51
|
D-Serine and D-Cycloserine Reduce Compulsive Alcohol Intake in Rats. Neuropsychopharmacology 2015; 40:2357-67. [PMID: 25801502 PMCID: PMC4538350 DOI: 10.1038/npp.2015.84] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
There is considerable interest in NMDAR modulators to enhance memory and treat neuropsychiatric disorders such as addiction, depression, and schizophrenia. D-serine and D-cycloserine, the NMDAR activators at the glycine site, are of particular interest because they have been used in humans without serious adverse effects. Interestingly, D-serine also inhibits some NMDARs active at hyperpolarized potentials (HA-NMDARs), and we previously found that HA-NMDARs within the nucleus accumbens core (NAcore) are critical for promoting compulsion-like alcohol drinking, where rats consume alcohol despite pairing with an aversive stimulus such as quinine, a paradigm considered to model compulsive aspects of human alcohol use disorders (AUDs). Here, we examined the impact of D-serine and D-cycloserine on this aversion-resistant alcohol intake (that persists despite adulteration with quinine) and consumption of quinine-free alcohol. Systemic D-serine reduced aversion-resistant alcohol drinking, without altering consumption of quinine-free alcohol or saccharin with or without quinine. Importantly, D-serine within the NAcore but not the dorsolateral striatum also selectively reduced aversion-resistant alcohol drinking. In addition, D-serine inhibited EPSCs evoked at -70 mV in vitro by optogenetic stimulation of mPFC-NAcore terminals in alcohol-drinking rats, similar to reported effects of the NMDAR blocker AP5. Further, D-serine preexposure occluded AP5 inhibition of mPFC-evoked EPSCs, suggesting that D-serine reduced EPSCs by inhibiting HA-NMDARs. Systemic D-cycloserine also selectively reduced intake of quinine-adulterated alcohol, and D-cycloserine inhibited NAcore HA-NMDARs in vitro. Our results indicate that HA-NMDAR modulators can reduce aversion-resistant alcohol drinking, and support testing of D-serine and D-cycloserine as immediately accessible, FDA-approved drugs to treat AUDs.
Collapse
|
52
|
Chen H, He D, Lasek AW. Repeated Binge Drinking Increases Perineuronal Nets in the Insular Cortex. Alcohol Clin Exp Res 2015; 39:1930-8. [PMID: 26332441 DOI: 10.1111/acer.12847] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Alcohol exposure leads to changes in the extracellular matrix (ECM) in the brain, which profoundly impacts neuronal plasticity. Perineuronal nets (PNs) are specialized ECM structures that enclose subpopulations of neurons in the cortex. Adolescent exposure to alcohol induces long-lasting increases in the expression of PN components in the cortex in adult mice. However, it has not been determined whether binge alcohol exposure in young adults alters PNs. Here, we examined PNs and their core components in the insula and primary motor cortex after repeated binge-like ethanol (EtOH) consumption in adult mice. METHODS The 4-day drinking in the dark (DID) procedure was performed in mice for 1 or 6 weeks to model binge alcohol consumption. The impact of EtOH drinking on PNs was examined by fluorescent staining of brain sections using a marker for PNs, Wisteria floribunda agglutinin (WFA). In another set of experiments, cortex was dissected and Western blots and real-time quantitative polymerase chain reaction were performed to evaluate the expression of the PN proteins aggrecan, brevican, and phosphacan. RESULTS Binge-like EtOH drinking for 6 weeks caused a significant increase in PNs in the insula, as measured by WFA binding. Aggrecan, brevican, and phosphacan protein expression, and aggrecan mRNA expression, were also elevated in the insula after 6 weeks of EtOH drinking. In contrast, expression of PN components did not change after 1 week of DID. The increase in PNs appears to be specific to the insula, because alterations were not observed in the primary motor cortex. CONCLUSIONS Our results provide the first evidence that insular PNs increase after long-term binge drinking. The insula mediates compulsive alcohol use. As PNs influence neuronal firing and plasticity, increased PNs in the insula after multiple binge cycles may contribute to restricted neuronal plasticity and lead to the development of compulsive alcohol use.
Collapse
Affiliation(s)
- Hu Chen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Donghong He
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
53
|
Simon-O'Brien E, Alaux-Cantin S, Warnault V, Buttolo R, Naassila M, Vilpoux C. The histone deacetylase inhibitor sodium butyrate decreases excessive ethanol intake in dependent animals. Addict Biol 2015; 20:676-89. [PMID: 25041570 DOI: 10.1111/adb.12161] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Converging evidence indicates that epigenetic mechanisms are involved in drug addiction, and that enzymes involved in chromatin remodeling may represent interesting targets in addiction treatment. No study has addressed whether histone deacetylase (HDAC) inhibitors (HDACi) can reduce excessive ethanol intake or prevent relapse in alcohol-dependent animals. Here, we assessed the effects of two HDACi, sodium butyrate (NaB) and MS-275, in the operant ethanol self-administration paradigm in dependent and non-dependent rats. To characterize some of the epigenetic mechanisms associated with alcohol dependence and NaB treatment, we measured the levels of histone H3 acetylation in different brain areas of dependent and non-dependent rats, submitted or not to NaB treatment. Our results demonstrated that (1) NaB and MS-275 strongly decreased excessive alcohol intake of dependent rats in the operant ethanol self-administration paradigm but not of non-dependent rats; (2) NaB reduced excessive drinking and prevented the escalation of ethanol intake in the intermittent access to 20% ethanol paradigm; and (3) NaB completely blocked the increase of ethanol consumption induced by an alcohol deprivation, thus demonstrating a preventive effect of NaB on relapse. The mapping of cerebral histone H3 acetylation revealed a hyperacetylation in the amygdala and cortical areas in dependent rats. Interestingly, NaB did not exacerbate the hyperacetylation observed in these regions, but instead restored it, specifically in cortical areas. Altogether, our results clearly demonstrated the efficacy of NaB in preventing excessive ethanol intake and relapse and support the hypothesis that HDACi may have a potential use in alcohol addiction treatment.
Collapse
Affiliation(s)
- Emmanuelle Simon-O'Brien
- UFR de Pharmacie; INSERM ERI 24; Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP); Université de Picardie Jules Verne; Amiens France
| | - Stéphanie Alaux-Cantin
- UFR de Pharmacie; INSERM ERI 24; Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP); Université de Picardie Jules Verne; Amiens France
| | - Vincent Warnault
- UFR de Pharmacie; INSERM ERI 24; Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP); Université de Picardie Jules Verne; Amiens France
| | - Romain Buttolo
- UFR de Pharmacie; INSERM ERI 24; Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP); Université de Picardie Jules Verne; Amiens France
| | - Mickaël Naassila
- UFR de Pharmacie; INSERM ERI 24; Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP); Université de Picardie Jules Verne; Amiens France
| | - Catherine Vilpoux
- UFR de Pharmacie; INSERM ERI 24; Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP); Université de Picardie Jules Verne; Amiens France
| |
Collapse
|
54
|
Barak S, Wang J, Ahmadiantehrani S, Ben Hamida S, Kells AP, Forsayeth J, Bankiewicz KS, Ron D. Glial cell line-derived neurotrophic factor (GDNF) is an endogenous protector in the mesolimbic system against excessive alcohol consumption and relapse. Addict Biol 2015; 20:629-42. [PMID: 24801661 DOI: 10.1111/adb.12152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Moderate social consumption of alcohol is common; however, only a small percentage of individuals transit from social to excessive, uncontrolled alcohol drinking. This suggests the existence of protective mechanisms that prevent the development of alcohol addiction. Here, we tested the hypothesis that the glial cell line-derived neurotrophic factor (GDNF) in the mesolimbic system [e.g. the nucleus accumbens (Acb) and ventral tegmental area (VTA)] is part of such a mechanism. We found that GDNF knockdown, by infecting rat Acb neurons with a small hairpin RNA (shRNA) targeting the GDNF gene, produced a rapid escalation to excessive alcohol consumption and enhanced relapse to alcohol drinking. Conversely, viral-mediated overexpression of the growth factor in the mesolimbic system blocked the escalation from moderate to excessive alcohol drinking. To access the mechanism underlying GDNF's actions, we measured the firing rate of dopaminergic (DAergic) neurons in the VTA after a history of excessive alcohol intake with or without elevating GDNF levels. We found that the spontaneous firing rate of DAergic neurons in the VTA was reduced during alcohol withdrawal and that GDNF reversed this alcohol-induced DA deficiency. Together, our results suggest that endogenous GDNF in the mesolimbic system controls the transition from moderate to excessive alcohol drinking and relapse via reversal of alcohol-dependent neuro-adaptations in DAergic VTA neurons.
Collapse
Affiliation(s)
- Segev Barak
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Jun Wang
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Somayeh Ahmadiantehrani
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Sami Ben Hamida
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Adrian P. Kells
- Department of Neurological Surgery; University of California; San Francisco CA USA
| | - John Forsayeth
- Department of Neurological Surgery; University of California; San Francisco CA USA
| | | | - Dorit Ron
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| |
Collapse
|
55
|
Vasudeva RK, Hobby AR, Kirby LG. Ethanol consumption in the Sprague-Dawley rat increases sensitivity of the dorsal raphe nucleus to 5,7-dihydroxytryptamine. Behav Brain Res 2015; 295:35-44. [PMID: 26073764 DOI: 10.1016/j.bbr.2015.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/17/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Alcoholism afflicts 1 in 13 US adults, and comorbidity with depression is common. Levels of serotonin (5-HT) metabolites in alcoholic or depressed humans and rat strains are lower compared to healthy counterparts. Rats bred for ethanol (EtOH) preference are common in EtOH studies, however out-bred strains better model the range of EtOH consumption in humans. We examined voluntary EtOH consumption in out-bred Sprague-Dawley (SD) rats placed in the 20% EtOH intermittent access drinking paradigm (IA). Acquisition of 20% EtOH consumption (g EtOH/kg/24h) was assessed during the first 6-8 weeks of IA. Rats naturally separated into two groups (Drinkers or Non-drinkers) based on EtOH intake above or below 0.5 g/kg/24h prior to treatment intervention. We examined the effect of central 5-HT depletion on EtOH consumption by infusing 5,7-dihyroxytryptamine (5,7-DHT; i.c.v., 200-300 μg) or vehicle and measured EtOH consumption for 4 weeks post-operatively in IA. Compared to baseline, there was no effect of vehicle or 5,7-DHT on EtOH consumption during the post-operative period. Quantification of 5-HT depletion in the dorsal raphe nucleus (DRN) using tryptophan hydroxylase-2 (TPH2) immunohistochemistry resulted in a 76% decrease in staining with 5,7-DHT treatment. Interestingly, preservation of the ventromedial (VM) sub-regions was evident in all animals treated with 5,7-DHT, regardless of drinking behavior. In addition, Drinkers treated with 5,7-DHT had significantly more TPH2 depletion in the DRN compared to Non-drinkers. Our findings indicate that out-bred SD rats exhibit a natural EtOH consumption behavior (Drinker or Non-drinker) that is stable across time and independent of 5-HT depletion in the CNS. In addition, rats that regularly consumed >0.5 g EtOH/kg had greater sensitivity to 5,7-DHT in the DRN, indicating an interaction between EtOH and sensitivity of DRN 5-HT cells to neurotoxic substances. This may contribute to the dysfunctionality of the 5-HT system in alcoholic humans and lead to a better understanding of current pharmacological treatments for this addiction.
Collapse
Affiliation(s)
- Rani K Vasudeva
- Temple University School of Medicine, Center for Substance Abuse Research, 3500 North Broad St., Philadelphia, PA 19140, USA.
| | - Alexander R Hobby
- Temple University School of Medicine, Center for Substance Abuse Research, 3500 North Broad St., Philadelphia, PA 19140, USA
| | - Lynn G Kirby
- Temple University School of Medicine, Center for Substance Abuse Research, 3500 North Broad St., Philadelphia, PA 19140, USA
| |
Collapse
|
56
|
Jeanblanc J, Balguerie K, Coune F, Legastelois R, Jeanblanc V, Naassila M. Light alcohol intake during adolescence induces alcohol addiction in a neurodevelopmental model of schizophrenia. Addict Biol 2015; 20:490-9. [PMID: 24725220 DOI: 10.1111/adb.12146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a mental disorder characterized by a series of positive, negative or cognitive symptoms but with also the particularity of exhibiting a high rate of co-morbid use of drugs of abuse. While more than 80% of schizophrenics are smokers, the second most consumed drug is alcohol, with dramatic consequences on frequency and intensity of psychotic episodes and on life expectancy. Here we investigated the impact of light alcohol intake during adolescence on the subsequent occurrence of alcohol addiction-like behavior in neonatal ventral hippocampal lesion (NVHL) rats, a neurodevelopmental model of schizophrenia. Our findings demonstrated an increased liability to addictive behaviors in adult NVHL rats after voluntary alcohol intake during adolescence. NVHL rats displayed several signs of alcohol use disorder such as a loss of control over alcohol intake and high motivation to consume alcohol, associated with a higher resistance to extinction. In addition, once NVHL rats relapsed, they maintained higher drinking levels than controls. We finally showed that the anti-addictive drug naltrexone is efficient in reducing excessive alcohol intake in NVHL rats. Our results are in accordance with epidemiological studies underlying the particular vulnerability to alcohol addiction after adolescent exposure to alcohol and highlight the fact that schizophrenic subjects may be particularly at risk even after light alcohol consumption. Based on these results, it seems particularly relevant to prevent early onset of alcohol use in at-risk subjects and thus to reduce the incidence of co-morbid alcohol abuse in psychotic patients.
Collapse
Affiliation(s)
- Jérôme Jeanblanc
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances-INSERM ERI 24; UFR de Pharmacie; SFR CAP Santé; Université de Picardie Jules Verne; France
| | - Kevin Balguerie
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances-INSERM ERI 24; UFR de Pharmacie; SFR CAP Santé; Université de Picardie Jules Verne; France
| | - Fabien Coune
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances-INSERM ERI 24; UFR de Pharmacie; SFR CAP Santé; Université de Picardie Jules Verne; France
| | | | - Virginie Jeanblanc
- Plateforme Animalerie du Pôle Santé; Université de Picardie Jules Verne; France
| | - Mickaël Naassila
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances-INSERM ERI 24; UFR de Pharmacie; SFR CAP Santé; Université de Picardie Jules Verne; France
| |
Collapse
|
57
|
Lim YW, Meyer NP, Shah AS, Budde MD, Stemper BD, Olsen CM. Voluntary Alcohol Intake following Blast Exposure in a Rat Model of Mild Traumatic Brain Injury. PLoS One 2015; 10:e0125130. [PMID: 25910266 PMCID: PMC4409117 DOI: 10.1371/journal.pone.0125130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Alcoholism is a frequent comorbidity following mild traumatic brain injury (mTBI), even in patients without a previous history of alcohol dependence. Despite this correlational relationship, the extent to which the neurological effects of mTBI contribute to the development of alcoholism is unknown. In this study, we used a rodent blast exposure model to investigate the relationship between mTBI and voluntary alcohol drinking in alcohol naïve rats. We have previously demonstrated in Sprague Dawley rats that blast exposure leads to microstructural abnormalities in the medial prefrontal cortex (mPFC) and other brain regions that progress from four to thirty days. The mPFC is a brain region implicated in alcoholism and drug addiction, although the impact of mTBI on drug reward and addiction using controlled models remains largely unexplored. Alcohol naïve Sprague Dawley rats were subjected to a blast model of mTBI (or sham conditions) and then tested in several common measures of voluntary alcohol intake. In a seven-week intermittent two-bottle choice alcohol drinking test, sham and blast exposed rats had comparable levels of alcohol intake. In a short access test session at the conclusion of the two-bottle test, blast rats fell into a bimodal distribution, and among high intake rats, blast treated animals had significantly elevated intake compared to shams. We found no effect of blast when rats were tested for an alcohol deprivation effect or compulsive drinking in a quinine adulteration test. Throughout the experiment, alcohol drinking was modest in both groups, consistent with other studies using Sprague Dawley rats. In conclusion, blast exposure had a minimal impact on overall alcohol intake in Sprague Dawley rats, although intake was increased in a subpopulation of blast animals in a short access session following intermittent access exposure.
Collapse
Affiliation(s)
- Yi Wei Lim
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nathan P. Meyer
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Matthew D. Budde
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Brian D. Stemper
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Christopher M. Olsen
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
58
|
Jeanblanc J, Lemoine S, Jeanblanc V, Alaux-Cantin S, Naassila M. The Class I-Specific HDAC Inhibitor MS-275 Decreases Motivation to Consume Alcohol and Relapse in Heavy Drinking Rats. Int J Neuropsychopharmacol 2015; 18:pyv029. [PMID: 25762717 PMCID: PMC4576514 DOI: 10.1093/ijnp/pyv029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND New strategies for the treatment of alcohol dependence are a pressing need, and recent evidence suggests that targeting enzymes involved in epigenetic mechanisms seems to have great potential. Among these mechanisms, alteration of histone acetylation by histone deacetylases is of great importance for gene expression and has also been implicated in addiction. Here, we examined whether intra-cerebroventricular administration of MS-275, a class I-specific histone deacetylase inhibitor, could alter ethanol self-administration, motivation to consume ethanol, and relapse in heavy drinking rats. METHODS Male Long Evans rats trained to self-administer high levels of ethanol received intra-cerebroventricular micro-infusions of MS-275 (250 µM, 500 µM, and 1000 µM) 3 hours prior to the self-administration sessions. RESULTS First, we demonstrated that intra-cerebroventricular infusion of MS-275 increases acetylation of Histone 4 within the nucleus accumbens nucleus accumbens and the dorsolateral striatum. Second, we observed that MS-275 decreases ethanol self-administration by about 75%. We found that 2 consecutive daily injections are necessary to decrease ethanol self-administration. Additionally, the dose-response curve test indicated that MS-275 has a U-shape effect on ethanol self-administration with the dose of 500 µM as the most efficient dose. Furthermore, we showed that MS-275 also diminished the motivation to consume ethanol (25% decrease), and finally, we demonstrated that MS-275 reduced relapse (by about 50%) and postponed reacquisition even when the treatment was stopped. CONCLUSIONS Our study confirms the potential therapeutic interest of targeting epigenetic mechanisms in excessive alcohol drinking and strengthens the interest of focusing on specific isoforms of histone deacetylases.
Collapse
Affiliation(s)
- Jerome Jeanblanc
- INSERM ERI 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Centre Hospitalo-Universitaire (CHU sud), Amiens, France (Drs J. Jeanblanc, Lemoine, Alaux-Cantin, and Naassila); Plateforme Animalerie du Pôle Santé - Université de Picardie Jules Verne, Amiens France (Ms V. Jeanblanc).
| | | | | | | | | |
Collapse
|
59
|
Truitt WA, Hauser SR, Deehan GA, Toalston JE, Wilden JA, Bell RL, McBride WJ, Rodd ZA. Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell. Psychopharmacology (Berl) 2015; 232:639-49. [PMID: 25155311 PMCID: PMC4516277 DOI: 10.1007/s00213-014-3702-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
RATIONALE Ethanol and nicotine are frequently co-abused. The biological basis for the high co-morbidity rate is not known. Alcohol-preferring (P) rats will self-administer EtOH or nicotine directly into the posterior ventral tegmental area (pVTA). OBJECTIVE The current experiments examined whether sub-threshold concentrations of EtOH and nicotine would support the development of self-administration behaviors if the drugs were combined. METHODS Rats were implanted with a guide cannula aimed at the pVTA. Rats were randomly assigned to groups that self-administered sub-threshold concentrations of EtOH (50 mg%) or nicotine (1 μM) or combinations of ethanol (25 or 50 mg%) and nicotine (0.5 or 1.0 μM). Alterations in gene expression downstream projections areas (nucleus accumbens shell, AcbSh) were assessed following a single, acute exposure to EtOH (50 mg%), nicotine (1 μM), or ethanol and nicotine (50 mg% + 1 μM) directly into the pVTA. RESULTS The results indicated that P rats would co-administer EtOH and nicotine directly into the pVTA at concentrations that did not support individual self-administration. EtOH and nicotine directly administered into the pVTA resulted in alterations in gene expression in the AcbSh (50.8-fold increase in brain-derived neurotrophic factor (BDNF), 2.4-fold decrease in glial cell line-derived neurotrophic factor (GDNF), 10.3-fold increase in vesicular glutamate transporter 1 (Vglut1)) that were not observed following microinjections of equivalent concentrations/doses of ethanol or nicotine. CONCLUSION The data indicate that ethanol and nicotine act synergistically to produce reinforcement and alter gene expression within the mesolimbic dopamine system. The high rate of co-morbidity of alcoholism and nicotine dependence could be the result of the interactions of EtOH and nicotine within the mesolimbic dopamine system.
Collapse
Affiliation(s)
- William A. Truitt
- Indiana University School of Medicine, Department of Anatomy, Indianapolis, IN 46202
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202
| | - Gerald A. Deehan
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202
| | - Jamie E. Toalston
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202
| | - Jessica A. Wilden
- Indiana University School of Medicine, Department of Neurosurgery, Indianapolis, IN 46202
| | - Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202
| | - William J. McBride
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202
| | - Zachary A. Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202
| |
Collapse
|
60
|
Jeanblanc J, Coune F, Botia B, Naassila M. Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine. Addict Biol 2014; 19:758-69. [PMID: 23414063 DOI: 10.1111/adb.12039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) within the striatum is part of a homeostatic pathway regulating alcohol consumption. Memantine, a non-competitive antagonist of N-methyl-D-aspartate receptors, induces expression of BDNF in several brain regions including the striatum. We hypothesized that memantine could decrease ethanol (EtOH) consumption via activation of the BNDF signalling pathway. Effects of memantine were evaluated in Long-Evans rats self-administering moderate or high amounts of EtOH 6, 30 and 54 hours after an acute injection (12.5 and 25 mg/kg). Motivation to consume alcohol was investigated through a progressive ratio paradigm. The possible role for BDNF in the memantine effect was tested by blockade of the TrkB receptor using the pharmacological agent K252a and by the BDNF scavenger TrkB-Fc. Candidate genes expression was also assessed by polymerase chain reaction array 4 and 28 hours after memantine injection. We found that memantine decreased EtOH self-administration and motivation to consume EtOH 6 and 30 hours post-injection. In addition, we found that inhibition or blockade of the BDNF signalling pathway prevented the early, but not the delayed decrease in EtOH consumption induced by memantine. Finally, Bdnf expression was differentially regulated between the early and delayed timepoints. These results demonstrate that an acute injection of memantine specifically reduces EtOH self-administration and motivation to consume EtOH for at least 30 hours. Moreover, we showed that BDNF was responsible for the early effect, but that the delayed effect was BDNF-independent.
Collapse
Affiliation(s)
- Jérôme Jeanblanc
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances - INSERM ERI 24; UFR de Pharmacie; Université de Picardie Jules Verne, SFR CAP Santé; France
| | - Fabien Coune
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances - INSERM ERI 24; UFR de Pharmacie; Université de Picardie Jules Verne, SFR CAP Santé; France
| | - Béatrice Botia
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances - INSERM ERI 24; UFR de Pharmacie; Université de Picardie Jules Verne, SFR CAP Santé; France
| | - Mickaël Naassila
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances - INSERM ERI 24; UFR de Pharmacie; Université de Picardie Jules Verne, SFR CAP Santé; France
| |
Collapse
|
61
|
Ahmadiantehrani S, Barak S, Ron D. GDNF is a novel ethanol-responsive gene in the VTA: implications for the development and persistence of excessive drinking. Addict Biol 2014; 19:623-33. [PMID: 23298382 DOI: 10.1111/adb.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent inhibitor of ethanol consumption and relapse, and GDNF heterozygous knockout mice display increased reward sensitivity to ethanol and consume more ethanol after a period of abstinence than their wild-type littermates. Here, we tested whether ethanol alters GDNF expression in the ventral tegmental area (VTA; GDNF's site of action) and/or the nucleus accumbens (NAc; the main source of GDNF), and if so, determine the role of the endogenous growth factor in the regulation of ethanol consumption. Systemic administration of ethanol increased GDNF expression and protein levels in the VTA, but not the NAc. Additionally, GDNF levels were elevated after an ethanol-drinking session in rats that consumed ethanol in the intermittent-access two-bottle choice procedure for 1 week, but not 7 weeks. Deprivation following 7 weeks of excessive ethanol intake reduced GDNF levels, while a short ethanol binge drinking period following deprivation upregulated GDNF expression. Importantly, knockdown of GDNF within the VTA using adenovirus expressing short hairpin RNA facilitated the escalation of ethanol drinking by ethanol-naïve rats, but not by rats with a history of excessive ethanol consumption. These results suggest that during initial ethanol-drinking experiences, GDNF in the VTA is increased and protects against the development of excessive ethanol intake. However, the growth factor's protective response to ethanol breaks down after protracted excessive ethanol intake and withdrawal, resulting in persistent, excessive ethanol consumption.
Collapse
Affiliation(s)
- Somayeh Ahmadiantehrani
- Gallo Research Center; Emeryville CA USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics; University of California; San Francisco CA USA
| | | | - Dorit Ron
- Gallo Research Center; Emeryville CA USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| |
Collapse
|
62
|
Loi B, Colombo G, Maccioni P, Carai MAM, Franconi F, Gessa GL. High alcohol intake in female Sardinian alcohol-preferring rats. Alcohol 2014; 48:345-51. [PMID: 24555906 DOI: 10.1016/j.alcohol.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
Abstract
Sardinian alcohol-preferring (sP) rats have been selectively bred for high alcohol preference and consumption. When exposed to the standard, home cage 2-bottle "alcohol (10%, v/v) vs. water" choice regimen with continuous access, male sP rats consume daily approximately 6 g/kg alcohol. Conversely, when exposed to the intermittent (once every other day) access to 2 bottles containing alcohol (20%, v/v) and water, respectively, male sP rats display marked increases in daily alcohol intake and signs of alcohol intoxication and "behavioral" dependence. The present study was designed to assess alcohol intake in female sP rats exposed, under the 2-bottle choice regimen, to (a) 10% (v/v) alcohol with continuous access (CA10%), (b) 10% (v/v) alcohol with intermittent access (IA10%), (c) 20% (v/v) alcohol with continuous access (CA20%), and (d) 20% (v/v) alcohol with intermittent access (IA20%). Male sP rats (exposed to CA10% and IA20% conditions) were included for comparison. Over 20 daily drinking sessions, daily alcohol intake in female CA10% and IA20% rats averaged 7.0 and 9.6 g/kg, respectively. The rank of alcohol intake was IA20% > IA10% = CA20% > CA10%. Conversely, daily alcohol intake in male CA10% and IA20% rats averaged 6.0 and 8.2 g/kg, respectively. Comparison of female and male rats yielded the following rank of alcohol intake: female IA20% > male IA20% > female CA10% ≥ male CA10%. An additional experiment found that alcohol drinking during the first hour of the drinking session produced mean blood alcohol levels of 35-40 mg% and 85-100 mg% in the CA10% and IA20% rats, respectively. These results (a) extend to female sP rats previous data demonstrating the capacity of the IA20% condition to markedly escalate alcohol drinking, and (b) demonstrate that female sP rats consume more alcohol than male sP rats. This sex difference is more evident under the IA20% condition, suggesting that female sP rats are highly sensitive to the promoting effect of the IA20% condition on alcohol drinking. These data contribute to the characterization of sP rats as a model of excessive alcohol consumption.
Collapse
Affiliation(s)
- Barbara Loi
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, S.S. 554, km. 4,500, I-09042 Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, S.S. 554, km. 4,500, I-09042 Monserrato (CA), Italy.
| | - Paola Maccioni
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, S.S. 554, km. 4,500, I-09042 Monserrato (CA), Italy
| | - Mauro A M Carai
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, S.S. 554, km. 4,500, I-09042 Monserrato (CA), Italy
| | - Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, I-07100, Sassari (SS), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, S.S. 554, km. 4,500, I-09042 Monserrato (CA), Italy
| |
Collapse
|
63
|
Becker HC, Ron D. Animal models of excessive alcohol consumption: recent advances and future challenges. Alcohol 2014; 48:205-8. [PMID: 24811154 PMCID: PMC5081257 DOI: 10.1016/j.alcohol.2014.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA.
| | - Dorit Ron
- Gallo Research Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
64
|
Carnicella S, Ron D, Barak S. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol 2014; 48:243-52. [PMID: 24721195 DOI: 10.1016/j.alcohol.2014.01.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/07/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023]
Abstract
One of the major challenges in preclinical studies of alcohol abuse and dependence remains the development of paradigms that will elicit high ethanol intake and mimic the progressive transition from low or moderate social drinking to excessive alcohol consumption. Exposure of outbred rats to repeated cycles of free-choice ethanol intake and withdrawal with the use of intermittent access to 20% ethanol in a 2-bottle choice procedure (IA2BC) has been shown to induce a gradual escalation of voluntary ethanol intake and preference, eventually reaching ethanol consumption levels of 5-6 g/kg/24 h, and inducing pharmacologically relevant blood ethanol concentrations (BECs). This procedure has recently been gaining popularity due to its simplicity, high validity, and reliable outcomes. Here we review experimental and methodological data related to IA2BC, and discuss the usefulness and advantages of this procedure as a valuable pre-training method for initiating operant ethanol self-administration of high ethanol intake, as well as conditioned place preference (CPP). Despite some limitations, we provide evidence that IA2BC and related operant procedures provide the possibility to operationalize multiple aspects of alcohol abuse and addiction in a rat model, including transition from social-like drinking to excessive alcohol consumption, binge drinking, alcohol seeking, relapse, and neuroadaptations related to excessive alcohol intake. Hence, IA2BC appears to be a useful and relevant procedure for preclinical evaluation of potential therapeutic approaches against alcohol abuse disorders.
Collapse
|
65
|
Haack AK, Sheth C, Schwager AL, Sinclair MS, Tandon S, Taha SA. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion. PLoS One 2014; 9:e92701. [PMID: 24695107 PMCID: PMC3973636 DOI: 10.1371/journal.pone.0092701] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.
Collapse
Affiliation(s)
- Andrew K. Haack
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Chandni Sheth
- Department of Pharmacology and Toxicology, University of Utah School of Medicine, United States Salt Lake City, Utah, United States of America
| | - Andrea L. Schwager
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michael S. Sinclair
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Shashank Tandon
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sharif A. Taha
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| | | |
Collapse
|
66
|
Jerlhag E, Ivanoff L, Vater A, Engel JA. Peripherally circulating ghrelin does not mediate alcohol-induced reward and alcohol intake in rodents. Alcohol Clin Exp Res 2014; 38:959-68. [PMID: 24428428 PMCID: PMC4112802 DOI: 10.1111/acer.12337] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Development of alcohol dependence, a chronic and relapsing disease, largely depends on the effects of alcohol on the brain reward systems. By elucidating the mechanisms involved in alcohol use disorder, novel treatment strategies may be developed. Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor 1A, acts as an important regulator of energy balance. Recently ghrelin and its receptor were shown to mediate alcohol reward and to control alcohol consumption in rodents. However, the role of central versus peripheral ghrelin for alcohol reward needs to be elucidated. METHODS Given that ghrelin mainly is produced by peripheral organs, the present study was designed to investigate the role of circulating endogenous ghelin for alcohol reward and for alcohol intake in rodents. RESULTS We showed that the Spiegelmer NOX-B11-2, which binds and neutralizes acylated ghrelin in the periphery with high affinity and thus prevents its brain access, does not attenuate the alcohol-induced locomotor activity, accumbal dopamine release and expression of conditioned place preference in mice. Moreover, NOX-B11-2 does not affect alcohol intake using the intermittent access 20% alcohol 2-bottle-choice drinking paradigm in rats, suggesting that circulating ghrelin does not regulate alcohol intake or the rewarding properties of alcohol. In the present study, we showed however, that NOX-B11-2 reduced food intake in rats supporting a role for circulating ghrelin as physiological regulators of food intake. Moreover, NOX-B11-2 did not affect the blood alcohol concentration in mice. CONCLUSIONS Collectively, the past and present studies suggest that central, rather than peripheral, ghrelin signaling may be a potential target for pharmacological treatment of alcohol dependence.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
67
|
Ray LA, Roche DJO, Heinzerling K, Shoptaw S. Opportunities for the development of neuroimmune therapies in addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:381-401. [PMID: 25175870 DOI: 10.1016/b978-0-12-801284-0.00012-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies have implicated neuroinflammatory processes in the pathophysiology of various psychiatric conditions, including addictive disorders. Neuroimmune signaling represents an important and relatively poorly understood biological process in drug addiction. The objective of this review is to update the field on recent developments in neuroimmune therapies for addiction. First, we review studies of neuroinflammation in relation to alcohol and methamphetamine dependence followed by a section on neuroinflammation and accompanying neurocognitive dysfunction in HIV infection and concomitant substance abuse. Second, we provide a review of pharmacotherapies with neuroimmune properties and their potential development for the treatment of addictions. Pharmacotherapies covered in this review include ibudilast, minocycline, doxycycline, topiramate, indomethacin, rolipram, anakinra (IL-1Ra), peroxisome proliferator-activated receptor agonists, naltrexone, and naloxone. Lastly, summary and future directions are provided with recommendations for how to efficiently translate preclinical findings into clinical studies that can ultimately lead to novel and more effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.
| | - Daniel J O Roche
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Keith Heinzerling
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Shoptaw
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
68
|
Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors. J Neurosci 2013; 33:14369-78. [PMID: 24005290 DOI: 10.1523/jneurosci.1954-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake.
Collapse
|
69
|
Suchankova P, Steensland P, Fredriksson I, Engel JA, Jerlhag E. Ghrelin receptor (GHS-R1A) antagonism suppresses both alcohol consumption and the alcohol deprivation effect in rats following long-term voluntary alcohol consumption. PLoS One 2013; 8:e71284. [PMID: 23977009 PMCID: PMC3748070 DOI: 10.1371/journal.pone.0071284] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Alcohol dependence is a heterogeneous disorder where several signalling systems play important roles. Recent studies implicate that the gut-brain hormone ghrelin, an orexigenic peptide, is a potential mediator of alcohol related behaviours. Ghrelin increases whereas a ghrelin receptor (GHS-R1A) antagonist decreases alcohol consumption as well as operant self-administration of alcohol in rodents that have consumed alcohol for twelve weeks. In the present study we aimed at investigating the effect of acute and repeated treatment with the GHS-R1A antagonist JMV2959 on alcohol intake in a group of rats following voluntarily alcohol consumption for two, five and eight months. After approximately ten months of voluntary alcohol consumption the expression of the GHS-R1A gene (Ghsr) as well as the degree of methylation of a CpG island found in Ghsr was examined in reward related brain areas. In a separate group of rats, we examined the effect of the JMV2959 on alcohol relapse using the alcohol deprivation paradigm. Acute JMV2959 treatment was found to decrease alcohol intake and the effect was more pronounced after five, compared to two months of alcohol exposure. In addition, repeated JMV2959 treatment decreased alcohol intake without inducing tolerance or rebound increase in alcohol intake after the treatment. The GHS-R1A antagonist prevented the alcohol deprivation effect in rats. There was a significant down-regulation of the Ghsr expression in the ventral tegmental area (VTA) in high- compared to low-alcohol consuming rats after approximately ten months of voluntary alcohol consumption. Further analysis revealed a negative correlation between Ghsr expression in the VTA and alcohol intake. No differences in methylation degree were found between high- compared to low-alcohol consuming rats. These findings support previous studies showing that the ghrelin signalling system may constitute a potential target for development of novel treatment strategies for alcohol dependence.
Collapse
Affiliation(s)
- Petra Suchankova
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pia Steensland
- Department of Clinical Neuroscience, Division of Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - Ida Fredriksson
- Department of Clinical Neuroscience, Division of Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - Jörgen A. Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
70
|
Egecioglu E, Steensland P, Fredriksson I, Feltmann K, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology 2013; 38:1259-70. [PMID: 23219472 DOI: 10.1016/j.psyneuen.2012.11.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 12/25/2022]
Abstract
Development of alcohol use disorders largely depends on the effects of alcohol on the brain reward systems. Emerging evidence indicate that common mechanisms regulate food and alcohol intake and raise the possibility that endocrine signals from the gut may play an important role for alcohol consumption, alcohol-induced reward and the motivation to consume alcohol. Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide regulating food intake and glucose homeostasis, has recently been shown to target central brain areas involved in reward and motivation, including the ventral tegmental area and nucleus accumbens. Herein we investigated the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on various measures of alcohol-induced reward as well as on alcohol intake and alcohol seeking behavior in rodents. Treatment with Ex4, at a dose with no effect per se, attenuated alcohol-induced locomotor stimulation and accumbal dopamine release in mice. Furthermore, conditioned place preference for alcohol was abolished by both acute and chronic treatment with Ex4 in mice. Finally we found that Ex4 treatment decreased alcohol intake, using the intermittent access 20% alcohol two-bottle-choice model, as well as alcohol seeking behavior, using the progressive ratio test in the operant self-administration model, in rats. These novel findings indicate that GLP-1 signaling attenuates the reinforcing properties of alcohol implying that the physiological role of GLP-1 extends beyond glucose homeostasis and food intake regulation. Collectively these findings implicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for alcohol use disorders.
Collapse
Affiliation(s)
- Emil Egecioglu
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
71
|
Barak S, Liu F, Ben Hamida S, Yowell QV, Neasta J, Kharazia V, Janak PH, Ron D. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat Neurosci 2013; 16:1111-7. [PMID: 23792945 PMCID: PMC3725202 DOI: 10.1038/nn.3439] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/16/2013] [Indexed: 12/02/2022]
Abstract
Relapse to alcohol abuse is a critical clinical issue, frequently caused by cue-induced drug craving. Therefore, disruption of the memory for the cue-alcohol association is expected to prevent relapse. It is increasingly accepted that memories become labile and erasable soon after their reactivation through retrieval, during a memory reconsolidation process that depends on protein synthesis. Here, we show that reconsolidation of alcohol-related memories triggered by the sensory properties of alcohol itself (odor and taste) activates mammalian target of rapamycin complex 1 (mTORC1) in select amygdalar and cortical regions in rats, resulting in increased levels of several synaptic proteins. Furthermore, systemic or central amygdalar (CeA) inhibition of mTORC1 during reconsolidation disrupts alcohol-cue associated memories, leading to a long-lasting suppression of relapse. Our findings provide evidence that the mTORC1 pathway and its downstream substrates play a crucial role in alcohol-related memory reconsolidation, and highlight this pathway as a therapeutic target to prevent relapse.
Collapse
Affiliation(s)
- Segev Barak
- The Ernest Gallo Research Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Ahmadiantehrani S, Ron D. Dopamine D2 receptor activation leads to an up-regulation of glial cell line-derived neurotrophic factor via Gβγ-Erk1/2-dependent induction of Zif268. J Neurochem 2013; 125:193-204. [PMID: 23373701 DOI: 10.1111/jnc.12178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent growth factor essential to the development, survival, and function of dopaminergic neurons (Airaksinen and Saarma 2002). The molecular mechanisms underlying GDNF expression remain elusive; thus, we set out to identify a signaling pathway that governs GDNF levels. We found that treatment of both differentiated dopaminergic-like SH-SY5Y cells and rat midbrain slices with the dopamine D2 receptor (D2R) agonist, quinpirole, triggered an increase in the expression of GDNF that was temporally preceded by an increase in the levels of zinc-finger protein 268 (Zif268), a DNA-binding transcription factor encoded by an immediate-early gene. Moreover, the D2R inhibitor raclopride blocked the increase of both GDNF and Zif268 expression following potassium-evoked dopamine release in SH-SY5Y cells. We used adenoviral delivery of small hairpin RNA (shRNA) targeting Zif268 to down-regulate its expression and found that Zif268 is specifically required for the D2R-mediated up-regulation of GDNF. Furthermore, the D2R-mediated induction of GDNF and Zif268 expression was dependent on Gβγ-mediated signaling and activation of extracellular signal-regulated kinase 1/2. Importantly, using chromatin immunoprecipitation assay, we identified a direct association of Zif268 with the GDNF promoter. These results suggest that D2R activation induces a Gβγ- and extracellular signal-regulated kinase 1/2-dependent increase in the level of Zif268, which functions to directly up-regulate the expression of GDNF.
Collapse
Affiliation(s)
- Somayeh Ahmadiantehrani
- Gallo Research Center, Emeryville, California, USA.,Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California, USA
| | - Dorit Ron
- Gallo Research Center, Emeryville, California, USA.,Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
73
|
The small G protein H-Ras in the mesolimbic system is a molecular gateway to alcohol-seeking and excessive drinking behaviors. J Neurosci 2013; 32:15849-58. [PMID: 23136424 DOI: 10.1523/jneurosci.2846-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uncontrolled consumption of alcohol is a hallmark of alcohol abuse disorders; however, the central molecular mechanisms underlying excessive alcohol consumption are still unclear. Here, we report that the GTP binding protein, H-Ras in the nucleus accumbens (NAc) plays a key role in neuroadaptations that underlie excessive alcohol-drinking behaviors. Specifically, acute (15 min) systemic administration of alcohol (2.5 g/kg) leads to the activation of H-Ras in the NAc of mice, which is observed even 24 h later. Similarly, rat operant self-administration of alcohol (20%) also results in the activation of H-Ras in the NAc. Using the same procedures, we provide evidence suggesting that the exchange factor GRF1 is upstream of H-Ras activation by alcohol. Importantly, we show that infection of mice NAc with lentivirus expressing a short hairpin RNA that targets the H-Ras gene produces a significant reduction of voluntary consumption of 20% alcohol. In contrast, knockdown of H-Ras in the NAc of mice did not alter water, quinine, and saccharin intake. Furthermore, using two-bottle choice and operant self-administration procedures, we show that inhibiting H-Ras activity by intra-NAc infusion of the farnesyltransferase inhibitor, FTI-276, produced a robust decrease of rats' alcohol drinking; however, sucrose consumption was unaltered. Finally, intra-NAc infusion of FTI-276 also resulted in an attenuation of seeking for alcohol. Together, these results position H-Ras as a central molecular mediator of alcohol's actions within the mesolimbic system and put forward the potential value of the enzyme as a novel target to treat alcohol use disorders.
Collapse
|
74
|
Wang F, Shi Y, Lu L, Liu L, Cai Y, Zheng H, Liu X, Yan F, Zou C, Sun C, Shi J, Lu S, Chen Y. Targeted delivery of GDNF through the blood-brain barrier by MRI-guided focused ultrasound. PLoS One 2012; 7:e52925. [PMID: 23300823 PMCID: PMC3531370 DOI: 10.1371/journal.pone.0052925] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/22/2012] [Indexed: 02/03/2023] Open
Abstract
Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood–brain barrier (BBB) prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS). Focused ultrasound combined with microbubbles (MBs) using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI)-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin–avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Youli Cai
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Chengyu Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Shukun Lu
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- * E-mail:
| |
Collapse
|
75
|
Steensland P, Fredriksson I, Holst S, Feltmann K, Franck J, Schilström B, Carlsson A. The monoamine stabilizer (-)-OSU6162 attenuates voluntary ethanol intake and ethanol-induced dopamine output in nucleus accumbens. Biol Psychiatry 2012; 72:823-31. [PMID: 22817867 DOI: 10.1016/j.biopsych.2012.06.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 06/01/2012] [Accepted: 06/18/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND New medications for alcohol use disorder (AUD) are needed. Long-term alcohol consumption leads to a dysregulated dopamine system. A novel approach to normalize these dysregulations might be treatment with "monoamine stabilizers," a novel class of compounds characterized by the ability to either suppress, stimulate, or not influence dopamine activity depending on the prevailing dopaminergic tone. METHODS The effects of the monoamine stabilizer (-)-OSU6162 (OSU6162) on voluntary ethanol intake and ethanol withdrawal symptoms were evaluated in rats voluntarily consuming ethanol for at least 3 months before testing. Furthermore, effects of OSU6162 on ethanol seeking behavior were evaluated with the progressive ratio and cue-induced reinstatement paradigms. Finally, the interaction of OSU6162 with ethanol on dopamine output and metabolism was studied with microdialysis. RESULTS The OSU6162 attenuated several ethanol-mediated behaviors, including voluntary ethanol consumption, ethanol withdrawal symptoms, operant ethanol self-administration under progressive ratio schedule, and cue-induced reinstatement of ethanol seeking in rats that had voluntarily consumed ethanol for at least 3 months before treatment. In addition, OSU6162 blunted ethanol-induced dopamine output in nucleus accumbens of ethanol-naïve rats. CONCLUSIONS These results highlight the ability of OSU6162 to stabilize dopamine activity depending on the prevailing dopaminergic tone and indicate that OSU6162 might decrease ethanol intake by attenuating the acute rewarding properties of ethanol. In addition, OSU6162 might have potential to prevent relapse triggered by alcohol craving, alcohol related cues, and or an urge to relieve abstinence symptoms. The present study is to our knowledge the first indicating that OSU6162 might serve as a novel medication for AUD.
Collapse
Affiliation(s)
- Pia Steensland
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
76
|
Maiya R, Lee S, Berger KH, Kong EC, Slawson JB, Griffith LC, Takamiya K, Huganir RL, Margolis B, Heberlein U. DlgS97/SAP97, a neuronal isoform of discs large, regulates ethanol tolerance. PLoS One 2012; 7:e48967. [PMID: 23145041 PMCID: PMC3492131 DOI: 10.1371/journal.pone.0048967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
From a genetic screen for Drosophila melanogaster mutants with altered ethanol tolerance, we identified intolerant (intol), a novel allele of discs large 1 (dlg1). Dlg1 encodes Discs Large 1, a MAGUK (Membrane Associated Guanylate Kinase) family member that is the highly conserved homolog of mammalian PSD-95 and SAP97. The intol mutation disrupted specifically the expression of DlgS97, a SAP97 homolog, and one of two major protein isoforms encoded by dlg1 via alternative splicing. Expression of the major isoform, DlgA, a PSD-95 homolog, appeared unaffected. Ethanol tolerance in the intol mutant could be partially restored by transgenic expression of DlgS97, but not DlgA, in specific neurons of the fly's brain. Based on co-immunoprecipitation, DlgS97 forms a complex with N-methyl-D-aspartate (NMDA) receptors, a known target of ethanol. Consistent with these observations, flies expressing reduced levels of the essential NMDA receptor subunit dNR1 also showed reduced ethanol tolerance, as did mutants in the gene calcium/calmodulin-dependent protein kinase (caki), encoding the fly homolog of mammalian CASK, a known binding partner of DlgS97. Lastly, mice in which SAP97, the mammalian homolog of DlgS97, was conditionally deleted in adults failed to develop rapid tolerance to ethanol's sedative/hypnotic effects. We propose that DlgS97/SAP97 plays an important and conserved role in the development of tolerance to ethanol via NMDA receptor-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Rajani Maiya
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
| | - Seonok Lee
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Karen H. Berger
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
| | - Eric C. Kong
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
| | - Justin B. Slawson
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Leslie C. Griffith
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kogo Takamiya
- Department of Neuroscience, Faculty of Medicine, Graduate School of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Richard L. Huganir
- Department of Neuroscience and the Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ben Margolis
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ulrike Heberlein
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Davies DL, Bortolato M, Finn DA, Ramaker MJ, Barak S, Ron D, Liang J, Olsen RW. Recent advances in the discovery and preclinical testing of novel compounds for the prevention and/or treatment of alcohol use disorders. Alcohol Clin Exp Res 2012; 37:8-15. [PMID: 22671690 DOI: 10.1111/j.1530-0277.2012.01846.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence. Unfortunately, these medications have provided only limited success as indicated by the continued high rates of alcohol abuse and alcoholism. The lack of currently available effective treatment strategies is highlighted by the urgent call by the NIAAA to find new and paradigm-changing therapeutics to either prevent or treat alcohol-related problems. This mini-review highlights recent findings from 4 laboratories with a focus on compounds that have the potential to be novel therapeutic agents that can be developed for the prevention and/or treatment of AUDs.
Collapse
Affiliation(s)
- Daryl L Davies
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Crabbe JC. Translational behaviour-genetic studies of alcohol: are we there yet? GENES BRAIN AND BEHAVIOR 2012; 11:375-86. [PMID: 22510368 DOI: 10.1111/j.1601-183x.2012.00798.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In biomedical research, one key stage of translating basic science knowledge to clinical practice is the reconciliation of phenotypes employed for laboratory animal studies with those important for the clinical condition. Alcohol dependence (AD) is a prototypic complex genetic trait. There is a long history of behaviour-genetic studies of AD in both human subjects and various genetic animal models. This review assesses the state of the art in our understanding of the genetic contributions to AD. In particular, it primarily focuses on the phenotypes studied in mouse genetic animal models, comparing them to the aspects of the human condition they are intended to target. It identifies several features of AD where genetic animal models have been particularly useful, and tries to identify understudied areas where there is good promise for further genetic animal model work.
Collapse
Affiliation(s)
- J C Crabbe
- VA Medical Center (R&D12) Portland Alcohol Research Center Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
79
|
Kliethermes CL, Heberlein U. Insulin attenuates the acquisition and expression of ethanol-induced locomotor sensitization in DBA/2J mice. Life Sci 2011; 89:968-74. [PMID: 22056372 DOI: 10.1016/j.lfs.2011.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/06/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
Abstract
AIM Ethanol-induced locomotor sensitization is a behavioral manifestation of physiological responses to repeated ethanol exposures. While ethanol exerts direct effects on multiple neurotransmitter systems in the brain, ethanol-induced changes in metabolic state, including acute hyperglycemia and inhibition of insulin signaling, also have plausible roles in the expression of ethanol-related behaviors through direct and indirect effects on brain function. The current experiments examined whether insulin administration or the resultant hypoglycemia might attenuate the development of sensitization to the locomotor stimulant effect of ethanol. MAIN METHODS Male and female DBA/2J mice received daily injections of 5 or 10 IU/kg insulin before or after a stimulating dose of ethanol and subsequent testing in an automated activity monitor. Blood glucose levels were determined upon the completion of the experiments. KEY FINDINGS Insulin injected prior to ethanol blunted the acute stimulant response as well as the acquisition and expression of locomotor sensitization, while insulin given after ethanol did not affect the development of the sensitized response. In a separate experiment, mice given glucose concurrently with insulin developed ethanol-induced locomotor sensitization normally. SIGNIFICANCE These experiments suggest that insulin attenuates the development of ethanol-induced locomotor sensitization, and that blood glucose levels can largely account for this effect. Further studies of the role of ethanol-induced metabolic states should provide novel information on the expression of ethanol-related behaviors.
Collapse
|
80
|
Barak S, Ahmadiantehrani S, Kharazia V, Ron D. Positive autoregulation of GDNF levels in the ventral tegmental area mediates long-lasting inhibition of excessive alcohol consumption. Transl Psychiatry 2011; 1. [PMID: 22238721 PMCID: PMC3253655 DOI: 10.1038/tp.2011.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is an essential growth factor for the survival and maintenance of the midbrain dopaminergic (DA-ergic) neurons. Activation of the GDNF pathway in the ventral tegmental area (VTA), where the GDNF receptors are expressed, produces a long-lasting suppression of excessive alcohol consumption in rats. Previous studies conducted in the DA-ergic-like cells, SHSY5Y, revealed that GDNF positively regulates its own expression, leading to a long-lasting activation of the GDNF signaling pathway. Here we determined whether GDNF activates a positive autoregulatory feedback loop in vivo within the VTA, and if so, whether this mechanism underlies the long-lasting suppressive effects of the growth factor on excessive alcohol consumption. We found that a single infusion of recombinant GDNF (rGDNF; 10 μg) into the VTA induces a long-lasting local increase in GDNF mRNA and protein levels, which depends upon de novo transcription and translation of the polypeptide. Importantly, we report that the GDNF-mediated positive autoregulatory feedback loop accounts for the long-lasting inhibitory actions of GDNF in the VTA on excessive alcohol consumption. Specifically, the long-lasting suppressive effects of a single rGDNF infusion into the VTA on excessive alcohol consumption were prevented when protein synthesis was inhibited, as well as when the upregulation of GDNF expression was prevented using short hairpin RNA to focally knock down GDNF mRNA in the VTA. Our results could have implications for the development of long-lasting treatments for disorders in which GDNF has a beneficial role, including drug addiction, chronic stress and Parkinson's disease.
Collapse
Affiliation(s)
- S Barak
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Ahmadiantehrani
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA,The Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
| | - V Kharazia
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA
| | - D Ron
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA,The Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA,Department of Neurology, The Ernest Gallo Research Center, University of California, San Francisco, 5858 Horton St., Suite 200, Emeryville, San Francisco, CA 94608, USA. E-mail:
| |
Collapse
|
81
|
Gibb SL, Hamida SB, Lanfranco MF, Ron D. Ethanol-induced increase in Fyn kinase activity in the dorsomedial striatum is associated with subcellular redistribution of protein tyrosine phosphatase α. J Neurochem 2011; 119:879-89. [PMID: 21919909 DOI: 10.1111/j.1471-4159.2011.07485.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo exposure of rodents to ethanol leads to a long-lasting increase in Fyn kinase activity in the dorsomedial striatum (DMS). In this study, we set out to identify a molecular mechanism that contributes to the enhancement of Fyn activity in response to ethanol in the DMS. Protein tyrosine phosphatase α (PTPα) positively regulates the activity of Fyn, and we found that repeated systemic administration or binge drinking of ethanol results in an increase in the synaptic localization of PTPα in the DMS, the same site where Fyn resides. We also demonstrate that binge drinking of ethanol leads to an increase in Fyn activity and to the co-localization of Fyn and PTPα in lipid rafts in the DMS. Finally, we show that the level of tyrosine phosphorylated (and thus active) PTPα in the synaptic fractions is increased in response to contingent or non-contingent exposure of rats to ethanol. Together, our results suggest that the redistribution of PTPα in the DMS into compartments where Fyn resides is a potential mechanism by which the activity of the kinase is increased upon ethanol exposure. Such neuroadaptations could be part of a mechanism that leads to the development of excessive ethanol consumption.
Collapse
Affiliation(s)
- Stuart L Gibb
- Ernest Gallo Research Center, University of California San Francisco, Emeryville, California, USA
| | | | | | | |
Collapse
|
82
|
Li J, Bian W, Dave V, Ye JH. Blockade of GABA(A) receptors in the paraventricular nucleus of the hypothalamus attenuates voluntary ethanol intake and activates the hypothalamic-pituitary-adrenocortical axis. Addict Biol 2011; 16:600-14. [PMID: 21762292 DOI: 10.1111/j.1369-1600.2011.00344.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The paraventricular nucleus (PVN) in the hypothalamus is the main integration site that controls the hypothalamic-pituitary-adrenal (HPA) neuroendocrine stress system. Disruption of this system has been linked with alcoholism, but the specific role of the PVN has not been fully explored. Of particular interest is the ability of γ-aminobutyric acid type A receptors (GABA(A)Rs) in the PVN, to regulate ethanol self-administration behavior, as these receptors appear to play an essential role in mediating the effects of ethanol in the central nervous system and in the regulation of PVN activity. We observed that Long-Evans rats, in the intermittent access to 20% ethanol paradigm, consumed high amounts of ethanol and subsequently developed ethanol dependence. Microinjection of the GABA(A)R antagonist picrotoxin into the PVN, but not to the lateral ventricle of the brain, significantly reduced the intake of ethanol, but not the intake of sucrose. Picrotoxin-induced reduction was mimicked by another GABA(A)R antagonist bicuculline but was attenuated by the GABA(A)R agonist muscimol. Moreover, increased ethanol consumption was associated with lowered blood corticosterone levels, indicating a blunted HPA signaling, which was reversed by intra-PVN injection of picrotoxin, as indicated by the increased Fos immunostaining-positive cells in the PVN and the increased blood corticosterone levels. Taken together, our data provide evidence that in ethanol-dependent rats, the function of GABA(A)Rs in the PVN is upregulated, leading to a dampened HPA system. Moreover, it demonstrates that the GABA(A)R antagonists normalize HPA axis signaling and reduce excessive ethanol drinking. Therefore, drugs targeting GABA(A)Rs may be beneficial for alcoholics.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, 07103, USA
| | | | | | | |
Collapse
|
83
|
Neasta J, Ben Hamida S, Yowell QV, Carnicella S, Ron D. AKT signaling pathway in the nucleus accumbens mediates excessive alcohol drinking behaviors. Biol Psychiatry 2011; 70:575-82. [PMID: 21549353 PMCID: PMC3228847 DOI: 10.1016/j.biopsych.2011.03.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroadaptations within the nucleus accumbens (NAc) have been implicated in molecular mechanisms underlying the development and/or maintenance of alcohol abuse disorders. We recently reported that the activation of mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in the NAc of rodents, after exposure to alcohol, contributes to alcohol drinking behaviors. The kinase AKT is a main upstream activator of the mTORC1 pathway. We therefore hypothesized that the activation of AKT in the NAc in response to alcohol exposure plays an important role in mechanisms that underlie excessive alcohol consumption. METHODS Western blot analysis was used to assess the phosphorylation levels of enzymes. Acute exposure of mice to alcohol was achieved by the administration of 2 g/kg alcohol intraperitoneally (i.p.). Two-bottle choice and operant self-administration procedures were used to assess drinking behaviors in rats. RESULTS We found that acute systemic administration of alcohol and recurring cycles of excessive voluntary consumption of alcohol and withdrawal result in the activation of AKT signaling in the NAc of rodents. We show that inhibition of AKT or its upstream activator, phosphatidylinositol-3-kinase (PI3K), within the NAc of rats attenuates binge drinking as well as alcohol but not sucrose operant self-administration. CONCLUSIONS Our results suggest that the activation of the AKT pathway in the NAc in response to alcohol exposure is an important contributor to the molecular mechanisms underlying alcohol-drinking behaviors. AKT signaling pathway inhibitors are therefore potential candidates for drug development for the treatment of alcohol use and abuse disorders.
Collapse
Affiliation(s)
- Jérémie Neasta
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton street, suite 200, Emeryville, CA 94608
| | - Sami Ben Hamida
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton street, suite 200, Emeryville, CA 94608
| | - Quinn V. Yowell
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton street, suite 200, Emeryville, CA 94608
| | - Sebastien Carnicella
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton street, suite 200, Emeryville, CA 94608
| | - Dorit Ron
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton street, suite 200, Emeryville, CA 94608,To whom correspondence should be addressed. Dorit Ron, Ph.D., 5858 Horton St., Suite 200, Emeryville, CA, 94608, Tel: 510-985-3150, Fax: 510-985-3101,
| |
Collapse
|
84
|
Low frequency electroacupuncture selectively decreases voluntarily ethanol intake in rats. Brain Res Bull 2011; 86:428-34. [PMID: 21893169 DOI: 10.1016/j.brainresbull.2011.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/12/2011] [Accepted: 08/22/2011] [Indexed: 12/30/2022]
Abstract
Although there is increasing clinical acceptance of acupuncture and electroacupuncture (EA) as a treatment of substance abuse-related disorders, our understanding of this treatment remains incomplete. Previous clinical and pre-clinical studies have shown that acupuncture and EA are effective in reducing ethanol consumption. Recent studies have shown that Sprague-Dawley (SD) rats under an intermittent-access two-bottle choice drinking procedure (IE procedure) voluntarily drank high amounts of ethanol. However, an effect of EA on ethanol consumption of the SD rats under this drinking procedure has not been demonstrated. In the present study, we demonstrated that SD rats escalated their ethanol intake and subsequently developed ethanol dependence under the IE procedure. A single low (2 Hz), but not high frequency (100 Hz) EA treatment applied at the bilateral acupoint Zusanli (ST36), but not at the tail reduced voluntary intake of, and preference for ethanol, but not sucrose. Furthermore, repeated EA treatments decreased the intake of and preference for ethanol, without resulting in a rebound increase in ethanol intake when the EA treatments were terminated. These observations indicate that EA may be a useful treatment for alcohol abuse.
Collapse
|
85
|
Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, Xue L, Robertson M, Moore MS, Vranizan K, Morris SW, Schuckit MA, White RL, Heberlein U. An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS One 2011; 6:e22636. [PMID: 21799923 PMCID: PMC3142173 DOI: 10.1371/journal.pone.0022636] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/30/2011] [Indexed: 02/01/2023] Open
Abstract
Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Amy W. Lasek
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (UH); (AL)
| | - Jana Lim
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Christopher L. Kliethermes
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Karen H. Berger
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Geoff Joslyn
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Gerry Brush
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Liquan Xue
- Departments of Pathology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Margaret Robertson
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Monica S. Moore
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Karen Vranizan
- Functional Genomics Laboratory, University of California, Berkeley, California, United States of America
| | - Stephan W. Morris
- Departments of Pathology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Marc A. Schuckit
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Raymond L. White
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Ulrike Heberlein
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Anatomy and Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (UH); (AL)
| |
Collapse
|
86
|
Barak S, Carnicella S, Yowell QV, Ron D. Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J Neurosci 2011; 31:9885-94. [PMID: 21734280 PMCID: PMC3144766 DOI: 10.1523/jneurosci.1750-11.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 11/21/2022] Open
Abstract
We previously showed that infusion of glial cell line-derived neurotrophic factor (GDNF) into the ventral tegmental area (VTA) rapidly reduces alcohol intake and relapse (Carnicella et al., 2008, 2009a), and increases dopamine (DA) levels in the nucleus accumbens (NAc) of alcohol-naive rats (Wang et al., 2010). Withdrawal from excessive alcohol intake is associated with a reduction in NAc DA levels, whereas drug-induced increases in NAc DA levels are associated with reward. We therefore tested whether GDNF in the VTA reverses alcohol withdrawal-associated DA deficiency and/or possesses rewarding properties. Rats were trained for 7 weeks to consume high levels of alcohol (5.47 ± 0.37 g/kg/24 h) in intermittent access to 20% alcohol in a two-bottle choice procedure. Using in vivo microdialysis, we show that 24 h withdrawal from alcohol causes a substantial reduction in NAc DA overflow, which was reversed by intra-VTA GDNF infusion. Using conditioned place preference (CPP) paradigm, we observed that GDNF on its own does not induce CPP, suggesting that the growth factor is not rewarding. However, GDNF blocked acquisition and expression of alcohol-CPP. In addition, GDNF induced a downward shift in the dose-response curve for operant self-administration of alcohol, further suggesting that GDNF suppresses, rather than substitutes for, the reinforcing effects of alcohol. Our findings suggest that GDNF reduces alcohol-drinking behaviors by reversing an alcohol-induced allostatic DA deficiency in the mesolimbic system. In addition, as it lacks abuse liability, the study further highlights GDNF as a promising target for treatment of alcohol use/abuse disorders.
Collapse
Affiliation(s)
- Segev Barak
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Sebastien Carnicella
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Quinn V. Yowell
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Dorit Ron
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| |
Collapse
|
87
|
Chen G, Cuzon Carlson VC, Wang J, Beck A, Heinz A, Ron D, Lovinger DM, Buck KJ. Striatal involvement in human alcoholism and alcohol consumption, and withdrawal in animal models. Alcohol Clin Exp Res 2011; 35:1739-48. [PMID: 21615425 DOI: 10.1111/j.1530-0277.2011.01520.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Different regions of the striatum may have distinct roles in acute intoxication, alcohol seeking, dependence, and withdrawal. METHODS The recent advances are reviewed and discussed in our understanding of the role of the dorsolateral striatum (DLS), dorsomedial striatum (DMS), and ventral striatum in behavioral responses to alcohol, including alcohol craving in abstinent alcoholics, and alcohol consumption and withdrawal in rat, mouse, and nonhuman primate models. RESULTS Reduced neuronal activity as well as dysfunctional connectivity between the ventral striatum and the dorsolateral prefrontal cortex is associated with alcohol craving and impairment of new learning processes in abstinent alcoholics. Within the DLS of mice and nonhuman primates withdrawn from alcohol after chronic exposure, glutamatergic transmission in striatal projection neurons is increased, while GABAergic transmission is decreased. Glutamatergic transmission in DMS projection neurons is also increased in ethanol withdrawn rats. Ex vivo or in vivo ethanol exposure and withdrawal causes a long-lasting increase in NR2B subunit-containing NMDA receptor activity in the DMS, contributing to ethanol drinking. Analyses of neuronal activation associated with alcohol withdrawal and site-directed lesions in mice implicate the rostroventral caudate putamen, a ventrolateral segment of the DMS, in genetically determined differences in risk for alcohol withdrawal involved in physical association of the multi-PDZ domain protein, MPDZ, with 5-HT(2C) receptors and/or NR2B. CONCLUSIONS Alterations of dopaminergic, glutamatergic, and GABAergic signaling within different regions of the striatum by alcohol is critical for alcohol craving, consumption, dependence, and withdrawal in humans and animal models.
Collapse
Affiliation(s)
- Gang Chen
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Airavaara M, Pickens CL, Stern AL, Wihbey KA, Harvey BK, Bossert JM, Liu QR, Hoffer BJ, Shaham Y. Endogenous GDNF in ventral tegmental area and nucleus accumbens does not play a role in the incubation of heroin craving. Addict Biol 2011; 16:261-72. [PMID: 21182575 DOI: 10.1111/j.1369-1600.2010.00281.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) activity in ventral tegmental area (VTA) mediates the time-dependent increases in cue-induced cocaine-seeking after withdrawal (incubation of cocaine craving). Here, we studied the generality of these findings to incubation of heroin craving. Rats were trained to self-administer heroin for 10 days (6 hours/day; 0.075 mg/kg/infusion; infusions were paired with a tone-light cue) and tested for cue-induced heroin-seeking in extinction tests after 1, 11 or 30 withdrawal days. Cue-induced heroin seeking was higher after 11 or 30 days than after 1 day (incubation of heroin craving), and the time-dependent increases in extinction responding were associated with time-dependent changes in GDNF mRNA expression in VTA and nucleus accumbens. Additionally, acute accumbens (but not VTA) GDNF injections (12.5 µg/side) administered 1-3 hours after the last heroin self-administration training session enhanced the time-dependent increases in extinction responding after withdrawal. However, the time-dependent increases in extinction responding after withdrawal were not associated with changes in GDNF protein expression in VTA and accumbens. Additionally, interfering with endogenous GDNF function by chronic delivery of anti-GDNF monoclonal neutralizing antibodies (600 ng/side/day) into VTA or accumbens had no effect on the time-dependent increases in extinction responding. In summary, heroin self-administration and withdrawal regulate VTA and accumbens GDNF mRNA expression in a time-dependent manner, and exogenous GDNF administration into accumbens but not VTA potentiates cue-induced heroin seeking. However, based on the GDNF protein expression and the anti-GDNF monoclonal neutralizing antibodies manipulation data, we conclude that neither accumbens nor VTA endogenous GDNF mediates the incubation of heroin craving.
Collapse
Affiliation(s)
- Mikko Airavaara
- Intramural Research Program and National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L. Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev 2010; 35:157-71. [PMID: 19914287 PMCID: PMC2891859 DOI: 10.1016/j.neubiorev.2009.11.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that are critical for the growth, survival, and differentiation of developing neurons. These neurotrophic factors also play important roles in the survival and function of adult neurons, learning and memory, and synaptic plasticity. Since the mid-1990s, investigators have studied the role of BDNF and GDNF in the behavioral effects of abused drugs and in the neuroadaptations induced by repeated exposure to drugs in the mesocorticolimbic dopamine system. Here, we review rodent studies on the role of BDNF and GDNF in drug reward, as assessed in the drug self-administration and the conditioned place preference procedures, and in drug relapse, as assessed in extinction and reinstatement procedures. Our main conclusion is that whether BDNF or GDNF would facilitate or inhibit drug-taking behaviors depends on the drug type, the brain site, the addiction phase (initiation, maintenance, or abstinence/relapse), and the time interval between site-specific BDNF or GDNF injections and the reward- and relapse-related behavioral assessments.
Collapse
Affiliation(s)
- Udi E. Ghitza
- Center for the Clinical Trials Network, NIDA, NIH, Bethesda, MD, USA
| | - Haifeng Zhai
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | - Yavin Shaham
- Intramural Research Program, NIDA, NIH, Baltimore, MD, USA
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
90
|
Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc Natl Acad Sci U S A 2010; 107:20093-8. [PMID: 21041654 DOI: 10.1073/pnas.1005554107] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alcohol addiction is a chronically relapsing disorder that includes certain maladaptive learning and memory. The serine and threonine kinase complex, mammalian target of rapamycin complex 1 (mTORC1), has been implicated in synaptic plasticity, learning, and memory by controlling protein translation. Here we show that administration of alcohol and excessive voluntary consumption of alcohol induce the activation of the mTORC1-mediated signaling pathway in the nucleus accumbens (NAc) of rodents. We further show that the protein expression levels of GluR1 and Homer, two synaptic proteins whose translation has been shown to be modulated by mTORC1, are up-regulated in the NAc of rodents with a history of excessive alcohol consumption. In addition, our results document that the Food and Drug Administration-approved inhibitor of mTORC1, rapamycin, decreases expression of alcohol-induced locomotor sensitization and place preference, as well as excessive alcohol intake and seeking in preclinical rodent models of alcohol abuse. Together, our results suggest that mTORC1 within the NAc is a contributor to molecular mechanisms underlying alcohol-drinking behaviors. Furthermore, despite its massive health and socioeconomic impact worldwide, pharmacotherapies for alcohol abuse and addiction remain limited. Our data therefore put forward the possibility that targeting the mTORC1 signaling cascade is an innovative and valuable strategy for the treatment of alcohol use and abuse disorders.
Collapse
|
91
|
Carnicella S, Yowell QV, Ron D. Regulation of operant oral ethanol self-administration: a dose-response curve study in rats. Alcohol Clin Exp Res 2010; 35:116-25. [PMID: 21039633 DOI: 10.1111/j.1530-0277.2010.01328.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oral ethanol self-administration procedures in rats are useful preclinical tools for the evaluation of potential new pharmacotherapies as well as for the investigation into the etiology of alcohol abuse disorders and addiction. Determination of the effects of a potential treatment on a full ethanol dose-response curve should be essential to predict its clinical efficacy. Unfortunately, this approach has not been fully explored because of the aversive taste reaction to moderate to high doses of ethanol, which may interfere with consumption. In this study, we set out to determine whether a meaningful dose-response curve for oral ethanol self-administration can be obtained in rats. METHODS Long-Evans rats were trained to self-administer a 20% ethanol solution in an operant procedure following a history of excessive voluntary ethanol intake. After stabilization of ethanol self-administration, the concentration of the solution was varied from 2.5 to 60% (v/v), and operant and drinking behaviors, as well as blood ethanol concentration (BEC), were evaluated following the self-administration of a 20, 40, and 60% ethanol solution. RESULTS Varying the concentration of ethanol from 2.5 to 60% after the development of excessive ethanol consumption led to a typical inverted U-shaped dose-response curve. Importantly, rats adapted their level and pattern of responding to changes in ethanol concentration to obtain a constant level of intake and BEC, suggesting that their operant behavior is mainly driven by the motivation to obtain a specific pharmacological effect of ethanol. CONCLUSION This procedure can be a useful and straightforward tool for the evaluation of the effects of new potential pharmacotherapies for the treatment of alcohol abuse disorders.
Collapse
Affiliation(s)
- Sebastien Carnicella
- Gallo Research Center, University of California, San Francisco, Emeryville, USA.
| | | | | |
Collapse
|
92
|
Carnicella S, He DY, Yowell QV, Glick SD, Ron D. Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. Addict Biol 2010; 15:424-33. [PMID: 21040239 DOI: 10.1111/j.1369-1600.2010.00251.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action.
Collapse
|
93
|
Wang J, Lanfranco MF, Gibb SL, Yowell QV, Carnicella S, Ron D. Long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum play a crucial role in alcohol consumption and relapse. J Neurosci 2010; 30:10187-98. [PMID: 20668202 PMCID: PMC2950094 DOI: 10.1523/jneurosci.2268-10.2010] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 01/25/2023] Open
Abstract
A growing number of studies suggest that the development of compulsive drug seeking and taking depends on dorsostriatal mechanisms. We previously observed that ex vivo acute exposure of the dorsal striatum to, and withdrawal from, alcohol induces long-term facilitation (LTF) of the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in a mechanism that requires the Src family protein tyrosine kinase (PTK), Fyn (Wang et al., 2007). In the present study, we first compared alcohol's actions in rat dorsomedial (DMS) and the dorsolateral (DLS) subregions of the striatum, which differ in their anatomical connectivity and function. We found that alcohol-mediated induction of LTF of NR2B-NMDAR activity is centered in the DMS. Next, we tested whether in vivo exposure of rats to alcohol leads to long-term adaptations of the NMDAR system in the DMS. We observed that repeated daily administration of alcohol results in a long-lasting increase in the activity of the NR2B-NMDARs in the DMS. The same procedure leads to a prolonged activation of Fyn, increased NR2B phosphorylation, and membrane localization of the subunit. Importantly, similar electrophysiological and biochemical modifications were observed in the DMS of rats that consumed large quantities of alcohol. Finally, we show that inhibition of NR2B-NMDARs or Src family PTKs in the DMS, but not in the DLS, significantly decreases operant self-administration of alcohol and reduces alcohol-priming-induced reinstatement of alcohol seeking. Our results suggest that the upregulation of NR2B-NMDAR activity within the DMS by alcohol contributes to the maladaptive synaptic changes that lead to excessive alcohol intake and relapse.
Collapse
Affiliation(s)
- Jun Wang
- Ernest Gallo Research Center and
| | | | | | | | - Sebastien Carnicella
- Ernest Gallo Research Center and
- Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Dorit Ron
- Ernest Gallo Research Center and
- Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| |
Collapse
|
94
|
Li J, Cheng Y, Bian W, Liu X, Zhang C, Ye JH. Region-specific induction of FosB/ΔFosB by voluntary alcohol intake: effects of naltrexone. Alcohol Clin Exp Res 2010; 34:1742-50. [PMID: 20626732 DOI: 10.1111/j.1530-0277.2010.01261.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND ΔFosB is the best characterized transcription factor induced by chronic stimulation. Although previous studies have demonstrated that chronic passive ethanol exposure alters ΔFosB immunoreactivity (IR), the effect of chronic voluntary ethanol consumption on ΔFosB remains unknown. Furthermore, although previous studies have demonstrated that the opioid antagonist naltrexone reduces alcohol consumption in clinical and preclinical settings, the effect of naltrexone on FosB/ΔFosB has not been explored. Here, we examined the effects of chronic voluntary ethanol intake and naltrexone on FosB/ΔFosB IR in striatal region and prefrontal cortex, and the effect of naltrexone on voluntary ethanol intake. METHODS We utilized immunohistochemistry to define the changes in FosB/ΔFosB IR induced by chronic voluntary ethanol intake under a two-bottle intermittent access of 20% ethanol model and by systematic administration (intraperitoneal injection) of naltrexone in Sprague-Dawley rats. RESULTS Chronic (15 drinking sessions in 35 days) voluntary ethanol intake robustly induces FosB/ΔFosB IR in nucleus accumbens core, dorsolateral striatum, and orbitofrontal cortex, but not in nucleus accumbens shell, dorsomedial striatum, and medial prefrontal cortex. Systemic administration of naltrexone for 6 days significantly reduced voluntary ethanol consumption and FosB/ΔFosB IR induced by chronic voluntary ethanol intake. CONCLUSION Our results suggest that chronic voluntary ethanol intake induces FosB/ΔFosB IR in a subregion-specific manner which involves the activation of endogenous opioid system.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
95
|
Fiore M, Mancinelli R, Aloe L, Laviola G, Sornelli F, Vitali M, Ceccanti M. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Lett 2009; 188:208-13. [DOI: 10.1016/j.toxlet.2009.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/18/2009] [Accepted: 04/19/2009] [Indexed: 12/29/2022]
|
96
|
Carnicella S, Ahmadiantehrani S, He DY, Nielsen CK, Bartlett SE, Janak PH, Ron D. Cabergoline decreases alcohol drinking and seeking behaviors via glial cell line-derived neurotrophic factor. Biol Psychiatry 2009; 66:146-53. [PMID: 19232578 PMCID: PMC2895406 DOI: 10.1016/j.biopsych.2008.12.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/05/2008] [Accepted: 12/19/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. METHODS Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPgammaS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). RESULTS We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. CONCLUSIONS Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders.
Collapse
|
97
|
Carnicella S, Ahmadiantehrani S, Janak PH, Ron D. GDNF is an endogenous negative regulator of ethanol-mediated reward and of ethanol consumption after a period of abstinence. Alcohol Clin Exp Res 2009; 33:1012-24. [PMID: 19302086 DOI: 10.1111/j.1530-0277.2009.00922.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces ethanol-drinking behaviors. In this study, we set out to assess the contribution of endogenous GDNF or its receptor GFRalpha1 to the regulation of ethanol-related behaviors. METHODS GDNF and GFRalpha1 heterozygote mice (HET) and their wild-type littermate controls (WT) were used for the studies. Ethanol-induced hyperlocomotion, sensitization, and conditioned place preference (CPP), as well as ethanol consumption before and after a period of abstinence were evaluated. Blood ethanol concentration (BEC) was also measured. RESULTS We observed no differences between the GDNF HET and WT mice in the level of locomotor activity or in sensitization to ethanol-induced hyperlocomotion after systemic injection of a nonhypnotic dose of ethanol and in BEC. However, GDNF and GFRalpha1 mice exhibited increased place preference to ethanol as compared with their WT littermates. The levels of voluntary ethanol or quinine consumption were similar in the GDNF HET and WT mice, however, a small but significant increase in saccharin intake was observed in the GDNF HET mice. No changes were detected in voluntary ethanol, saccharin or quinine consumption of GFRalpha1 HET mice as compared with their WT littermates. Interestingly, however, both the GDNF and GFRalpha1 HET mice consumed much larger quantities of ethanol after a period of abstinence from ethanol as compared with their WT littermates. Furthermore, the increase in ethanol consumption after abstinence was found to be specific for ethanol as similar levels of saccharin intake were measured in the GDNF and GFRalpha1 HET and WT mice after abstinence. CONCLUSIONS Our results suggest that endogenous GDNF negatively regulates the rewarding effect of ethanol and ethanol-drinking behaviors after a period of abstinence.
Collapse
Affiliation(s)
- Sebastien Carnicella
- The Ernest Gallo Research Center, University of California-San Francisco, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
98
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction.
Collapse
|