51
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
52
|
Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, Keller MD, Kobrynski LJ, Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2019; 145:46-69. [PMID: 31568798 DOI: 10.1016/j.jaci.2019.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex.
| | - Alice Y Chan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Janet Chou
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Artemio M Jongco
- Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Great Neck, NY; Division of Allergy & Immunology, Cohen Children's Medical Center of New York, Great Neck, NY
| | - Michael D Keller
- Department of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Lisa J Kobrynski
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Monica G Lawrence
- Department of Medicine, Division of Asthma, Allergy and Immunology, University of Virginia Health System, Charlottesville, Va
| | - Jennifer W Leiding
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Cancer and Blood Disorders Institute, Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Patricia L Lugar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY; New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - Kiran Patel
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Craig D Platt
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Nikita Raje
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Mo; Division of Allergy/Asthma/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Neil Romberg
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maria A Slack
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY; Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jolan E Walter
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
53
|
Rawat A, Arora K, Shandilya J, Vignesh P, Suri D, Kaur G, Rikhi R, Joshi V, Das J, Mathew B, Singh S. Flow Cytometry for Diagnosis of Primary Immune Deficiencies-A Tertiary Center Experience From North India. Front Immunol 2019; 10:2111. [PMID: 31572360 PMCID: PMC6749021 DOI: 10.3389/fimmu.2019.02111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Flow cytometry has emerged as a useful technology that has facilitated our understanding of the human immune system. Primary immune deficiency disorders (PIDDs) are a heterogeneous group of inherited disorders affecting the immune system. More than 350 genes causing various PIDDs have been identified. While the initial suspicion and recognition of PIDDs is clinical, laboratory tools such as flow cytometry and genetic sequencing are essential for confirmation and categorization. Genetic sequencing, however, are prohibitively expensive and not readily available in resource constrained settings. Flow cytometry remains a simple, yet powerful, tool for multi-parametric analysis of cells. While it is confirmatory of diagnosis in certain conditions, in others it helps in narrowing the list of putative genes to be analyzed. The utility of flow cytometry in diagnosis of PIDDs can be divided into four major categories: (a) Enumeration of lymphocyte subsets in peripheral blood. (b) Detection of intracellular signaling molecules, transcription factors, and cytokines. (c) Functional assessment of adaptive and innate immune cells (e.g., T cell function in severe combined immune deficiency and natural killer cell function in familial hemophagocytic lymphohistiocytosis). (d) Evaluation of normal biological processes (e.g., class switching in B cells by B cell immunophenotyping). This review focuses on use of flow cytometry in disease-specific diagnosis of PIDDs in the context of a developing country.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
54
|
Leukocyte adhesion defect: Where do we stand circa 2019? Genes Dis 2019; 7:107-114. [PMID: 32181281 PMCID: PMC7063431 DOI: 10.1016/j.gendis.2019.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/21/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023] Open
Abstract
Migration of polymorphonuclear leukocytes from bloodstream to the site of inflammation is an important event required for surveillance of foreign antigens. This trafficking of leukocytes from bloodstream to the tissue occurs in several distinct steps and involves several adhesion molecules. Defect in adhesion of leukocytes to vascular endothelium affecting their subsequent migration to extravascular space gives rise to a group of rare primary immunodeficiency diseases (PIDs) known as Leukocyte Adhesion Defects (LAD). Till date, four classes of LAD are discovered with LAD I being the most common form. LAD I is caused by loss of function of common chain, cluster of differentiation (CD)18 of β2 integrin family. These patients suffer from life-threatening bacterial infections and in its severe form death usually occurs in childhood without bone marrow transplantation. LAD II results from a general defect in fucose metabolism. These patients suffer from less severe bacterial infections and have growth and mental retardation. Bombay blood group phenotype is also observed in these patients. LAD III is caused by abnormal integrin activation. LAD III patients suffer from severe bacterial and fungal infections. Patients frequently show delayed detachment of umbilical cord, impaired wound healing and increased tendency to bleed. LAD IV is the most recently described class. It is caused by defects in β2 and α4β1 integrins which impairs lymphocyte adhesion. LAD IV patients have monogenic defect in cystic-fibrosis-transmembrane-conductance-regulator (CFTR) gene, resulting in cystic fibrosis. Pathophysiology and genetic etiology of all LAD syndromes are discussed in detail in this paper.
Collapse
|
55
|
Chiang SCC, Bleesing JJ, Marsh RA. Current Flow Cytometric Assays for the Screening and Diagnosis of Primary HLH. Front Immunol 2019; 10:1740. [PMID: 31396234 PMCID: PMC6664088 DOI: 10.3389/fimmu.2019.01740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Advances in flow cytometry have led to greatly improved primary immunodeficiency (PID) diagnostics. This is due to the fact that patient blood cells in suspension do not require further processing for analysis by flow cytometry, and many PIDs lead to alterations in leukocyte numbers, phenotype, and function. A large portion of current PID assays can be classified as “phenotyping” assays, where absolute numbers, frequencies, and markers are investigated using specific antibodies. Inherent drawbacks of antibody technology are the main limitation to this type of testing. On the other hand, “functional” assays measure cellular responses to certain stimuli. While these latter assays are powerful tools that can be used to detect defects in entire pathways and distinguish variants of significance, it requires samples with robust viability and also skilled processing. In this review, we concentrate on hemophagocytic lymphohistiocytosis (HLH), describing the principles and accuracies of flow cytometric assays that have been proven to assist in the screening diagnosis of primary HLH.
Collapse
Affiliation(s)
- Samuel Cern Cher Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
56
|
van Dongen JJM, van der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, Lopez-Granados E, Wentink M, Kienzler AK, Philippé J, Sousa AE, van Zelm MC, Blanco E, Orfao A. EuroFlow-Based Flowcytometric Diagnostic Screening and Classification of Primary Immunodeficiencies of the Lymphoid System. Front Immunol 2019; 10:1271. [PMID: 31263462 PMCID: PMC6585843 DOI: 10.3389/fimmu.2019.01271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naïve pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the EuroFlow PID algorithm in parallel or subsequently to the PIDOT for more detailed analysis of B-cell and T-cell subsets to further classify PID of the lymphoid system. The Pre-GC, Post-GC, and immunoglobulin heavy chain (IgH)-isotype B-cell tubes aim at identification and enumeration of B-cell subsets for evaluation of B-cell maturation blocks and specific defects in IgH-subclass production. The severe combined immunodeficiency (SCID) tube and T-cell memory/effector subset tube aim at identification and enumeration of T-cell subsets for assessment of T-cell defects, such as SCID. In case of suspicion of antibody deficiency, PIDOT is preferably directly combined with the IgH isotype tube(s) and in case of SCID suspicion (e.g., in newborn screening programs) the PIDOT is preferably directly combined with the SCID T-cell tube. The proposed ≥8-color antibody panels and corresponding reference databases combined with the EuroFlow PID algorithm are designed to provide fast, sensitive and cost-effective flowcytometric diagnosis of PID of the lymphoid system, easily applicable in multicenter diagnostic settings world-wide.
Collapse
Affiliation(s)
- Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas Kalina
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Marcela Vlkova
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital Brno, Masaryk University, Brno, Czechia
| | | | | | - Anne-Kathrin Kienzler
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jan Philippé
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology and Pathology, Central Clinical School, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
57
|
Madkaikar MR, Shabrish S, Kulkarni M, Aluri J, Dalvi A, Kelkar M, Gupta M. Application of Flow Cytometry in Primary Immunodeficiencies: Experience From India. Front Immunol 2019; 10:1248. [PMID: 31244832 PMCID: PMC6581000 DOI: 10.3389/fimmu.2019.01248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/16/2019] [Indexed: 11/21/2022] Open
Abstract
Primary immunodeficiency diseases (PID) are a clinically and immunologically heterogeneous group of disorders of immune system. Diagnosis of these disorders is often challenging and requires identification of underlying genetic defects, complemented by a comprehensive evaluation of immune system. Flow cytometry, with its advances in the last few decades, has emerged as an indispensable tool for enumeration as well as characterization of immune cells. Flow cytometric evaluation of the immune system not only provides clues to underlying genetic defects in certain PIDs and helps in functional validation of novel genetic defects, but is also useful in monitoring immune responses following specific therapies. India has witnessed significant progress in the field of flow cytometry as well as PID over last one decade. Currently, there are seven Federation of Primary Immunodeficiency Diseases (FPID) recognized centers across India, including two Indian Council of Medical research (ICMR) funded centers of excellence for diagnosis, and management of PIDs. These centers offer comprehensive care for PIDs including flow cytometry based evaluation. The key question which always remains is how one selects from the wide array of flow cytometry based tests available, and whether all these tests should be performed before or after the identification of genetic defects. This becomes crucial, especially when resources are limited and patients have to pay for the investigations. In this review, we will share some of our experiences based on evaluation of a large cohort of hemophagocytic lymphohistiocytosis, severe combined immunodeficiency, and chronic granulomatous disease, and the lessons learned for optimum use of this powerful technology for diagnosis of these disorders.
Collapse
Affiliation(s)
- Manisha Rajan Madkaikar
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Snehal Shabrish
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Jahnavi Aluri
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Aparna Dalvi
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Madhura Kelkar
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Maya Gupta
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| |
Collapse
|
58
|
Lanz TV, Pröbstel AK, Mildenberger I, Platten M, Schirmer L. Single-Cell High-Throughput Technologies in Cerebrospinal Fluid Research and Diagnostics. Front Immunol 2019; 10:1302. [PMID: 31244848 PMCID: PMC6579921 DOI: 10.3389/fimmu.2019.01302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
High-throughput single-cell technologies have recently emerged as essential tools in biomedical research with great potential for clinical pathology when studying liquid and solid biopsies. We provide an update on current single-cell methods in cerebrospinal fluid research and diagnostics, focusing on high-throughput cell-type specific proteomic and genomic technologies. Proteomic methods comprising flow cytometry and mass cytometry as well as genomic approaches including immune cell repertoire and single-cell transcriptomic studies are critically reviewed and future directions discussed.
Collapse
Affiliation(s)
- Tobias V. Lanz
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Katrin Pröbstel
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Departments of Medicine and Biomedicine, Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Iris Mildenberger
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
59
|
Cardoso CC, Santos-Silva MC. Eight-color panel for immune phenotype monitoring by flow cytometry. J Immunol Methods 2019; 468:40-48. [DOI: 10.1016/j.jim.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
|
60
|
Dias ALA, da Silva RG, Cunha FGP, Morcillo AM, Lorand-Metze I, Vilela MMDS, Riccetto AGL. Managing costs in primary immunodeficiency: minimal immunophenotyping and three national references. APMIS 2019; 127:228-235. [PMID: 30908772 DOI: 10.1111/apm.12932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/09/2019] [Indexed: 01/25/2023]
Abstract
Our aim was to evaluate the cost-effectiveness of a minimal lymphocyte subset quantification (LSQ) by flow cytometry as the first screening in children with clinically suspected primary immunodeficiency (PID). Two hundred sixty-eight Brazilian patients (0-21 years old) were studied. They were divided by clinical and phenotypical features into those fulfilling criteria for PID (PID phenotype) according to the 2017 International Union of Immunological Societies (IUIS) classification and those not fulfilling these criteria (non-PID phenotype). We evaluated how many patients had values below the 10th percentile for five lymphocyte subsets in peripheral blood, (suggestive of PID) according to reference values for Brazil, Italy and USA. Three lymphocyte subsets (T CD3/CD4, B CD19 and NK CD16/CD56) had p-value < 0.05 and Odds Ratio (OR) indicating a risk at least two times higher for the diagnosis of a PID phenotype. The application of Kappa coefficient (k) on Brazilian vs Italian and Brazilian vs US data sets resulted in k compatible with strong or excellent level of agreement between the three classification systems. The authors conclude that a number of CD3+ /CD4+ , CD19+ and CD16+ /CD56+ (NK) cells in peripheral blood <10th percentile represented a significant risk for the diagnosis of PID in this cohort. Natural killer (NK) deficiency is quite rare and has a very specific clinical profile. So, the analysis of these cells could be requested only in some cases, saving even more costs. The minimal immunophenotyping, with quantification of T CD4+ , CD19+ and in some cases CD16+ /CD56+ cells, may be a useful tool for the first screening of PID, saving costs, especially in developing countries.
Collapse
Affiliation(s)
- Ana Luisa Abrahão Dias
- Pediatric Allergy and Immunology/Center of Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| | - Raquel Gomes da Silva
- Laboratory of Cell Markers - Hematology/Hemotherapy Center, Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| | - Fernanda Gonçalves Pereira Cunha
- Laboratory of Cell Markers - Hematology/Hemotherapy Center, Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| | - André Moreno Morcillo
- Pediatric Department, Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| | - Irene Lorand-Metze
- Laboratory of Cell Markers - Hematology/Hemotherapy Center, Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| | - Maria Marluce Dos Santos Vilela
- Pediatric Allergy and Immunology/Center of Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| | - Adriana Gut Lopes Riccetto
- Pediatric Allergy and Immunology/Center of Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas - Unicamp, Sao Paulo, Brazil
| |
Collapse
|
61
|
Hou L, Niu WT, Ji HY, Hu XF, Fang F, Ying YQ. Serum Biomarkers for Early Diagnosis of Chinese X-CGD Children: Case Reports and a Literature Review. Curr Med Sci 2019; 39:343-348. [PMID: 31016508 DOI: 10.1007/s11596-019-2041-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/07/2019] [Indexed: 12/29/2022]
Abstract
Since X-linked chronic granulomatosis disease (X-CGD) exhibits no specific clinical symptoms at an early stage, early diagnosis is difficult and depends predominantly on neonatal screening. Therefore, the aim of this study was to explore routine biomarkers for X-CGD in children and provide clues for early diagnosis. The cases of 10 children with X-CGD diagnosed at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology from 2013 to 2016 and 122 Chinese children with X-CGD reported in the literature were summarized. Serum biomarkers and clinical symptoms at acute infection were organized. A total of 132 children with X-CGD were enrolled in this study. For 55.8% of the patients, the diagnosis was delayed more than one year after the onset of the first symptoms because no typical clinical symptoms manifested. Children with X-CGD at an acute infection stage showed three recurrent signs in terms of serum biomarkers: (1) the total number of white blood cells (especially N%) was increased significantly, accompanied by anemia in some cases; (2) C-reactive protein (CRP) levels were increased significantly; and (3) most of the patients exhibited very high serum IgG levels (>12 g/L). Diagnosis of X-CGD at an early age is difficult because of its nonspecific clinical features. Our study suggested children with X-CGD suffering acute infection show increases in three typical serum biomarkers, which can provide clues for early diagnosis.
Collapse
Affiliation(s)
- Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wan-Ting Niu
- Tissue Engineering Lab, VA Boston Healthcare System; Department of Orthopedics, Brigham and Women's Hospital Harvard Medical School, Boston, 02130, USA
| | - Hong-Yan Ji
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiu-Fen Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Qin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
62
|
França TT, Barreiros LA, Al-Ramadi BK, Ochs HD, Cabral-Marques O, Condino-Neto A. CD40 ligand deficiency: treatment strategies and novel therapeutic perspectives. Expert Rev Clin Immunol 2019; 15:529-540. [PMID: 30681380 DOI: 10.1080/1744666x.2019.1573674] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION CD40 ligand (CD40L) deficiency or X-linked Hyper-IgM syndrome is a severe primary immunodeficiency caused by mutations in the CD40L gene. Despite currently available treatments, CD40L-deficient patients remain susceptible to life-threatening infections and have poor long term survival. Areas covered: Here, we discuss clinical and immunological characteristics of CD40L deficiency as well as current therapeutic strategies used for patient management. This review highlights that beyond B cell defects, patients' susceptibility to opportunistic pathogens might be due to impaired T cell and innate immune responses. In this context, we discuss how better knowledge of CD40L function and regulation may result in the development of new treatments. Expert opinion: Despite the introduction of hematopoietic stem-cell transplantation, immunoglobulin replacement, granulocyte colony-stimulating factor (G-CSF) administration, and prophylactic antibiotic therapies, life-threatening infections still cause high morbidity and mortality among CD40L-deficient patients. The reasons for this inadequate response to current therapies remains poorly understood, but recent reports suggest the involvement of CD40L-CD40 interaction in early stages of the innate immune system ontogeny. The development of novel gene therapeutic approaches and the use of redirected immunotherapies represent alternative treatment methods that could offer reduced morbidity and mortality rates for patients with CD40L deficiency.
Collapse
Affiliation(s)
- Tabata T França
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Lucila A Barreiros
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Basel K Al-Ramadi
- b Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences , UAE University , Al Ain , United Arab Emirates
| | - Hans D Ochs
- c Department of Pediatrics , University of Washington School of Medicine, and Seattle Children's Research Institute , Seattle , WA , USA
| | - Otavio Cabral-Marques
- d Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Antonio Condino-Neto
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
63
|
Korsunskiy I, Blyuss O, Gordukova M, Davydova N, Gordleeva S, Molchanov R, Asmanov A, Peshko D, Zinovieva N, Zimin S, Lazarev V, Salpagarova A, Filipenko M, Kozlov I, Prodeus A, Korsunskiy A, Hsu P, Munblit D. TREC and KREC Levels as a Predictors of Lymphocyte Subpopulations Measured by Flow Cytometry. Front Physiol 2019; 9:1877. [PMID: 30719006 PMCID: PMC6348265 DOI: 10.3389/fphys.2018.01877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Primary immunodeficiency diseases (PID) is a heterogeneous group of disorders caused by genetic defects of the immune system, which manifests clinically as recurrent infections, autoimmune diseases, or malignancies. Early detection of other PID remains a challenge, particularly in older children due to milder and less specific symptoms, a low level of clinician PID awareness and poor provision of hospital laboratories with appropriate devices. T-cell recombination excision circles (TREC) and kappa-deleting element recombination circle (KREC) in a dried blood spot and in peripheral blood using real-time polymerase chain reaction (PCR) are used as a tool for severe combined immune deficiency but not in PID. They represent an attractive and cheap target for a more extensive use in clinical practice. This study aimed to assess TREC/KREC correspondence with lymphocyte subpopulations, measured by flow cytometry and evaluate correlations between TREC/KREC, lymphocyte subpopulations and immunoglobulins. We carried out analysis of data from children assessed by clinical immunologists at Speransky Children's Hospital, Moscow, Russia with suspected immunodeficiencies between May 2013 and August 2016. Peripheral blood samples were sent for TREC/KREC, flow cytometry (CD3, CD4, CD8, and CD19), IgA, IgM, and IgG analysis. A total of 839 samples were analyzed for using TREC assay and flow cytometry and 931 KREC/flow cytometry. TREC demonstrated an AUC of 0.73 (95% CI 0.70-0.76) for CD3, 0.74 (95% CI 0.71-0.77) for CD4 and 0.67 (95% CI 0.63-0.70) for CD8, respectively, while KREC demonstrated an AUC of 0.72 (95% CI 0.69-0.76) for CD19. Moderate correlation was found between the levels of TREC and CD4 (r = 0.55, p < 0.01) and KREC with CD19 (r = 0.56, p < 0.01). In this study, promising prediction models were tested. We found that TREC and KREC are able to moderately detect abnormal levels of individual lymphocyte subpopulations. Future research should assess associations between TREC/KREC and other lymphocyte subpopulations and approach TREC/KREC use in PID diagnosis.
Collapse
Affiliation(s)
- Ilya Korsunskiy
- Speransky Children’s Hospital, Moscow, Russia
- Department of Paediatrics, Sechenov University, Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Oleg Blyuss
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | | | - Nataliia Davydova
- Speransky Children’s Hospital, Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Susanna Gordleeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Robert Molchanov
- State Institution “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”, Dnipro, Ukraine
| | - Alan Asmanov
- The Research and Clinical Institute for Pediatrics named after Academician Yuri Veltischev of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitrii Peshko
- Department of Paediatrics, Sechenov University, Moscow, Russia
| | | | | | | | | | - Maxim Filipenko
- Pharmacogenomic Laboratory, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Ivan Kozlov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Andrey Prodeus
- Speransky Children’s Hospital, Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Anatoliy Korsunskiy
- Speransky Children’s Hospital, Moscow, Russia
- Department of Paediatrics, Sechenov University, Moscow, Russia
| | - Peter Hsu
- Allergy and Immunology, The Kids Research Institute, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- The In-VIVO Global Network, An Affiliate of the World Universities Network, New York, NY, United States
| | - Daniel Munblit
- Department of Paediatrics, Sechenov University, Moscow, Russia
- The In-VIVO Global Network, An Affiliate of the World Universities Network, New York, NY, United States
- Department of Paediatrics, Imperial College London, London, United Kingdom
- Solov’ev Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
64
|
Abstract
Recent advances in molecular biology have provided important insights into the genetic background of various inflammatory diseases. In particular, genome-wide association studies of inflammatory diseases have revealed genetic loci that play critical roles in the pathology of inflammation. Whole-exome and whole-genome sequencing analyses have also identified more than 300 causative genes for primary immunodeficiency diseases (PIDs). Some genetic loci that are associated with inflammatory diseases are mutated in PIDs, suggesting close relationships between inflammation and PIDs. Inflammatory diseases for which genetic associations have been described include inflammatory bowel disease (IBD), multiple sclerosis, rheumatoid arthritis, type 1 diabetes mellitus, and systemic lupus erythematosus. Herein, I discuss about the genetic interactions between IBD and PIDs.
Collapse
Affiliation(s)
- Hirokazu Kanegane
- a Department of Child Health and Development, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| |
Collapse
|
65
|
Tamura A, Uemura S, Yamamoto N, Saito A, Kozaki A, Kishimoto K, Ishida T, Hasegawa D, Hiroki H, Okano T, Imai K, Morio T, Kanegane H, Kosaka Y. Hematopoietic cell transplantation for asymptomatic X-linked lymphoproliferative syndrome type 1. Allergy Asthma Clin Immunol 2018; 14:82. [PMID: 30459818 PMCID: PMC6236904 DOI: 10.1186/s13223-018-0306-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immune deficiency, which is caused by SH2D1A gene mutations. XLP1 is commonly associated with Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis, hypogammaglobulinemia, and/or lymphoma. The only curative treatment for XLP1 is allogeneic hematopoietic cell transplantation. However, published data detailing the clinical course of, and indications for, allogeneic hematopoietic cell transplantation in asymptomatic patients with XLP1 is lacking. Although relevant family history could be useful in identifying patients with XLP1 before disease onset, no guidelines have been established on the management of asymptomatic patients with XLP1. Therefore, clinicians and families face dilemmas in balancing between the risk of waiting for the disease onset, and the risk of transplant-related mortality associated with allogeneic hematopoietic cell transplantation, which is often performed at a very young age. We first describe the detailed clinical course of an asymptomatic patient with XLP1 who successfully underwent allogeneic hematopoietic cell transplantation. Case presentation A boy was born at 39 weeks of gestation, weighing 3016 g at birth. He appeared fine, but he underwent genetic testing because his maternal cousin had XLP1. He was found to have a novel c.207_208insC (p.Pro70ProfsX4) mutation in exon 3 of SH2D1A, which was also found in his cousin. There was no HLA-identical donor in his family. Immunoglobulin was administered monthly to prevent EBV infection while searching for an alternative donor. He underwent allogeneic bone marrow transplantation (BMT) from an allele HLA 8/8 fully matched, unrelated donor with a reduced-intensity conditioning (RIC) regimen consisting of fludarabine, melphalan, and low-dose total body irradiation (TBI) at 20 months of age. The patient has been doing well for 2 years post transplantation and maintaining complete donor chimerism without any evidence of chronic graft versus host disease. Conclusions We describe a case of an asymptomatic patient with XLP1, who successfully underwent unrelated BMT with RIC regimen consisting of fludarabine, melphalan, and 3 Gy TBI. That was well tolerated and successfully generated complete chimerism in every subpopulation. This case delineates the option of allogeneic hematopoietic cell transplantation even in asymptomatic patients with XLP1.
Collapse
Affiliation(s)
- Akihiro Tamura
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Suguru Uemura
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Pediatrics, Graduate School of Medicine, Kobe University Hospital, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, 650-0017 Japan
| | - Nobuyuki Yamamoto
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Atsuro Saito
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Aiko Kozaki
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Kenji Kishimoto
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Toshiaki Ishida
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Daiichiro Hasegawa
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Haruka Hiroki
- 3Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Tsubasa Okano
- 3Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Kohsuke Imai
- 4Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Tomohiro Morio
- 3Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Hirokazu Kanegane
- 5Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Yoshiyuki Kosaka
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
66
|
Garcia‐Prat M, Álvarez‐Sierra D, Aguiló‐Cucurull A, Salgado‐Perandrés S, Briongos‐Sebastian S, Franco‐Jarava C, Martin‐Nalda A, Colobran R, Montserrat I, Hernández‐González M, Pujol‐Borrell R, Soler‐Palacin P, Martínez‐Gallo M. Extended immunophenotyping reference values in a healthy pediatric population. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:223-233. [DOI: 10.1002/cyto.b.21728] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Garcia‐Prat
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies UnitHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| | - Daniel Álvarez‐Sierra
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
| | - Aina Aguiló‐Cucurull
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
| | - Sandra Salgado‐Perandrés
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
| | - Sara Briongos‐Sebastian
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
| | - Clara Franco‐Jarava
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
| | - Andrea Martin‐Nalda
- Pediatric Infectious Diseases and Immunodeficiencies UnitHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| | - Roger Colobran
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| | - Isabel Montserrat
- Hematology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
| | - Manuel Hernández‐González
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| | - Ricardo Pujol‐Borrell
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| | - Pere Soler‐Palacin
- Pediatric Infectious Diseases and Immunodeficiencies UnitHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| | - Mónica Martínez‐Gallo
- Immunology DivisionHospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR) Barcelona Catalonia Spain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de Barcelona (UAB) Barcelona Catalonia Spain
| |
Collapse
|
67
|
Manohar S, Shah P, Biswas S, Mukadam A, Joshi M, Viswanathan G. Combining fluorescent cell barcoding and flow cytometry‐based phospho‐ERK1/2 detection at short time scales in adherent cells. Cytometry A 2018; 95:192-200. [DOI: 10.1002/cyto.a.23602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Sonal Manohar
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Prachi Shah
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Sharmila Biswas
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Anam Mukadam
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Madhura Joshi
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Ganesh Viswanathan
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| |
Collapse
|
68
|
Delmonte OM, Fleisher TA. Flow cytometry: Surface markers and beyond. J Allergy Clin Immunol 2018; 143:528-537. [PMID: 30170120 DOI: 10.1016/j.jaci.2018.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Flow cytometry is a routinely available laboratory method to study cells in suspension from a variety of human sources. Application of this technology as a clinical laboratory method has evolved from the identification of cell-surface proteins to characterizing intracellular proteins and providing multiple different techniques to assess specific features of adaptive and innate immune function. This expanded menu of flow cytometric testing approaches has increased the utility of this platform in characterizing and diagnosing disorders of immune function.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Md.
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Md
| |
Collapse
|
69
|
The Utility of Next-Generation Sequencing for Primary Immunodeficiency Disorders: Experience from a Clinical Diagnostic Laboratory. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9647253. [PMID: 29888287 PMCID: PMC5977064 DOI: 10.1155/2018/9647253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 01/09/2023]
Abstract
Introduction Primary immune deficiency disorders (PIDs) are a group of diseases with profound defects in immune cells. The traditional diagnostics have evolved from clinical evaluation, flow cytometry, western blotting, and Sanger sequencing to focusing on small groups of genes. However, this is not sufficient to confirm the suspicion of certain PIDs. Our innovative approach to diagnostics outlines the algorithm for PIDs and the clinical utility of immunophenotyping with a custom-designed multigene panel. Materials and Methods We have designed a diagnostic algorithm based on flow cytometry studies to classify the patients; then the selected multigene panel was sequenced. In silico analysis for mutations was carried out using SIFT, Polyphen-2, and MutationTaster. Results and Discussion The causative mutation was identified in 46% of PIDs. Based on these results, this new algorithm including immune phenotyping and NGS for PIDs was suggested for the clinical use. Conclusions This study provides a thorough validation of diagnostic algorithm and indicates that still the traditional methods can be used to collect significant information related to design of most current diagnostics. The benefits of such testing are for diagnosis and prevention including the prenatal and preimplantation diagnosis, prognosis, treatment, and research.
Collapse
|
70
|
Ohnishi T, Shinjoh M, Ohara H, Kawai T, Kamimaki I, Mizushima R, Kamada K, Itakura Y, Iguchi S, Uzawa Y, Yoshida A, Kikuchi K. Purulent lymphadenitis caused by Staphylococcus argenteus, representing the first Japanese case of Staphylococcus argenteus (multilocus sequence type 2250) infection in a 12-year-old boy. J Infect Chemother 2018; 24:925-927. [PMID: 29709375 DOI: 10.1016/j.jiac.2018.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Staphylococcus argenteus is a novel species separated from a strain of coagulase-positive, non-pigmented S. aureus. Although S. argenteus has been reported to occur globally, multilocus sequence type (ST) 2250 is mainly found in Northeastern Thailand. Because conventional biochemical testing misidentifies this pathogen as S. aureus, multilocus sequence typing (MLST) or nucA sequencing is recommended to distinguish between S. argenteus and S. auereus. The patient was a previously healthy 12-year-old boy who was admitted because of right inguinal lymphadenitis and cellulitis. Although intravenous cefazolin was administered, his lymphadenitis worsened and formed an abscess on day 6 of hospitalization. Incision and drainage were performed on day 7 of hospitalization. Cefazolin was changed to oral cefaclor, and the patient was successfully treated over a period of 5 weeks. No recurrence was observed throughout 12-months of follow-up. He had a history of right axillary lymph node abscess 2 months before this admission, which was successfully treated with incision, drainage, and antibiotic therapy. He has lived in Japan since birth and never traveled abroad. He had no opportunity to interact with foreigners. His immune function, especially neutrophil function, was tested and we did not find any dysfunction. First, methicillin-sensitive S. aureus was misidentified from the abscess culture. Subsequently, the causative agent was re-identified as S. argenteus ST2250 based on MLST. To our knowledge, this is the first case of S. argenteus ST2250 infection in Japan. This pathogen should be taken into consideration in the diagnosis if the patient has atypical non-pigmented S. aureus.
Collapse
Affiliation(s)
- Takuma Ohnishi
- Department of Pediatrics, National Hospital Organization Saitama National Hospital, 2-1 Suwa, Wako-shi, Saitama, 321-0102, Japan.
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hirotoshi Ohara
- Department of Plastic Surgery, National Hospital Organization Saitama National Hospital, 2-1 Suwa, Wako-shi, Saitama, 321-0102, Japan.
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Isamu Kamimaki
- Department of Pediatrics, National Hospital Organization Saitama National Hospital, 2-1 Suwa, Wako-shi, Saitama, 321-0102, Japan.
| | - Ryo Mizushima
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Keisuke Kamada
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yasutomo Itakura
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Shigekazu Iguchi
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yutaka Uzawa
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Atsushi Yoshida
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
71
|
Utility of DNA, RNA, Protein, and Functional Approaches to Solve Cryptic Immunodeficiencies. J Clin Immunol 2018; 38:307-319. [PMID: 29671115 DOI: 10.1007/s10875-018-0499-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE We report a female infant identified by newborn screening for severe combined immunodeficiencies (NBS SCID) with T cell lymphopenia (TCL). The patient had persistently elevated alpha-fetoprotein (AFP) with IgA deficiency, and elevated IgM. Gene sequencing for a SCID panel was uninformative. We sought to determine the cause of the immunodeficiency in this infant. METHODS We performed whole-exome sequencing (WES) on the patient and parents to identify a genetic diagnosis. Based on the WES result, we developed a novel flow cytometric panel for rapid assessment of DNA repair defects using blood samples. We also performed whole transcriptome sequencing (WTS) on fibroblast RNA from the patient and father for abnormal transcript analysis. RESULTS WES revealed a pathogenic paternally inherited indel in ATM. We used the flow panel to assess several proteins in the DNA repair pathway in lymphocyte subsets. The patient had absent phosphorylation of ATM, resulting in absent or aberrant phosphorylation of downstream proteins, including γH2AX. However, ataxia-telangiectasia (AT) is an autosomal recessive condition, and the abnormal functional data did not correspond with a single ATM variant. WTS revealed in-frame reciprocal fusion transcripts involving ATM and SLC35F2 indicating a chromosome 11 inversion within 11q22.3, of maternal origin. Inversion breakpoints were identified within ATM intron 16 and SLC35F2 intron 7. CONCLUSIONS We identified a novel ATM-breaking chromosome 11 inversion in trans with a pathogenic indel (compound heterozygote) resulting in non-functional ATM protein, consistent with a diagnosis of AT. Utilization of several molecular and functional assays allowed successful resolution of this case.
Collapse
|