51
|
Agarwal A, Alam MF, Basu B, Pattanayak S, Asthana S, Syed GH, Kalia M, Vrati S. Japanese Encephalitis Virus NS4A Protein Interacts with PTEN-Induced Kinase 1 (PINK1) and Promotes Mitophagy in Infected Cells. Microbiol Spectr 2022; 10:e0083022. [PMID: 35604158 PMCID: PMC9241661 DOI: 10.1128/spectrum.00830-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
The nonstructural protein 4A (NS4A) of flaviviruses has been implicated as a "central organizer" of the membrane-bound replication complex during virus replication. However, its role in the host responses to virus infection is not understood. Using the yeast-two-hybrid library screen, we identified a multitude of host proteins interacting with the Japanese encephalitis virus (JEV) NS4A protein. Several of these interacting proteins are known to localize to the mitochondria. One of these proteins was PTEN-induced kinase 1 (PINK1), a serine/threonine-protein kinase known for its role in mitophagy. Here, we demonstrate the JEV-NS4A localization to the mitochondria and its interaction with PINK1 in Huh7 cells during JEV infection. The JEV-infected cells showed an enhanced mitophagy flux with a concomitant decline in the mitochondrial mass. We present data showing that JEV-NS4A alone was sufficient to induce mitophagy. Interference with mitochondrial fragmentation and mitophagy resulted in reduced virus propagation. Overall, our study provides the first evidence of mitochondrial quality control dysregulation during JEV infection, largely mediated by its NS4A protein. IMPORTANCE The JEV-infected mammalian cells show an enhanced mitophagy flux with a concomitant decline in the mitochondrial mass. We show that the NS4A protein of JEV localized to the mitochondria and interacted with PINK1 in Huh7 cells during infection with the virus and demonstrate that JEV-NS4A alone is sufficient to induce mitophagy. The study provides the first evidence of mitochondrial quality control dysregulation during JEV infection, largely mediated by its NS4A protein.
Collapse
Affiliation(s)
- Anshu Agarwal
- Translational Health Science and Technology Institute, Faridabad, India
| | - Mohd. Faraz Alam
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | | | | | | - Manjula Kalia
- Translational Health Science and Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sudhanshu Vrati
- Translational Health Science and Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
52
|
Tiamani K, Luo S, Schulz S, Xue J, Costa R, Khan Mirzaei M, Deng L. The role of virome in the gastrointestinal tract and beyond. FEMS Microbiol Rev 2022; 46:6608358. [PMID: 35700129 PMCID: PMC9629487 DOI: 10.1093/femsre/fuac027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/11/2023] Open
Abstract
The human gut virome is comprised of diverse commensal and pathogenic viruses. The colonization by these viruses begins right after birth through vaginal delivery, then continues through breastfeeding, and broader environmental exposure. Their constant interaction with their bacterial hosts in the body shapes not only our microbiomes but us. In addition, these viruses interact with the immune cells, trigger a broad range of immune responses, and influence different metabolic pathways. Besides its key role in regulating the human gut homeostasis, the intestinal virome contributes to disease development in distant organs, both directly and indirectly. In this review, we will describe the changes in the gut virome through life, health, and disease, followed by discussing the interactions between the virome, the microbiome, and the human host as well as providing an overview of their contribution to gut disease and disease of distant organs.
Collapse
Affiliation(s)
| | | | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Corresponding author: Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany; Chair of Prevention of Microbial Diseases, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany. E-mail:
| |
Collapse
|
53
|
Rahmani B, Ghashghayi E, Zendehdel M, Baghbanzadeh A, Khodadadi M. Molecular mechanisms highlighting the potential role of COVID-19 in the development of neurodegenerative diseases. Physiol Int 2022; 109:135-162. [DOI: 10.1556/2060.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023]
Abstract
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the pulmonary manifestations, COVID-19 patients may present a wide range of neurological disorders as extrapulmonary presentations. In this view, several studies have recently documented the worsening of neurological symptoms within COVID-19 morbidity in patients previously diagnosed with neurodegenerative diseases (NDs). Moreover, several cases have also been reported in which the patients presented parkinsonian features after initial COVID-19 symptoms. These data raise a major concern about the possibility of communication between SARS-CoV-2 infection and the initiation and/or worsening of NDs. In this review, we have collected compelling evidence suggesting SARS-CoV-2, as an environmental factor, may be capable of developing NDs. In this respect, the possible links between SARS-CoV-2 infection and molecular pathways related to most NDs and the pathophysiological mechanisms of the NDs such as Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, and amyotrophic lateral sclerosis will be explained.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Ali Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Mina Khodadadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
54
|
Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis 2022; 88:399-416. [DOI: 10.3233/jad-220105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 emerged as a global pandemic starting from Wuhan in China and spread at a lightning speed to the rest of the world. One of the potential long-term outcomes that we speculate is the development of neurodegenerative diseases as a long-term consequence of SARS-CoV-2 especially in people that have developed severe neurological symptoms. Severe inflammatory reactions and aging are two very strong common links between neurodegenerative diseases and COVID-19. Thus, patients that have very high viral load may be at high risk of developing long-term adverse neurological consequences such as dementia. We hypothesize that people with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and aged people are at higher risk of getting the COVID-19 than normal adults. The basis of this hypothesis is the fact that SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 to enter the host cell and that this interaction is calcium-dependent. This could then suggest a direct relationship between neurodegenerative diseases, ACE-2 expression, and the susceptibility to COVID-19. The analysis of the available literature showed that COVID-19 virus is neurotropic and was found in the brains of patients infected with this virus. Furthermore, that the risk of having the infection increases with dementia and that infected people with severe symptoms could develop dementia as a long-term consequence. Dementia could be developed following the acceleration of the spread of prion-like proteins. In the present review we discuss current reports concerning the prevalence of COVID-19 in dementia patients, the individuals that are at high risk of suffering from dementia and the potential acceleration of prion-like proteins spread following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
55
|
Smeyne RJ, Eells JB, Chatterjee D, Byrne M, Akula SM, Sriramula S, O'Rourke DP, Schmidt P. COVID-19 infection enhances susceptibility to oxidative-stress induced parkinsonism. Mov Disord 2022; 37:1394-1404. [PMID: 35579496 PMCID: PMC9347874 DOI: 10.1002/mds.29116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022] Open
Abstract
Background Viral induction of neurological syndromes has been a concern since parkinsonian‐like features were observed in patients diagnosed with encephalitis lethargica subsequent to the 1918 influenza pandemic. Given the similarities in the systemic responses after severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection with those observed after pandemic influenza, there is a question whether a similar syndrome of postencephalic parkinsonism could follow coronavirus disease 2019 infection. Objective The goal of this study was to determine whether prior infection with SARS‐CoV‐2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism. Methods K18‐hACE2 mice were infected with SARS‐CoV‐2 to induce mild‐to‐moderate disease. After 38 days of recovery, mice were administered a non‐lesion‐inducing dose of the parkinsonian toxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) and euthanized 7 days later. Subsequent neuroinflammation and substantia nigra pars compacta (SNpc) dopaminergic (DA) neuron loss were determined and compared with SARS‐CoV‐2 or MPTP alone. Results K18‐hACE2 mice infected with SARS‐CoV‐2 or MPTP showed no SNpc DA neuron loss after MPTP. In mice infected and recovered from SARS‐CoV‐2 infection, MPTP induced a 23% or 19% greater loss of SNpc DA neurons than SARS‐CoV‐2 or MPTP, respectively (P < 0.05). Examination of microglial activation showed a significant increase in the number of activated microglia in both the SNpc and striatum of the SARS‐CoV‐2 + MPTP group compared with SARS‐CoV‐2 or MPTP alone. Conclusions Our observations have important implications for long‐term public health, given the number of people who have survived SARS‐CoV‐2 infection, as well as for future public policy regarding infection mitigation. However, it will be critical to determine whether other agents known to increase risk for PD also have synergistic effects with SARS‐CoV‐2 and are abrogated by vaccination. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Vickie and Jack Farber Institute for Neuroscience, JHN 451, 900 Walnut Street, Philadelphia, PA, 19027
| | - Jeffrey B Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Debotri Chatterjee
- Department of Neurosciences, Thomas Jefferson University, Vickie and Jack Farber Institute for Neuroscience, JHN 451, 900 Walnut Street, Philadelphia, PA, 19027
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Vickie and Jack Farber Institute for Neuroscience, JHN 451, 900 Walnut Street, Philadelphia, PA, 19027
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Dorcas P O'Rourke
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Peter Schmidt
- Department of Neurology, Grossman School of Medicine, New York University, 222 East 41st St, 9th Floor, New York, NY, 10017
| |
Collapse
|
56
|
Silva J, Patricio F, Patricio-Martínez A, Santos-López G, Cedillo L, Tizabi Y, Limón ID. Neuropathological Aspects of SARS-CoV-2 Infection: Significance for Both Alzheimer's and Parkinson's Disease. Front Neurosci 2022; 16:867825. [PMID: 35592266 PMCID: PMC9111171 DOI: 10.3389/fnins.2022.867825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
Evidence suggests that SARS-CoV-2 entry into the central nervous system can result in neurological and/or neurodegenerative diseases. In this review, routes of SARS-Cov-2 entry into the brain via neuroinvasive pathways such as transcribrial, ocular surface or hematogenous system are discussed. It is argued that SARS-Cov-2-induced cytokine storm, neuroinflammation and oxidative stress increase the risk of developing neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Further studies on the effects of SARS-CoV-2 and its variants on protein aggregation, glia or microglia activation, and blood-brain barrier are warranted.
Collapse
Affiliation(s)
- Jaime Silva
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
57
|
Boura I, Ray Chaudhuri K. Coronavirus Disease 2019 and related Parkinsonism: the clinical evidence thus far. Mov Disord Clin Pract 2022; 9:584-593. [PMID: 35601258 PMCID: PMC9111006 DOI: 10.1002/mdc3.13461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Coronavirus disease 2019 (Covid‐19) pandemic has fueled both research and speculation, as to whether it could be a “perfect storm” for a post‐Covid emergence of parkinsonism in some susceptible individuals, analogous to the post‐encephalitic parkinsonism reported after the 1918 influenza epidemic. This theory is further augmented by reports of a pathogenic effect of the Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) on the central nervous system with specific impact on the dopaminergic pathway, as well as the possibility of the virus to selectively bind to Angiotensin‐Converting Enzyme‐2 (ACE‐2); these molecules are expressed abundantly in the midbrain dopamine neurons and, are likely involved in several cellular mechanisms cited in Parkinson's Disease (PD) pathophysiology. Objectives—Methods Therefore, we performed a review of the literature up to February 2022 to explore the current landscape considering published cases of new‐onset parkinsonism after a SARS‐CoV‐2 infection in otherwise healthy individuals. We summarized their clinical features, diagnostic and treatment approaches, discussing potential underlying mechanisms in light of PD pathogenesis theories. Results Twenty cases that developed parkinsonian features simultaneously or shortly after a reported SARS‐CoV‐2 infection were reviewed. In 11 of them, parkinsonism appeared in the context of encephalopathy, while four patients developed post‐infectious parkinsonism without encephalopathy, and four bore similarities to idiopathic PD. Nine patients exhibited a good response to dopaminergic therapy, while four responded to immunomodulatory treatment. Conclusions Available data does not yet justify a clear association between the Covid‐19 pandemic and a parkinsonism wave. However, vigilance is necessary, as long‐term effects might have not been revealed.
Collapse
Affiliation(s)
- Iro Boura
- University of Crete, Medical School Heraklion Greece
- King's College London, Department of Neurosciences Institute of Psychiatry, Psychology & Neuroscience, Denmark Hill London United Kingdom
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill London United Kingdom
| | - K. Ray Chaudhuri
- King's College London, Department of Neurosciences Institute of Psychiatry, Psychology & Neuroscience, Denmark Hill London United Kingdom
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill London United Kingdom
| |
Collapse
|
58
|
SARS-CoV-2, COVID-19 and Parkinson’s Disease—Many Issues Need to Be Clarified—A Critical Review. Brain Sci 2022; 12:brainsci12040456. [PMID: 35447986 PMCID: PMC9028450 DOI: 10.3390/brainsci12040456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neurological manifestations during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are of interest, regarding acute treatment and the so-called post-COVID-19 syndrome. Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. Hence, the influence of SARS-CoV-2 and the COVID-19 syndrome on PD patients has raised many questions and produced various publications with conflicting results. We reviewed the literature, with respect to symptoms, treatment, and whether the virus itself might cause PD during the SARS-CoV-2 pandemic in SARS-CoV-2-affected symptomatic PD patients (COVID-19 syndrome). In addition, we comment on the consequences in non-symptomatic and non-affected PD patients, as well as post-COVID syndrome and its potential linkage to PD, presenting our own data from our out-patient clinic.
Collapse
|
59
|
Picornavirus May Be Linked to Parkinson’s Disease through Viral Antigen in Dopamine-Containing Neurons of Substantia Nigra. Microorganisms 2022; 10:microorganisms10030599. [PMID: 35336174 PMCID: PMC8953350 DOI: 10.3390/microorganisms10030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease linked with the loss of dopaminergic neurons in the brain region called substantia nigra and caused by unknown pathogenic mechanisms. Two currently recognized prominent features of PD are an inflammatory response manifested by glial reaction and T-cell infiltration, as well as the presence of various toxic mediators derived from activated glial cells. PD or parkinsonism has been described after infection with several different viruses and it has therefore been hypothesized that a viral infection might play a role in the pathogenesis of the disease. We investigated formalin-fixed post-mortem brain tissue from 9 patients with Parkinson’s disease and 11 controls for the presence of Ljungan virus (LV) antigen using a polyclonal antibody against the capsid protein of this recently identified picornavirus with neurotropic properties, suspected of being both a human and an animal pathogen. Evidence of viral antigen was found in 7 out of 9 Parkinson’s disease cases and in only 1 out of 11 controls (p = 0.005). The picornavirus antigen was present in dopamine-containing neurons of the substantia nigra. We propose that LV or an LV-related virus initiates the pathological process underlying sporadic PD. LV-related picornavirus antigen has also been reported in patients with Alzheimer’s disease. Potentially successful antiviral treatment in Alzheimer’s disease suggests a similar treatment for Parkinson's disease. Amantadine, originally developed as an antiviral drug against influenza infection, has also been used for symptomatic treatment of patients with PD for more than 50 years and is still commonly used by neurologists today. The fact that amantadine also has an antiviral effect on picornaviruses opens the question of this drug being re-evaluated as potential PD therapy in combination with other antiviral compounds directed against picornaviruses.
Collapse
|
60
|
Serrano-Castro PJ, Garzón-Maldonado FJ, Casado-Naranjo I, Ollero-Ortiz A, Mínguez-Castellanos A, Iglesias-Espinosa M, Baena-Palomino P, Sánchez-Sanchez V, Sánchez-Pérez RM, Rubi-Callejon J, Estévez-María JC, Galeano-Bilbao B, Romero-Imbroda J, Sobrino B, Arrabal-Gomez C, Oliver-Martos B, Muñoz-Becerra L, Requena N, González Álvarez de Sotomayor MDM, Estivill-Torrus G, Suarez J, Ciano-Petersen NL, Pons-Pons G, Reyes-Bueno JA, Cabezudo-Garcia P, Aguilar-Castillo MJ, De la Cruz Cosme C, Duque-Holguera M, Cuartero-Rodriguez E, Vilches-Carrillo RM, Carrera-Muñoz I, Carnero-Pardo C, Ramirez-Garcia T, Oropesa JM, Dominguez-Mayoral A, Pelaez-Viñas N, Valiente L, de Fonseca FR. The cognitive and psychiatric subacute impairment in severe Covid-19. Sci Rep 2022; 12:3563. [PMID: 35241761 PMCID: PMC8894467 DOI: 10.1038/s41598-022-07559-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Neurologic impairment persisting months after acute severe SARS-CoV-2 infection has been described because of several pathogenic mechanisms, including persistent systemic inflammation. The objective of this study is to analyze the selective involvement of the different cognitive domains and the existence of related biomarkers. Cross-sectional multicentric study of patients who survived severe infection with SARS-CoV-2 consecutively recruited between 90 and 120 days after hospital discharge. All patients underwent an exhaustive study of cognitive functions as well as plasma determination of pro-inflammatory, neurotrophic factors and light-chain neurofilaments. A principal component analysis extracted the main independent characteristics of the syndrome. 152 patients were recruited. The results of our study preferential involvement of episodic and working memory, executive functions, and attention and relatively less affectation of other cortical functions. In addition, anxiety and depression pictures are constant in our cohort. Several plasma chemokines concentrations were elevated compared with both, a non-SARS-Cov2 infected cohort of neurological outpatients or a control healthy general population. Severe Covid-19 patients can develop an amnesic and dysexecutive syndrome with neuropsychiatric manifestations. We do not know if the deficits detected can persist in the long term and if this can trigger or accelerate the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pedro J Serrano-Castro
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain.
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain.
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain.
- Neurology Department, Instituto IBIMA, Hospital Regional Universitario de Málaga (España), Avda Carlos-Haya S/N, 4a planta, Malaga, Spain.
| | - Francisco J Garzón-Maldonado
- Neurology Service, Virgen de la Victoria University Hospital, Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Ignacio Casado-Naranjo
- Neurology Service, University Hospital of Cáceres, Cáceres, Spain
- Biomedical Network Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Cáceres, Spain
| | - Angela Ollero-Ortiz
- Neurology Service, Valme University Hospital, Seville, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Adolfo Mínguez-Castellanos
- Neurology Service, Virgen de las Nieves University Hospital, Granada, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
- Institute of Biosanitary Research of Granada (Ibs. GRANADA), Granada, Spain
| | - Mar Iglesias-Espinosa
- Neurology Service, Torrecárdenas University Hospital, Almería, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Pablo Baena-Palomino
- Neurology Service, Juan Ramón Jiménez University Hospital, Huelva, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Violeta Sánchez-Sanchez
- Neurology Service, Virgen Macarena University Hospital, Seville, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | | | - José Rubi-Callejon
- Neurology Unit, Internal Medicine Service, Hospital del Poniente de Almería, El Ejido (Almería), Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - José Carlos Estévez-María
- Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Benito Galeano-Bilbao
- Neurology Service, Puerta del Mar University Hospital, Cadiz, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Jesús Romero-Imbroda
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neurology Service, Hospital Quirón-Salud Málaga, Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Beatriz Sobrino
- Infectious Diseases Service, Regional University Hospital of Malaga, Malaga, Spain
| | - Carlos Arrabal-Gomez
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Begoña Oliver-Martos
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Luis Muñoz-Becerra
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Nerea Requena
- Neurology Service, Virgen de la Victoria University Hospital, Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - María Del Mar González Álvarez de Sotomayor
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Guillermo Estivill-Torrus
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Juan Suarez
- Neuropsychopharmacology Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Gracia Pons-Pons
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Jose Antonio Reyes-Bueno
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Pablo Cabezudo-Garcia
- Neurology Service, Regional University Hospital of Malaga, Malaga, Spain
- Neuroimmunology and Neuroinflamation Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Maria José Aguilar-Castillo
- Biotechnology Unit, Regional University Hospital of Malaga, Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Carlos De la Cruz Cosme
- Neurology Service, Virgen de la Victoria University Hospital, Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | | | - Eva Cuartero-Rodriguez
- Neurology Service, Valme University Hospital, Seville, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Rosa María Vilches-Carrillo
- Neurology Service, Virgen de las Nieves University Hospital, Granada, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Ismael Carrera-Muñoz
- Neurology Service, Virgen de las Nieves University Hospital, Granada, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | | | - Teresa Ramirez-Garcia
- Neurology Service, Torrecárdenas University Hospital, Almería, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Juan Manuel Oropesa
- Neurology Service, Juan Ramón Jiménez University Hospital, Huelva, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Ana Dominguez-Mayoral
- Neurology Service, Virgen Macarena University Hospital, Seville, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Nazaret Pelaez-Viñas
- Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain
| | - Lucia Valiente
- Infectious Diseases Service, Regional University Hospital of Malaga, Malaga, Spain
| | - Fernando Rodríguez de Fonseca
- Neuropsychopharmacology Group, Institute of Biomedical Research of Malaga (IBIMA), Malaga, Spain.
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), Malaga, Spain.
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga (España), Avda Carlos-Haya S/N, Malaga, Spain.
| |
Collapse
|
61
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
62
|
Hopkins HK, Traverse EM, Barr KL. Viral Parkinsonism: An underdiagnosed neurological complication of Dengue virus infection. PLoS Negl Trop Dis 2022; 16:e0010118. [PMID: 35139081 PMCID: PMC8827468 DOI: 10.1371/journal.pntd.0010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Dengue virus (DENV) is a flavivirus that is a significant cause of human disease costing billions of dollars per year in medical and mosquito control costs. It is estimated that up to 20% of DENV infections affect the brain. Incidence of DENV infections is increasing, which suggests more people are at risk of developing neurological complications. The most common neurological manifestations of DENV are encephalitis and encephalopathy, and movement disorders such as parkinsonism have been observed. Parkinsonism describes syndromes similar to Parkinson’s Disease where tremors, stiffness, and slow movements are observed. Parkinsonism caused by viral infection is characterized by patients exhibiting at least two of the following symptoms: tremor, bradykinesia, rigidity, and postural instability. To investigate DENV-associated parkinsonism, case studies and reports of DENV-associated parkinsonism were obtained from peer-reviewed manuscripts and gray literature. Seven reports of clinically diagnosed DENV-associated parkinsonism and 15 cases of DENV encephalitis, where the patient met the case criteria for a diagnosis of viral parkinsonism were found. Clinically diagnosed DENV-associated parkinsonism patients were more likely to be male and exhibit expressionless face, speech problems, and lymphocytosis. Suspected patients were more likely to exhibit tremor, have thrombocytopenia and low hemoglobin. Viral parkinsonism can cause a permanent reduction in neurons with consequential cognitive and behavior changes, or it can leave a latent imprint in the brain that can cause neurological dysfunction decades after recovery. DENV-associated parkinsonism is underdiagnosed and better adherence to the case definition of viral parkinsonism is needed for proper management of potential sequalae especially if the patient has an ongoing or potential to develop a neurodegenerative disease. Dengue Virus (DENV) causes generalized fever in most patients and is transmitted via Aedes aegypti mosquitos. A small proportion of DENV infected patients have neurological complications associated with the critical phase of the illness. The usual neurological manifestations are encephalitis and encephalopathy, but there can also be movement disorders such as parkinsonism. DENV patients with parkinsonism present with tremor, bradykinesia, instability, and rigidity on top of the typical febrile manifestations of the disease. We searched the literature and uncovered 7 cases of clinically diagnosed DENV parkinsonism patients and 15 cases of suspected DENV parkinsonism. We found that the clinically diagnosed patients were more likely to be male, have expressionless face, speech issues and lymphocytosis. The suspected cases often had a diagnosis of encephalitis and were more likely to have tremors, thrombocytopenia, and low hemoglobin.
Collapse
Affiliation(s)
- Hannah K. Hopkins
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
| | - Elizabeth M. Traverse
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
| | - Kelli L. Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
63
|
Gray-Rodriguez S, Jensen MP, Otero-Jimenez M, Hanley B, Swann OC, Ward PA, Salguero FJ, Querido N, Farkas I, Velentza-Almpani E, Weir J, Barclay WS, Carroll MW, Jaunmuktane Z, Brandner S, Pohl U, Allinson K, Thom M, Troakes C, Al-Sarraj S, Sastre M, Gveric D, Gentleman S, Roufosse C, Osborn M, Alegre-Abarrategui J. Multisystem screening reveals SARS-CoV-2 in neurons of the myenteric plexus and in megakaryocytes. J Pathol 2022; 257:198-217. [PMID: 35107828 PMCID: PMC9325073 DOI: 10.1002/path.5878] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/12/2021] [Accepted: 01/29/2022] [Indexed: 11/30/2022]
Abstract
SARS‐CoV‐2, the causative agent of COVID‐19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS‐CoV‐2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS‐CoV‐2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)‐confirmed SARS‐CoV‐2 status from the peaks of the pandemic in 2020 and four pre‐COVID postmortem controls. SARS‐CoV‐2 anti‐NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS‐CoV‐2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS‐CoV‐2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS‐CoV‐2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS‐CoV‐2 in contemporary cases as well as providing insights into potential long‐term complications of COVID‐19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sandra Gray-Rodriguez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Melanie P Jensen
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Maria Otero-Jimenez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Brian Hanley
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK.,Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Patrick A Ward
- Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Francisco J Salguero
- National Infection Service, United Kingdom Health Security Agency, Porton Down, Salisbury, UK
| | - Nadira Querido
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Ildiko Farkas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | | - Justin Weir
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Miles W Carroll
- National Infection Service, United Kingdom Health Security Agency, Porton Down, Salisbury, UK.,Pandemic Sciences Centre, Nuffield Department of Medicine, Oxford University, OX3 7BN, UK
| | - Zane Jaunmuktane
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian Brandner
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Ute Pohl
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham/University Hospitals Birmingham, Birmingham, UK
| | - Kieren Allinson
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Maria Thom
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Claire Troakes
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Djordje Gveric
- Multiple Sclerosis and Parkinson's Tissue Bank, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Multiple Sclerosis and Parkinson's Tissue Bank, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Candice Roufosse
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK.,Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
| | - Michael Osborn
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Javier Alegre-Abarrategui
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK.,Multiple Sclerosis and Parkinson's Tissue Bank, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
64
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
65
|
Microbes and Parkinson’s disease: from associations to mechanisms. Trends Microbiol 2022; 30:749-760. [DOI: 10.1016/j.tim.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
|
66
|
Hsu TW, Chu CS, Tsai SJ, Cheng CM, Su TP, Chen TJ, Bai YM, Liang CS, Chen MH. Dengue Virus Infection and Risk of Parkinson's Disease: A Nationwide Longitudinal Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:679-687. [PMID: 34864691 DOI: 10.3233/jpd-212938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background: Increasing evidence suggests a potential relationship between viral infection and Parkinson’s disease (PD). Objective: Herein, we explore the association between infection by dengue virus and PD. Methods: Between 1997 and 2012, we recruited 1,422 patients with dengue fever and 14,220 matched controls (age, sex, time of enrollment, and medical and mental comorbidities) from the Taiwan National Health Insurance Research Database. We identified new onset of PD to the end of 2013. The Kaplan-Meier method was used to estimate the incidence rate of PD. Cox-regression analysis was applied to calculate the hazard ratios (HRs) with 95% confidence intervals (CIs) after adjustment for confounders. Results: During the follow up period, the dengue group had higher incidence of PD than the control group (1.2% vs. 0.4% , p = 0.001). Patients with dengue fever had a significantly higher risk of developing PD [HR, 2.59; 95% CI, 1.51–4.44] compared with the controls, after adjustments for demographic data, PD-related comorbidities, and all-cause clinical visits. The subgroup analysis, stratified by age and sex, found that higher risk for PD was statistically significant for male (HR, 3.51; 95% CI, 1.76–7.00) and patients aged >60 years (HR, 2.96; 95% CI, 1.62–5.41). Conclusion: The risk of PD was 2.59-fold higher in patients with dengue fever than in non-infected controls during the follow-up period. Clinicians need to monitor signs of PD during patient recovery from dengue fever. Additional studies are needed to confirm our results and investigate the mechanisms linking PD and dengue virus infection.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Non-invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
- Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
67
|
Emmi A, Boura I, Raeder V, Mathew D, Sulzer D, Goldman JE, Leta V. Covid-19, nervous system pathology, and Parkinson's disease: Bench to bedside. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:17-34. [PMID: 36208899 PMCID: PMC9361071 DOI: 10.1016/bs.irn.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (Covid-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is primarily regarded as a respiratory disease; however, multisystemic involvement accompanied by a variety of clinical manifestations, including neurological symptoms, are commonly observed. There is, however, little evidence supporting SARS-CoV-2 infection of central nervous system cells, and neurological symptoms for the most part appear to be due to damage mediated by hypoxic/ischemic and/or inflammatory insults. In this chapter, we report evidence on candidate neuropathological mechanisms underlying neurological manifestations in Covid-19, suggesting that while there is mostly evidence against SARS-CoV-2 entry into brain parenchymal cells as a mechanism that may trigger Parkinson's disease and parkinsonism, that there are multiple means by which the virus may cause neurological symptoms.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Iro Boura
- Department of Neurology, University Hospital of Heraklion, Crete, Greece
| | - Vanessa Raeder
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Neurology, Technical University Dresden, Dresden, Germany; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Donna Mathew
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute, New York, United States
| | - James E Goldman
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, United States
| | - Valentina Leta
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
68
|
Kukkle PL. COVID-19: The cynosure of rise of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:251-262. [PMID: 36208903 PMCID: PMC9303069 DOI: 10.1016/bs.irn.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is one of the most common age-related disorders globally. The pathophysiological mechanisms and precipitating factors underlying PD manifestations, including genetic and environmental parameters, inflammation/stress and ageing, remain elusive. Speculations about whether the Coronavirus Disease 2019 (Covid-19) pandemic could be a pivotal factor in affecting the prevalence and severity of PD or triggering a wave of new-onset parkinsonism in both the near and distant future have recently become very popular, with researchers wondering if there is a changing trend in current parkinsonism cases. Could the current understanding of the Covid-19 pathophysiology provide clues for an impending rise of parkinsonism cases in the future? Are there any lessons to learn from previous pandemics? Our aim was to look into these questions and available current literature in order to investigate if Covid-19 could constitute a cardinal event affecting the parkinsonism landscape.
Collapse
Affiliation(s)
- Prashanth Lingappa Kukkle
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India; Center for Parkinson's Disease and Movement Disorders, Manipal Hospital, Miller's Road, Bangalore, India.
| |
Collapse
|
69
|
Emmi A, Sandre M, Porzionato A, Antonini A. Smell deficits in COVID-19 and possible links with Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:91-102. [PMID: 36208908 PMCID: PMC9444897 DOI: 10.1016/bs.irn.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olfactory impairment is a common symptom in Coronavirus Disease 2019 (COVID-19), the disease caused by Severe Acute Respiratory Syndrome—Coronavirus 2 (SARS-CoV-2) infection. While other viruses, such as influenza viruses, may affect the ability to smell, loss of olfactory function is often smoother and associated to various degrees of nasal symptoms. In COVID-19, smell loss may appear also in absence of other symptoms, frequently with a sudden onset. However, despite great clinical interest in COVID-19 olfactory alterations, very little is known concerning the mechanisms underlying these phenomena. Moreover, olfactory dysfunction is observed in neurological conditions like Parkinson's disease (PD) and can precede motor onset by many years, suggesting that viral infections, like COVID-19, and regional inflammatory responses may trigger defective protein aggregation and subsequent neurodegeneration, potentially linking COVID-19 olfactory impairment to neurodegeneration. In the following chapter, we report the neurobiological and neuropathological underpinnings of olfactory impairments encountered in COVID-19 and discuss the implications of these findings in the context of neurodegenerative disorders, with particular regard to PD and alpha-synuclein pathology.
Collapse
|
70
|
Zhu D, Song Y, Hu D, Li S, Liu G, Li P, Yang S. Characterization of Enterovirus Associated m6A RNA Methylation in Children With Neurological Symptoms: A Prospective Cohort Study. Front Neurosci 2021; 15:791544. [PMID: 34949987 PMCID: PMC8689127 DOI: 10.3389/fnins.2021.791544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Little is known about the particular changes of N6-methyladenosine (m6A) RNA methylation in enterovirus (EV) infection among children with neurologic symptoms. Here, we determined the characterization of EV associated m6A RNA methylation in this population. A prospective cohort study was conducted from 2018/2 to 2019/12 at the Guangzhou Women and Children’s Medical Center. We included EV infected children with and without neurological symptoms. High-throughput m(6)A-RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq analysis were used to evaluate the m6A RNA methylation and transcript expression of cerebrospinal fluid samples. The functional annotation and pathways of differentially methylated m6A genes with synchronously differential expression were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Seven patients were enrolled in the control group, and 13 cases were in the neurological symptoms (NS) group. A total of 3472 differentially expressed genes and 957 m6A modified genes were identified. A conjoint analysis of MeRIP-seq and RNA-seq data found 1064 genes with significant changes in both the m6A modifications and mRNA levels. The different m6A RNA methylation was increased in the transcriptome’s CDS regions but decreased in both the 3′UTRs and stop codon among the NS group. Functional annotation like the “oxidative phosphorylation” gene pathway, “Parkinson’s disease” and GO terms like “respiratory electron transport chain,” “cellular metabolic process,” and “oxidation-reduction process” was enriched in symptomatic patients. Our study elucidated the changes of RNA m6A methylation patterns and related cellular functions and signaling pathways in EV patients with neurologic symptoms.
Collapse
Affiliation(s)
- Danping Zhu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongling Song
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dandan Hu
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Suyun Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guangming Liu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
71
|
Schneider SA, Hennig A, Martino D. Relationship between COVID-19 and movement disorders: A narrative review. Eur J Neurol 2021; 29:1243-1253. [PMID: 34918437 DOI: 10.1111/ene.15217] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The scientific literature on COVID-19 is increasingly growing. METHODS In this paper, we review the literature on movement disorders in the context of the COVID-19 pandemic. RESULTS First, there are a variety of transient movement disorders that may manifest in the acute phase of COVID-19, most often myoclonus, with more than 50 patients described in the literature. New onset parkinsonism, chorea, and tic-like behaviours have also been reported. Movement disorders as a side effect after COVID-19 vaccination are rare, occurring with a frequency of 0.00002-0.0002 depending on the product used, mostly manifesting with tremor. Current evidence for potential long-term manifestations, for example, long COVID parkinsonism, is separately discussed. Second, the pandemic has also had an impact on patients with pre-existing movement disorder syndromes, with negative effects on clinical status and overall well-being, and reduced access to medication and health care. In many parts, the pandemic has led to reorganization of the medical system, including the development of new digital solutions. The movement disorder-related evidence for this is reviewed and discussed. CONCLUSIONS The pandemic and the associated preventive measures have had a negative impact on the clinical status, access to health care, and overall well-being of patients with pre-existing movement disorders.
Collapse
Affiliation(s)
| | - Anita Hennig
- Department of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
72
|
Reduced Immunosenescence of Peripheral Blood T Cells in Parkinson's Disease with CMV Infection Background. Int J Mol Sci 2021; 22:ijms222313119. [PMID: 34884936 PMCID: PMC8658620 DOI: 10.3390/ijms222313119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson’s disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56− T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56− T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.
Collapse
|
73
|
Bantle CM, Rocha SM, French CT, Phillips AT, Tran K, Olson KE, Bass TA, Aboellail T, Smeyne RJ, Tjalkens RB. Astrocyte inflammatory signaling mediates α-synuclein aggregation and dopaminergic neuronal loss following viral encephalitis. Exp Neurol 2021; 346:113845. [PMID: 34454938 PMCID: PMC9535678 DOI: 10.1016/j.expneurol.2021.113845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Viral infection of the central nervous system (CNS) can cause lasting neurological decline in surviving patients and can present with symptoms resembling Parkinson's disease (PD). The mechanisms underlying postencephalitic parkinsonism remain unclear but are thought to involve increased innate inflammatory signaling in glial cells, resulting in persistent neuroinflammation. We therefore studied the role of glial cells in regulating neuropathology in postencephalitic parkinsonism by studying the involvement of astrocytes in loss of dopaminergic neurons and aggregation of α-synuclein protein following infection with western equine encephalitis virus (WEEV). Infections were conducted in both wildtype mice and in transgenic mice lacking NFκB inflammatory signaling in astrocytes. For 2 months following WEEV infection, we analyzed glial activation, neuronal loss and protein aggregation across multiple brain regions, including the substantia nigra pars compacta (SNpc). These data revealed that WEEV induces loss of SNpc dopaminergic neurons, persistent activation of microglia and astrocytes that precipitates widespread aggregation of α-synuclein in the brain of C57BL/6 mice. Microgliosis and macrophage infiltration occurred prior to activation of astrocytes and was followed by opsonization of ⍺-synuclein protein aggregates in the cortex, hippocampus and midbrain by the complement protein, C3. Astrocyte-specific NFκB knockout mice had reduced gliosis, α-synuclein aggregate formation and neuronal loss. These data suggest that astrocytes play a critical role in initiating PD-like pathology following encephalitic infection with WEEV through innate immune inflammatory pathways that damage dopaminergic neurons, possibly by hindering clearance of ⍺-synuclein aggregates. Inhibiting glial inflammatory responses could therefore represent a potential therapy strategy for viral parkinsonism.
Collapse
Affiliation(s)
- Collin M Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Savannah M Rocha
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - C Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Aaron T Phillips
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kenneth E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Todd A Bass
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Richard J Smeyne
- Jefferson Comprehensive Parkinson's Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America.
| |
Collapse
|
74
|
Ayele BA, Demissie H, Awraris M, Amogne W, Shalash A, Ali K, Zenebe Y, Tafesse A, Venkatasubba Rao CP. SARS-COV-2 induced Parkinsonism: The first case from the sub-Saharan Africa. Clin Park Relat Disord 2021; 5:100116. [PMID: 34786554 PMCID: PMC8582125 DOI: 10.1016/j.prdoa.2021.100116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/08/2021] [Accepted: 10/30/2021] [Indexed: 12/05/2022] Open
Affiliation(s)
- Biniyam A. Ayele
- Department of Neurology, Addis Ababa University, PoBox 6396, Liberia Street, Addis Ababa, Ethiopia
| | - Hanna Demissie
- Department of Neurology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meron Awraris
- Department of Neurology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- Department of Internal Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ali Shalash
- Department of Neurology, Ain Shams University, Cairo, Egypt
| | - Kemal Ali
- Department of Neurology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yared Zenebe
- Department of Neurology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abenet Tafesse
- Department of Neurology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Chethan P. Venkatasubba Rao
- Department of Neurology and Neurosurgery, Vascular Neurology and Neurocritical Care, Baylor College of Medicine, USA
| |
Collapse
|
75
|
Onisiforou A, Spyrou GM. Identification of viral-mediated pathogenic mechanisms in neurodegenerative diseases using network-based approaches. Brief Bioinform 2021; 22:bbab141. [PMID: 34237135 PMCID: PMC8574625 DOI: 10.1093/bib/bbab141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
During the course of a viral infection, virus-host protein-protein interactions (PPIs) play a critical role in allowing viruses to replicate and survive within the host. These interspecies molecular interactions can lead to viral-mediated perturbations of the human interactome causing the generation of various complex diseases. Evidences suggest that viral-mediated perturbations are a possible pathogenic etiology in several neurodegenerative diseases (NDs). These diseases are characterized by chronic progressive degeneration of neurons, and current therapeutic approaches provide only mild symptomatic relief; therefore, there is unmet need for the discovery of novel therapeutic interventions. In this paper, we initially review databases and tools that can be utilized to investigate viral-mediated perturbations in complex NDs using network-based analysis by examining the interaction between the ND-related PPI disease networks and the virus-host PPI network. Afterwards, we present our theoretical-driven integrative network-based bioinformatics approach that accounts for pathogen-genes-disease-related PPIs with the aim to identify viral-mediated pathogenic mechanisms focusing in multiple sclerosis (MS) disease. We identified seven high centrality nodes that can act as disease communicator nodes and exert systemic effects in the MS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways network. In addition, we identified 12 KEGG pathways, 5 Reactome pathways and 52 Gene Ontology Immune System Processes by which 80 viral proteins from eight viral species might exert viral-mediated pathogenic mechanisms in MS. Finally, our analysis highlighted the Th17 differentiation pathway, a disease communicator node and part of the 12 underlined KEGG pathways, as a key viral-mediated pathogenic mechanism and a possible therapeutic target for MS disease.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and the Cyprus School of Molecular Medicine, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and professor at the Cyprus School of Molecular Medicine, Cyprus
| |
Collapse
|
76
|
Park SJ, Jin U, Park SM. Interaction between coxsackievirus B3 infection and α-synuclein in models of Parkinson's disease. PLoS Pathog 2021; 17:e1010018. [PMID: 34695168 PMCID: PMC8568191 DOI: 10.1371/journal.ppat.1010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/04/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. PD is pathologically characterized by the death of midbrain dopaminergic neurons and the accumulation of intracellular protein inclusions called Lewy bodies or Lewy neurites. The major component of Lewy bodies is α-synuclein (α-syn). Prion-like propagation of α-syn has emerged as a novel mechanism in the progression of PD. This mechanism has been investigated to reveal factors that initiate Lewy pathology with the aim of preventing further progression of PD. Here, we demonstrate that coxsackievirus B3 (CVB3) infection can induce α-syn-associated inclusion body formation in neurons which might act as a trigger for PD. The inclusion bodies contained clustered organelles, including damaged mitochondria with α-syn fibrils. α-Syn overexpression accelerated inclusion body formation and induced more concentric inclusion bodies. In CVB3-infected mice brains, α-syn aggregates were observed in the cell body of midbrain neurons. Additionally, α-syn overexpression favored CVB3 replication and related cytotoxicity. α-Syn transgenic mice had a low survival rate, enhanced CVB3 replication, and exhibited neuronal cell death, including that of dopaminergic neurons in the substantia nigra. These results may be attributed to distinct autophagy-related pathways engaged by CVB3 and α-syn. This study elucidated the mechanism of Lewy body formation and the pathogenesis of PD associated with CVB3 infection. Prion-like propagation of α-syn has emerged as a novel mechanism involved in the progression of Parkinson’s disease (PD). This process has been extensively investigated to identify the factors that initiate Lewy pathology to prevent further progression of PD. Nevertheless, initial triggers of Lewy body (LB) formation leading to the acceleration of the process still remain elusive. Infection is increasingly recognized as a risk factor for PD. In particular, several viruses have been reported to be associated with both acute and chronic parkinsonism. It has been proposed that peripheral infections including viral infections accompanying inflammation may trigger PD. In the present study, we explored whether coxsackievirus B3 (CVB3) interacts with α-syn to induce aggregation and further Lewy body formation, thereby acting as a trigger and whether α-syn affects the replication of coxsackievirus. It is important to identify the factors that initiate Lewy pathology to understand the pathogenesis of PD. Our findings clarify the mechanism of LB formation and the pathogenesis of PD associated with CVB3 infection.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
- * E-mail:
| |
Collapse
|
77
|
Behl T, Kumar S, Sehgal A, Singh S, Sharma N, Chirgurupati S, Aldubayan M, Alhowail A, Bhatia S, Bungau S. Linking COVID-19 and Parkinson's disease: Targeting the role of Vitamin-D. Biochem Biophys Res Commun 2021; 583:14-21. [PMID: 34715496 PMCID: PMC8524705 DOI: 10.1016/j.bbrc.2021.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemic has a major effect on world health, particularly on individuals suffering from severe diseases or old aged persons. Various case studies revealed that COVID-19 might increase the progression of Parkinson's disease (PD). Coxsackievirus, dengue virus Epstein-Barr virus, hepatitis C virus, Japanese encephalitis, Western equine encephalomyelitis virus, West Nile virus, and human immunodeficiency virus have all been linked to the development of transient or permanent parkinsonism, owing to the induction of neuroinflammation/hypoxic brain injury with structural/functional damage within the basal ganglia. Coronavirus mainly infects the alveolar cells and may lead to acute respiratory distress syndrome. SARS-CoV-2 invades cells via the ACE2 receptor, which is widely expressed in the central nervous system, where the virus may precipitate or accelerate dementia. SARS-CoV-2 could enter the central nervous system directly by the olfactory/vagus nerves or through the bloodstream. Here, we talked about the importance of this viral infection in terms of the CNS as well as its implications for people with Parkinson's disease; anosmia & olfaction-related impairments in COVID-19 & PD patients. And, also discussed the role of vitamin D to sustain the progression of Parkinson's disease and the COVID-19; regular vitamin D3 consumption of 2000-5000 IU/day may reduce the risk and severity of COVID-19 in parkinsonian patients.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sridevi Chirgurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Understanding the pathophysiology of COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that causes the disease has demonstrated the complexity of acute respiratory viruses that can cause neurologic manifestations. This article describes the most common respiratory viruses that have neurologic manifestations, with a focus on SARS-CoV-2 and COVID-19. RECENT FINDINGS In vitro and in vivo studies have better elucidated the neurotropism of various respiratory viruses. Understanding host cell receptors that mediate viral binding and entry not only demonstrates how viruses enter host cells but also provides possible mechanisms for therapeutic interventions. Elucidation of SARS-CoV-2 binding and fusion with host cells expressing the angiotensin-converting enzyme 2 (ACE2) receptor may also provide greater insights into its systemic and neurologic sequelae. Respiratory virus neurotropism and collateral injury due to concurrent inflammatory cascades result in various neurologic pathologies, including Guillain-Barré syndrome, encephalopathy, encephalitis, ischemic stroke, intracerebral hemorrhage, and seizures. SUMMARY Numerous respiratory viruses can infect the cells of the peripheral and central nervous systems, elicit inflammatory cascades, and directly and indirectly cause various neurologic manifestations. Patients with neurologic manifestations from respiratory viruses are often critically ill and require mechanical ventilation. Neurologists and neurointensivists should be familiar with the common neurologic manifestations of respiratory viruses and the unique and still-evolving sequelae associated with COVID-19.
Collapse
|
79
|
Bologna M, Truong D, Jankovic J. The etiopathogenetic and pathophysiological spectrum of parkinsonism. J Neurol Sci 2021; 433:120012. [PMID: 34642022 DOI: 10.1016/j.jns.2021.120012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia, rigidity, and tremor. Parkinsonism is a common manifestation of Parkinson's disease and other neurodegenerative diseases referred to as atypical parkinsonism. However, a growing body of clinical and scientific evidence indicates that parkinsonism may be part of the phenomenological spectrum of various neurological conditions to a greater degree than expected by chance. These include neurodegenerative conditions not traditionally classified as movement disorders, e.g., dementia and motor neuron diseases. In addition, parkinsonism may characterize a wide range of central nervous system diseases, e.g., autoimmune diseases, infectious diseases, cerebrospinal fluid disorders (e.g., normal pressure hydrocephalus), cerebrovascular diseases, and other conditions. Several pathophysiological mechanisms have been identified in Parkinson's disease and atypical parkinsonism. Conversely, it is not entirely clear to what extent the same mechanisms and key brain areas are also involved in parkinsonism due to a broader etiopathogenetic spectrum. We aimed to provide a comprehensive and up-to-date overview of the various etiopathogenetic and pathophysiological mechanisms of parkinsonism in a wide spectrum of neurological conditions, with a particular focus on the role of the basal ganglia involvement. The paper also highlights potential implications in the diagnostic approach and therapeutic management of patients. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniel Truong
- Truong Neuroscience Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA; Department of Neurosciences, UC Riverside, Riverside, CA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
80
|
Renner H, Schöler HR, Bruder JM. Combining Automated Organoid Workflows With Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond. Mov Disord 2021; 36:2745-2762. [PMID: 34498298 DOI: 10.1002/mds.28775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Despite decades of research and the development of various disease model systems, there is no curative treatment. This could be due to current model systems, including cell culture and animal models, not adequately recapitulating human PD etiology. More complex human disease models, including human midbrain organoids, are maturing technologies that increasingly enable the strategic incorporation of the missing components needed to model PD in vitro. The resulting organoid-based biological complexity provides new opportunities and challenges in data analysis of rich multimodal data sets. Emerging artificial intelligence (AI) capabilities can take advantage of large, broad data sets and even correlate results across disciplines. Current organoid technologies no longer lack the prerequisites for large-scale high-throughput screening (HTS) and can generate complex yet reproducible data suitable for AI-based data mining. We have recently developed a fully scalable and HTS-compatible workflow for the generation, maintenance, and analysis of three-dimensional (3D) microtissues mimicking key characteristics of the human midbrain (called "automated midbrain organoids," AMOs). AMOs build a reproducible, scalable foundation for creating next-generation 3D models of human neural disease that can fuel mechanism-agnostic phenotypic drug discovery in human in vitro PD models and beyond. Here, we explore the opportunities and challenges resulting from the convergence of organoid HTS and AI-driven data analytics and outline potential future avenues toward the discovery of novel mechanisms and drugs in PD research. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Henrik Renner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
81
|
Kumar J, Makheja K, Rahul F, Kumar S, Kumar M, Chand M, Kammawal Y, Khalid D, Jahangir M, Bachani P. Long-Term Neurological Impact of COVID-19. Cureus 2021; 13:e18131. [PMID: 34692340 PMCID: PMC8528473 DOI: 10.7759/cureus.18131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Recent research has observed the ability of coronavirus disease 2019 (COVID-19) to spread in the brain from the respiratory system. The associated neurological disorder includes encephalopathies, inflammatory syndromes, stroke, peripheral neuropathies, and various other central nervous system disorders. This study aims to highlight the long-term neurological sequelae in patients with COVID-19 disease. METHODS This long-term study was carried out in the COVID-19 unit of a tertiary care hospital in Pakistan from July 2020 to July 2021. After obtaining informed consent, we enrolled 1000 patients who recovered from COVID-19 and were discharged. The participants were followed up after 30 and 90 days. RESULTS At the time of enrollment, there were 602 (60.2%) males and 398 (39.8%) females. The most common neurological symptom on 30-day follow-up was headache (8.8%), followed by insomnia. The most common neurological symptom on day 90 follow-up was insomnia (5.07%), followed by an altered sense of smell (3.3%). CONCLUSION COVID-19 tends to produce a wide range of neurological symptoms, ranging from headache to anosmia to increased risk of stroke, that complicates clinical management. Potential neurologic effects and drug interactions have been reported secondary to the medications used to treat COVID-19. In light of the aforementioned facts, COVID-19 could potentially have a long-term effect on the brain. Therefore, it is important that the clinicians must be aware of the potential neurologic complications. Lastly, proper follow-up is recommended that would aid in timely recognition and management of the neurological disorder.
Collapse
Affiliation(s)
- Jitesh Kumar
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Kainat Makheja
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Fnu Rahul
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Manoj Kumar
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Momal Chand
- Pathology, Ascension St. John Hospital, Detroit, USA
| | - Yasir Kammawal
- Internal Medicine, Baqai Medical University, Karachi, PAK
| | - Dua Khalid
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Maha Jahangir
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Parkash Bachani
- Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| |
Collapse
|
82
|
Rethinavel HS, Ravichandran S, Radhakrishnan RK, Kandasamy M. COVID-19 and Parkinson's disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia. J Chem Neuroanat 2021; 115:101965. [PMID: 33989761 PMCID: PMC8111887 DOI: 10.1016/j.jchemneu.2021.101965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
Anosmia, a neuropathogenic condition of loss of smell, has been recognized as a key pathogenic hallmark of the current pandemic SARS-CoV-2 infection responsible for COVID-19. While the anosmia resulting from olfactory bulb (OB) pathology is the prominent clinical characteristic of Parkinson's disease (PD), SARS-CoV-2 infection has been predicted as a potential risk factor for developing Parkinsonism-related symptoms in a significant portion of COVID-19 patients and survivors. SARS-CoV-2 infection appears to alter the dopamine system and induce the loss of dopaminergic neurons that have been known to be the cause of PD. However, the underlying biological basis of anosmia and the potential link between COVID-19 and PD remains obscure. Ample experimental studies in rodents suggest that the occurrence of neural stem cell (NSC) mediated neurogenesis in the olfactory epithelium (OE) and OB is important for olfaction. Though the occurrence of neurogenesis in the human forebrain has been a subject of debate, considerable experimental evidence strongly supports the incidence of neurogenesis in the human OB in adulthood. To note, various viral infections and neuropathogenic conditions including PD with olfactory dysfunctions have been characterized by impaired neurogenesis in OB and OE. Therefore, this article describes and examines the recent reports on SARS-CoV-2 mediated OB dysfunctions and defects in the dopaminergic system responsible for PD. Further, the article emphasizes that COVID-19 and PD associated anosmia could result from the regenerative failure in the replenishment of the dopaminergic neurons in OB and olfactory sensory neurons in OE.
Collapse
Affiliation(s)
- Harini Sri Rethinavel
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, 110002, India.
| |
Collapse
|
83
|
Sinha S, Mittal S, Roy R. Parkinson's Disease and the COVID-19 Pandemic: A Review Article on the Association between SARS-CoV-2 and α-Synucleinopathy. J Mov Disord 2021; 14:184-192. [PMID: 34315206 PMCID: PMC8490193 DOI: 10.14802/jmd.21046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
There is an extensive debate on the neurological consequences of 2019 novel coronavirus disease (COVID-19) and its impact on Parkinson's disease (PD) patients, which seems to puzzle neurologists. Links between viral infections and PD have long been suspected and studied, but the exact relationship remains elusive. Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the brain through multiple routes and has a direct impact on the brain, cumulative damage occurs due to the activation of proinflammatory cytokines and chemokines. SARS-CoV-2 seems to aggravate PD due to its effects on α-synuclein, mitochondrial dysfunction, and dopamine depletion. A few studies have even highlighted the higher vulnerability of PD patients to COVID-19. The sudden dramatic change in lifestyle caused by the pandemic and the widespread lockdowns that were implemented have added to the hidden sorrows of PD patients, as they already have a compromised mechanism for coping with stress. This review summarizes insights from basic science and the clinical effect of SARS-CoV-2 infection on the human brain, with a specific focus on PD.
Collapse
Affiliation(s)
- Smriti Sinha
- Department of Physiology, Andhra Medical College, Visakhapatnam, India
| | - Swati Mittal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, India
| | - Rupali Roy
- Ministry of Health and Family Welfare, New Delhi, India
| |
Collapse
|
84
|
No Metagenomic Evidence of Causative Viral Pathogens in Postencephalitic Parkinsonism Following Encephalitis Lethargica. Microorganisms 2021; 9:microorganisms9081716. [PMID: 34442795 PMCID: PMC8398509 DOI: 10.3390/microorganisms9081716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Postencephalitic parkinsonism (PEP) is a disease of unknown etiology and pathophysiology following encephalitis lethargica (EL), an acute-onset polioencephalitis of cryptic cause in the 1920s. PEP is a tauopathy with multisystem neuronal loss and gliosis, clinically characterized by bradykinesia, rigidity, rest tremor, and oculogyric crises. Though a viral cause of EL is likely, past polymerase chain reaction-based investigations in the etiology of both PEP and EL were negative. PEP might be caused directly by an unknown viral pathogen or the consequence of a post-infectious immunopathology. The development of metagenomic next-generation sequencing in conjunction with bioinformatic techniques has generated a broad-range tool for the detection of unknown pathogens in the recent past. Retrospective identification and characterization of pathogens responsible for past infectious diseases can be successfully performed with formalin-fixed paraffin-embedded (FFPE) tissue samples. In this study, we analyzed 24 FFPE brain samples from six patients with PEP by unbiased metagenomic next-generation sequencing. Our results show that no evidence for the presence of a specific or putative (novel) viral pathogen was found, suggesting a likely post-infectious immune-mediated etiology of PEP.
Collapse
|
85
|
Valerio F, Whitehouse DP, Menon DK, Newcombe VFJ. The neurological sequelae of pandemics and epidemics. J Neurol 2021; 268:2629-2655. [PMID: 33106890 PMCID: PMC7587542 DOI: 10.1007/s00415-020-10261-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Neurological manifestations in pandemics frequently cause short and long-term consequences which are frequently overlooked. Despite advances in the treatment of infectious diseases, nervous system involvement remains a challenge, with limited treatments often available. The under-recognition of neurological manifestations may lead to an increase in the burden of acute disease as well as secondary complications with long-term consequences. Nervous system infection or dysfunction during pandemics is common and its enduring consequences, especially among vulnerable populations, are frequently forgotten. An improved understanding the possible mechanisms of neurological damage during epidemics, and increased recognition of the possible manifestations is fundamental to bring insights when dealing with future outbreaks. To reverse this gap in knowledge, we reviewed all the pandemics, large and important epidemics of human history in which neurological manifestations are evident, and described the possible physiological processes that leads to the adverse sequelae caused or triggered by those pathogens.
Collapse
Affiliation(s)
- Fernanda Valerio
- University Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Box 93, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Daniel P Whitehouse
- University Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Box 93, Hills Road, Cambridge, CB2 0QQ, UK
| | - David K Menon
- University Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Box 93, Hills Road, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Virginia F J Newcombe
- University Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Box 93, Hills Road, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
86
|
Cerebral Organoids Derived from a Parkinson's Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson's Patient. Pathogens 2021; 10:pathogens10070913. [PMID: 34358063 PMCID: PMC8308834 DOI: 10.3390/pathogens10070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arboviruses of medical and veterinary significance have been identified on all seven continents, with every human and animal population at risk for exposure. Like arboviruses, chronic neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, are found wherever there are humans. Significant differences in baseline gene and protein expression have been determined between human-induced pluripotent stem cell lines derived from non-Parkinson’s disease individuals and from individuals with Parkinson’s disease. It was hypothesized that these inherent differences could impact cerebral organoid responses to viral infection. (2) Methods: In this study, cerebral organoids from a non-Parkinson’s and Parkinson’s patient were infected with Chikungunya virus and observed for two weeks. (3) Results: Parkinson’s organoids lost mass and exhibited a differential antiviral response different from non-Parkinson’s organoids. Neurotransmission data from both infected non-Parkinson’s and Parkinson’s organoids had dysregulation of IL-1, IL-10, and IL-6. These cytokines are associated with mood and could be contributing to persistent depression seen in patients following CHIKV infection. Both organoid types had increased expression of CXCL10, which is linked to demyelination. (4) Conclusions: The differential antiviral response of Parkinson’s organoids compared with non-Parkinson’s organoids highlights the need for more research in neurotropic infections in a neurologically compromised host.
Collapse
|
87
|
Tan LY, Yeo XY, Bae HG, Lee DPS, Ho RC, Kim JE, Jo DG, Jung S. Association of Gut Microbiome Dysbiosis with Neurodegeneration: Can Gut Microbe-Modifying Diet Prevent or Alleviate the Symptoms of Neurodegenerative Diseases? Life (Basel) 2021; 11:698. [PMID: 34357070 PMCID: PMC8305650 DOI: 10.3390/life11070698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
The central nervous system was classically perceived as anatomically and functionally independent from the other visceral organs. But in recent decades, compelling evidence has led the scientific community to place a greater emphasis on the role of gut microbes on the brain. Pathological observations and early gastrointestinal symptoms highlighted that gut dysbiosis likely precedes the onset of cognitive deficits in Alzheimer's disease (AD) and Parkinson's disease (PD) patients. The delicate balance in the number and functions of pathogenic microbes and alternative probiotic populations is critical in the modulation of systemic inflammation and neuronal health. However, there is limited success in restoring healthy microbial biodiversity in AD and PD patients with general probiotics interventions and fecal microbial therapies. Fortunately, the gut microflora is susceptible to long-term extrinsic influences such as lifestyle and dietary choices, providing opportunities for treatment through comparatively individual-specific control of human behavior. In this review, we examine the impact of restrictive diets on the gut microbiome populations associated with AD and PD. The overall evidence presented supports that gut dysbiosis is a plausible prelude to disease onset, and early dietary interventions are likely beneficial for the prevention and treatment of progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Delia Pei Shan Lee
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
88
|
Ghosh R, Biswas U, Roy D, Pandit A, Lahiri D, Ray BK, Benito‐León J. De Novo Movement Disorders and COVID-19: Exploring the Interface. Mov Disord Clin Pract 2021; 8:669-680. [PMID: 34230886 PMCID: PMC8250792 DOI: 10.1002/mdc3.13224] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Background Neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being widely documented. However, movement disorders in the setting of 2019 coronavirus infectious disease (COVID-19) have been a strikingly less discussed topic. Objectives To summarize available pieces of evidence documenting de novo movement disorders in COVID-19. Methods We used the existing PRISMA consensus statement. Data were collected from PubMed, EMBASE, Web of Science, and Scopus databases up to the 29th January, 2021, using pre-specified searching strategies. Results Twenty-two articles were selected for the qualitative synthesis. Among these, a total of 52 patients with de novo movement disorders were reported. Most of these had myoclonus, ataxia, tremor or a combination of these, while three had parkinsonism and one a functional disorder. In general, they were managed successfully by intravenous immunoglobulin or steroids. Some cases, primarily with myoclonus, could be ascribed to medication exposures, metabolic disturbances or severe hypoxia, meanwhile others to a post-or para-infectious immune-mediated mechanism. SARS-CoV-2 could also invade the central nervous system, through vascular or retrograde axonal pathways, and cause movement disorders by two primary mechanisms. Firstly, through the downregulation of angiotensin-converting enzyme 2 receptors, resulting in the imbalance of dopamine and norepinephrine; and secondly, the virus could cause cellular vacuolation, demyelination and gliosis, leading to encephalitis and associated movement disorders. Conclusion De novo movement disorders are scantly reported in COVID-19. The links between SARS-CoV-2 and movement disorders are not yet established. However, we should closely monitor COVID-19 survivors for the possibility of post-COVID movement disorders.
Collapse
Affiliation(s)
- Ritwik Ghosh
- Department of General MedicineBurdwan Medical College & HospitalBurdwanIndia
| | - Uttam Biswas
- Department of General MedicineBurdwan Medical College & HospitalBurdwanIndia
| | - Dipayan Roy
- Department of BiochemistryAll India Institute of Medical Sciences (AIIMS)JodhpurIndia
- Indian Institute of Technology (IIT)MadrasIndia
| | - Alak Pandit
- Department of NeuromedicineBangur Institute of NeurosciencesKolkataIndia
| | - Durjoy Lahiri
- Department of NeuromedicineBangur Institute of NeurosciencesKolkataIndia
| | - Biman Kanti Ray
- Department of NeuromedicineBangur Institute of NeurosciencesKolkataIndia
| | - Julián Benito‐León
- Department of NeurologyUniversity Hospital “12 de Octubre”MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineComplutense UniversityMadridSpain
| |
Collapse
|
89
|
Conte C. Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. Int J Mol Sci 2021; 22:7135. [PMID: 34281186 PMCID: PMC8269350 DOI: 10.3390/ijms22137135] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain, depletion of dopamine (DA), and impaired nigrostriatal pathway. The pathological hallmark of PD includes the aggregation and accumulation α-synuclein (α-SYN). Although the precise mechanisms underlying the pathogenesis of PD are still unknown, the activation of toll-like receptors (TLRs), mainly TLR4 and subsequent neuroinflammatory immune response, seem to play a significant role. Mounting evidence suggests that viral infection can concur with the precipitation of PD or parkinsonism. The recently identified coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of ongoing pandemic coronavirus disease 2019 (COVID-19), responsible for 160 million cases that led to the death of more than three million individuals worldwide. Studies have reported that many patients with COVID-19 display several neurological manifestations, including acute cerebrovascular diseases, conscious disturbance, and typical motor and non-motor symptoms accompanying PD. In this review, the neurotropic potential of SARS-CoV-2 and its possible involvement in the pathogenesis of PD are discussed. Specifically, the involvement of the TLR4 signaling pathway in mediating the virus entry, as well as the massive immune and inflammatory response in COVID-19 patients is explored. The binding of SARS-CoV-2 spike (S) protein to TLR4 and the possible interaction between SARS-CoV-2 and α-SYN as contributing factors to neuronal death are also considered.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, via Fabretti, 06123 Perugia, Italy
| |
Collapse
|
90
|
Awogbindin IO, Ben-Azu B, Olusola BA, Akinluyi ET, Adeniyi PA, Di Paolo T, Tremblay MÈ. Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Front Cell Neurosci 2021; 15:670298. [PMID: 34211370 PMCID: PMC8240959 DOI: 10.3389/fncel.2021.670298] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, humankind has been experiencing a ravaging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, the second coronavirus pandemic in a decade after the Middle East respiratory syndrome coronavirus (MERS-CoV) disease in 2012. Infection with SARS-CoV-2 results in Coronavirus disease 2019 (COVID-19), which is responsible for over 3.1 million deaths worldwide. With the emergence of a second and a third wave of infection across the globe, and the rising record of multiple reinfections and relapses, SARS-CoV-2 infection shows no sign of abating. In addition, it is now evident that SARS-CoV-2 infection presents with neurological symptoms that include early hyposmia, ischemic stroke, meningitis, delirium and falls, even after viral clearance. This may suggest chronic or permanent changes to the neurons, glial cells, and/or brain vasculature in response to SARS-CoV-2 infection or COVID-19. Within the central nervous system (CNS), microglia act as the central housekeepers against altered homeostatic states, including during viral neurotropic infections. In this review, we highlight microglial responses to viral neuroinfections, especially those with a similar genetic composition and route of entry as SARS-CoV-2. As the primary sensor of viral infection in the CNS, we describe the pathogenic and neuroinvasive mechanisms of RNA viruses and SARS-CoV-2 vis-à-vis the microglial means of viral recognition. Responses of microglia which may culminate in viral clearance or immunopathology are also covered. Lastly, we further discuss the implication of SARS-CoV-2 CNS invasion on microglial plasticity and associated long-term neurodegeneration. As such, this review provides insight into some of the mechanisms by which microglia could contribute to the pathophysiology of post-COVID-19 neurological sequelae and disorders, including Parkinson's disease, which could be pervasive in the coming years given the growing numbers of infected and re-infected individuals globally.
Collapse
Affiliation(s)
- Ifeoluwa O. Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Babatunde A. Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth T. Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Philip A. Adeniyi
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Therese Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
91
|
Estrada E. Cascading from SARS-CoV-2 to Parkinson's Disease through Protein-Protein Interactions. Viruses 2021; 13:897. [PMID: 34066091 PMCID: PMC8150712 DOI: 10.3390/v13050897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Extensive extrapulmonary damages in a dozen of organs/systems, including the central nervous system (CNS), are reported in patients of the coronavirus disease 2019 (COVID-19). Three cases of Parkinson's disease (PD) have been reported as a direct consequence of COVID-19. In spite of the scarce data for establishing a definitive link between COVID-19 and PD, some hypotheses have been proposed to explain the cases reported. They, however, do not fit well with the clinical findings reported for COVID-19 patients, in general, and for the PD cases reported, in particular. Given the importance of this potential connection, we present here a molecular-level mechanistic hypothesis that explains well these findings and will serve to explore the potential CNS damage in COVID-19 patients. The model explaining the cascade effects from COVID-19 to CNS is developed by using bioinformatic tools. It includes the post-translational modification of host proteins in the lungs by viral proteins, the transport of modified host proteins via exosomes out the lungs, and the disruption of protein-protein interaction in the CNS by these modified host proteins. Our hypothesis is supported by finding 44 proteins significantly expressed in the CNS which are associated with PD and whose interactions can be perturbed by 24 host proteins significantly expressed in the lungs. These 24 perturbators are found to interact with viral proteins and to form part of the cargoes of exosomes in human tissues. The joint set of perturbators and PD-vulnerable proteins form a tightly connected network with significantly more connections than expected by selecting a random cluster of proteins of similar size from the human proteome. The molecular-level mechanistic hypothesis presented here provides several routes for the cascading of effects from the lungs of COVID-19 patients to PD. In particular, the disruption of autophagy/ubiquitination processes appears as an important mechanism that triggers the generation of large amounts of exosomes containing perturbators in their cargo, which would insult several PD-vulnerable proteins, potentially triggering Parkinsonism in COVID-19 patients.
Collapse
Affiliation(s)
- Ernesto Estrada
- Institute of Mathematics and Applications, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
92
|
Back to the future: lessons from past viral infections and the link with Parkinson's disease. Neuronal Signal 2021; 5:NS20200051. [PMID: 33953960 PMCID: PMC8058659 DOI: 10.1042/ns20200051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
During the current coronavirus disease 2019 (COVID-19) pandemic, there has been noticeable increase in the reporting of neurological symptoms in patients. There is still uncertainty around the significance and long-term consequence of these symptoms. There are also many outstanding questions on whether the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) can directly infect the central nervous system (CNS). Given the long association between viral infections with neurodegenerative conditions such as Parkinson's disease (PD), it seems timely to review this literature again in the context of the COVID-19 pandemic and to glean some useful information from studies on similar viruses. In this commentary, we will consider the current knowledge on viral infections in the brain. In addition, we review the link between viral infection and neurodegeneration in PD, and review the recent literature on SARS infections, the potential link with PD and the potential areas of study in the future.
Collapse
|
93
|
Lerner A. The intestinal luminal sources of α-synuclein: a gastroenterologist perspective. Nutr Rev 2021; 80:282-293. [PMID: 33942062 DOI: 10.1093/nutrit/nuab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by nonmotor/motor dysfunction, midbrain dopaminergic neuronal death, and α-synuclein (aSN) deposits. The current hypothesis is that aSN accumulates in the enteric nervous system to reach the brain. However, invertebrate, vertebrate, and nutritional sources of aSN reach the luminal compartment. Submitted to local amyloidogenic forces, the oligomerized proteins' cargo can be sensed and sampled by a specialized mucosal cell to be transmitted to the adjacent enteric nervous system, starting their upward journey to the brain. The present narrative review extends the current mucosal origin of Parkinson's disease, presenting the possibility that the disease starts in the intestinal lumen. If substantiated, eliminating the nutritional sources of aSN (eg, applying a vegetarian diet) might revolutionize the currently used dopaminergic pharmacologic therapy.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
94
|
Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, Martínez-Gómez PA, Campa-Córdoba BB, Apátiga-Pérez R, Corniel-Taveras CN, Dominguez-García JDJ, Blanco-Alvarez VM, Luna-Muñoz J. Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Front Neurol 2021; 12:660087. [PMID: 33912129 PMCID: PMC8072392 DOI: 10.3389/fneur.2021.660087] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Yazmin M. Flores-Martinez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marcos M. Villegas-Rojas
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI- IPN), Mexico City, Mexico
| | - Alfredo M. León-Aguilar
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI- IPN), Mexico City, Mexico
| | - Paola A. Martínez-Gómez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B. Berenice Campa-Córdoba
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
| | - Ricardo Apátiga-Pérez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
| | - Carolin N. Corniel-Taveras
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Jesabelle de J. Dominguez-García
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
- Banco Estado de Cerebros-UNPHU, Universidad Nacional Pedro Henriquez Ureña, Santo Domingo, Dominican Republic
| |
Collapse
|
95
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
96
|
McCarty MF, Lerner A. Perspective: Low Risk of Parkinson's Disease in Quasi-Vegan Cultures May Reflect GCN2-Mediated Upregulation of Parkin. Adv Nutr 2021; 12:355-362. [PMID: 32945884 PMCID: PMC8009740 DOI: 10.1093/advances/nmaa112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction in dopaminergic neurons of the substantia nigra (SN) appears to be a key mediating feature of Parkinson's disease (PD), a complex neurodegenerative disorder of still unknown etiology. Parkin is an E3 ubiquitin ligase that promotes mitophagy of damaged depolarized mitochondria while also boosting mitochondrial biogenesis-thereby helping to maintain efficient mitochondrial function. Boosting Parkin expression in the SN with viral vectors is protective in multiple rodent models of PD. Conversely, homozygosity for inactivating mutations of Parkin results in early-onset PD. Moderate protein plant-based diets relatively low in certain essential amino acids have the potential to boost Parkin expression by activating the kinase GCN2, which in turn boosts the expression of ATF4, a factor that drives transcription of the Parkin gene. Protein-restricted diets also upregulate the expression of PINK1, a protein that binds to the outer membrane of depolarized mitochondria and then recruits and activates Parkin. This effect of protein restriction is mediated by the downregulation of the kinase activity of mammalian target of rapamycin complex 1; the latter suppresses PINK1 expression at the transcriptional level. During the 20th century, cultures in East Asia and sub-Sahara Africa consuming quasi-vegan diets were found to be at notably decreased risk of PD compared with the USA or Europe. It is proposed that such diets may provide protection from PD by boosting Parkin and PINK1 expression in the SN. Other measures that might be expected to upregulate protective mitophagy include supplemental N-acetylcysteine (precursor for hydrogen sulfide) and a diet rich in spermidine-a polyamine notably high in corn.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Research Department, Rapaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW Over 70 million people worldwide, including those with neurodegenerative disease (NDD), have been diagnosed with coronavirus disease 2019 (COVID-19) to date. We review outcomes in patients with NDD and COVID-19 and discuss the hypothesis that due to putative commonalities of neuropathogenesis, COVID-19 may unmask or trigger NDD in vulnerable individuals. RECENT FINDINGS Based on a systematic review of published literature, patients with NDD, including dementia, Parkinson's disease, and multiple sclerosis (MS) make up a significant portion of hospitalized COVID-19 patients. Such patients are likely to present with altered mental status or worsening of their preexisting neurological symptoms. Patients with NDD and poor outcomes often have high-risk comorbid conditions, including advanced age, hypertension, diabetes, obesity, and heart/lung disease. Patients with dementia including Alzheimer's disease are at higher risk for hospitalization and death, whereas those with preexisting Parkinson's disease are not. MS patients have good outcomes and disease modifying therapies do not increase the risk for severe disease. Viral infections and attendant neuroinflammation have been associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, and MS, suggesting that COVID-19 may have the potential to incite or accelerate neurodegeneration. SUMMARY Since patients with Alzheimer's disease are at higher risk for hospitalization and death in the setting of COVID-19, additional precautions and protective measures should be put in place to prevent infections and optimize management of comorbidities in this vulnerable population. Further studies are needed to determine whether COVID-19 may lead to an increased risk of developing NDD in susceptible individuals.
Collapse
Affiliation(s)
- Lindsay S McAlpine
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
98
|
Michiels E, Rousseau F, Schymkowitz J. Mechanisms and therapeutic potential of interactions between human amyloids and viruses. Cell Mol Life Sci 2021; 78:2485-2501. [PMID: 33244624 PMCID: PMC7690653 DOI: 10.1007/s00018-020-03711-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The aggregation of specific proteins and their amyloid deposition in affected tissue in disease has been studied for decades assuming a sole pathogenic role of amyloids. It is now clear that amyloids can also encode important cellular functions, one of which involves the interaction potential of amyloids with microbial pathogens, including viruses. Human expressed amyloids have been shown to act both as innate restriction molecules against viruses as well as promoting agents for viral infectivity. The underlying molecular driving forces of such amyloid-virus interactions are not completely understood. Starting from the well-described molecular mechanisms underlying amyloid formation, we here summarize three non-mutually exclusive hypotheses that have been proposed to drive amyloid-virus interactions. Viruses can indirectly drive amyloid depositions by affecting upstream molecular pathways or induce amyloid formation by a direct interaction with the viral surface or specific viral proteins. Finally, we highlight the potential of therapeutic interventions using the sequence specificity of amyloid interactions to drive viral interference.
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
99
|
Part of the Covid19 puzzle: Acute parkinsonism. Am J Emerg Med 2021; 47:333.e1-333.e3. [PMID: 33712341 PMCID: PMC7903921 DOI: 10.1016/j.ajem.2021.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinsonism developed owing to viruses is one of the important causes of secondary parkinsonism. After the Spanish flu pandemic, the increase in the number of parkinsonian cases in the long term has drawn attention on the relationship between viruses and parkinsonism. For this reason, the relationship between influenza and parkinsonism has been studied most. Nowadays in which we are experiencing the COVID-19 pandemic, scientists, based on the experiences gained from the Spanish flu pandemic, have drawn attention to the fact that the third wave of the pandemic might be parkinsonism. However, as we have reviewed in the literature, acute parkinsonism due to COVID-19 was not reported during this pandemic. Here, we present a case in which signs of acute parkinsonism developed on the 3rd day of the illness and neurological symptoms regressed with convalescent plasma treatment.
Collapse
|
100
|
Smeyne RJ, Noyce AJ, Byrne M, Savica R, Marras C. Infection and Risk of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:31-43. [PMID: 33361610 PMCID: PMC7990414 DOI: 10.3233/jpd-202279] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. Bacterial or viral infection has been proposed as a potential risk factor, and there is supporting although not entirely consistent epidemiologic and basic science evidence to support its role. Encephalitis caused by influenza has included parkinsonian features. Epidemiological evidence is most compelling for an association between PD and hepatitis C virus. Infection with Helicobacter pylori may be associated not only with PD risk but also response to levodopa. Rapidly evolving knowledge regarding the role of the microbiome also suggests a role of resident bacteria in PD risk. Biological plausibility for the role for infectious agents is supported by the known neurotropic effects of specific viruses, particular vulnerability of the substantia nigra and even the promotion of aggregation of alpha-synuclein. A common feature of implicated viruses appears to be production of high levels of cytokines and chemokines that can cross the blood-brain barrier leading to microglial activation and inflammation and ultimately neuronal cell death. Based on multiple avenues of evidence it appears likely that specific bacterial and particularly viral infections may increase vulnerability to PD. The implications of this for PD prevention requires attention and may be most relevant once preventive treatments for at-risk populations are developed.
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Matthew Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's disease, Toronto Western Hospital and the University of Toronto, Toronto, Canada
| |
Collapse
|