB, Choi DS. Levo-tetrahydropalmatine decreases ethanol drinking and antagonizes dopamine D2 receptor-mediated signaling in the mouse dorsal striatum. Behav Brain Res 2013; 244:58-65. [PMID: 23376703 DOI: 10.1016/j.bbr.2013.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 12/20/2022]
Abstract
An herb derived compound, levo-tetrahydropalmatine (L-THP), attenuates self-administration of cocaine and opiates in rodents. Since L-THP mainly antagonizes dopamine D2 receptors (D2R) in the brain, it is likely to regulate other addictive behaviors as well. Here, we examined whether L-THP regulates ethanol drinking in C57BL/6J mice using a two-bottle choice drinking experiment. L-THP treated mice consumed less ethanol compared to vehicle-treated mice during the 15% ethanol drinking session while water consumption remained similar between each group. We then examined the molecular basis underlying the pharmacological effect of L-THP in mice. Our results indicated that a single injection of L-THP increased active phosphorylated forms of PKA, AKT and ERK in the caudate-putamen (CPu), but not in the nucleus accumbens (NAc), of alcohol naïve mice. Interestingly, we found that systematic treatment with L-THP for 4 consecutive days while mice were drinking 15% ethanol increased pPKA levels in the CPu, but not in the NAc. In contrast to the effect of acute L-THP treatment, no differences were detected for pAKT or pERK in either striatal regions. Together, our findings suggest that reduction of ethanol drinking by L-THP treatment is possibly correlated with D2R-mediated PKA signaling in the CPu.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
It is well known that alcoholism is a chronic relapsing illness. While stress significantly impacts alcoholism risk, there is also evidence that increasing levels of alcohol use affect peripheral and central stress and reward pathways thereby setting up a reciprocal relationship among the effects of alcohol consumption of the development, course of and recovery from alcoholism. This chapter reviews our efforts in assessing the integrity of stress pathways in alcoholism by examining whether altered responses of the stress pathways play a role in relapse risk. Using validated human laboratory procedures to model two of the most common situations that contribute to relapse risk, we review how such models in the laboratory can predict subsequent alcohol relapse. Empirical findings from human laboratory and brain imaging studies are reviewed to show that specific stress-related dysregulation accompanies the alcohol craving state in alcohol-dependent individuals, and such dysregulation along with increases in alcohol seeking are predictive of increased alcohol relapse risk. Finally, the significant implications of these findings for the development of novel treatment interventions that target stress processes and alcohol craving to improve alcoholism relapse outcomes are discussed.
Collapse
Affiliation(s)
- Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street Room S110, New Haven, CT 06519, USA.
| |
Collapse
|
97
|
Koob GF. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci 2013; 13:3-30. [PMID: 21744309 PMCID: PMC3448980 DOI: 10.1007/7854_2011_129] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcoholism can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Alcoholism impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of specific neurochemical elements involved in reward and stress within the basal forebrain structures involving the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreased dopamine and γ-aminobutyric acid function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and that may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least partially, the compulsivity of alcoholism.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| |
Collapse
|
98
|
Leggio L, Kenna GA. Commentary: Doxazosin for alcoholism. Alcohol Clin Exp Res 2012; 37:191-3. [PMID: 23278505 DOI: 10.1111/acer.12064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/07/2012] [Indexed: 11/26/2022]
Abstract
Recent preclinical and clinical evidence using prazosin indicates that α(1) -blockade may represent a new approach to treat alcohol dependence (AD). While most of the alcohol research on α(1) -blockade has been conducted testing prazosin, O'Neil and colleagues recently performed a set of preclinical experiments testing another α(1) -blocker, doxazosin, which has a longer half-life that may enhance clinical utility. Doxazosin and prazosin share the same chemical structure, in which the central element is a piperazine ring. O'Neil and colleagues' main results are that doxazosin significantly reduced alcohol intake without affecting locomotor activity. As such, O'Neil and colleagues provide the first preclinical evidence of the possible role of doxazosin in AD. Additional translational research is needed to further test this hypothesis.
Collapse
Affiliation(s)
- Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
99
|
Williams AM, Reis DJ, Powell AS, Neira LJ, Nealey KA, Ziegler CE, Kloss N, Bilimoria JL, Smith CE, Walker BM. The effect of intermittent alcohol vapor or pulsatile heroin on somatic and negative affective indices during spontaneous withdrawal in Wistar rats. Psychopharmacology (Berl) 2012; 223:75-88. [PMID: 22461104 PMCID: PMC3419345 DOI: 10.1007/s00213-012-2691-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/09/2012] [Indexed: 12/31/2022]
Abstract
RATIONALE Once dependent on alcohol or opioids, negative affect may accompany withdrawal. Dependent individuals are hypothesized to "self-medicate" in order to cope with withdrawal, which promotes escalated alcohol and drug use. OBJECTIVES The current study aimed to develop a reliable animal model to assess symptoms that occur during spontaneous alcohol and opioid withdrawal. METHODS Dependence was induced using intermittent alcohol exposure or pulsatile heroin delivery and assessed for the presence of withdrawal symptoms during acute withdrawal by measuring somatic signs, behavior in the forced swim test (FST), and air-puff-induced 22-kHz ultrasonic vocalizations (USVs). Additional animals subjected to 8 weeks of alcohol vapor exposure were evaluated for altered somatic signs, operant alcohol self-administration, and 22-kHz USV production, as well as performance in the elevated plus maze (EPM). RESULTS During spontaneous withdrawal from pulsatile heroin or intermittent alcohol vapor, animals displayed increased somatic withdrawal signs, FST immobility, and 22-kHz USV production but did not show any behavioral change in the EPM unless the duration of alcohol exposure was extended to 4 weeks. Following 8 weeks of alcohol vapor exposure, animals displayed somatic withdrawal signs, escalated alcohol self-administration, and increased 22-kHz USVs. CONCLUSIONS These paradigms provide consistent methods to evaluate the behavioral ramifications, and neurobiological substrates, of alcohol and opioid dependence during spontaneous withdrawal. As immobility in the FST and percent open-arm time in the EPM were dissociable, with 22-kHz USVs paralleling immobility in the FST, assessment of air-puff-induced 22-kHz USVs could provide an ethologically valid alternative to the FST.
Collapse
Affiliation(s)
- Angela M. Williams
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Daniel J. Reis
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Alexa S. Powell
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Louis J. Neira
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Kathryn A. Nealey
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Cole E. Ziegler
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Nina Kloss
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Jessica L. Bilimoria
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Chelsea E. Smith
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Brendan M. Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA,Graduate Program in Neuroscience, Washington State University, Pullman, WA,Alcohol and Drug Abuse Research Program, Washington State University, Pullman, WA,Translational Addiction Research Center, Washington State University, Pullman, WA,Corresponding Author: Dr. Brendan M. Walker, Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Graduate Program in Neuroscience, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, 100 Dairy Road, Mail Code: 644820, Washington State University, Pullman, WA 99164-4820, 509-335-8526 (phone), 509-335-5043 (fax),
| |
Collapse
|
100
|
O'Neil ML, Beckwith LE, Kincaid CL, Rasmussen DD. The α1-adrenergic receptor antagonist, doxazosin, reduces alcohol drinking in alcohol-preferring (P) Rats. Alcohol Clin Exp Res 2012; 37:202-12. [PMID: 22758213 DOI: 10.1111/j.1530-0277.2012.01884.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/02/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Evidence supports a role for the noradrenergic system in alcohol drinking in animals and humans. Our previous studies demonstrated the efficacy of prazosin, an α1-adrenergic antagonist, in decreasing alcohol drinking in rat models of alcohol dependence. Prazosin has also been shown to decrease alcohol drinking in treatment-seeking alcohol-dependent men. Clinically, the use of prazosin is limited by the requirement for multiple daily administrations, whereas doxazosin, a structurally similar α1-adrenergic antagonist, requires only once-daily dosing. In this study, we tested the hypothesis that doxazosin, like prazosin, would decrease alcohol drinking in rats selectively bred for alcohol preference (P line). METHODS Adult male P rats were given 2 h/d scheduled access to a 2-bottle choice (15% v/v alcohol vs. water) session 5 d/wk (M-F), with food and water available ad libitum 24 h/d. Rats were injected with doxazosin (0 to 10 mg/kg, IP) 40 minutes prior to initiation of the alcohol access session in 3 trials (of 3, 5, and 5 consecutive days) each separated by 5 to 8 weeks. The third trial included 1 day without alcohol access (for locomotor testing), and 1 day of a single hour of alcohol access (for plasma alcohol determination). RESULTS Doxazosin significantly reduced alcohol intake in all 3 trials. The 5 mg/kg dose consistently reduced alcohol intake, increased water drinking, did not affect locomotor activity, and resulted in lower plasma alcohol concentrations, suggesting that the doxazosin-induced reduction in alcohol drinking was not dependent on a motor impairment or an alteration in alcohol clearance. CONCLUSIONS Doxazosin decreases voluntary alcohol consumption by male alcohol-preferring (P) rats, supporting a role for the noradrenergic system in alcohol drinking in P rats and suggesting that doxazosin could potentially be an effective once-daily pharmacotherapeutic agent for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Meghan L O'Neil
- VA Puget Sound Health Care System , Seattle, Washington; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98108, USA
| | | | | | | |
Collapse
|