51
|
Moreno-Cortés ML, Gutiérrez-García AG, Guillén-Ruiz G, Romo-González T, Contreras CM. Widespread blunting of hypothalamic and amygdala-septal activity and behavior in rats with long-term hyperglycemia. Behav Brain Res 2016; 310:59-67. [PMID: 27173433 DOI: 10.1016/j.bbr.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Anxiety and depression in diabetic patients contributes to a poor prognosis, but possible causal relationships have been controversial. Anxiety, fear, and anhedonia are mediated by interactions between different deep structures of the temporal lobe (e.g., amygdala complex and hippocampus) and other forebrain-related structures (e.g., lateral septal nucleus). Connections between these structures and the hypothalamic orexinergic system are necessary for the maintenance of energy and wakefulness. However, few studies have explored the impact of long-term hyperglycemia in these structures on anxiety. We induced long-term hyperglycemia (glucose levels of ∼500mg/dl) in Wistar rats by injecting them with alloxan and simultaneously protecting them from hyperglycemia by injecting them daily with a low dose of insulin (i.e., just enough insulin to avoid death), thus maintaining hyperglycemia and ketonuria for as long as 6 weeks. Compared with controls, long-term hyperglycemic rats exhibited a significant reduction of Fos expression in the lateral septal nucleus and basolateral amygdala, but no differences were found in cerebellar regions. Orexin-A cells appeared to be inactive in the lateral hypothalamus. No differences were found in sucrose consumption or behavior in the elevated plus maze compared with the control group, but a decrease in general locomotion was observed. These data indicate a generalized blunting of the metabolic brain response, accompanied by a decrease in locomotion but no changes in hedonic- or anxiety-like behavior.
Collapse
Affiliation(s)
- M L Moreno-Cortés
- Área de Biología y Salud Integral, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - A G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Facultad de Psicología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - G Guillén-Ruiz
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - T Romo-González
- Área de Biología y Salud Integral, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - C M Contreras
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Unidad Periférica-Xalapa, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. México D.F., Mexico.
| |
Collapse
|
52
|
Impairment of synaptic development in the hippocampus of diabetic Goto-Kakizaki rats. Int J Dev Neurosci 2016; 53:58-67. [PMID: 27444810 DOI: 10.1016/j.ijdevneu.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022] Open
Abstract
Insulin receptor signaling has been shown to regulate essential aspects of CNS function such as synaptic plasticity and neuronal survival. To elucidate its roles during CNS development in vivo, we examined the synaptic and cognitive development of the spontaneously diabetic Goto-Kakizaki (GK) rats in the present study. GK rats are non-obese models of type 2 diabetes established by selective inbreeding of Wistar rats based on impaired glucose tolerance. Though they start exhibiting only moderate hyperglycemia without changes in plasma insulin levels from 3 weeks postnatally, behavioral alterations in the open-field as well as significant impairments in memory retention compared with Wistar rats were observed at 10 weeks and were worsened at 20 weeks. Alterations in insulin receptor signaling and signs of insulin resistance were detected in the GK rat hippocampus at 3 weeks, as early as in other insulin-responsive peripheral tissues. Significant reduction of an excitatory postsynaptic scaffold protein, PSD95, was found at 5w and later in the hippocampus of GK rats due to the absence of a two-fold developmental increase of this protein observed in Wistar control rats between 3 and 20w. In the GK rat hippocampus, NR2A which is a NMDA receptor subunit selectively anchored to PSD95 was also reduced. In contrast, both NR2B and its anchoring protein, SAP102, showed similar developmental profiles in Wistar and GK rats with expression peaks at 2 and 3w. The results suggest that early alterations in insulin receptor signaling in the GK rat hippocampus may affect cognitive performance by suppressing synaptic maturation.
Collapse
|
53
|
Oliveira WH, Nunes AK, França MER, Santos LA, Lós DB, Rocha SW, Barbosa KP, Rodrigues GB, Peixoto CA. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res 2016; 1644:149-60. [PMID: 27174003 DOI: 10.1016/j.brainres.2016.05.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/29/2016] [Accepted: 05/08/2016] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to analyze the action of metformin on short-term memory, glial cell activation and neuroinflammation caused by experimental diabetic encephalopathy in C57BL/6 mice. Diabetes was induced by the intraperitoneal injection of a dose of 90mg/kg of streptozotocin on two successive days. Mice with blood glucose levels ≥200dl/ml were considered diabetic and were given metformin hydrochloride at doses of 100mg/kg and 200mg/kg (by gavage, twice daily) for 21 days. On the final day of treatment, the mice underwent a T-maze test. On the 22nd day of treatment all the animals were anesthetized and euthanized. Diabetic animals treated with metformin had a higher spatial memory score. The hippocampus of the diabetic animals presented reactive gliosis, neuronal loss, NF-kB signaling activation, and high levels of IL-1 and VEGF. In addition, the T-maze test scores of these animals were low. Treatment with metformin reduced the expression of GFAP, Iba-1 (astrocyte and microglial markers) and the inflammation markers (p-IKB, IL-1 and VEGF), while enhancing p-AMPK and eNOS levels and increasing neuronal survival (Fox-1 and NeuN). Treatment with metformin also improved the spatial memory scores of diabetic animals. In conclusion, the present study showed that metformin can significantly reduce neuroinflammation and can decrease the loss of neurons in the hippocampus of diabetic animals, which can subsequently promote improvements in spatial memory.
Collapse
Affiliation(s)
- Wilma Helena Oliveira
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, PE, Brazil.
| | - Ana Karolina Nunes
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil
| | - Maria Eduarda Rocha França
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, PE, Brazil
| | - Laise Aline Santos
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil
| | - Deniele Bezerra Lós
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Laboratório de Plasticidade Neuromuscular, Universidade Federal de Pernambuco - UFPE, PE, Brazil
| | - Sura Wanessa Rocha
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil
| | | | - Gabriel Barros Rodrigues
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, PE, Brazil
| | | |
Collapse
|
54
|
Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The Effect of Diabetes Mellitus on Apoptosis in Hippocampus: Cellular and Molecular Aspects. Int J Prev Med 2016; 7:57. [PMID: 27076895 PMCID: PMC4809120 DOI: 10.4103/2008-7802.178531] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/17/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Diabetes mellitus is associated with cognitive deficits in humans and animals. These deficits are paralleled by neurophysiological and structural changes in brain. In diabetic animals, impairments of spatial learning, memory, and cognition occur in association with distinct changes in hippocampus, a key brain area for many forms of learning and memory and are particularly sensitive to changes in glucose homeostasis. However, the multifactorial pathogenesis of diabetic encephalopathy is not yet completely understood. Apoptosis plays a crucial role in diabetes-induce neuronal loss in hippocampus. Methods: The effects of diabetes on hippocampus and cognitive/behavioral dysfunctions in experimental models of diabetes are reviewed, with a focus on the negative impact on increased neuronal apoptosis and related cellular and molecular mechanisms. Results: Of all articles that were assessed, most of the experimental studies clearly showed that diabetes causes neuronal apoptosis in hippocampus through multiple mechanisms, including oxidative stress, inhibition of caspases, disturbance in expression of apoptosis regulator genes, as well as deficits in mitochondrial function. The balance between pro-apoptotic and anti-apoptotic signaling may determine the neuronal apoptotic outcome in vitro and in vivo models of experimental diabetes. Conclusions: Dissecting out the mechanisms responsible for diabetes-related changes in the hippocampal cell apoptosis helps improve treatment of impaired cognitive and memory functions in diabetic individuals.
Collapse
Affiliation(s)
- Akram Sadeghi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiary
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hejazi
- Department of Genetic Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
55
|
Fan F, Liu T, Wang X, Ren D, Liu H, Zhang P, Wang Z, Liu N, Li Q, Tu Y, Fu J. ClC-3 Expression and Its Association with Hyperglycemia Induced HT22 Hippocampal Neuronal Cell Apoptosis. J Diabetes Res 2016; 2016:2984380. [PMID: 26925421 PMCID: PMC4746354 DOI: 10.1155/2016/2984380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
Although apoptosis plays an important role in the development of Diabetic Encephalopathy (DE), the underlying molecular mechanisms remain unclear. With respect to this, the present work aims to study the variation in chloride/proton exchanger ClC-3 expression and its association with HT22 hippocampal neuronal apoptosis under hyperglycemic condition in vitro. The cells were stimulated with added 0, 5, or 25 mM glucose or mannitol for up to 72 hours before assessing the rate of ClC-3 expression, cell viability, and apoptosis. In a consecutive experiment, cells received chloride channel blocker in addition to glucose. The rate of cellular death/apoptosis and viability was measured using Flow Cytometry and MTT assay, respectively. Changes in ClC-3 expression were assessed using immunofluorescence staining and western blot analysis. The results revealed a significant increase in cellular apoptosis and reduction in viability, associated with increased ClC-3 expression in high glucose group. Osmolarity had no role to play. Addition of chloride channel blocker completely abolished this effect. Thus we conclude that, with its increased expression, ClC-3 plays a major role in hyperglycemia induced hippocampal neuronal apoptosis. To strengthen our understanding of this aforesaid association, we conducted an extensive literature search which is presented in this paper.
Collapse
Affiliation(s)
- Feiyan Fan
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Tao Liu
- Department of Dermatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Qian Li
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- *Yanyang Tu: and
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
- *Jianfang Fu:
| |
Collapse
|
56
|
Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma. EBioMedicine 2015; 3:26-42. [PMID: 26870815 PMCID: PMC4739422 DOI: 10.1016/j.ebiom.2015.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.
Collapse
Key Words
- ADMA, Asymmetric dimethylarginine
- BDNF, Brain-derived neurotrophic factor
- BW, Body weight
- Br Fat, Brown adipose tissue
- Brain
- C-X-C motif, Chemokine
- CBV, Cerebral blood volume
- CH, Cholesterol
- Cerebrovascular
- Cognitive
- Cxcl1, Ligand 1
- DG, Diacylglycerol
- Diabetes
- FFA, Free fatty acids
- GL, Glycerolipid
- GLP-1, Glucagon-like peptide 1
- GPL, Glycerophospholipid
- GlcCer, Glucosylceramide
- HFD, High fat diet
- IFNγ, Interferon-γ
- IL-10, Interleukin-10
- IL-12p70, Interleukin-12p70
- IL-6, Interleukin-6
- IR, Insulin resistance
- ITT, Insulin tolerance test
- Il-1b, Interleukin-1β
- KB, Total ketone bodies
- LFD, Low fat diet
- LPA, Lysophosphatidic acid
- MetS, Metabolic syndrome
- Metabolic syndrome
- OGTT, Oral glucose tolerance test
- Obesity
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PG, Phosphatidylglycerol
- PGP, Phosphatidylglycerolphosphate
- PI, Phosphatidylinositol
- PS, Phosphatidylserine
- Plasma
- SC Fat, Subcutaneous adipose tissue
- T1D, Type 1 Diabetes
- T2D, Type 2 Diabetes
- TG, Triglycerides
- TNFα, Tumor necrosis factor-α
- V Fat, Visceral adipose tissue
Collapse
|
57
|
Thomas J, Garg ML, Smith DW. Effects of dietary supplementation with docosahexaenoic acid (DHA) on hippocampal gene expression in streptozotocin induced diabetic C57Bl/6 mice. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2015. [DOI: 10.1016/j.jnim.2015.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
58
|
Semaming Y, Sripetchwandee J, Sa-Nguanmoo P, Pintana H, Pannangpetch P, Chattipakorn N, Chattipakorn SC. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats. Appl Physiol Nutr Metab 2015; 40:1078-81. [PMID: 26316260 DOI: 10.1139/apnm-2015-0158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.
Collapse
Affiliation(s)
- Yoswaris Semaming
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,b Veterinary Technology Program, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000 Thailand
| | - Jirapas Sripetchwandee
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,c Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piangkwan Sa-Nguanmoo
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,c Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,c Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchareewan Pannangpetch
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,d Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nipon Chattipakorn
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,c Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,e Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
59
|
Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015; 272:97-108. [PMID: 25987538 DOI: 10.1016/j.expneurol.2015.05.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
Vascular dementia (VaD) is the second leading form of dementia after Alzheimer's disease (AD) plaguing the elderly population. VaD is a progressive disease caused by reduced blood flow to the brain, and it affects cognitive abilities especially executive functioning. VaD is poorly understood and lacks suitable animal models, which constrain the progress on understanding the basis of the disease and developing treatments. This review article discusses VaD, its risk factors, induced cognitive disability, various animal (rodent) models of VaD, pathology, and mechanisms of VaD and treatment options.
Collapse
Affiliation(s)
- Poornima Venkat
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Physics, Oakland University, Rochester, MI, USA.
| | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Physics, Oakland University, Rochester, MI, USA.
| | - Jieli Chen
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China.
| |
Collapse
|
60
|
Damián JP, Acosta V, Da Cuña M, Ramírez I, Oddone N, Zambrana A, Bervejillo V, Benech JC. Effect of resveratrol on behavioral performance of streptozotocin-induced diabetic mice in anxiety tests. Exp Anim 2015; 63:277-87. [PMID: 25077757 PMCID: PMC4206731 DOI: 10.1538/expanim.63.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate with anxiety tests the effect of resveratrol (RSV)
on streptozotocin (STZ)-induced diabetic mouse behavioral performance at the second and
fourth week of treatment. Confirmed diabetic mice (>250 mg/dl of glucose in blood after
STZ injection) were treated with RSV (RDM, n=12) or control treated (DM, n=12) for 4
weeks. DM and RDM were tested in the Open Field Test (OFT) and Elevated Plus Maze (EPM).
In the second week of RSV treatment, a higher grooming frequency
(P<0.05) and a lower defecation and rearing frequency
(P<0.05) were detected in the OFT in the RDM group compared with the
DM. There was a higher grooming frequency (P<0.05) and higher
percentage of entries in open arms (P<0.05) in the RDM group than in
the DM group in the EPM. However, in the fourth week of RSV treatment, the only effect
observed was a higher grooming frequency in the RDM group than in the DM group
(P<0.05) in the EPM. In conclusion, RSV treatment in diabetic mice
provoked anxiolytic-like effects in both tests (OFT and EPM), and these effects were
observed in a short time window (2 weeks). It is suggested that RSV may help diabetic
animals to adapt to new stressing and anxiety situations and thus to improve their
welfare.
Collapse
Affiliation(s)
- Juan P Damián
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600 Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Peixoto CA, Nunes AKS, Garcia-Osta A. Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition. Mediators Inflamm 2015; 2015:940207. [PMID: 26770022 PMCID: PMC4681825 DOI: 10.1155/2015/940207] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a potential therapeutic strategy for neuroinflammatory, neurodegenerative, and memory loss diseases. Mechanistically, PDE5-Is produce an anti-inflammatory and neuroprotection effect by increasing expression of nitric oxide synthases and accumulation of cGMP and activating protein kinase G (PKG), the signaling pathway of which is thought to play an important role in the development of several neurodiseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The aim of this paper was to review present knowledge of the signaling pathways that underlie the use of PDE5-Is in neuroinflammation, neurogenesis, learning, and memory.
Collapse
Affiliation(s)
- Christina Alves Peixoto
- 1Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), 50.740-465 Recife, PE, Brazil
- *Christina Alves Peixoto:
| | - Ana Karolina Santana Nunes
- 1Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), 50.740-465 Recife, PE, Brazil
- 2Universidade Federal de Pernambuco, 50.670-901 Recife, PE, Brazil
| | - Ana Garcia-Osta
- 3Neurobiology of Alzheimer's disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
62
|
Nagayach A, Patro N, Patro I. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function. Front Cell Neurosci 2014; 8:355. [PMID: 25400546 PMCID: PMC4215794 DOI: 10.3389/fncel.2014.00355] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023] Open
Abstract
Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji UniversityGwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji UniversityGwalior, India
| | - Ishan Patro
- School of Studies in Neuroscience, Jiwaji UniversityGwalior, India
- School of Studies in Zoology, Jiwaji UniversityGwalior, India
| |
Collapse
|
63
|
Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, Yilmaz I, Cankurt U, Yilmaz Y, Akdogan I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 2014; 555:119-26. [PMID: 25445279 DOI: 10.1016/j.gene.2014.10.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/16/2023]
Abstract
We aimed to investigate the effects of grape seed extract (GSE) and vitamin E (Vit E) on oxidative stress and apoptosis in the hippocampus of streptozotocin-induced diabetic rats. In Control, Diabetic, and Diabetic treated with GSE (Diabetic+GSE) and vitamin E (Diabetic+Vit E) groups, oxidative stress index (OSI), TUNEL staining and Bcl-2, Bcl-XL, Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were evaluated. OSI was significantly increased in the plasma and hippocampus of the Diabetic compared to Control group and decreased in Diabetic+GSE and Diabetic+Vit E groups compared to Diabetic. TUNEL positive neurons significantly increased in the hippocampus of the Diabetic group compared to Control and decreased in Diabetic+GSE (more prominently) and Diabetic+Vit E groups compared to Diabetic. In the hippocampus of the Diabetic group, Bcl-2 and Bcl-XL gene expressions were significantly decreased; Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were significantly increased compared to Control. In Diabetic+GSE and Diabetic+Vit E groups, Bcl-2 gene expressions were significantly increased; Bcl-XL gene expressions did not differ compared to the Diabetic group. The expression of Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB genes in the Diabetic+GSE group and the expression of caspase-3 and -9, TNF-α, and NF-κB genes in the Diabetic+Vit E group were significantly decreased compared to Diabetic. In conclusion, GSE (more prominently) and vitamin E decreased oxidative stress and neuronal apoptosis occurring in the hippocampus of diabetic rats.
Collapse
Affiliation(s)
| | - Yavuz Dodurga
- Pamukkale University School of Medicine, Department of Medical Biology, Denizli, Turkey.
| | - Esat Adiguzel
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| | - Gulsah Gundogdu
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Vural Kucukatay
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Seda Ozbal
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ismail Yilmaz
- Izmir Bozyaka Training and Research Hospital, Department of Pharmacology, Izmir, Turkey
| | - Ulker Cankurt
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Yusuf Yilmaz
- Mehmet Akif Ersoy University Faculty of Engineering and Architecture, Department of Food Engineering, Burdur, Turkey
| | - Ilgaz Akdogan
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| |
Collapse
|
64
|
Xie J, Wei Q, Deng H, Li G, Ma L, Zeng H. Negative regulation of Grb10 Interacting GYF Protein 2 on insulin-like growth factor-1 receptor signaling pathway caused diabetic mice cognitive impairment. PLoS One 2014; 9:e108559. [PMID: 25268761 PMCID: PMC4182477 DOI: 10.1371/journal.pone.0108559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Heterozygous Gigyf2⁺/⁻ mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway.
Collapse
MESH Headings
- Animals
- Carrier Proteins/agonists
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cognition
- Cognition Disorders/complications
- Cognition Disorders/genetics
- Cognition Disorders/physiopathology
- Cognition Disorders/therapy
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- GRB10 Adaptor Protein/genetics
- GRB10 Adaptor Protein/metabolism
- Gene Expression Regulation
- Genetic Therapy
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Signal Transduction
- Streptozocin
Collapse
Affiliation(s)
- Jing Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianping Wei
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Li
- Department of Mental Health, The Mental Health Center of Jiulongpo District, Chongqing, China
| | - Lingli Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zeng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
65
|
Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 2014; 29:747-61. [PMID: 24833555 DOI: 10.1007/s11011-014-9562-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is associated with increased risk of cognitive and behavioural disorders with hitherto undeciphered role of glia. Glia as majority population in brain serve several vital functions, thus require pertinent revelation to further explicate the mechanisms affecting the brain function following diabetes. In this study we have evaluated glial changes in terms of phenotypic switching, proliferation and expression of activation cell surface markers and associated cellular degeneration in hippocampus following STZ-induced diabetes and caused cognitive impairments. Experimental diabetes was induced in Wistar rats by a single dose of STZ (45 mg/kg body weight; intraperitoneally) and changes were studied in 2nd, 4th and 6th week post diabetes confirmation using Barnes maze and T-maze test, immunohistochemistry and image analysis. An increase in GFAP expression sequentially from 2nd to 6th weeks of diabetes was analogous with the phenotypic changes and increased astrocyte number. Elevated level of S100β with defined stellate morphology further confirmed the astrocytosis following diabetes. Enhanced level of Iba-1 and MHC-II revealed the corroborated microglial activation and proliferation following diabetes, which was unresolved till date. Increased caspase-3 activity induced profound cell death upto 6th weeks post diabetes confirmation. Such caspase 3 mediated cellular damage with a concomitant activation of the astrocytes and microglia suggests that diabetes linked cell death activates the astrocytes and microglia in hippocampus which further underpin the progression and severity of brain disorders resulting in cognitive and behavioural impairments.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | | | | |
Collapse
|
66
|
Wang S, Zhou SL, Min FY, Ma JJ, Shi XJ, Bereczki E, Wu J. mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice. Metab Brain Dis 2014; 29:729-736. [PMID: 24682776 DOI: 10.1007/s11011-014-9528-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/07/2014] [Indexed: 12/20/2022]
Abstract
Abnormal levels of mammalian target of rapamycin (mTOR) signaling have been recently implicated in the pathophysiology of neurodegenerative diseases, such as Alzheimer's disease (AD). However, the implication of mTOR in diabetes mellitus (DM)-related cognitive dysfunction still remains unknown. In the present study, we found that phosphorylated mTOR at Ser2448, phosphorylated p70S6K at Thr421/Ser424 and phosphorylated tau at Ser396 were significantly increased in the hippocampus of streptozotocin (STZ)-induced diabetic mice when compared with control mice. A low dose of rapamycin was used to elucidate the role of mTOR signaling in DM-related cognitive deficit. Rapamycin restored abnormal mTOR/p70S6K signaling and attenuated the phosphorylation of tau protein in the hippocampus of diabetic mice. Furthermore, the spatial learning and memory function of diabetic mice significantly impaired compared with control mice, was also reversed by rapamycin. These findings indicate that mTOR/p70S6K signaling pathway is hyperactive in the hippocampus of STZ-induced diabetic mice and inhibiting mTOR signaling with rapamycin prevents the DM-related cognitive deficits partly through attenuating the hyperphosphorylation of tau protein.
Collapse
Affiliation(s)
- Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
67
|
Kim DY, Rhee I, Paik J. Metabolic circuits in neural stem cells. Cell Mol Life Sci 2014; 71:4221-41. [PMID: 25037158 DOI: 10.1007/s00018-014-1686-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, NY, 10065, USA
| | | | | |
Collapse
|
68
|
Valencia-Torres L, Bradshaw CM, Bouzas A, Hong E, Orduña V. Effect of streptozotocin-induced diabetes on performance on a progressive ratio schedule. Psychopharmacology (Berl) 2014; 231:2375-84. [PMID: 24402135 DOI: 10.1007/s00213-013-3401-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/02/2013] [Indexed: 12/29/2022]
Abstract
RATIONALE It has been suggested that streptozotocin (STZ)-induced diabetes causes a motivational deficit in rodents. However, some of the evidence adduced in support of this suggestion may be interpreted in terms of a motor impairment rather than a motivational deficit. OBJECTIVE This experiment examined the effect of STZ-induced diabetes on performance on a progressive ratio schedule. The data were analysed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement model which enables the effects of interventions on motivation or incentive value to be separated from effects on motor function. METHOD Animals were trained under a progressive ratio schedule using food-pellet reinforcement. Then they received a single intraperitoneal injection of 50 mg/kg of STZ or the vehicle. Training continued for 30 sessions after treatment. Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between groups. RESULTS The parameter expressing incentive value was reduced in the group treated with STZ, whereas the parameters expressing motor capacity and post-reinforcement pausing were not affected by the treatment. Blood glucose concentration was significantly elevated in the STZ-treated group compared to the vehicle-treated group. CONCLUSIONS The results are consistent with the suggestion that STZ-induced diabetes is associated with a reduction of the incentive value of food.
Collapse
|
69
|
da Costa AV, Calábria LK, de Souza Santos P, Goulart LR, Espindola FS. Glibenclamide treatment modulates the expression and localization of myosin-IIB in diabetic rat brain. J Neurol Sci 2014; 340:159-64. [PMID: 24725740 DOI: 10.1016/j.jns.2014.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Myosin-IIB is a non-muscle isoform in the brain with increased expression in the brains of diabetic rats. Chronic hyperglycemia caused by diabetes can impair learning and memory. Oral hypoglycemic agents such as glibenclamide have been used to control hyperglycemia. We report changes in the expression and distribution of myosin-IIB in the frontal cortex and hippocampus of diabetic rats treated with glibenclamide. METHODS The brains were removed after 43 days of treatment with glibenclamide (6 mg/kg bw orally), homogenized and analyzed by Western blotting, qRT-PCR and immunohistochemistry. RESULTS Myosin-IIB expression increased in the brains of diabetic rats. However, protein expression returned to control levels when treated with glibenclamide. In addition, the expression of MYH10 gene encoding non-muscle myosin heavy chain-B decreased in diabetic rats treated with glibenclamide. Moreover, we found weak myosin-IIB labeling in the hippocampus and frontal cortex of rats treated with glibenclamide. Therefore, the expression of myosin-IIB is affected by diabetes mellitus and may be modulated by glibenclamide treatment in rats. Structural changes in the hippocampus and prefrontal cortex are reversible, and glibenclamide treatment may reduce the patho-physiological changes in the brain. CONCLUSIONS Our findings can contribute to the understanding of the regulation of myosins in the brains of diabetic rats.
Collapse
Affiliation(s)
- Alice Vieira da Costa
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil; Faculty of Integrated Sciences, Federal University of Uberlândia, Campus Pontal, Ituiutaba, MG 38304-402, Brazil
| | - Paula de Souza Santos
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Foued Salmen Espindola
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
70
|
Piazza FV, Segabinazi E, Centenaro LA, do Nascimento PS, Achaval M, Marcuzzo S. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats. Metab Brain Dis 2014; 29:93-104. [PMID: 24318482 DOI: 10.1007/s11011-013-9467-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.
Collapse
Affiliation(s)
- Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
71
|
Liu D, Zhang H, Gu W, Liu Y, Zhang M. Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting GSK3β-mediated CHOP induction. Mol Med Rep 2014; 9:1434-8. [PMID: 24535619 DOI: 10.3892/mmr.2014.1958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
Ginsenoside Rb1 is generally recognized as one of the principal bioactive ingredients in ginseng and shows neuroprotective effects in various neurons. Endoplasmic reticulum (ER) stress is considered to play an important role in numerous neurodegenerative disorders. Recently, glucogen synthase kinase 3β (GSK3β) was reported to regulate ER stress-induced C/EBP homologous protein (CHOP) in neuronal cells. Therefore, in this study, we investigated the effects of ginsenoside Rb1 on GSK3β-mediated ER stress in high glucose-treated hippocampal neurons. Results from the MTT assay showed that treatment with 1 µM Rb1 for 72 h protected neurons from high glucose-induced cell injury. Using western blot analysis, we found that treatment with Rb1 effectively inhibited the phosphorylation of the high glucose-induced protein kinase RNA-like ER kinase (PERK) and of GSK3β, and reduced the level of the CHOP protein. The levels of these proteins were also decreased by treatment with the GSK3β inhibitor Licl. Rb1 also significantly decreased the mRNA expression of the gene CHOP, as shown by quantitative RT-PCR analysis. Taken together, the present results suggested that Rb1 may protect neurons from high glucose-induced cell damage by inhibiting GSK3β‑mediated CHOP induction, providing a potentially new strategy for preventing and treating cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hong Zhang
- Department of Cell Resource Center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Wenjuan Gu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yuqin Liu
- Department of Cell Resource Center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
72
|
Increased protein aggregation in Zucker diabetic fatty rat brain: identification of key mechanistic targets and the therapeutic application of hydrogen sulfide. BMC Cell Biol 2014; 15:1. [PMID: 24393531 PMCID: PMC3998068 DOI: 10.1186/1471-2121-15-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Diabetes and particularly high blood glucose levels are implicated in neurodegeneration. One of the hallmarks of neurodegeneration is protein aggregation. We investigated the presence of protein aggregation in the frontal brain of Zucker diabetic fatty (ZDF) rats, an animal model for diabetes. Further, the effect of NaHS in suppressing protein aggregation in cultured brain slices from ZDF was assessed. RESULTS The levels of protein synthesis, protein/gene expression, autophagy and anti-oxidant defense were evaluated in ZDF and control (Lean) brains.Compared to Lean, ZDF brains displayed a significant increase in protein aggregates, p-tau, fibronectin expression and protein glycosylation. Increased phosphorylation of mTOR and S6 ribosomal protein in ZDF indicated higher protein synthesis, while the increase in ubiquitinated proteins and LC3-I in ZDF brains accompanied by lower LC3-II expression and LC3-II/LC3-I levels indicated the blockage of proteolytic pathways. CBS (cystathionine beta synthase) protein and mRNA expression and thiol group levels in ZDF brains were lower compared to Lean. ZDF brains show a higher level of reactive oxygen species. In vitro NaHS treatment normalized proteostasis while counteracting oxidative stress. CONCLUSION Our data demonstrate increased protein synthesis and aggregation in the diabetic ZDF rat brain, which was reversible by NaHS treatment.This is the first report on the potential use of NaHS as a novel strategy against protein aggregation in diabetic brain.
Collapse
|
73
|
Thomas J, Garg ML, Smith DW. Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 2013; 28:613-8. [PMID: 23832395 DOI: 10.1007/s11011-013-9418-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that hyper-glycaemia is deleterious to brain function, in particular to the hippocampus. It is thought this hippocampal dysfunction may contribute to hyperglycaemia related cognitive impairment, such as that which manifests with diabetes. In the present study, we investigated the effects of diabetes-related hyperglycaemia on hippocampal gene expression, in order to identify potential mechanisms that might be associated with the cognitive dysfunction that develops with diabetes mellitus. Genome-wide gene expression profiling was carried out on the hippocampi from streptozotocin (STZ)-induced diabetic mice, and from vehicle treated control mice. Genes of interest that satisfied expression fold-change and statistical criteria, and that were considered to be potentially associated with cognitive function, were further tested by real time, quantitative polymerase chain reaction (qPCR) analysis. We found that STZ-induced diabetes resulted in decreased hippocampal expression of genes involved in epigenetic regulation and synaptic plasticity, for example, histone deacetylases and glycogen synthase kinase 3 beta (HDACs and GSK3β). We also found increased expression of genes involved in signalling cascades related to cell growth, cell survival and energy metabolism, such as neurotropic tyrosine kinase receptor type 2, apolipoprotein E, and protein tyrosine phosphatase receptor type (Ntrk2, APOE, PTPRT). To our knowledge this is the first study to demonstrate a gene expression profile implicating epigenetic modifications and alterations of synaptic plasticity associated genes in diabetes mellitus. The present study will improve our understanding of the neural mechanisms that might underpin diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jency Thomas
- University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|
74
|
Mansouri S, Barde S, Ortsäter H, Eweida M, Darsalia V, Langel U, Sjöholm A, Hökfelt T, Patrone C. GalR3 activation promotes adult neural stem cell survival in response to a diabetic milieu. J Neurochem 2013; 127:209-20. [PMID: 23927369 DOI: 10.1111/jnc.12396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes impairs adult neurogenesis which could play a role in the CNS complications of this serious disease. The goal of this study was to determine the potential role of galanin in protecting adult neural stem cells (NSCs) from glucolipotoxicity and to analyze whether apoptosis and the unfolded protein response were involved in the galanin-mediated effect. We also studied the regulation of galanin and its receptor subtypes under diabetes in NSCs in vitro and in the subventricular zone (SVZ) in vivo. The viability of mouse SVZ-derived NSCs and the involvement of apoptosis (Bcl-2, cleaved caspase-3) and unfolded protein response [C/EBP homologous protein (CHOP) Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP), spliced X-box binding protein 1 (XBP1), c-Jun N-terminal kinases (JNK) phosphorylation] were assessed in the presence of glucolipotoxic conditions after 24 h. The effect of diabetes on the regulation of galanin and its receptor subtypes was assessed on NSCs in vitro and in SVZ tissues isolated from normal and type 2 diabetes ob/ob mice. We show increased NSC viability following galanin receptor (GalR)3 activation. This protective effect correlated with decreased apoptosis and CHOP levels. We also report how galanin and its receptors are regulated by diabetes in vitro and in vivo. This study shows GalR3-mediated neuroprotection, supporting a potential future therapeutic development, based on GalR3 activation, for the treatment of brain disorders.
Collapse
Affiliation(s)
- Shiva Mansouri
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Davari S, Talaei S, Alaei H, salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience 2013; 240:287-96. [DOI: 10.1016/j.neuroscience.2013.02.055] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/24/2013] [Accepted: 02/22/2013] [Indexed: 12/16/2022]
|
76
|
Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev 2013; 37:1346-62. [PMID: 23680701 DOI: 10.1016/j.neubiorev.2013.03.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/29/2022]
Abstract
Diabetes often leads to a number of complications involving brain function, including cognitive decline and depression. In addition, depression is a risk factor for developing diabetes. A loss of hippocampal neuroplasticity, which impairs the ability of the brain to adapt and reorganize key behavioral and emotional functions, provides a framework for understanding this reciprocal relationship. The effects of diabetes on brain and behavioral functions in experimental models of type 1 and type 2 diabetes are reviewed, with a focus on the negative impact of impaired hippocampal neurogenesis, dendritic remodeling and increased apoptosis. Mechanisms shown to regulate neuroplasticity and behavior in diabetes models, including stress hormones, neurotransmitters, neurotrophins, inflammation and aging, are integrated within this framework. Pathological changes in hippocampal function can contribute to the brain symptoms of diabetes-associated complications by failing to regulate the hypothalamic-pituitary-axis, maintain learning and memory and govern emotional expression. Further characterization of alterations in neuroplasticity along with glycemic control will facilitate the development and evaluation of pharmacological interventions that could successfully prevent and/or reverse the detrimental effects of diabetes on brain and behavior.
Collapse
|
77
|
Bomba M, Ciavardelli D, Silvestri E, Canzoniero LMT, Lattanzio R, Chiappini P, Piantelli M, Di Ilio C, Consoli A, Sensi SL. Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis 2013; 4:e612. [PMID: 23640454 PMCID: PMC3674348 DOI: 10.1038/cddis.2013.139] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent studies have shown that type 2 diabetes mellitus (T2DM) is a risk factor for cognitive dysfunction or dementia. Insulin resistance is often associated with T2DM and can induce defective insulin signaling in the central nervous system as well as increase the risk of cognitive impairment in the elderly. Glucagone like peptide-1 (GLP-1) is an incretin hormone and, like GLP-1 analogs, stimulates insulin secretion and has been employed in the treatment of T2DM. GLP-1 and GLP-1 analogs also enhance synaptic plasticity and counteract cognitive deficits in mouse models of neuronal dysfunction and/or degeneration. In this study, we investigated the potential neuroprotective effects of long-term treatment with exenatide, a GLP-1 analog, in two animal models of neuronal dysfunction: the PS1-KI and 3xTg-AD mice. We found that exenatide promoted beneficial effects on short- and long-term memory performances in PS1-KI but not in 3xTg-AD animals. In PS1-KI mice, the drug increased brain lactate dehydrogenase activity leading to a net increase in lactate levels, while no effects were observed on mitochondrial respiration. On the contrary, exenatide had no effects on brain metabolism of 3xTg-AD mice. In summary, our data indicate that exenatide improves cognition in PS1-KI mice, an effect likely driven by increasing the brain anaerobic glycolysis rate.
Collapse
Affiliation(s)
- M Bomba
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), University Gd Annunzio Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Jing YH, Chen KH, Kuo PC, Pao CC, Chen JK. Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology 2013; 98:116-27. [PMID: 23486084 DOI: 10.1159/000350435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 02/22/2013] [Indexed: 11/19/2022]
Abstract
AIM Diabetes mellitus-associated hyperglycemia and oxidative stress have been shown to have detrimental effects on the brain and may lead to impairment of cognitive functions. Resveratrol (Rsv), a polyphenolic antioxidant, has been shown to have moderate hypoglycemic and prominent hypolipidemic effects in diabetic rats. In the present study, we examined if Rsv improves the diabetic encephalopathy and explored its possible underlying mechanisms. METHODS Male SD rats were treated with streptozotocin (65 mg/kg), and the diabetic rats were orally fed with Rsv (0.75 mg/kg, every 8 h) or normal saline for 4 weeks. Animals were then sacrificed and the brain tissues (hippocampus) processed for biochemical and histological studies. RESULTS Neurodegeneration and astrocytic activation were noted in the hippocampus of the diabetic rats. Tumor necrosis factor-α, IL-6 transcripts and nuclear factor-κB expression were increased in the brain. In addition, neuropathic alterations in the hippocampus were evident in diabetic rats, including increased blood vessel permeability and VEGF expression, decreased mitochondrial number and AMP-activated protein kinase activity. In Rsv-treated diabetic rats, the aforementioned abnormalities were all attenuated. CONCLUSION These observations suggest that Rsv significantly attenuated neurodegeneration and astrocytic activation in the hippocampus of diabetic rats. Our results suggested that Rsv could potentially be a new therapeutic agent for diabetic encephalopathy and neurodegeneration.
Collapse
Affiliation(s)
- Yu-Hong Jing
- Department of Physiology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (ROC)
| | | | | | | | | |
Collapse
|
79
|
Enhamre-Brolin E, Carlsson A, Hallberg M, Nyberg F. Growth hormone reverses streptozotocin-induced cognitive impairments in male mice. Behav Brain Res 2012; 238:273-8. [PMID: 23124136 DOI: 10.1016/j.bbr.2012.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/20/2012] [Indexed: 12/31/2022]
Abstract
In recent decades, growth hormone (GH) replacement therapy in human subjects deficient in the hormone has resulted in a number of beneficial effects on cognitive performance. Studies in hypophysectomised rats report similar effects of GH treatment on learning and memory tasks. The purpose of this study was to investigate the ability of GH to reverse learning impairments in mice with streptozotocin (STZ)-induced diabetes. Diabetic and control mice were given recombinant human GH (rhGH) 0.1 IU/kg/day for ten consecutive days. In the latter phase of the treatment the cognitive abilities of the mice were tested using the Barnes maze (BM). A profound hormonal effect was seen when analysing the search patterns used by the animals in the maze. rhGH treatment significantly counteracted the cognitive disabilities expressed as lack of direct search strategies on the last day in the BM. In addition, the number of primary errors made by diabetic mice during the acquisition phase was reduced by rhGH treatment, although the primary escape latency was unchanged in these animals when compared to saline-treated diabetic animals. These results suggest that specific cognitive impairments induced by STZ, i.e. the disabilities seen in strategic behaviour, could be reversed by exogenous hormone treatment. Our findings highlight the influence of GH on brain function and in particular on cognitive behaviour related to learning and memory.
Collapse
Affiliation(s)
- Erika Enhamre-Brolin
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
80
|
Vetri F, Chavez R, Xu HL, Paisansathan C, Pelligrino DA. Complex modulation of the expression of PKC isoforms in the rat brain during chronic type 1 diabetes mellitus. Brain Res 2012; 1490:202-9. [PMID: 23103504 DOI: 10.1016/j.brainres.2012.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/06/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that chronic hyperglycemia has a detrimental influence on neurovascular coupling in the brain-an effect linked to an alteration in the protein kinase C (PKC)-mediated phosphorylation pattern. Moreover, the activity of PKC was increased, in diabetic rat brain, in a tissue fraction composed primarily of the superficial glia limitans and pial vessels, but trended toward a decrease in cerebral cortical gray matter. However, that study did not examine the expression patterns of PKC isoforms in the rat brain. Thus, in a rat model of streptozotocin (STZ)-induced chronic type 1 diabetes mellitus (T1DM), and in non-diabetic (ND) controls, two hypotheses were addressed. First, chronic T1DM is accompanied by changes in the expression of PKC-α, βII, γ, δ, and ε Second, those changes differ when comparing cerebral cortex and glio-pial tissue. In addition, we analyzed the expression of a form of PKC-γ, phosphorylated on threonine 514 (pT514-PKC-γ), as well as the receptor for activated C kinase 1 (RACK1). The expression pattern of different PKC isoforms was altered in a complex and tissue-specific manner during chronic hyperglycemia. Notably, in the gray matter, PKC-α expression significantly decreased, while pT514-PKC-γ expression increased. However, PKC-βII, -γ, -δ, -ε, and RACK1 expressions did not change. Conversely, in glio-pial tissue, PKC-α and RACK1 were upregulated, whereas PKC-γ, pT514-PKC-γ, and PKC-ε were downregulated. PKC-βII, and PKC-δ, were unchanged. These findings suggest that the PKC activity increase previously seen in the glio-pial tissue of diabetic rats may be due to the selective upregulation of PKC-α, and ultimately lead to the impairment of neurovascular coupling.
Collapse
Affiliation(s)
- Francesco Vetri
- Neuroanesthesia Research Laboratory, Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
81
|
Machida M, Fujimaki S, Hidaka R, Asashima M, Kuwabara T. The insulin regulatory network in adult hippocampus and pancreatic endocrine system. Stem Cells Int 2012; 2012:959737. [PMID: 22988465 PMCID: PMC3440949 DOI: 10.1155/2012/959737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of the islets. Diabetes induces neuronal death in different regions of the brain especially hippocampus, causes alterations on the neuronal circuits and therefore impairs learning and memory, for which the hippocampus is responsible. The hippocampus is a region of the brain where steady neurogenesis continues throughout life. Adult neurogenesis from undifferentiated neural stem cells is greatly decreased in diabetic patients, and as a result their learning and memory functions decline. Might it be possible to reactivate stem cells whose functions have deteriorated and that are present in the tissues in which the lesions occur in diabetes, a lifestyle disease, which plagues modern humans and develops as a result of the behavior of insulin-related factor? In this paper we summarize research in regard to these matters based on examples in recent years.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| |
Collapse
|
82
|
Takahashi S, Izawa Y, Suzuki N. [Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia]. Rinsho Shinkeigaku 2012; 52:41-51. [PMID: 22260979 DOI: 10.5692/clinicalneurol.52.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reactive oxygen species (ROS) derived from mitochondria play an essential role in stroke as well as in neurodegenerative disorders. Although hyperglycemia associated with diabetes mellitus is well known to enhance ROS production in vascular endothelial cells, the effects of either acute or chronic high glucose environments on neurons and glial cells remain unclear. Astroglia play a pivotal role in glucose metabolism. Thus, the astroglial metabolic response to high glucose environments is an interesting subject. In particular, the glutathione/pentose phosphate pathway (PPP) system, which is a major defense mechanism against ROS in the brain, contributes to glucose metabolism and is more active in astroglia. We propose that high glucose environments activate PPP through an increased flux to the hexosamine biosynthetic pathway (HBP). HBP is known to induce endoplasmic reticulum (ER) stress under hyperglycemia, resulting in the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2), a master regulator of phase 2 detoxifying enzymes including glucose-6-phosphate dehydrogenase that regulates PPP activity, as Nrf2 is reported to be a direct substrate of protein kinase RNA (PKR)-like ER kinase (PERK), a transducer of ER stress. Therefore, the phosphorylation of Nrf2 by hyperglycemia-induced ER stress facilitates Nrf2 translocation through PERK, thus activating the PPP. If acute or chronic hyperglycemia induces PPP activation in astroglia to reduce ROS, reducing the glucose concentration may be accompanied by a risk, which may explain the lack of evidence that strict glycemic control during the acute phase of stroke conveys no beneficial effect.
Collapse
|
83
|
Enhamre E, Carlsson A, Grönbladh A, Watanabe H, Hallberg M, Nyberg F. The expression of growth hormone receptor gene transcript in the prefrontal cortex is affected in male mice with diabetes-induced learning impairments. Neurosci Lett 2012; 523:82-6. [DOI: 10.1016/j.neulet.2012.06.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/05/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
|
84
|
Huang HJ, Chen YH, Liang KC, Jheng YS, Jhao JJ, Su MT, Lee-Chen GJ, Hsieh-Li HM. Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PLoS One 2012; 7:e39656. [PMID: 22844396 PMCID: PMC3402484 DOI: 10.1371/journal.pone.0039656] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/24/2012] [Indexed: 01/02/2023] Open
Abstract
Background Chronic hyperglycemia-associated inflammation plays critical roles in disease initiation and the progression of diabetic complications, including Alzheimer’s disease (AD). However, the association of chronic hyperglycemia with acute inflammation of the central nervous system in the progression of AD still needs to be elucidated. In addition, recent evidence suggests that Glucagon-like peptide-1 receptor (GLP-1R) protects against neuronal damage in the brain. Therefore, the neuroprotective effects of the GLP-1R agonist exendin-4 (EX-4) against hyperglycemia/lipopolysaccharides (LPS) damage were also evaluated in this study. Methodology/Principal Findings Ten days after streptozotocin (STZ) or vehicle (sodium citrate) treatment in mice, EX-4 treatment (10 µg/kg/day) was applied to the mice before intrahippocampal CA1 injection of LPS or vehicle (saline) and continued for 28 days. This study examined the molecular alterations in these mice after LPS and EX4 application, respectively. The mouse cognitive function was evaluated during the last 6 days of EX-4 treatment. The results showed that the activation of NF-κB-related inflammatory responses induced cognitive dysfunction in both the hyperglycemic mice and the mice that received acute intrahippocampal LPS injection. Furthermore, acute intrahippocampal LPS injection exacerbated the impairment of spatial learning and memory through a strong decrease in monoaminergic neurons and increases in astrocytes activation and apoptosis in the hyperglycemic mice. However, EX-4 treatment protected against the cognitive dysfunction resulting from hyperglycemia or/and intrahippocampal LPS injection. Conclusions/Significance These findings reveal that both hyperglycemia and intrahippocampal LPS injection induced cognitive dysfunction via activation of NF-κB-related inflammatory responses. However, acute intrahippocampal LPS injection exacerbated the progression of cognitive dysfunction in the hyperglycemic mice via a large increase in astrocytes activation-related responses. Furthermore, EX-4 might be considered as a potential adjuvant entity to protect against neurodegenerative diseases.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Yen-Hsu Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yu-Syuan Jheng
- Department of Nursing, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Jhih-Jhen Jhao
- Department of Nursing, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
85
|
Kumar P, Kale RK, McLean P, Baquer NZ. Antidiabetic and neuroprotective effects of Trigonella foenum-graecum seed powder in diabetic rat brain. Prague Med Rep 2012; 113:33-43. [PMID: 22373803 DOI: 10.14712/23362936.2015.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Trigonella foenum-graecum seed powder (TSP) has been reported to have hypoglycemic and hyperinsulinemic action. The objective of the study was to examine the antidiabetic and neuroprotective role of TSP in hyperglycemiainduced alterations in blood glucose, insulin levels and activities of membrane linked enzymes (Na+K+ATPase, Ca2+ATPase), antioxidant enzymes (superoxide dismutase, glutathione S-transferase), calcium (Ca2+) levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in the diabetic rat brain. Female Wistar rats weighing between 180 and 220 g were made diabetic by a single injection of alloxan monohydrate (15 mg/100 g body weight), diabetic rats were given 2 IU insulin, per day with 5% TSP in the diet for three weeks. A significant increase in lipid peroxidation was observed in diabetic brain. The increased lipid peroxidation following chronic hyperglycemia was accompanied with a significant increase in the neurolipofuscin deposition and Ca2+ levels with decreased activities of membrane linked ATPases and antioxidant enzymes in diabetic brain. A decrease in synaptosomal membrane fluidity may influence the activity of membrane linked enzymes in diabetes. The present study showed that TSP treatment can reverse the hyperglycemia induced changes to normal levels in diabetic rat brain. TSP administration amended effect of hyperglycemia on alterations in lipid peroxidation, restoring membrane fluidity, activities of membrane bound and antioxidant enzymes, thereby ameliorating the diabetic complications.
Collapse
Affiliation(s)
- P Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
86
|
Vetri F, Xu H, Paisansathan C, Pelligrino DA. Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK(Ca) and Kir channels. Am J Physiol Heart Circ Physiol 2012; 302:H1274-84. [PMID: 22268114 DOI: 10.1152/ajpheart.01067.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We hypothesized that chronic hyperglycemia has a detrimental effect on neurovascular coupling in the brain and that this may be linked to protein kinase C (PKC)-mediated phosphorylation. Therefore, in a rat model of streptozotocin-induced chronic type 1 diabetes mellitus (T1DM), and in nondiabetic (ND) controls, we monitored pial arteriole diameter changes during sciatic nerve stimulation and topical applications of the large-conductance Ca(2+)-operated K(+) channel (BK(Ca)) opener, NS-1619, or the K(+) inward rectifier (Kir) channel agonist, K(+). In the T1DM vs. ND rats, the dilatory response associated with sciatic nerve stimulation was decreased by ∼30%, whereas pial arteriolar dilations to NS-1619 and K(+) were largely suppressed. These responses were completely restored by the acute topical application of a PKC antagonist, calphostin C. Moreover, the suffusion of a PKC activator, phorbol 12,13-dibutyrate, in ND rats was able to reproduce the vascular reactivity impairments found in T1DM rats. Assay of PKC activity in brain samples from T1DM vs. ND rats revealed a significant gain in activity only in specimens harvested from the pial and superficial glia limitans tissue, but not in bulk cortical gray matter. Altogether, these findings suggest that the T1DM-associated impairment of neurovascular coupling may be mechanistically linked to a readily reversible PKC-mediated depression of BK(Ca) and Kir channel activity.
Collapse
Affiliation(s)
- Francesco Vetri
- Neuroanesthesia Research Laboratory, Department of Anesthesiology, University of Illinois at Chicago, 60612, USA.
| | | | | | | |
Collapse
|
87
|
Sherin A, Anu J, Peeyush K, Smijin S, Anitha M, Roshni B, Paulose C. Cholinergic and GABAergic receptor functional deficit in the hippocampus of insulin-induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience 2012; 202:69-76. [DOI: 10.1016/j.neuroscience.2011.11.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/01/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
88
|
de Senna PN, Ilha J, Baptista PPA, do Nascimento PS, Leite MC, Paim MF, Gonçalves CA, Achaval M, Xavier LL. Effects of physical exercise on spatial memory and astroglial alterations in the hippocampus of diabetic rats. Metab Brain Dis 2011; 26:269-79. [PMID: 21892662 DOI: 10.1007/s11011-011-9262-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with neurocognitive dysfunction and astrogliosis. Physical exercise prevents cognitive impairments and induces important brain modifications. The aim of our study was to investigate the effect of treadmill exercise on spatial memory and astrocytic function in the hippocampus of a T1DM model. Fifty-seven Wistar rats were divided into four groups: trained control (TC) (n = 15), non-trained control (NTC) (n = 13), trained diabetic (TD) (n = 14) and non-trained diabetic (NTD) (n = 15). One month after streptozotocin-induced diabetes, exercise groups were submitted to 5 weeks of physical training, and then, all groups were assessed in the novel object-placement recognition task. Locomotor activity was analyzed in the open field apparatus using Any-maze software. The expression of glial fibrillary acidic protein (GFAP) and S100B in hippocampus and cerebrospinal fluid were measured using ELISA assay, and hippocampal GFAP immunoreactivity was evaluated by means of immunohistochemistry and optical densitometry. The results showed that physical exercise prevents and/or reverts spatial memory impairments observed in NTD animals (P < 0.01). Decreased locomotor activity was observed in both the NTD and TD groups when compared with controls (P < 0.05). ELISA and immunohistochemistry analyzes showed there was a reduction in GFAP levels in the hippocampus of NTD animals, which was not found in TD group. ELISA also showed an increase in S100B levels in the cerebrospinal fluid from the NTD group (P < 0.01) and no such increase was found in the TD group. Our findings indicate that physical exercise prevents and/or reverts the cognitive deficits and astroglial alterations induced by T1DM.
Collapse
Affiliation(s)
- Priscylla Nunes de Senna
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Baluchnejadmojarad T, Roghani M. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav Brain Res 2011; 224:305-10. [DOI: 10.1016/j.bbr.2011.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/05/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
90
|
Nutrient control of neural stem cells. Curr Opin Cell Biol 2011; 23:724-9. [PMID: 21930368 DOI: 10.1016/j.ceb.2011.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 12/31/2022]
Abstract
The physiological status of an organism is able to influence stem cell behaviour to ensure that stem cells meet the needs of the organism during growth, and in response to injury and environmental changes. In particular, the brain is sensitive to metabolic fluctuations. Here we discuss how nutritional status is able to regulate systemic and local insulin/IGF signalling so as to control aspects of neural stem behaviour. Recent results have begun to reveal how systemic signals are relayed to neural stem cells through local interactions with a glial niche. Although much still remains to be discovered, emerging parallels between the regulation of Drosophila and mammalian stem cells suggest a conserved mechanism for how the brain responds to changes in nutritional state.
Collapse
|
91
|
Holloway CJ, Cochlin LE, Emmanuel Y, Murray A, Codreanu I, Edwards LM, Szmigielski C, Tyler DJ, Knight NS, Saxby BK, Lambert B, Thompson C, Neubauer S, Clarke K. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr 2011; 93:748-55. [PMID: 21270386 DOI: 10.3945/ajcn.110.002758] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND High-fat, low-carbohydrate diets are widely used for weight reduction, but they may also have detrimental effects via increased circulating free fatty acid concentrations. OBJECTIVE We tested whether raising plasma free fatty acids by using a high-fat, low-carbohydrate diet results in alterations in heart and brain in healthy subjects. DESIGN Men (n = 16) aged 22 ± 1 y (mean ± SE) were randomly assigned to 5 d of a high-fat, low-carbohydrate diet containing 75 ± 1% of calorie intake through fat consumption or to an isocaloric standard diet providing 23 ± 1% of calorie intake as fat. In a crossover design, subjects undertook the alternate diet after a 2-wk washout period, with results compared after the diet periods. Cardiac (31)P magnetic resonance (MR) spectroscopy and MR imaging, echocardiography, and computerized cognitive tests were used to assess cardiac phosphocreatine (PCr)/ATP, cardiac function, and cognitive function, respectively. RESULTS Compared with the standard diet, subjects who consumed the high-fat, low-carbohydrate diet had 44% higher plasma free fatty acids (P < 0.05), 9% lower cardiac PCr/ATP (P < 0.01), and no change in cardiac function. Cognitive tests showed impaired attention (P < 0.01), speed (P < 0.001), and mood (P < 0.01) after the high-fat, low-carbohydrate diet. CONCLUSION Raising plasma free fatty acids decreased myocardial PCr/ATP and reduced cognition, which suggests that a high-fat diet is detrimental to heart and brain in healthy subjects.
Collapse
Affiliation(s)
- Cameron J Holloway
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Barat P, Tastet S, Vautier V. Impact neuropsychologique à long terme du diabète de type 1 chez l’enfant. Arch Pediatr 2011; 18:432-40. [DOI: 10.1016/j.arcped.2011.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/28/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
93
|
Reagan LP. Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Exp Neurol 2011; 233:68-78. [PMID: 21320489 DOI: 10.1016/j.expneurol.2011.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/04/2011] [Accepted: 02/06/2011] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is an endocrine disorder resulting from inadequate insulin release and/or reduced insulin sensitivity. The complications of diabetes are well characterized in peripheral tissues, but there is a growing appreciation that the complications of diabetes extend to the central nervous system (CNS). One of the potential neurological complications of diabetes is cognitive deficits. Interestingly, the structural, electrophysiological, neurochemical and anatomical underpinnings responsible for cognitive deficits in diabetes are strikingly similar to those observed in animals subjected to chronic stress, as well as in patients with stress-related psychiatric illnesses such as major depressive disorder. Since diabetes is a chronic metabolic stressor, this has led to the suggestion that common mechanistic mediators are responsible for neuroplasticity deficits in both diabetes and depression. Moreover, these common mechanistic mediators may be responsible for the increase in the risk of depressive illness in diabetes patients. In view of these observations, the aims of this review are (1) to describe the neuroplasticity deficits observed in diabetic rodents and patients; (2) to summarize the similarities in the clinical and preclinical studies of depression and diabetes; and (3) to highlight the diabetes-induced neuroplasticity deficits in those brain regions that have been implicated as important pathological centers in depressive illness, namely, the hippocampus, the amygdala and the prefrontal cortex.
Collapse
Affiliation(s)
- Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
94
|
Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice. PLoS One 2010; 5:e13993. [PMID: 21085588 PMCID: PMC2981567 DOI: 10.1371/journal.pone.0013993] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/11/2010] [Indexed: 01/14/2023] Open
Abstract
Background Several brain disturbances have been described in association to type 1 diabetes in humans. In animal models, hippocampal pathological changes were reported together with cognitive deficits. The exposure to a variety of environmental stimuli during a certain period of time is able to prevent brain alterations and to improve learning and memory in conditions like stress, aging and neurodegenerative processes. Methodology/Principal Findings We explored the modulation of hippocampal alterations in streptozotocin-induced type 1 diabetic mice by environmental enrichment. In diabetic mice housed in standard conditions we found a reduction of adult neurogenesis in the dentate gyrus, decreased dendritic complexity in CA1 neurons and a smaller vascular fractional area in the dentate gyrus, compared with control animals in the same housing condition. A short exposure -10 days- to an enriched environment was able to enhance proliferation, survival and dendritic arborization of newborn neurons, to recover dendritic tree length and spine density of pyramidal CA1 neurons and to increase the vascular network of the dentate gyrus in diabetic animals. Conclusions/Significance The environmental complexity seems to constitute a strong stimulator competent to rescue the diabetic brain from neurodegenerative progression.
Collapse
|
95
|
Kamboj SS, Sandhir R. Protective effect of N-acetylcysteine supplementation on mitochondrial oxidative stress and mitochondrial enzymes in cerebral cortex of streptozotocin-treated diabetic rats. Mitochondrion 2010; 11:214-22. [PMID: 21059408 DOI: 10.1016/j.mito.2010.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/19/2010] [Accepted: 09/28/2010] [Indexed: 01/04/2023]
Abstract
Diabetic encephalopathy, characterized by cognitive deficits involves hyperglycemia-induced oxidative stress. Impaired mitochondrial functions might play an important role in accelerated oxidative damage observed in diabetic brain. The aim of the present study was to examine the role of mitochondrial oxidative stress and dysfunctions in the development of diabetic encephalopathy along with the neuroprotective potential of N-acetylcysteine (NAC). Chronic hyperglycemia accentuated mitochondrial oxidative stress in terms of increased ROS production and lipid peroxidation. Significant decrease in Mn-SOD activity along with protein and non-protein thiols was observed in the mitochondria from diabetic brain. The activities of mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase and cytochrome oxidase were decreased in the diabetic brain. Increased mitochondrial oxidative stress and dysfunctions were associated with increased cytochrome c and active caspase-3 levels in cytosol. Electron microscopy revealed mitochondrial swelling and chromatin condensation in neurons of diabetic animals. NAC administration, on the other hand was found to significantly improve diabetes-induced biochemical and morphological changes, bringing them closer to the controls. The results from the study provide evidence for the role of mitochondrial oxidative stress and dysfunctions in the development of diabetic encephalopathy and point towards the clinical potential of NAC as an adjuvant therapy to conventional anti-hyperglycemic regimens for the prevention and/or delaying the progression of CNS complications.
Collapse
Affiliation(s)
- Sukhdev S Kamboj
- Department of Biochemistry, Basic Medical Science Block, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
96
|
Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2010; 93:182-203. [PMID: 21056618 DOI: 10.1016/j.pneurobio.2010.10.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/20/2010] [Accepted: 10/28/2010] [Indexed: 12/26/2022]
Abstract
The adult mammalian brain contains a population of neural stem cells that can give rise to neurons, astrocytes, and oligodendrocytes and are thought to be involved in certain forms of memory, behavior, and brain injury repair. Neural stem cell properties, such as self-renewal and multipotency, are modulated by both cell-intrinsic and cell-extrinsic factors. Emerging evidence suggests that energy metabolism is an important regulator of neural stem cell function. Molecules and signaling pathways that sense and influence energy metabolism, including insulin/insulin-like growth factor I (IGF-1)-FoxO and insulin/IGF-1-mTOR signaling, AMP-activated protein kinase (AMPK), SIRT1, and hypoxia-inducible factors, are now implicated in neural stem cell biology. Furthermore, these signaling modules are likely to cooperate with other pathways involved in stem cell maintenance and differentiation. This review summarizes the current understanding of how cellular and systemic energy metabolism regulate neural stem cell fate. The known consequences of dietary restriction, exercise, aging, and pathologies with deregulated energy metabolism for neural stem cells and their differentiated progeny will also be discussed. A better understanding of how neural stem cells are influenced by changes in energy availability will help unravel the complex nature of neural stem cell biology in both the normal and diseased state.
Collapse
|
97
|
Cardoso S, Santos MS, Seiça R, Moreira PI. Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta Mol Basis Dis 2010; 1802:942-51. [DOI: 10.1016/j.bbadis.2010.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/15/2010] [Accepted: 07/01/2010] [Indexed: 01/19/2023]
|
98
|
Lappalainen J, Lappalainen Z, Oksala NKJ, Laaksonen DE, Khanna S, Sen CK, Atalay M. Alpha-lipoic acid does not alter stress protein response to acute exercise in diabetic brain. Cell Biochem Funct 2010; 28:644-50. [PMID: 21104931 DOI: 10.1002/cbf.1702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones which may act protective in cerebrovascular insults and peripheral diabetic neuropathy. We hypothesized that alpha-lipoic acid (LA), a natural thiol antioxidant, may enhance brain HSP response in diabetes. Rats with or without streptozotocin-induced diabetes were treated with LA or saline for 8 weeks. Half of the rats were subjected to exhaustive exercise to investigate HSP induction, and the brain tissue was analyzed. Diabetes increased constitutive HSC70 mRNA, and decreased HSP90 and glucose-regulated protein 75 (GRP75) mRNA without affecting protein levels. Exercise increased HSP90 protein and mRNA, and also GRP75 and heme oxygenase-1 (HO-1) mRNA only in non-diabetic animals. LA had no significant effect on brain HSPs, although LA increased HSC70 and HO-1 mRNA in diabetic animals and decreased HSC70 mRNA in non-diabetic animals. Eukaryotic translation elongation factor-2, essential for protein synthesis, was decreased by diabetes and suggesting a mechanism for the impaired HSP response related to translocation of the nascent chain during protein synthesis. LA supplementation does not offset the adverse effects of diabetes on brain HSP mRNA expression. Diabetes may impair HSP translation through elongation factors related to nascent chain translocation and subsequent responses to acute stress.
Collapse
Affiliation(s)
- Jani Lappalainen
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
99
|
Cardoso S, Carvalho C, Santos R, Correia S, Santos MS, Seiça R, Oliveira CR, Moreira PI. Impact of STZ-induced hyperglycemia and insulin-induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse 2010; 65:457-66. [PMID: 20853444 DOI: 10.1002/syn.20863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 08/25/2010] [Indexed: 01/21/2023]
Abstract
In this work, we evaluated the effects of streptozotocin (STZ)-induced hyperglycemia and an acute episode of insulin-induced hypoglycemia in plasma amino acids and cortical neurotransmitters. For that purpose, we used citrate (vehicle)-treated Wistar rats, STZ-treated rats [i.p., 50 mg/kg body weight], and STZ-treated rats injected with insulin [s.c., dose adjusted with blood glucose levels] 1 h prior to sacrifice to induce an acute episode of hypoglycemia. Plasma was collected for determination of amino acids levels. In addition, cortical synaptosomal preparations were obtained and the total levels of neurotransmitters, levels of aspartate, glutamate, taurine, and GABA released by the action of KCl, iodoacetic acid (IAA), ouabain, and veratridine, membrane potential and ATP levels were evaluated. Compared with control rats, plasma from hypoglycemic rats presented increased levels of aspartate, glutamate, glutamine, and taurine whereas GABA levels were decreased in STZ and hypoglycemic rats. Similarly, glutamate and taurine levels were increased in hypoglycemic synaptosomes while GABA decreased in hypoglycemic and STZ-diabetic synaptosomes. The depolarizing agent KCl promoted an increase in aspartate, glutamate, and taurine release from hypoglycemic synaptosomes. The highest release of neurotransmitters occurred in the presence of veratridine and ouabain, two other depolarizing agents, in all groups of experimental animals. However, a higher release of glutamate was observed in the diabetic and hypoglycemic synaptosomes. No alterations were observed in synaptosomal membrane potential and ATP levels. These results show that in the presence of a metabolic insult a higher release of excitatory amino acids occurs, which may underlay the neuronal injury observed in type 1 diabetic patients under insulin therapy.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Liapi C, Kyriakaki A, Zarros A, Galanopoulou P, Al-Humadi H, Dontas I, Voumvourakis K, Tsakiris S. Choline-deprivation alters crucial brain enzyme activities in a rat model of diabetic encephalopathy. Metab Brain Dis 2010; 25:269-76. [PMID: 20838865 DOI: 10.1007/s11011-010-9205-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Diabetic encephalopathy describes the moderate cognitive deficits, neurophysiological and structural central nervous system changes associated with untreated diabetes. It involves neurotoxic effects such as the generation of oxidative stress, the enhanced formation of advanced glycation end-products, as well as the disturbance of calcium homeostasis. Due to the direct connection of choline (Ch) with acetylcholine availability and signal transduction, a background of Ch-deficiency might be unfavorable for the pathology and subsequently for the treatment of several metabolic brain diseases, including that of diabetic encephalopathy. The aim of this study was to shed more light on the effects of adult-onset streptozotocin (STZ)-induced diabetes and/or Ch-deprivation on the activities of acetylcholinesterase (AChE) and two important adenosine triphosphatases, namely Na(+),K(+)-ATPase and Mg(2+)-ATPase. Male adult Wistar rats were divided into four main groups, as follows: control (C), diabetic (D), Ch-deprived (CD), and Ch-deprived diabetic (D+CD). Deprivation of Ch was provoked through the administration of Ch-deficient diet. Both the induction of diabetes and the beginning of dietary-mediated provoking of Ch-deprivation occurred at the same day, and rats were killed by decapitation after 30 days (1 month; groups C1, D1, CD1 and D1+CD1) and 60 days (2 months; groups C2, D2, CD2 and D2+CD2, respectively). The adult rat brain AChE activity was found to be significantly increased by both diabetes (+10%, p < 0.001 and +11%, p < 0.01) and Ch-deprivation (+19%, p < 0.001 and +14%, p < 0.001) when compared to the control group by the end of the first (C1) and the second month (C2), respectively. However, the Ch-deprived diabetic rats' brain AChE activity was significantly altered only after a 60-day period of exposure, resulting in a +27% increase (D2+CD2 vs. C2, p < 0.001). Although the only significant change recorded in the brain Na(+),K(+)-ATPase activity after the end of the first month is attributed to Ch-deprivation (+21%, p < 0.05, CD1 vs. C1), all groups of the second month exhibited a statistically significant decrease in brain Na(+),K(+)-ATPase activity (-24%, p < 0.01, D2 vs. C2; -21%, p < 0.01, CD2 vs. C2; -22%, p < 0.01, D2+CD2 vs. C2). As concerns Mg(2+)-ATPase, the enzyme's activity demonstrates no significant changes, with the sole exception of the D2+CD2 group (+21%, p < 0.05, D2+CD2 vs. C2). In addition, statistically significant time-dependent changes concerning the brain Mg(2+)-ATPase activity were recorded within the diabetic (p < 0.05, D2 vs. D1) and the Ch-deprived (p < 0.05, CD2 vs. CD1) rat groups. Our data indicate that Ch-deprivation seems to be an undesirable background for the above-mentioned enzymatic activities under untreated diabetes, in a time-evolving way. Further studies on the issue should focus on a region-specific reevaluation of these crucial enzymes' activities as well as on the possible oxidative mechanisms involved.
Collapse
Affiliation(s)
- Charis Liapi
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|