51
|
Begas E, Bounitsi M, Kilindris T, Kouvaras E, Makaritsis K, Kouretas D, Asprodini EK. Effects of short-term saffron (Crocus sativus L.) intake on the in vivo activities of xenobiotic metabolizing enzymes in healthy volunteers. Food Chem Toxicol 2019; 130:32-43. [PMID: 31082462 DOI: 10.1016/j.fct.2019.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Crocus sativus L., a perennial plant grown mainly around the Mediterranean and Iran, has many medicinal properties including anti-inflammatory, anti-depressive and cancer preventing properties. Aqueous herbal extracts may affect the activity of Phase I and II enzymes involved in xenobiotic metabolism. The present study was designed to determine whether C. sativus infusion alters the activity of CYP1A2, CYP2A6, XO and NAT2 enzymes in humans. Thirty-four healthy volunteers consumed infusion prepared from C. sativus stigmata for six days. Enzyme phenotyping was assessed in saliva and urine using caffeine metabolite ratios as follows: CYP1A2: 17X/137Χ (saliva) and CYP1A2: (AFMU+1U+1X)/17U, CYP2A6: 17U/(17U + 17X), XO: 1U/(1U+1X) and NAT2: AFMU/(AFMU+1U+1X) (urine). Following C. sativus intake, CYP1A2 index was reduced by ∼13.7% in saliva (before: 0.51 ± 0.22, after: 0.44 ± 0.14; p = 0.002) and ∼6.0% in urine (before: 3.81 ± 1.20, after: 3.58 ± 0.92; p = 0.054). CYP1A2 index was significantly reduced only in males (saliva, before: 0.65 ± 0.22, after: 0.51 ± 0.16; p = 0.0001; urine, before: 4.53 ± 1.19, after: 4.03 ± 0.87; p = 0.017) suggesting sexual dimorphism in CYP1A2 inhibition. There was no effect of C. sativus intake on CYP2A6, XO or NAT2 indices. Short-term consumption of C. sativus infusion is unlikely to result in significant herb-drug interactions involving the enzymes studied, with the exception of potential herb-CYP1A2 substrate interaction in males.
Collapse
Affiliation(s)
- Elias Begas
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Maria Bounitsi
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Thomas Kilindris
- Laboratory of Medical Informatics, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Evangelos Kouvaras
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Konstantinos Makaritsis
- Department of Internal Medicine, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Demetrios Kouretas
- Laboratory of Animal Physiology - Toxicology, Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Eftihia K Asprodini
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| |
Collapse
|
52
|
Multitarget Effects of Coconut Oil (Virgin Type) on Aβ-Induced Alzheimer’s Disease Animal Model. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.85715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Spohr L, Soares MSP, Oliveira PS, da Silveira de Mattos B, Bona NP, Pedra NS, Teixeira FC, do Couto CAT, Chaves VC, Reginatto FH, Lisboa MT, Ribeiro AS, Lencina CL, Stefanello FM, Spanevello RM. Combined actions of blueberry extract and lithium on neurochemical changes observed in an experimental model of mania: exploiting possible synergistic effects. Metab Brain Dis 2019; 34:605-619. [PMID: 30535659 DOI: 10.1007/s11011-018-0353-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Bipolar disorder is a psychiatric disease characterized by recurrent episodes of mania and depression. Blueberries contain bioactive compounds with important pharmacological effects such as neuroprotective and antioxidant actions. The aim of this study was to investigate the effects of blueberry extract and/or lithium on oxidative stress, and acetylcholinesterase (AChE) and Na+, K+-ATPase activity in an experimental ketamine-induced model of mania. Male Wistar rats were pretreated with vehicle, blueberry extract (200 mg/kg), and/or lithium (45 mg/kg or 22.5 mg/kg twice daily) for 14 days. Between the 8th and 14th days, the animals also received an injection of ketamine (25 mg/kg) or vehicle. On the 15th day the animals received a single injection of ketamine; after 30 min, the locomotor activity was evaluated in an open field test. Ketamine administration induced an increase in locomotor activity. In the cerebral cortex, hippocampus and striatum, ketamine also induced an increase in reactive oxygen species, lipid peroxidation and nitrite levels, as well a decrease in antioxidant enzyme activity. Pretreatment with blueberry extract or lithium was able to prevent this change. Ketamine increased the AChE and Na+, K+-ATPase activity in brain structures, while the blueberry extract partially prevented these alterations. In addition, our results showed that the neuroprotective effect was not potentiated when lithium and blueberry extract treatment were given together. In conclusion, our findings suggest that blueberry extract has a neuroprotective effect against an experimental model of mania. However, more studies should be performed to evaluate its effects as an adjuvant therapy.
Collapse
Affiliation(s)
- Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna da Silveira de Mattos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Meibel Teixeira Lisboa
- Programa de Pós-Graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Metrologia Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Anderson Schwingel Ribeiro
- Programa de Pós-Graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Metrologia Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Claiton Leoneti Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
54
|
Nootropic and Anti-Alzheimer's Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer's Neuropathology. Mol Neurobiol 2018; 56:4925-4944. [PMID: 30414087 DOI: 10.1007/s12035-018-1420-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.
Collapse
|
55
|
Abstract
India has traditionally been known to all over the world for spices and medicinal plants. Spices exhibit a wide range of pharmacological activities. In contemporary, Indian spices are used to rustle up delicious delicacies. However, the Indian spices are more than just adjuvant which adds aroma and fragrance to foods. A few spices are very widely used and grown commercially in many countries, contain many important chemical constituents in the form of essential oil, oleoresin, oleogum, and resins, which impart flavor, pungency, and color to the prepared dishes, simultaneously exerts diverse therapeutic benefits. Ayurveda, the traditional systems of medicine in India has many evidences for the utilization of spices to cure various diseases. Some of the activities have been scientifically proven. Among various indications central nervous system disorders are of prime importance and it has been evident in traditional books and published reports that spices in fact protect and cure neuronal ailments. Likewise there are many spices found in India used for culinary purpose and have been found to have reported specific activities against brain disorders. About 400 B.C., Hippocrates rightly said "Let food be thy medicine and medicine thy food." This review focuses on the importance of spices in therapeutics and the till date scientific findings of Indian spices in CNS pharmacology and explores the potential of Indian spices to cure CNS disorders.
Collapse
|
56
|
Mita Y, Kataoka Y, Saito Y, Kashi T, Hayashi K, Iwasaki A, Imanishi T, Miyasaka T, Noguchi N. Distribution of oxidized DJ-1 in Parkinson's disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin. Sci Rep 2018; 8:12056. [PMID: 30104666 PMCID: PMC6089991 DOI: 10.1038/s41598-018-30561-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 plays an important role in antioxidant defenses, and a reactive cysteine at position 106 (Cys106) of DJ-1, a critical residue of its biological function, is oxidized under oxidative stress. DJ-1 oxidation has been reported in patients with Parkinson's disease (PD), but the relationship between DJ-1 oxidation and PD is still unclear. In the present study using specific antibody for Cys106-oxidized DJ-1 (oxDJ-1), we analyzed oxDJ-1 levels in the brain and peripheral tissues in young and aged mice and in a mouse model of PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). OxDJ-1 levels in the brain, heart, and skeletal muscle were high compared with other tissues. In the brain, oxDJ-1 was detected in PD-related brain sites such as the substantia nigra (SN) of the midbrain, olfactory bulb (OB), and striatum. In aged wild-type mice, oxDJ-1 levels in the OB, striatum, and heart tended to decrease, while those in the skeletal muscle increased significantly. Expression of dopamine-metabolizing enzymes significantly increased in the SN and OB of aged DJ-1-/- mice, accompanied by a complementary increase in glutathione peroxidase 1. MPTP treatment concordantly changed oxDJ-1 levels in PD-related brain sites and heart. These results indicate that the effects of physiological metabolism, aging, and neurotoxin change oxDJ-1 levels in PD-related brain sites, heart, and skeletal muscle where mitochondrial load is high, suggesting a substantial role of DJ-1 in antioxidant defenses and/or dopamine metabolism in these tissues.
Collapse
Affiliation(s)
- Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuto Kataoka
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| | - Takuma Kashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kojiro Hayashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Asa Iwasaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takanori Imanishi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
57
|
Samad N, Saleem A, Yasmin F, Shehzad MA. Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res 2018; 67:795-808. [PMID: 30044120 DOI: 10.33549/physiolres.933776] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study evaluates the protective role of Quercetin (Quer), against immobilization stress- induced anxiety, depression and cognition alteration in mice using behavioral and biochemical parameters. 24 adult Albino mice were distributed into 2 groups vehicle (n=12; 1 ml/kg) and Quer injected (n=12; 20 mg/kg/ml). The animals received their respective treatment for 14 days. On day 15, after the drug administration, animals were sub-divided into 4 groups (n=6); (i) unstressed + vehicle; (ii) stressed + vehicle; (iii) unstressed + Quer; (iv) stressed + Quer. On day 16, 24 h after the immobilization stress behavioral activities (light-dark activity, elevated plus maze, Morris water maze, and forced swim test) monitored and then animals were decapitated 1 h after the drug administration. Brain samples were collected for biochemical (antioxidant enzymes, AChE, ACh, 5-HT and its metabolite) analysis. The present study indicates the Quer reversed the stress-induced anxiety and depression, in addition, memory performance was more enhanced in stressed group. Following the treatment of Quer, stress-induced elevation of lipid peroxidation and suppression of antioxidant enzymes were also reversed. Administration of Quer decreased AChE in unstressed, while levels of acetylcholine were increased in vehicle and Quer treated stressed animals. The metabolism of 5-HT was increased in Quer treated stressed than unstressed animals. In conclusion, the present finding showed that Quer could prevent the impairment of antioxidant enzymes and also regulate the serotonergic and cholinergic neurotransmission and produce antianxiety, antidepressant effect and enhance memory following 2 h immobilization stress in mice.
Collapse
Affiliation(s)
- N Samad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan.
| | | | | | | |
Collapse
|
58
|
Baghishani F, Mohammadipour A, Hosseinzadeh H, Hosseini M, Ebrahimzadeh-Bideskan A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis 2018; 33:907-916. [PMID: 29470767 PMCID: PMC5956046 DOI: 10.1007/s11011-018-0194-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Tramadol, a frequently used pain reliever drug, present neurotoxic effects associated to cognitive dysfunction. Moreover, crocin has been reported to have neuroprotective effects. The aim of this study was to assess crocin's capacity to protect learning, and memory abilities on tramadol-treated rats. A total of 35 rats were divided into five groups: Control, Saline, tramadol (50 mg/kg), tramadol + crocin(30 mg/kg), crocin groups and treated orally for 28 consecutive days. Morris water maze (MWM) and passive avoidance (PA) tests were done, followed by dissection of the rat's brains for toluidine blue and TUNEL staining. In MWM test, tramadol group spent lower time and traveled shorter distance in the target quadrant (Q1) (P < 0.05). On the other side, the traveled distance in tramadol-crocin group was higher than tramadol (P < 0.05). In PA test, both the delay for entering the dark, and the total time spent in the light compartment decreased in tramadol comparing to the control group (P < 0.05), while it increased in tramadol-crocin compared with the tramadol group (P < 0.05). In tramadol-treated animals, the dark neurons (DNs) and apoptotic cells in CA1, CA3 and DG increased (P < 0.05), while concurrent intake of crocin decreased the number of DNs and apoptotic cells in these areas (P < 0.05). Crocin was able to improve learning and memory of tramadol-treated rats and also decreased DNs and apoptotic cells in the hippocampus. Considering these results, the potential capacity of crocin for decreasing side effects of tramadol on the nervous system is suggested.
Collapse
Affiliation(s)
- Farideh Baghishani
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakilabad Blvd, P.O. Box 91779-48564, Mashhad, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakilabad Blvd, P.O. Box 91779-48564, Mashhad, Iran
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossain Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakilabad Blvd, P.O. Box 91779-48564, Mashhad, Iran.
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
59
|
Dai Y, Zhang Y, Zhao X, Jeon Y, Zheng F, Ma L, Yue H. Identification and Evaluation of a Panel of Ginsenosides from Different Red Ginseng Extracts with Nootropic Effect. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7422-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
60
|
Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Food Chem 2018; 257:325-332. [PMID: 29622218 DOI: 10.1016/j.foodchem.2018.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/22/2022]
Abstract
A new UHPLC-DAD-MS method based on a Core-Shell particles column was developed to realize the rapid separation of saffron stigma metabolites (Crocus sativus L.). A single separation of 35 compounds included cis and trans-crocetin esters (crocins), cis-crocetin, trans-crocetin, kaempferol derivatives, safranal, and picrocrocin from pure saffron stigmas. This method permitted the detection of 11 picrocrocin derivatives as the typical group of compounds from saffron as well as the detection of gardenia-specific compounds as typical adulterant markers. The metabolite concentration in a Standardized Saffron Extract (SSE) was determined using the method described herein and by comparison to the ISO3632 conventional method. The safranal content was 5-150 times lower than the value of 2% that was expected via ISO3632 analyses. Using the same Core-Shell separation, geniposide detection appeared to be a relevant approach for detecting the adulteration of saffron by using gardenia.
Collapse
|
61
|
Mishra A, Mishra AK, Jha S. Effect of traditional medicine brahmi vati and bacoside A-rich fraction of Bacopa monnieri on acute pentylenetetrzole-induced seizures, amphetamine-induced model of schizophrenia, and scopolamine-induced memory loss in laboratory animals. Epilepsy Behav 2018; 80:144-151. [PMID: 29414544 DOI: 10.1016/j.yebeh.2017.12.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Brahmi vati (BV) is an Ayurvedic polyherbal formulation used since ancient times and has been prescribed in seizures associated with schizophrenia and related memory loss by Ayurvedic practitioners in India. The aim of the study was to investigate these claims by evaluation of anticonvulsant, antischizophreniac, and memory-enhancing activities. Antioxidant condition of brain was determined by malondialdehyde (MDA) and reduced glutathione (GSH) levels estimations. Acetylcholinesterase (AChE) was quantitatively estimated in the brain tissue. METHODS Brahmi vati was prepared in-house by strictly following the traditional Ayurvedic formula. Bacoside A rich fraction (BA) of Bacopa monnieri was prepared by extraction and fractionation. It was than standardized by High Performance Liquid Chromatography (HPLC) and given in the dose of 32.5mg/kg body weight to the different groups of animals for 7days. On the seventh day, activities were performed adopting standard procedures. KEY FINDINGS Brahmi vati showed significant anticonvulsant, memory-enhancing and antischizophrenia activities, when compared with the control groups and BA. It cause significantly higher brain glutathione levels. Acetylcholinesterase activity was found to be significantly low in BV-treated group. CONCLUSION The finding of the present study suggests that BV may be used to treat seizures associated with schizophrenia and related memory loss.
Collapse
Affiliation(s)
- Amrita Mishra
- School of Pharmaceutical Sciences, IFTM University, Moradabad 244102, India.
| | - Arun K Mishra
- School of Pharmaceutical Sciences, IFTM University, Moradabad 244102, India
| | - Shivesh Jha
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
62
|
Samad N, Saleem A. Administration of Allium cepa L. bulb attenuates stress-produced anxiety and depression and improves memory in male mice. Metab Brain Dis 2018; 33:271-281. [PMID: 29178012 DOI: 10.1007/s11011-017-0159-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022]
Abstract
In view of anxiolytic, antidepressant and memory strengthen properties of Allium cepa (AC; onion) bulb in various investigations; we aimed to evaluate the useful effects of onion on single immobilization stress -induced biochemical and behavioral changes. Mice in test group were treated with AC powder (200 mg/kg/day), dissolved in water, while the control group were received drinking water for 14 days. After 14 days control and AC treated mice were further divided into unstressed and stressed groups. Animals in the stressed group were subjected to immobilization stress for 2 h. 24-h after the immobilization stress, behavioral activities were monitored. Immobilization stress-induced an anxiogenic behavior in mice subjected to elevated plus maze test (EPM) and light dark activity test (LDA). 2-h immobilization stress-induced depressive behavior in animals measured by forced swim test (FST). Administration of AC attenuated the immobilization stress-induced behavioral deficits. Highest memory performance was observed in stressed mice that were pre-treated with AC in Morris water maze (MWM). Brain lipid peroxidation, antioxidant enzymes (SOD, CAT, GPx) and acetylcholinesterase (AChE) activities were also estimated. Present study suggests a role of antioxidant enzymes in the attenuation of 2-h stress induced anxiety and depression, and enhanced cognitive function as well by AC. The findings therefore suggest that supplementation of AC may be beneficial in the treatment of anxiety, depression and enhancement of memory function.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Ayesha Saleem
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
63
|
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98:733-745. [PMID: 29306211 DOI: 10.1016/j.biopha.2017.12.090] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Crocus sativus is an herbaceous plant that belongs to family Iridaceae. It is commonly known as saffron and has been used for medicinal purposes since many centuries in India and other parts of the world. Saffron of commercial importance comprises of dried stigmas of the plant and is rich in flavonoids, vitamins, and carotenoids. Carotenoids represent the main components of saffron and their cleavage results in the formation of apocarotenoids such as crocin, picrocrocin, and safranal. Studies conducted during the past two decades have revealed the immense therapeutic potential of saffron. Most of the therapeutic properties are due to the presence of unique apocarotenoids having strong free radical scavenging activity. The mode of action of these apocarotenoids could be: modulatory effects on detoxifying enzymes involved in combating oxidative stress, decreasing telomerase activity, increased the proapoptotic effect, inhibition of DNA, RNA and protein synthesis, and by a strong binding capacity of crocetin with tRNA. The present review focuses on the therapeutic role of saffron and its bio oxidative cleavage products and also highlights the possible molecular mechanism of action. The findings reported in this review describes the wide range of applications of saffron and attributes its free radical scavenging nature the main property which makes this spice a potent chemotherapeutic agent for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Mahreen Manzoor
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - M K Dhar
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| |
Collapse
|
64
|
Yosri H, Elkashef WF, Said E, Gameil NM. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017. [DOI: 10.10.1016/j.intimp.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
65
|
Samarghandian S, Samini F, Azimi-Nezhad M, Farkhondeh T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett 2017; 659:26-32. [PMID: 28866053 DOI: 10.1016/j.neulet.2017.08.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
Safranal, a major constituent of saffron, possesses antioxidant and anti-apoptotic properties showing considerable neuroprotective effects. The present study was designed to investigate the effects of safranal against restraint stress induced oxidative damage in the rat brain. For inducing the chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days, then, the animals received systemic administrations of vehicle (0.1% DMSO) acted as the control group or safranal daily for 21days. Results indicated that the rats submitted to restraint stress showed an increase in the immobility time versus the non-stress rats. In addition, stress decreased number of crossing in the rats submitted to restraint stress versus the non-stress animals. Treatment with safranal (0.75mg/kg) showed a significant reduction in the immobility time compared to the non-treated stress group, while, the treatment improved the number of crossing in rats submitted to restraint stress versus the vehicle-treated stress rats. In the stressed animals that received vehicle, the MDA level was significantly higher and the levels of GSH and antioxidant enzymes were significantly lower than the non-stressed rats. Safranal ameliorated the changes in the stressed animals as compared with the control groups. The present findings indicate that safranal might be effective against depressant-like effects induced by chronic stress via modulating brain oxidative response.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fariborz Samini
- Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Azimi-Nezhad
- Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Department of Immunology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
66
|
The Effect of Saffron on Semen Analysis in Infertile Men with Clinical Varicocele After Varicocelectomy. Nephrourol Mon 2017. [DOI: 10.5812/numonthly.59939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
67
|
Farajdokht F, Amani M, Mirzaei Bavil F, Alihemmati A, Mohaddes G, Babri S. Troxerutin protects hippocampal neurons against amyloid beta-induced oxidative stress and apoptosis. EXCLI JOURNAL 2017; 16:1081-1089. [PMID: 29285004 PMCID: PMC5735350 DOI: 10.17179/excli2017-526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease linked with increased production and/or deposition of amyloid-beta (Aβ) in the brain. The aim of the present study was to investigate the possible neuroprotective effect of troxerutin on an animal model of Alzheimer's disease. Alzheimer model was induced by a single dose intracerebroventricular (ICV) injection of Aβ 1-42 (5 nmol/5 µl). Thereafter, troxerutin (300 mg/kg) was gavaged for 14 days. The hippocampal malondialdehyde (MDA) levels and enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) were measured using enzyme-linked immunosorbent assay (ELISA) method. In addition, the number of apoptotic cells in the dentate gyrus (DG) was assessed by TUNEL kit. The results showed that ICV microinjection of Aβ 1-42 increased MDA levels, reduced SOD and GPx, and increased AChE activities in the hippocampus. Chronic administration of troxerutin significantly attenuated MDA levels and AChE activity and increased SOD and GPx activities in the hippocampus. Moreover, the number of apoptotic cells was decreased by troxerutin treatment. Taken together, our study demonstrated that troxerutin could increase the resistance of hippocampal neurons against apoptosis, at least in part, by diminishing the activity of AChE and oxidative stress. Therefore, troxerutin may have beneficial effects in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amani
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaei Bavil
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
68
|
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food Chem 2017; 228:403-410. [DOI: 10.1016/j.foodchem.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
69
|
Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017; 96:173-184. [PMID: 28432986 DOI: 10.1016/j.cyto.2017.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The study objective was to determine the protective effects of thymoquinone (TQ) on brain tissues oxidative stress status, hippocampal cytokine level, and learning and memory deficits induced by lipopolysaccharide (LPS) in rats. METHODS Animals were randomly divided into the following groups and treated: (1) Control (saline), (2) LPS (1mg/kg i.p.), (3-5) 2, 5 or 10mg/kg TQ extract 30min before LPS injection. The treatment was started since two weeks before the behavioral experiments and continued during the behavioral tests (LPS injected 2h before each behavioral experiment). Finally, the brains were removed for biochemical assessments. RESULTS Morris water maze (MWM) test results showed that LPS increased escape latency compared to control group whereas TQ decreased them vs. LPS group. In passive avoidance (PA) test, LPS reduced the latency to enter the dark compartment vs. control group, while TQ treatment attenuated this effect of LPS. Additionally, LPS increased interleukin-6 (IL-6) and tumor necrosis alpha (TNF-α) in the hippocampal tissues. It also elevated malondialdehyde (MDA) and nitric oxide (NO) metabolites and decreased thiol content, superoxide dismutase (SOD) and catalase (CAT) in both hippocampus and cortex vs. control group, while TQ decreased IL-6, TNF-α, MDA and NO metabolites and increased thiol content, SOD and CAT compared to LPS group. CONCLUSION Findings of current study indicated that TQ improved LPS-induced learning and memory impairments induced by LPS in rats by attenuating the hippocampal cytokine levels and brain tissues oxidative damage.
Collapse
Affiliation(s)
- Rahimeh Bargi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
70
|
Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017; 50:305-312. [PMID: 28738246 DOI: 10.1016/j.intimp.2017.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022]
Abstract
Allergic asthma is a chronic respiratory disease with a prevalent T helper (Th2)-mediated immune reaction. Crocin, the major bioactive constituent of saffron, has been reported in multiple studies to have numerous pharmacological activities, including prominent anti-oxidant activities. In the current study, the anti-asthmatic potential of crocin was evaluated. Adult male Swiss Albino mice were administered 10mg of ovalbumin (OVA) mixed with 1mg of aluminum hydroxide intraperitoneally on days 0 and 7 and were administered crocin (25mg/kg) orally daily for 16days. Asthma progression was associated with significant increase in the lung/body weight index, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), lung total protein content, and serious index of lung permeability, indicating pulmonary edema with accumulation of serous fluids within the lungs. Serum lactate dehydrogenase (LDH) activity and lung malondialdehyde (MDA) content were significantly increased, while lung superoxide dismutase (SOD) activity, reduced glutathione (GSH) levels, and serum and lung catalase activities were significantly decreased. These changes reflect significant pulmonary inflammation with concomitant disturbance of oxidant/antioxidant homeostasis. Moreover, tumor necrosis factor (TNF)-α, interleukin (IL)-4, and IL-13 contents in the lung were also significantly high after OVA sensitization. Crocin treatment significantly alleviated the OVA-induced allergic asthma-associated alterations in inflammatory and oxidative stress biomarkers. Crocin enhanced anti-oxidant defenses, reduced the incidence of oxidative stress, and restored pro-inflammatory cytokines to normal levels. Histopathological analysis showed significant lung improvement in crocin-treated mice. In conclusion, crocin showed a significant protective effect against allergic asthma progression, which was associated with down-regulation of inflammatory cytokine expression and restoration of oxidant/antioxidant homeostasis.
Collapse
|
71
|
Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice. Journal of Food Science and Technology 2017; 54:3102-3110. [PMID: 28974795 DOI: 10.1007/s13197-017-2746-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
A walnut protein hydrolysate (WPH) was prepared by using a mixture of pancreatin and viscozyme L from industrially available defatted walnut meal. The antioxidant effects of WPH were confirmed and quantified by reducing power, oxygen radical absorbance capacity, hydroxyl radical radical-scavenging activity and ABTS+· radical-scavenging activity assays. The protective effects of WPH on scopolamine-induced learning and memory deficits in mice were also evaluated based on in vivo behavioral tests. Results showed that WPH administration would lead to significantly decreased latencies while increased crossing times and target times in the spatial probe test, and increased escape latency and decreased error times in the step-down avoidance test for the scopolamine-induced dementia mice. Biochemical results indicated that the ameliorative effects of WPH on scopolamine-induced dementia mice could be attributed to the significantly increased amount of acetylcholine receptors. Therefore, WPH may be a potential therapeutic agent against Alzheimer's disease.
Collapse
|
72
|
Linardaki ZI, Lamari FN, Margarity M. Saffron (Crocus sativus L.) Tea Intake Prevents Learning/Memory Defects and Neurobiochemical Alterations Induced by Aflatoxin B1 Exposure in Adult Mice. Neurochem Res 2017; 42:2743-2754. [DOI: 10.1007/s11064-017-2283-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 01/03/2023]
|
73
|
Ni Y, Li L, Zhang W, Lu D, Zang C, Zhang D, Yu Y, Yao X. Discovery and LC-MS Characterization of New Crocins in Gardeniae Fructus and Their Neuroprotective Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2936-2946. [PMID: 27936687 DOI: 10.1021/acs.jafc.6b03866] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ten new crocins, neocrocins B-J (1-9) and 13-cis-crocetin-8'-O-β-d-gentiobioside (14), along with 10 known crocins, were isolated from the fruits of Gardenia jasminoides Ellis (Gardeniae Fructus). The structures of these compounds were elucidated by analyzing HRESIMS, UV/vis, and 1D and 2D NMR spectra, and their neuroprotective effects against hydrogen peroxide- and l-glutamic acid-induced SH-SY5Y cell injury were evaluated. The UPLC-Q/TOF-MS chromatogram of a crocin-rich fraction derived from gardenia fruit extracts was established using the obtained crocin compounds as references. Most of the peaks were identified (the total integral area of the identified peaks accounted for 95% of total peak areas), and bioactive crocins were a large portion of this fraction (the areas of peaks from the neuroprotective compounds accounted for 70% of the total).
Collapse
Affiliation(s)
- Yang Ni
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Lin Li
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Weiyang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, People's Republic of China
| | - Dan Lu
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Caixia Zang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Dan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yang Yu
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Xinsheng Yao
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| |
Collapse
|
74
|
Dhakshinamoorthy V, Manickam V, Perumal E. Neurobehavioural Toxicity of Iron Oxide Nanoparticles in Mice. Neurotox Res 2017; 32:187-203. [PMID: 28321581 DOI: 10.1007/s12640-017-9721-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
Iron oxide nanoparticles (Fe2O3-NPs) are widely used in various biomedical applications, extremely in neurotheranostics. Simultaneously, Fe2O3-NP usage is of alarming concern, as its exposure to living systems causes deleterious effects due to its redox potential. However, study on the neurobehavioural impacts of Fe2O3-NPs is very limited. In this regard, adult male mice were intraperitoneally administered with Fe2O3-NPs (25 and 50 mg/kg body weight) once a week for 4 weeks. A significant change in locomotor behaviour and spatial memory was observed in Fe2O3-NP-treated animals. Damages to blood-brain barrier permeability by Fe2O3-NPs and their accumulation in brain regions were evidenced by Evan's blue staining, iron estimation and Prussian blue staining. Elevated nitric oxide, acetylcholinesterase, lactate dehydrogenase leakage and demyelination were observed in the Fe2O3-NP-exposed brain tissues. Imbalanced levels of ROS generation and antioxidant defence mechanism (superoxide dismutase and catalase) cause damages to lipids, proteins and DNA. PARP and cleaved caspase 3 expression levels were found to be increased in the Fe2O3-NP-exposed brain regions which confirms DNA damage and apoptosis. Thus, repeated Fe2O3-NP exposure causes neurobehavioural impairments by nanoparticle accumulation, oxidative stress and apoptosis in the mouse brain.
Collapse
Affiliation(s)
- Vasanth Dhakshinamoorthy
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Vijayprakash Manickam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
75
|
Finley JW, Gao S. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1005-1020. [PMID: 28098452 DOI: 10.1021/acs.jafc.6b04398] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, in which the death of brain cells causes memory loss and cognitive decline. Several factors are thought to play roles in the development and course of AD. Existing medical therapies only modestly alleviate and delay cognitive symptoms. Current research has been focused on developing antibodies to remove the aggregates of amyloid-β (Aβ) and tau protein. This approach has achieved removal of Aβ; however, no cognitive improvement in AD patients has been reported. The biological properties of saffron, the dry stigma of the plant Crocus sativus L., and particularly its main constituent crocin, have been studied extensively for many conditions including dementia and traumatic brain injury. Crocin is a unique antioxidant because it is a water-soluble carotenoid. Crocin has shown potential to improve learning and memory as well as protect brain cells. A search of the studies on saffron and crocin that have been published in recent years for their impact on AD as well as crocin's effects on Aβ and tau protein has been conducted. This review demonstrates that crocin exhibits multifunctional protective activities in the brain and could be a promising agent applied as a supplement or drug for prevention or treatment of AD.
Collapse
Affiliation(s)
- John W Finley
- Adjunct Professor, Department of Nutrition and Food Science, 111 Food Science Building, Louisiana State University , Baton Rouge, Louisiana 70803, United States
- 14719 Secret Harbor Place, Bradenton, Florida 34202, United States
| | - Song Gao
- Quality Phytochemicals LLC , 13 Dexter Road, East Brunswick, New Jersey 08816, United States
| |
Collapse
|
76
|
Rahimi R, Irannejad S, Noroozian M. Avicenna’s pharmacological approach to memory enhancement. Neurol Sci 2017; 38:1147-1157. [PMID: 28176148 DOI: 10.1007/s10072-017-2835-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Irannejad
- Research Training Group 1876: Early Concepts of Man and Nature: Universal, Local, Borrowed, Johannes Gutenberg University, Mainz, Germany.
| | - Maryam Noroozian
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. Detection of saffron adulteration with gardenia extracts through the determination of geniposide by liquid chromatography–mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
78
|
Trans -crocetin improves amyloid-β degradation in monocytes from Alzheimer's Disease patients. J Neurol Sci 2017; 372:408-412. [DOI: 10.1016/j.jns.2016.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
79
|
Zhao T, Xu J, Zhao H, Jiang W, Guo X, Zhao M, Sun-Waterhouse D, Zhao Q, Su G. Antioxidant and anti-acetylcholinesterase activities of anchovy (Coilia mystus) protein hydrolysates and their memory-improving effects on scopolamine-induced amnesia mice. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tiantian Zhao
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center; Guangzhou 510650 China
| | - Jucai Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center; Guangzhou 510650 China
| | - Hongwei Zhao
- Infinitus (China) Company Ltd.; Guangzhou 510665 China
| | - Weiwen Jiang
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Xiaolei Guo
- Infinitus (China) Company Ltd.; Guangzhou 510665 China
| | - Mouming Zhao
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center; Guangzhou 510650 China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center; Guangzhou 510650 China
| | - Qiangzhong Zhao
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center; Guangzhou 510650 China
| | - Guowan Su
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center; Guangzhou 510650 China
| |
Collapse
|
80
|
Shahi T, Assadpour E, Jafari SM. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
81
|
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine 2016; 88:20-28. [PMID: 27529541 DOI: 10.1016/j.cyto.2016.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|
82
|
Skladnev NV, Ganeshan V, Kim JY, Burton TJ, Mitrofanis J, Stone J, Johnstone DM. Widespread brain transcriptome alterations underlie the neuroprotective actions of dietary saffron. J Neurochem 2016; 139:858-871. [PMID: 27696408 DOI: 10.1111/jnc.13857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
Dietary saffron has shown promise as a neuroprotective intervention in clinical trials of retinal degeneration and dementia and in animal models of multiple CNS disorders, including Parkinson's disease. This therapeutic potential makes it important to define the relationship between dose and protection and the mechanisms involved. To explore these two issues, mice were pre-conditioned by providing an aqueous extract of saffron (0.01% w/v) as their drinking water for 2, 5 or 10 days before administration of the parkinsonian neurotoxin MPTP (50 mg/kg). Five days of saffron pre-conditioning provided the greatest benefit against MPTP-induced neuropathology, significantly mitigating both loss of functional dopaminergic cells in the substantia nigra pars compacta (p < 0.01) and abnormal neuronal activity in the caudate-putamen complex (p < 0.0001). RNA microarray analysis of the brain transcriptome of mice pre-conditioned with saffron for 5 days revealed differential expression of 424 genes. Bioinformatics analysis identified enrichment of molecular pathways (e.g. adherens junction, TNFR1 and Fas signaling) and expression changes in candidate genes (Cyr61, Gpx8, Ndufs4, and Nos1ap) with known neuroprotective actions. The apparent biphasic nature of the dose-response relationship between saffron and measures of neuroprotection, together with the stress-inducible nature of many of the up-regulated genes and pathways, lend credence to the idea that saffron, like various other phytochemicals, is a hormetic stimulus, with functions beyond its strong antioxidant capacity. These findings provide impetus for a more comprehensive evaluation of saffron as a neuroprotective intervention.
Collapse
Affiliation(s)
- Nicholas V Skladnev
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Varshika Ganeshan
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Ji Yeon Kim
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia.,School of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Qld, Australia
| | - Thomas J Burton
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - John Mitrofanis
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy & Histology, University of Sydney, Sydney, NSW, Australia
| | - Jonathan Stone
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Daniel M Johnstone
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
83
|
Rodriguez-Ruiz V, Barzegari A, Zuluaga M, Zunooni-Vahed S, Rahbar-Saadat Y, Letourneur D, Gueguen V, Pavon-Djavid G. Potential of aqueous extract of saffron ( Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
84
|
Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J 2016; 69:151-159. [PMID: 28460761 PMCID: PMC5414951 DOI: 10.1016/j.ihj.2016.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Introduction Crocus sativus L. (saffron) has many biological effects such as antioxidant property. The present study investigated the immunomodulatory effects of the aqueous saffron extract on streptozotocin (STZ)-induced diabetic rats. Materials and methods In this study, the rats were divided into the following groups of 9 animals each: control, untreated diabetic, three saffron extract-treated diabetic groups. Diabetes was induced by STZ in rats. Saffron was administered 3 days after STZ administration; these injections were continued to the end of the study (4 weeks). At the end of the 4-week period, blood was drawn for biochemical assays and the abdominal aorta was removed for detecting the inflammatory cytokines expression. Results We found that saffron decreased blood glucose, malondialdehyde, nitric oxide, total lipids, triglycerides, cholesterol levels significantly (p < 0.01) and increased glutathione level, catalase, and superoxide dismutase activities in the saffron-treated diabetic groups compared with the untreated groups, in a dose dependent manner (p < 0.05, p < 0.01, p < 0.001). On the other hand, saffron-treated diabetic rats inhibited the expression of inflammatory cytokines in the abdominal aorta versus the untreated diabetic rats. Conclusion Our results validate the use of saffron as a treatment against diabetes mellitus and its vascular complications.
Collapse
|
85
|
Samarghandian S, Azimi-Nezhad M, Borji A, Farkhondeh T. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state. Phytother Res 2016; 30:1345-53. [PMID: 27279282 DOI: 10.1002/ptr.5638] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
This study evaluated whether crocin, a bioactive component of saffron, has a protective effect on kidney through reducing the oxidative stress and inflammatory response in aged rats. In this study the changes in activities of antioxidant enzymes, lipid peroxidation, glutathione (GSH) levels and the expression of pro-inflammatory cytokines in the serum and renal tissue were evaluated by ELISA and RT-PCR, respectively. The middle and aged rats were given intraperitoneal injections of crocin (10, 20, 30 mg/kg/day) for 4 weeks. After 4 weeks, animals were anesthetized with diethyl ether. The kidney samples were taken for biochemical analysis. The results revealed the aging was associated with a significant decrease in the activities of antioxidant enzymes, and GSH content with increase in lipid peroxidation level in kidney of the aged rats (p < 0.001). The increased levels of serum renal functional parameter, oxidative parameters (p < 0.01) and also pro-inflammatory cytokine levels were significantly reduced by crocin administration (p < 0.05). The aged rats exhibited a dysregulation of the oxidative stress, and inflammation in the kidneys, but crocin treatment significantly reduced the expression of the inflammatory genes. These results provide pivotal documentation that crocin has a renoprotective effects against the development of oxidative stress and inflammation in the kidney of old rats. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abasalt Borji
- Department of Basic Medical sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Tahereh Farkhondeh
- Department of Immunogenetics, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
86
|
Boskabady MH, Farkhondeh T. Antiinflammatory, Antioxidant, and Immunomodulatory Effects of Crocus sativus L. and its Main Constituents. Phytother Res 2016; 30:1072-94. [PMID: 27098287 DOI: 10.1002/ptr.5622] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/28/2016] [Accepted: 03/17/2016] [Indexed: 11/05/2022]
Abstract
Crocus sativus L. (C. sativus), commonly known as saffron, is used as a food additive, preservative, and medicinal herb. Traditionally, it has been used as an alternative treatment for different diseases. C. sativus' medicinal effects are related to its major constituents like crocins, crocetin, and safranal. According to the literature, C. sativus and its constituents could be considered as an effective treatment for neurodegenerative disorders, coronary artery diseases, asthma, bronchitis, colds, fever, diabetes, and so on. Recently, numerous studies have reported such medicinal properties and found that the underlying mechanisms of action may be mediated by antioxidant, inflammatory, and immunomodulatory effects. C. sativus enhances the antioxidant capacity and acts as a free radical scavenger. As an antiinflammatory and immunomodulatory agent, it modulates inflammatory mediators, humoral immunity, and cell-mediated immunity responses. This review highlights in vitro and animal findings regarding antiinflammatory, antioxidant, and immunomodulatory effects of C. sativus and its constituents. Present review found that the C. sativus and its main constituents such as safranal, crocins, and crocetin could be effective against various diseases because of their antioxidant, anti-inflammation, and immunomodulatory effects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Tahereh Farkhondeh
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| |
Collapse
|
87
|
Su G, Zhao T, Zhao Y, Sun-Waterhouse D, Qiu C, Huang P, Zhao M. Effect of anchovy (Coilia mystus) protein hydrolysate and its Maillard reaction product on combating memory-impairment in mice. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Pitsikas N. Constituents of Saffron (Crocus sativus L.) as Potential Candidates for the Treatment of Anxiety Disorders and Schizophrenia. Molecules 2016; 21:303. [PMID: 26950102 PMCID: PMC6273654 DOI: 10.3390/molecules21030303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
Anxiety disorders and schizophrenia are common public health issues. The dried stigma of the plant Crocus sativus L., (C. sativus) commonly known as saffron are used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus, crocins and safranal are implicated in anxiety and schizophrenia. Here, I intend to critically review advances in research of these emerging molecules for the treatment of anxiety and schizophrenia, discuss their advantages over currently used anxiolytics and neuroleptics, as well remaining challenges. Current analysis shows that C. sativus and its components might be a promising class of compounds for the treatment of the above mentioned psychiatric diseases.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Panepistimiou 3 (Biopolis), Larissa 41500, Greece.
| |
Collapse
|
89
|
Dhingra D, Soni K. Improvement of Learning and Memory by Morin, A Flavonoid in Young and Aged Mice. ACTA ACUST UNITED AC 2016. [DOI: 10.5567/pharmacologia.2016.75.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
90
|
Baba SA, Ashraf N. Pharmacological Importance of Crocus sativus Apocarotenoids. APOCAROTENOIDS OF CROCUS SATIVUS L: FROM BIOSYNTHESIS TO PHARMACOLOGY 2016. [DOI: 10.1007/978-981-10-1899-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
91
|
Ma JQ, Luo RZ, Jiang HX, Liu CM. Quercitrin offers protection against brain injury in mice by inhibiting oxidative stress and inflammation. Food Funct 2016; 7:549-56. [DOI: 10.1039/c5fo00913h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quercitrin is one of the primary flavonoid compounds present in vegetables and fruits.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry and Pharmaceutical Engineering
- Sichuan University of Science and Engineering
- 643000 Zigong City
- PR China
| | - Rong-Zhen Luo
- School of Chemistry and Pharmaceutical Engineering
- Sichuan University of Science and Engineering
- 643000 Zigong City
- PR China
| | - Hai-Xia Jiang
- School of Chemistry and Pharmaceutical Engineering
- Sichuan University of Science and Engineering
- 643000 Zigong City
- PR China
| | - Chan-Min Liu
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| |
Collapse
|
92
|
Extraction of phytochemicals from saffron by supercritical carbon dioxide with water and methanol as entrainer. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Rao SV, Muralidhara, Yenisetti SC, Rajini PS. Evidence of neuroprotective effects of saffron and crocin in a Drosophila model of parkinsonism. Neurotoxicology 2016; 52:230-42. [DOI: 10.1016/j.neuro.2015.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 01/04/2023]
|
94
|
Llorens S, Mancini A, Serrano-Díaz J, D'Alessandro AM, Nava E, Alonso GL, Carmona M. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Molecules 2015; 20:17570-84. [PMID: 26402666 PMCID: PMC6332434 DOI: 10.3390/molecules200917570] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L.) bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins) isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M) in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester) or indomethacin (both 10−5 M), respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.
Collapse
Affiliation(s)
- Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete 02006, Spain.
| | - Andrea Mancini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Jessica Serrano-Díaz
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
| | - Anna Maria D'Alessandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Eduardo Nava
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete 02006, Spain.
| | - Gonzalo Luis Alonso
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
| | - Manuel Carmona
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
- Albacete Science and Technology Park, Paseo de la Innovación 1, Albacete 02006, Spain.
| |
Collapse
|
95
|
Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats. Brain Res Bull 2015; 115:1-8. [DOI: 10.1016/j.brainresbull.2015.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 11/21/2022]
|
96
|
The Neuroprotective Effects of Ratanasampil on Oxidative Stress-Mediated Neuronal Damage in Human Neuronal SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:792342. [PMID: 26064424 PMCID: PMC4433697 DOI: 10.1155/2015/792342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022]
Abstract
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2'-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
Collapse
|
97
|
Huang WJ, Li FF, Liu YJ, Long CL. Identification of Crocus sativus and its Adulterants from Chinese Markets by using DNA Barcoding Technique. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:36-42. [PMID: 28959279 DOI: 10.15171/ijb.1034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Saffron (Crocus sativus L.) is a common but very expensive herbal medicine. As an important traditional medicine, it has an outstanding effect in treating irregular and painful menstruation. Recently, the over-demand tendency of saffron results in an unusual phenomenon in the medicinal markets. Adulterants and saffron-like substitutes are intentionally mixed into medicinal markets and pharmacies or online stores, affecting drug safety and food quality. OBJECTIVES Our study aimed to identify saffron from its adulterants via DNA barcoding. MATERIALS AND METHODS Samples (13 saffron + 4 others containing Carthamus tinctorius or Chrysanthemum x morifolium) obtained from 12 different provinces of China. Through DNA barcoding, samples were compared using three candidate markers, trnH-psbA, rbcL-a and ITS2. RESULTS trnH-psbA and rbcL-a were capable of distinguishing different accessions. ITS2 could identify samples even at intra-specific level. According to these three barcodes, four samples were identified saffron-like substitutes. CONCLUSIONS The adulterant rate in Chinese markets reaches as high as 33.33% that may cause health risks and further may reduce saffron efficacy once is being used as herbal remedy. In order to make a distinction between C. sativus with other genera as adulterants, DNA barcoding is suggested.
Collapse
Affiliation(s)
- Wei-Juan Huang
- Department of Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Fei-Fei Li
- Department of Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Yu-Jing Liu
- Department of Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Chun-Lin Long
- Department of Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China.,Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| |
Collapse
|
98
|
The Effect of Crocus sativus L. and Its Constituents on Memory: Basic Studies and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:926284. [PMID: 25713594 PMCID: PMC4331467 DOI: 10.1155/2015/926284] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
Memory-related disorders are a common public health issue. Memory impairment is frequent in degenerative diseases (such as Alzheimer's disease and Parkinson disease), cerebral injuries, and schizophrenia. The dried stigma of the plant Crocus sativus L. (C. sativus), commonly known as saffron, is used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus and its constituents are implicated in cognition. Here we critically review advances in research of these emerging molecular targets for the treatment of memory disorders, and discuss their advantages over currently used cognitive enhancers as well remaining challenges. Current analysis has shown that C. sativus and its components might be a promising target for cognition impairments.
Collapse
|
99
|
Gulati P, Muthuraman A, Kaur P. Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Pharmacol Biochem Behav 2015; 131:26-32. [PMID: 25636603 DOI: 10.1016/j.pbb.2015.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 12/24/2022]
Abstract
The present study was designed to investigate the role of flunarizine (a non-selective calcium channel blocker) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Bilateral carotid artery occlusion of 12min followed by reperfusion for 24h was given to induce cerebral injury in male Swiss mice. The assessment of learning & memory was performed by Morris water maze test; motor in-coordination was evaluated by rota rod, lateral push and inclined beam walking tests; cerebral infarct size was quantified by triphenyltetrazolium chloride staining. In addition, reduced glutathione (GSH), total calcium and acetylcholinesterase (AChE) activity were also estimated in aged brain tissue. Donepezil treated group served as a positive control in this study. Ischemia reperfusion (I/R) injury produced significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Further, I/R injury also produced significant increase in levels of total calcium, AChE activity and decrease in GSH levels. Pretreatment of flunarizine significantly attenuated I/R induced infarct size, behavioral and biochemical changes. Hence, it may be concluded that, a non-selective calcium channel blocker can be useful in I/R associated cognitive dysfunction due to its anti-oxidant, anti-infarct and modulatory actions of neurotransmitters & calcium channels.
Collapse
Affiliation(s)
- Puja Gulati
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala 147002, Punjab, India; Department of Pharmacology, Neuropharmacology Division, Akal Pharmacology & Toxicology Research Centre, Akal College of Pharmacy & Technical Education (ACPTE), Masuana Sahib, Sangrur 148001, Punjab, India.
| | - Parneet Kaur
- Department of Pharmacology, Neuropharmacology Division, Akal Pharmacology & Toxicology Research Centre, Akal College of Pharmacy & Technical Education (ACPTE), Masuana Sahib, Sangrur 148001, Punjab, India
| |
Collapse
|
100
|
Palit P, Mukherjee D, Mandal SC. Reconstituted mother tinctures of Gelsemium sempervirens L. improve memory and cognitive impairment in mice scopolamine-induced dementia model. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:274-284. [PMID: 25459447 DOI: 10.1016/j.jep.2014.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium sempervirens (L.) J.St.-Hil is a herb used for the treatment of various neuroses in both homeopathic and Ayurvedic systems. The present study examines whether Gelsemium reconstituted tincture can protect against scopolamine induced cognitive discrepancies in amnesic mouse model. In order to investigate the protective mechanism of Gelsemium against dementia, in vitro acetyl cholinesterase and β-secretase enzyme inhibition and estimation of glutathione level in mouse brain were carried out. MATERIALS AND METHODS The inhibition study on acetyl cholinesterase and β-secretase enzyme was conducted on brain homogenate supernatant spectrophotometrically using specific substrate. Cognitive enhancement activity was assessed by elevated plus maze and passive avoidance study in scopolamine induced dementia mouse model. Glutathione, an anti-oxidant, was measured spectrophotometrically from scopolamine induced amnesic mice brain supernatant using 5,5'-dithiobis 2-nitrobenzoic acid in the presence and absence of Gelsemium tincture. RESULTS Significant inhibition was found with Gelsemium on AChE and β-secretase enzyme with an IC50 of 9.25 and 16.25 µg/ml, respectively, followed by increasing glutathione levels in comparison to the untreated dementia group. The effect of Gelsemium of scopolamine-induced cognitive deficits was determined by measuring the behavioral parameters and the antioxidant status of the brain after scopolamine (1mg/kg i.p.) injected amnesic mice. Gelsemium significantly demonstrated in vivo anti-dementia activity (60% protection) and increased exploratory behavior. CONCLUSION Our investigations indicated that alkaloid, iridoids and coumarin enriched reconstituted Gelsemium tincture extract displays promising cognitive enhancement in adult mice after short-term oral treatment. Hence, Gelsemium can be a promising anti-dementia agent, mediating the protection against amnesia, attention disorders and learning dysfunctions through dual inhibition of both acetyl cholinesterases (no false positive effect was shown), β-secretase and antioxidant activity.
Collapse
Affiliation(s)
- Partha Palit
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Division of Pharmacognosy and Phytochemistry, Bidhan Nagar, Durgapur 713206, India.
| | - Dhrubojyoti Mukherjee
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Division of Pharmacognosy and Phytochemistry, Bidhan Nagar, Durgapur 713206, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Research Laboratory, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|