51
|
Cheng YS, Chao J, Chen C, Lv LL, Han YC, Liu BC. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy. J Pharm Pharmacol 2018; 71:338-347. [DOI: 10.1111/jphp.13043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Oxidative stress plays a critical role in the pathogenesis of diabetic nephropathy (DN). p66shc is closely related to oxidative stress. However, the exact mechanism of its involvement in diabetic nephropathy is poorly understood. This study aimed to investigate the role of the p66shc-related pathway in diabetic nephropathy.
Methods
In an in-vivo experiment, rats were injected with streptozotocin to induce early diabetic nephropathy. The treatment groups were an aminoguanidine group and an enzastaurin group. In an in-vitro experiment, human renal proximal tubule epithelial cells (HK-2 cells) were cultured and incubated with high glucose.
Key findings
Upregulated protein expression of p66shc and p-p66shc was found in vivo and in vitro when cells were stimulated by high levels of glucose; this effect was accompanied by enhanced oxidative stress and damaged renal function, both of which were alleviated by p66shc siRNA. p66shc regulated NADPH oxidase, further promoting activation of oxidative stress. As an inhibitor of PKCβ, enzastaurin reduced the abnormal expression of p66shc and NADPH oxidase and alleviated renal injury.
Conclusions
This study demonstrated enzastaurin alleviated diabetic renal injury via modulation of the PKCβ-p66shc-NADPH oxidase pathway, which provided a new perspective for the treatment of early DN.
Collapse
Affiliation(s)
- Yu-Si Cheng
- Institute of Nephrology, School of Medicine, Southeast University, Nanjing, China
- Department of Physiology, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, China
| | - Chen Chen
- Functional Experimental Laboratory, School of Medicine, Southeast University, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, School of Medicine, Southeast University, Nanjing, China
| | - Yu-Chen Han
- Institute of Nephrology, School of Medicine, Southeast University, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
52
|
Wen Y, Pan M, Lv L, Tang T, Zhou L, Wang B, Liu H, Wang F, Ma K, Tang R, Liu B. Artemisinin attenuates tubulointerstitial inflammation and fibrosis via the NF‐κB/NLRP3 pathway in rats with 5/6 subtotal nephrectomy. J Cell Biochem 2018; 120:4291-4300. [PMID: 30260039 DOI: 10.1002/jcb.27714] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yi Wen
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Ming‐Ming Pan
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Lin‐Li Lv
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Tao‐Tao Tang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Le‐Ting Zhou
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Bin Wang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Hong Liu
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Feng‐Mei Wang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Kun‐Ling Ma
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Ri‐Ning Tang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Bi‐Cheng Liu
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| |
Collapse
|
53
|
Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol 2018; 103:115-124. [PMID: 30248487 DOI: 10.1016/j.molimm.2018.09.010] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
The NLRP3 inflammasome is a multiprotein platform which is activated upon cellular infection or stress. Its activation leads to caspase-1-dependent secretion of proinflammatory cytokines like interleukin-1β (IL-1β) and IL-18, and an inflammatory form of cell death termed as pyroptosis. Recent studies have unveiled the pivotal roles of mitochondria in initiation and regulation of the NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3) inflammasome. NLRP3 activators induce mitochondrial destabilization, NLRP3 deubiquitination, linear ubiquitination of ASC, and externalization or release of mitochondria-derived molecules such as cardiolipin and mitochondrial DNA. These molecules bind to NLRP3 that is translocated on mitochondria and activate the NLRP3 inflammasome. Here we review recently described mechanisms by which mitochondria regulate NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qiuyun Liu
- College of Animal Science, Southwest University, Chongqing 402460, China
| | - Danyan Zhang
- College of Animal Science, Southwest University, Chongqing 402460, China
| | - Diyu Hu
- College of Animal Science, Southwest University, Chongqing 402460, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Zhou
- College of Animal Science, Southwest University, Chongqing 402460, China.
| |
Collapse
|
54
|
Li LC, Yang JL, Lee WC, Chen JB, Lee CT, Wang PW, Vaghese Z, Chen WY. Palmitate aggravates proteinuria-induced cell death and inflammation via CD36-inflammasome axis in the proximal tubular cells of obese mice. Am J Physiol Renal Physiol 2018; 315:F1720-F1731. [PMID: 30230367 DOI: 10.1152/ajprenal.00536.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
High levels of serum free fatty acids (FFAs) and proteinuria have been implicated in the pathogenesis of obesity-related nephropathy. CD36, a class B scavenger receptor, is highly expressed in the renal proximal tubules and mediates FFA uptake. It is not clear whether FFA- and proteinuria-mediated CD36 activation coordinates NLRP3 inflammasomes to induce renal tubular injury and inflammation. In this study, we investigated the roles of CD36 and NLRP3 inflammasomes in FFA-induced renal injury in high-fat diet (HFD)-induced obesity. HFD-fed C57BL/6 mice and palmitate-treated HK2 renal tubular cells were used as in vivo and in vitro models. Immunohistochemical staining showed that CD36, IL-1β, and IL-18 levels increased progressively in the kidneys of HFD-fed mice. Sulfo- N-succinimidyl oleate (SSO), a CD36 inhibitor, attenuated the HFD-induced upregulation of NLRP3, IL-1β, and IL-18 and suppressed the colocalization of NLRP3 and ASC in renal tubular cells. In vitro, SSO abolished the palmitate-induced activation of IL-1β, IL-18, and caspase-1 in HK2 proximal tubular cells. Furthermore, treatment with SSO and the knockdown of caspase-1 expression by siRNA both inhibited palmitate-induced cell death and apoptosis in HK2 cells. Collectively, palmitate causes renal tubular inflammation, cell death, and apoptosis via the CD36/NLRP3/caspase-1 axis, which may explain, at least in part, the mechanism underlying FFA-related renal tubular injury. The blockade of CD36-induced cellular processes is therefore a promising strategy for treating obesity-related nephropathy.
Collapse
Affiliation(s)
- Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung , Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Pei-Wen Wang
- Division of Endocrinology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Zac Vaghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, London , United Kingdom
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung , Taiwan
| |
Collapse
|
55
|
Silva LS, Peruchetti DB, Silva-Aguiar RP, Abreu TP, Dal-Cheri BKA, Takiya CM, Souza MC, Henriques MG, Pinheiro AAS, Caruso-Neves C. The angiotensin II/AT1 receptor pathway mediates malaria-induced acute kidney injury. PLoS One 2018; 13:e0203836. [PMID: 30204779 PMCID: PMC6133374 DOI: 10.1371/journal.pone.0203836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Malaria-induced acute kidney injury (MAKI) is a life-threatening complication of severe malaria. Here, we investigated the potential role of the angiotensin II (Ang II)/AT1 receptor pathway in the development of MAKI. We used C57BL/6 mice infected by Plasmodium berghei ANKA (PbA-infected mice), a well-known murine model of severe malaria. The animals were treated with 20 mg/kg/day losartan, an antagonist of AT1 receptor, or captopril, an angiotensin-converting enzyme inhibitor. We observed an increase in the levels of plasma creatinine and blood urea nitrogen associated with a significant decrease in creatinine clearance, a marker of glomerular flow rate, and glomerular hypercellularity, indicating glomerular injury. PbA-infected mice also presented proteinuria and a high level of urinary γ-glutamyltransferase activity associated with an increase in collagen deposition and interstitial space, showing tubule-interstitial injury. PbA-infected mice were also found to have increased fractional excretion of sodium (FENa+) coupled with decreased cortical (Na++K+)ATPase activity. These injuries were associated with an increase in pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, interleukin-17, and interferon gamma, in the renal cortex of PbA-infected mice. All modifications of these structural, biochemical, and functional parameters observed in PbA-infected mice were avoided with simultaneous treatment with losartan or captopril. Our data allow us to postulate that the Ang II/AT1 receptor pathway mediates an increase in renal pro-inflammatory cytokines, which in turn leads to the glomerular and tubular injuries observed in MAKI.
Collapse
Affiliation(s)
- Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago P. Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz K. A. Dal-Cheri
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana C. Souza
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria G. Henriques
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
56
|
Simultaneous activation of innate and adaptive immunity participates in the development of renal injury in a model of heavy proteinuria. Biosci Rep 2018; 38:BSR20180762. [PMID: 29914975 PMCID: PMC6043717 DOI: 10.1042/bsr20180762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Protein overload of proximal tubular cells (PTCs) can promote interstitial injury by unclear mechanisms that may involve activation of innate immunity. We investigated whether prolonged exposure of tubular cells to high protein concentrations stimulates innate immunity, triggering progressive interstitial inflammation and renal injury, and whether specific inhibition of innate or adaptive immunity would provide renoprotection in an established model of massive proteinuria, adriamycin nephropathy (ADR). Adult male Munich-Wistar rats received a single dose of ADR (5 mg/kg, iv), being followed for 2, 4, or 20 weeks. Massive albuminuria was associated with early activation of both the NF-κB and NLRP3 innate immunity pathways, whose intensity correlated strongly with the density of lymphocyte infiltration. In addition, ADR rats exhibited clear signs of renal oxidative stress. Twenty weeks after ADR administration, marked interstitial fibrosis, glomerulosclerosis, and renal functional loss were observed. Administration of mycophenolate mofetil (MMF), 10 mg/kg/day, prevented activation of both innate and adaptive immunity, as well as renal oxidative stress and renal fibrosis. Moreover, MMF treatment was associated with shifting of M from the M1 to the M2 phenotype. In cultivated NRK52-E cells, excess albumin increased the protein content of Toll-like receptor (TLR) 4 (TLR4), NLRP3, MCP-1, IL6, IL-1β, Caspase-1, α-actin, and collagen-1. Silencing of TLR4 and/or NLRP3 mRNA abrogated this proinflammatory/profibrotic behavior. Simultaneous activation of innate and adaptive immunity may be key to the development of renal injury in heavy proteinuric disease. Inhibition of specific components of innate and/or adaptive immunity may be the basis for future strategies to prevent chronic kidney disease (CKD) in this setting.
Collapse
|
57
|
Zhao M, Bai M, Ding G, Zhang Y, Huang S, Jia Z, Zhang A. Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. KIDNEY DISEASES 2018; 4:83-94. [PMID: 29998123 DOI: 10.1159/000488242] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
Background We previously reported that the NLRP3 inflammasome played an important role in mediating the podocyte injury induced by aldosterone. However, more studies on the role of the NLRP3 inflammasome in the pathogenesis of podocytopathy are still required. The present study was undertaken to study the role of the NLRP3 inflammasome in angiotensin II (Ang II)-induced podocyte injury, as well as the potential mechanisms. Methods In this study, we used an Ang II infusion model in NLRP3-/- mice. In cultured podocytes, we used siRNA to silence NLRP3; then we treated the podocytes with Ang II. Results Following Ang II treatment, we found that the NLRP3 inflammasome was significantly activated in line with mitochondrial dysfunction in a dose- and time-dependent manner. Silencing NLRP3 by siRNA transfection ameliorated podocyte apoptosis, attenuated the loss of the podocyte proteins nephrin and podocin, and protected mitochondrial function. Ang II infusion activated the NLRP3 inflammasome, caused albuminuria, and induced podocyte damage, which was all blocked in the NLRP3-/- mice. At the same time, NLRP3 deletion also ameliorated the mitochondrial dysfunction induced by Ang II infusion. However, the deletion of NLRP3 did not affect the Ang II hypertension. Conclusion Taken together, these results demonstrate an important role of the NLRP3 inflammasome in mediating Ang II-induced podocyte injury and mitochondrial dysfunction, suggesting that the NLRP3 inflammasome might be an effective therapeutic target against podocytopathy.
Collapse
Affiliation(s)
- Min Zhao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Nanjing, China
| |
Collapse
|
58
|
Translational science in albuminuria: a new view of de novo albuminuria under chronic RAS suppression. Clin Sci (Lond) 2018; 132:739-758. [DOI: 10.1042/cs20180097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022]
Abstract
The development of de novo albuminuria during chronic renin–angiotensin system (RAS) suppression is a clinical entity that remains poorly recognized in the biomedical literature. It represents a clear increment in global cardiovascular (CV) and renal risk that cannot be counteracted by RAS suppression. Although not specifically considered, it is clear that this entity is present in most published and ongoing trials dealing with the different forms of CV and renal disease. In this review, we focus on the mechanisms promoting albuminuria, and the predictors and new markers of de novo albuminuria, as well as the potential treatment options to counteract the excretion of albumin. The increase in risk that accompanies de novo albuminuria supports the search for early markers and predictors that will allow practising physicians to assess and prevent the development of de novo albuminuria in their patients.
Collapse
|
59
|
Lee H, Fujimoto M, Ohkawara T, Honda H, Serada S, Terada Y, Naka T. Leucine rich α-2 glycoprotein is a potential urinary biomarker for renal tubular injury. Biochem Biophys Res Commun 2018; 498:1045-1051. [DOI: 10.1016/j.bbrc.2018.03.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
60
|
Wen Y, Liu YR, Tang TT, Pan MM, Xu SC, Ma KL, Lv LL, Liu H, Liu BC. mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI. Int J Biochem Cell Biol 2018; 98:43-53. [PMID: 29477360 DOI: 10.1016/j.biocel.2018.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
Ischemia/reperfusion (I/R) is a critical risk factor for acute kidney injury (AKI). Recent studies provided evidence that tubular epithelial cells (TEC)-associated inflammation aggravates kidney injury and impairs tissue repair after I/R injury. Here we demonstrated that the Nod-like receptor protein 3 (NLRP3) inflammasome is activated by mitochondrial reactive oxygen species (mROS) during I/R injury via direct interactions between the inflammasome and thioredoxin-interacting protein (TXNIP). Firstly, we found that NLRP3 inflammasome activation was induced by I/R injury, peaking at day 3 after reperfusion. Consistent with this observation, NLRP3 deletion significantly attenuated I/R-induced kidney damage and markers of inflammasome activation. Then, we observed mitochondrial dysfunction, characterized by ultrastructural changes and cytochrome C (Cyt c) redistribution. Mitochondria-targeted antioxidant MitoTEMPO prevented mROS overproduction and the decline in mitochondrial membrane potential (MMP) in vitro. MitoTEMPO treatment also inhibited NLRP3 inflammasome activation and co-localization of NLRP3 and TXNIP after simulated ischemia/reperfusion (SI/R) injury. Finally, we transfected HK-2 cells with TXNIP siRNA to explore the role of TXNIP in mROS-induced NLRP3 inflammasome activation. We found that TXNIP siRNA significantly inhibited NLRP3 inflammasome activation. These results demonstrate that NLRP3 inflammasome is activated through the mROS-TXNIP-NLRP3 pathway and provide a potential therapeutic target in ischemic AKI.
Collapse
Affiliation(s)
- Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Ran Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ming-Ming Pan
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Sheng-Chun Xu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
61
|
Zhu Y, Que RY, Li Y. Effects of resveratrol on activation of NLRP3 inflammasome in HSC-T6 cells. Shijie Huaren Xiaohua Zazhi 2018; 26:479-487. [DOI: 10.11569/wcjd.v26.i8.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of resveratrol (Res) on the activation of nod-like receptor protein 3 (NLRP3) inflammasome in hepatic stellate cell (HSC)-T6 cells and to explore the anti-fibrotic mechanism of Res.
METHODS Rat hepatic stellate cell (HSC) line HSC-T6 was used. HSC-T6 cells were seeded into cell culture plates with high glucose DMEM medium containing 10% fetal bovine serum for 24 h. Then, the cells were incubated with Res (4, 8, and 16 μmol/L) or acetylcysteine (NAC; 5 mmol/L) for 24 h. Oxidative stress (OS) was induced by exposure to hydrogen peroxide (H2O2; 0.2 mmol/L) for 4 h. MTT method was used to observe the effect of Res on HSC-T6 cell proliferation. ELISA was used to detect the contents of type I collagen (COL-I), transforming growth factor β1 (TGF-β1), interleukin (IL)-1β, IL-18, malondialdehyde (MDA), and superoxide dismutase (SOD) in cell culture supernatant. Reactive oxygen species (ROS) production was measured with a fluorescence microplate reader following staining with DCFH-DA probe. Western blot analysis was used to detect the expression of alpha-smooth muscle actin (α-SMA), NLRP3, apoptosis-associated speck-like protein (ASC), and cysteinyl aspartate specific proteinase 1 (caspase 1) in HSC-T6 cells.
RESULTS Compared with control cells, Res at concentrations from 4 μmol/L to 64 μmol/L significantly suppressed the proliferation of HSC-T6 cells. Compared with control cells, OS induction significantly increased the proliferation of HSC-T6 cells, the contents of COL-1, TGF-β1, MDA, IL-1β, and IL-18 in cell culture supernatant, intracellular ROS production, and the protein expression of α-SMA, NLRP3, ASC, and caspase 1-p10 (P < 0.01), but decreased the content of SOD in cell culture supernatant (P < 0.01). Compared with the OS group, treatment with low-, medium-, or high-dose Res or positive control NAC significantly decreased the proliferation of HSC-T6 cells, the contents of COL-1, TGF-β1, MDA, IL-1β, and IL-18 in cell culture supernatant, intracellcular ROS production, and the protein expression of α-SMA, NLRP3, ASC, and caspase 1-p10 (P < 0.01), but increased the content of SOD in cell culture supernatant (P < 0.01).
CONCLUSION Res could suppress the proliferation and activation of HSC-T6 cells via down-regulation of ROS-NLRP3 inflammasome signaling.
Collapse
|
62
|
Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 2018; 93:568-579. [DOI: 10.1016/j.kint.2017.09.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
63
|
Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, Liu B. NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 2018; 7:54290-54302. [PMID: 27509058 PMCID: PMC5342342 DOI: 10.18632/oncotarget.11091] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
Growing evidence has shown that NLRP3 inflammasome activation promotes the development of tubulointerstitial inflammation and progression of renal injury. We previously found that mitochondrial dysfunction is a critical determinant for the activation of NLRP3 inflammasome in albumin-overload rats. Angiotensin (Ang) II plays an important role in mitochondrial homeostasis. Here, we investigated the role of Ang II in NLRP3 inflammasome activation and the involvement of mitochondrial dysfunction in this process. In vitro, Ang II triggered NLRP3 inflammasome activation in a dose- and time-dependent manner, and this effect is mediated by AT1 receptor rather than AT2 receptor. MitoTEMPO, a mitochondrial targeted antioxidant, attenuated Ang II induced mitochondrial reactive oxygen species (mROS) production and NLRP3 inflammation activation. Following chronic Ang II infusion for 28 days, we observed remarkable tubular epithelial cells (TECs) injury, mitochondrial damage, and albuminuria in WT mice. However, these abnormalities were significantly attenuated in AT1 receptor KO mice. Then, we examined the role of mitochondria in Ang II-infused mice with or without mitoTEMPO treatment. As expected, Ang II-induced mitochondrial dysfunction and NLRP3 inflammasome activation was markedly inhibited by mitoTEMPO. Notably, NLRP3 deletion signally protected TECs from Ang II-triggered mitochondrial dysfunction and NLRP3 inflammasome activation. Taken together, these data demonstrate that Ang II induces NLRP3 inflammasome activation in TECs which is mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Yiran Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Taotao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Linli Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Kunling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Bicheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
64
|
Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL, Zhou LT, Wang B, Zhang JD, Crowley SD, Liu BC. Exosomal CCL2 from Tubular Epithelial Cells Is Critical for Albumin-Induced Tubulointerstitial Inflammation. J Am Soc Nephrol 2018; 29:919-935. [PMID: 29295871 DOI: 10.1681/asn.2017050523] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/14/2017] [Indexed: 11/03/2022] Open
Abstract
Albuminuria is a key instigator of tubulointerstitial inflammation associated with CKD, but the mechanism through which filtered albumin propagates renal injury remains unclear. In this study, we explored the role in this process of exosome mRNA released from tubular epithelial cells (TECs). Compared with control mice, acute and chronic kidney injury models had more exosomes containing inflammatory cytokine mRNA, particularly the chemokine CCL2, in kidneys and urine. In vitro stimulation of TECs with BSA recapitulated this finding. Notably, the internalization of purified TEC exosomes by cultured macrophages increased if TECs were exposed to BSA. Macrophage internalization of exosomes from BSA-treated TECs led to an enhanced inflammatory response and macrophage migration, but CCL2 silencing in TECs prevented these effects. Using a GFP-CCL2 fusion mRNA construct, we observed direct transfer of CCL2 mRNA from TEC exosomes to macrophages. Mice subjected to tail vein injection of purified BSA-treated TEC exosomes developed tubular injury with renal inflammatory cell infiltration. However, injection of exosomes from BSA-treated CCL2-deficient TECs induced less severe kidney inflammation. Finally, in patients with IgA nephropathy, the increase of proteinuria correlated with augmented urinary excretion of exosomes with exaggerated expression of CCL2 mRNA. Moreover, the level of CCL2 mRNA in urinary exosomes correlated closely with levels of renal interstitial macrophage infiltration in these patients. Our studies demonstrate that the increasing release of exosomes that transfer CCL2 mRNA from TECs to macrophages constitutes a critical mechanism of albumin-induced tubulointerstitial inflammation.
Collapse
Affiliation(s)
- Lin-Li Lv
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Ye Feng
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Wei-Jun Wu
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Hai-Feng Ni
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Le-Ting Zhou
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Jian-Dong Zhang
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospitial, Southeast University School of Medicine, Nanjing, China; and
| |
Collapse
|
65
|
Abstract
Inflammasomes influence a diverse range of kidney disease, including acute and chronic kidney diseases, and those mediated by innate and adaptive immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in several kidney diseases. In addition to leukocyte-derived inflammasomes, renal tissue cells express functional inflammasome components. Furthermore, a range of endogenous substances that directly activate inflammasomes also mediate kidney injury. Many of the functional studies have focussed on the NLRP3 inflammasome, and there is also evidence for the involvement of other inflammasomes in some conditions. While, at least in some disease, the mechanistic details of the involvement of the inflammasome remain to be elucidated, therapies focussed on inflammasomes and their products have potential in treating kidney disease in the future.
Collapse
Affiliation(s)
- Holly L Hutton
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.
- Department of Nephrology, Monash Health, Clayton, VIC, Australia.
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
66
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
67
|
Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med 2017; 11:319-332. [PMID: 28871454 DOI: 10.1007/s11684-017-0569-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
68
|
Fan LC, Lin JL, Yang JW, Mao B, Lu HW, Ge BX, Choi AMK, Xu JF. Macrolides protect against Pseudomonas aeruginosa infection via inhibition of inflammasomes. Am J Physiol Lung Cell Mol Physiol 2017; 313:L677-L686. [PMID: 28684545 DOI: 10.1152/ajplung.00123.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Macrolides antibiotics have been effectively used in many chronic diseases, especially with Pseudomonas aeruginosa (P. aeruginosa) infection. The mechanisms underlying the therapeutic effects of macrolides in these diseases remain poorly understood. We established a mouse model of chronic lung infection using P. aeruginosa agar-beads, with azithromycin treatment or placebo. Lung injury, bacterial clearance, and inflammasome-related proteins were measured. In vitro, the inflammasomes activation induced by flagellin or ATP were assessed in LPS-primed macrophages with or without macrolides treatment. Plasma IL-18 levels were determined from patients who were diagnosed with bronchiectasis isolated with or without P. aeruginosa and treated with azithromycin for 3-5 days. Azithromycin treatment enhanced bacterial clearance and attenuated lung injury in mice chronically infected with P. aeruginosa, which resulted from the inhibition of caspase-1-dependent IL-1β and IL-18 secretion. In vitro, azithromycin and erythromycin inhibited NLRC4 and NLRP3 inflammasomes activation. Plasma IL-18 levels were higher in bronchiectasis patients with P. aeruginosa isolation compared with healthy controls. Azithromycin administration markedly decreased IL-18 secretion in bronchiectasis patients. The results of this study reveal that azithromycin and erythromycin exert a novel anti-inflammatory effect by attenuating inflammasomes activation, which suggests potential treatment options for inflammasome-related diseases.
Collapse
Affiliation(s)
- Li-Chao Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie-Lu Lin
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Wei Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei Mao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bao-Xue Ge
- Shanghai Key Laboratory of Infectious Diseases, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China; and
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China;
| |
Collapse
|
69
|
Tao Y, Dong W, Li Z, Chen Y, Liang H, Li R, Mo L, Xu L, Liu S, Shi W, Zhang L, Liang X. Proteinuria as an independent risk factor for contrast-induced acute kidney injury and mortality in patients with stroke undergoing cerebral angiography. J Neurointerv Surg 2017; 9:445-448. [PMID: 27106594 PMCID: PMC5520258 DOI: 10.1136/neurintsurg-2016-012349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND The correlation between proteinuria and contrast-induced acute kidney injury (CI-AKI) in patients with cerebrovascular disease is still unknown. OBJECTIVE To determine whether proteinuria is a risk factor for CI-AKI and death in patients with stroke undergoing cerebral angiography. METHODS Data from 2015 patients with stroke undergoing cerebral angiography between January 2009 and December 2013 were retrospectively collected. Clinical parameters were obtained from the hospital's computerized database. All variables were analyzed by univariate analysis and multivariate logistic regression analysis. RESULTS CI-AKI was seen in 85 patients (4.2%). After adjustment for potential confounding risk factors, patients with proteinuria had a fivefold higher risk of CI-AKI than patients without proteinuria (OR=5.74; 95% CI 2.23 to 14.83; p<0.001). Other independent risk factors for CI-AKI were estimated glomerular filtration rate <60 mL/min/1.73 m2, anemia, and a high National Institute of Health Stroke Scale score. Proteinuria did not increase in-hospital mortality (OR=1.25; 95% CI 0.49 to 3.17; p=0.639) but did increase 1-year mortality (HR=2.30, 95% CI 1.55 to 3.41, p<0.001). CONCLUSIONS Proteinuria is an independent risk factor for CI-AKI and 1-year mortality in patients with stroke undergoing cerebral angiography. More attention should be paid to the development of CI-AKI in patients with stroke with proteinuria.
Collapse
Affiliation(s)
- Yiming Tao
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| | - Wei Dong
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| | - Zhilian Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huaban Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liyi Mo
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| | - Lixia Xu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| | - Li Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- SouthernMedical University, Guangzhou, China
| |
Collapse
|
70
|
The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. Kidney Int 2017; 91:587-602. [DOI: 10.1016/j.kint.2016.10.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 01/23/2023]
|
71
|
Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton) 2017; 21:736-44. [PMID: 27011059 DOI: 10.1111/nep.12785] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome is an intracellular platform that converts the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 to their active forms in response to 'danger' signals, which can be either host or pathogen derived, and mediates a form of inflammatory cell death called pyroptosis. This component of the innate immune system was initially discovered because of its role in rare autoinflammatory syndromes called cryopyrinopathies, but it has since been shown to mediate injurious inflammation in a broad range of diseases. Inflammasome activation occurs in both immune cells, primarily macrophages and dendritic cells, and in some intrinsic kidney cells such as the renal tubular epithelium. The NLRP3 inflammasome has been implicated in the pathogenesis of a number of renal conditions, including acute kidney injury, chronic kidney disease, diabetic nephropathy and crystal-related nephropathy. The inflammasome also plays a role in autoimmune kidney disease, as IL-1β and IL-18 influence adaptive immunity through modulation of T helper cell subsets, skewing development in favour of Th17 and Th1 cells that are important in the development of autoimmunity. Both IL-1 blockade and two recently identified specific NLRP3 inflammasome blockers, MCC950 and β-hydroxybutyrate, have shown promise in the treatment of inflammasome-mediated conditions. These targeted therapies have the potential to be of benefit in the growing number of kidney diseases in which the NLRP3 inflammasome has been implicated.
Collapse
Affiliation(s)
- Holly L Hutton
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Nephrology, Monash Health, Melbourne, Victoria, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Nephrology, Monash Health, Melbourne, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Nephrology, Monash Health, Melbourne, Victoria, Australia.,Department of Paediatric Nephrology, Monash Health, Melbourne, Victoria, Australia
| |
Collapse
|
72
|
Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 2017; 7:17479-91. [PMID: 27014913 PMCID: PMC4951227 DOI: 10.18632/oncotarget.8243] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Aldo–induced tubular cell injury. The NLRP3 inflammasome is induced by Aldo in a dose- and time-dependent manner, as evidenced by increased NLRP3, ASC, caspase-1, and downstream cytokines, such as interleukin (IL)-1β and IL-18. The activation of the NLRP3 inflammasome was significantly prevented by the selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL) (P < 0.01). Mice harboring genetic knock-out of NLRP3 (NLRP3−/−) showed decreased maturation of renal IL-1β and IL-18, reduced renal tubular apoptosis, and improved renal epithelial cell phenotypic alternation, and attenuated renal function in response to Aldo-infusion. In addition, mitochondrial ROS was also increased in Aldo-stimulated HK-2 cells, as assessed by MitoSOXTM red reagent. Mito-Tempo, the mitochondria-targeted antioxidant, significantly decreased HK-2 cell apoptosis, oxidative stress, and the activation of NLRP3 inflammasome. We conclude that Aldo induces renal tubular cell injury via MR dependent, mitochondrial ROS-mediated NLRP3 inflammasome activation.
Collapse
|
73
|
NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep 2017; 7:41123. [PMID: 28117341 PMCID: PMC5259731 DOI: 10.1038/srep41123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
We have previously showed that IL-1β is involved in the pathogenesis of both spontaneously occurring and passively induced IgA nephropathy (IgAN) models. However, the exact causal-relationship between NLRP3 inflammasome and the pathogenesis of IgAN remains unknown. In the present study, we showed that [1] IgA immune complexes (ICs) activated NLRP3 inflammasome in macrophages involving disruption of mitochondrial integrity and induction of mitochondrial ROS, bone marrow-derived dendritic cells (BMDCs) and renal intrinsic cells; [2] knockout of NLRP3 inhibited IgA ICs-mediated activation of BMDCs and T cells; and [3] knockout of NLRP3 or a kidney-targeting delivery of shRNA of NLRP3 improved renal function and renal injury in a mouse IgAN model. These results strongly suggest that NLRP3 inflammasome serves as a key player in the pathogenesis of IgAN partly through activation of T cells and mitochondrial ROS production and that a local, kidney-targeting suppression of NLRP3 be a therapeutic strategy for IgAN.
Collapse
|
74
|
Abstract
Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3-/- macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88-/- cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.
Collapse
|
75
|
Chen J, Tao F, Zhang B, Chen Q, Qiu Y, Luo Q, Gen Y, Meng J, Zhang J, Lu H. Elevated Squamous Cell Carcinoma Antigen, Cytokeratin 19 Fragment, and Carcinoembryonic Antigen Levels in Diabetic Nephropathy. Int J Endocrinol 2017; 2017:5304391. [PMID: 28744310 PMCID: PMC5514347 DOI: 10.1155/2017/5304391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE We aimed to explore whether squamous cell carcinoma antigen (SCC), cytokeratin 19 fragment (Cyfra21-1), neuron-specific enolase (NSE), and carcinoembryonic antigen (CEA) are elevated in diabetic nephropathy (DN) and the association between urinary albumin-to-creatinine ratio (UACR) and tumor markers in diabetic patients. METHODS Nondialysis patients with diabetes (n = 261) and 90 healthy controls were enrolled. DN was defined as an UACR ≥ 30 mg/g in the absence of a urinary tract infection or other renal abnormalities. RESULTS Patients with DN had significantly higher serum SCC, Cyfra21-1, and CEA levels than those with normoalbuminuria and healthy controls. The rates of positive SCC, Cyfra21-1, and CEA significantly increased with increasing urinary albumin excretion (all P for trend < 0.001). In contrast, NSE was not affected by DN. SCC, Cyfra21-1, and CEA were significantly and positively correlated with UACR. In logistic regression, after multivariable adjustment, increased UACR was associated with increased odds ratio of elevated tumor marker levels (all P for trend < 0.05). CONCLUSIONS Serum levels of SCC, Cyfra21-1, and CEA are markedly increased with increasing urinary albumin excretion, which affects the specificity for diagnosis for lung cancer. Appropriate interpretation of tumor markers in diabetic patients is mandatory to avoid unnecessary and even hazardous biopsies.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Tao
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingguang Chen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Qiu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Luo
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanna Gen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Meng
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Jue Zhang: and
| | - Hao Lu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Hao Lu:
| |
Collapse
|
76
|
Abstract
Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1β and of the alarmin IL-1α Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1β ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-β-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/β regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-β-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency-approved IL-1-neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-β-IL-1R system in kidney disease should be further explored.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|
77
|
Jia Z, Zhuang Y, Hu C, Zhang X, Ding G, Zhang Y, Rohatgi R, Hua H, Huang S, He JCJ, Zhang A. Albuminuria enhances NHE3 and NCC via stimulation of mitochondrial oxidative stress/angiotensin II axis. Oncotarget 2016; 7:47134-47144. [PMID: 27323402 PMCID: PMC5216930 DOI: 10.18632/oncotarget.9972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
Imbalance of salt and water is a frequent and challenging complication of kidney disease, whose pathogenic mechanisms remain elusive. Employing an albumin overload mouse model, we discovered that albuminuria enhanced the expression of NHE3 and NCC but not other transporters in murine kidney in line with the stimulation of angiotensinogen (AGT)/angiotensin converting enzyme (ACE)/angiotensin (Ang) II cascade. In primary cultures of renal tubular cells, albumin directly stimulated AGT/ACE/Ang II and upregulated NHE3 and NCC expression. Blocking Ang II production with an ACE inhibitor normalized the upregulation of NHE3 and NCC in cells. Interestingly, albumin overload significantly reduced mitochondrial superoxide dismutase (SOD2), and administration of a SOD2 mimic (MnTBAP) normalized the expression of NHE3, NCC, and the components of AGT/ACE pathway affected by albuminuria, indicating a key role of mitochondria-derived oxidative stress in modulating renin-angiotensin system (RAS) and renal sodium transporters. In addition, the functional data showing the reduced urinary excretion of Na and Cl and enhanced response to specific NCC inhibitor further supported the regulatory results of sodium transporters following albumin overload. More importantly, the upregulation of NHE3 and NCC and activation of ACE/Ang II signaling pathway were also observed in albuminuric patient kidneys, suggesting that our animal model accurately replicates the human condition. Taken together, these novel findings demonstrated that albuminuria is of importance in resetting renal salt handling via mitochondrial oxidative stress-initiated stimulation of ACE/Ang II cascade. This may also offer novel, effective therapeutic targets for dealing with salt and water imbalance in proteinuric renal diseases.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yibo Zhuang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Caiyu Hu
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xintong Zhang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Rajeev Rohatgi
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Hu Hua
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - John Ci-jiang He
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
78
|
Elneam AIA, Mansour NM, Zaki NA, Taher MA. Serum Interleukin-18 and Its Gene Haplotypes Profile as Predictors in Patients with Diabetic Nephropathy. Open Access Maced J Med Sci 2016; 4:324-328. [PMID: 27703550 PMCID: PMC5042610 DOI: 10.3889/oamjms.2016.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND: Diabetic nephropathy (DN) is known as an acute microvascular complexity as a subsequence progression in diabetes mellitus type 1 and 2. Many evidence pointed that the proinflammatory cytokine Interleukin (IL)-18 might be involved in the pathogenesis of DN. AIM: The current study aimed to evaluate the association of serum IL-18 and its promoter gene polymorphisms with diabetic nephropathy. METHODS: This study included 62 diabetic nephropathy patients (DN group) compared to 52 diabetes mellitus patients (DM group). The two groups were subjected to anthropometry assessment, molecular studies including SNP genotyping by RFLP and finally statistical analysis. RESULTS: The assessment of the serum IL-18 level and the frequencies of its allele and haplotype: -137G/C, -607C/A and -656G/T among the DN and DM subjects revealed that -137G allele has significant variation between DN and DM subjects (about 80.8%, P = 0.05) but, no significant variation in -607 or -656 alleles IL-18 gene promoter. CONCLUSION: These data confirm the impact of high serum IL-18 and the haplotype of the polymorphism located in the promoter region of the IL-18 gene with the DN.
Collapse
Affiliation(s)
- Ahmed I Abd Elneam
- Molecular Genetics and Enzymology Dept., Human Genetics Division, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki 12622, Cairo, Egypt (Affiliation ID 60014618)
| | - Nahla M Mansour
- Gut Microbiology and Immunology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | - Nayel A Zaki
- Internal Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed A Taher
- Medical Biochemistry Department, Sohag Faculty of Medicine, Sohag University, Egypt
| |
Collapse
|
79
|
Transcriptomics: A Step behind the Comprehension of the Polygenic Influence on Oxidative Stress, Immune Deregulation, and Mitochondrial Dysfunction in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9290857. [PMID: 27419142 PMCID: PMC4932167 DOI: 10.1155/2016/9290857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) is an increasing and global health problem with a great economic burden for healthcare system. Therefore to slow down the progression of this condition is a main objective in nephrology. It has been extensively reported that microinflammation, immune system deregulation, and oxidative stress contribute to CKD progression. Additionally, dialysis worsens this clinical condition because of the contact of blood with bioincompatible dialytic devices. Numerous studies have shown the close link between immune system impairment and CKD but most have been performed using classical biomolecular strategies. These methodologies are limited in their ability to discover new elements and enable measuring the simultaneous influence of multiple factors. The “omics” techniques could overcome these gaps. For example, transcriptomics has revealed that mitochondria and inflammasome have a role in pathogenesis of CKD and are pivotal elements in the cellular alterations leading to systemic complications. We believe that a larger employment of this technique, together with other “omics” methodologies, could help clinicians to obtain new pathogenetic insights, novel diagnostic biomarkers, and therapeutic targets. Finally, transcriptomics could allow clinicians to personalize therapeutic strategies according to individual genetic background (nutrigenomic and pharmacogenomic). In this review, we analyzed the available transcriptomic studies involving CKD patients.
Collapse
|
80
|
Purves JT, Hughes FM. Inflammasomes in the urinary tract: a disease-based review. Am J Physiol Renal Physiol 2016; 311:F653-F662. [PMID: 27170685 DOI: 10.1152/ajprenal.00607.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/04/2016] [Indexed: 12/28/2022] Open
Abstract
Inflammasomes are supramolecular structures that sense molecular patterns from pathogenic organisms or damaged cells and trigger an innate immune response, most commonly through production of the proinflammatory cytokines IL-1β and IL-18, but also through less understood mechanisms independent of these cytokines. Great strides have been made in understanding these structures and their dysfunction in various inflammatory diseases, lending new insights into urological and renal problems. From a clinical perspective, benign urinary pathology almost universally involves the inflammatory process, and understanding how inflammasomes translate etiological conditions (diabetes, obstruction, stones, urinary tract infections, etc.) into acute and chronic inflammatory responses is critical to understanding these diseases at a molecular level. To date, inflammasome components have been found in the bladder, prostate, and kidney and have been shown to be activated in response to several infectious and noninfectious insults. In this review, we summarize what is known regarding inflammasomes in both the upper and lower urinary tract and describe several common disease states where they potentially play critical roles.
Collapse
Affiliation(s)
- J Todd Purves
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - F Monty Hughes
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
81
|
Rangan GK. C5b-9 does not mediate tubulointerstitial injury in experimental acute glomerular disease characterized by selective proteinuria. World J Nephrol 2016; 5:288-299. [PMID: 27152265 PMCID: PMC4848152 DOI: 10.5527/wjn.v5.i3.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether complement membrane attack complex (C5b-9) has a pathogenic role in tubulointerstitial injury in a renal disease model characterized by acute highly selective proteinuria.
METHODS: Protein-overload nephropathy (PON) was induced in adult female Piebald-Viral-Glaxo rats with or without complement C6 deficiency (C6- and C6+) by daily intraperitoneal injections of bovine serum albumin (BSA, 2 g/d), and examined on days 2, 4 and 8.
RESULTS: Groups with PON developed equivalent levels of heavy proteinuria within 24 h of BSA injection. In C6+ rats with PON, the tubulointerstitial expression of C5b-9 was increased and localized predominantly to the basolateral surface of tubular epithelial cells (TECs), whereas it was undetectable in C6- animals. TEC proliferation (as assessed by the number of BrdU+ cells) increased by more than 50-fold in PON, peaking on day 2 and declining on days 4 to 8. There was a trend for a reduction in the number of BrdU+ TECs on day 4 in the C6- PON group (P = 0.10 compared to C6+) but not at any other time-point. Kidney enlargement, TEC apoptosis (TUNEL+ cells) and markers of tubular injury (tubule dilatation, loss of TEC height, protein cast formation) were not altered by C6 deficiency in PON. Interstitial monocyte (ED-1+ cell) accumulation was partially reduced in C6- animals with PON on day 4 (P = 0.01) but there was no change in myofibroblast accumulation.
CONCLUSION: These data suggest that C5b-9 does not mediate tubulointerstitial injury in acute glomerular diseases characterized by selective proteinuria.
Collapse
|
82
|
Cunningham KE, Vincent G, Sodhi CP, Novak EA, Ranganathan S, Egan CE, Stolz DB, Rogers MB, Firek B, Morowitz MJ, Gittes GK, Zuckerbraun BS, Hackam DJ, Mollen KP. Peroxisome Proliferator-activated Receptor-γ Coactivator 1-α (PGC1α) Protects against Experimental Murine Colitis. J Biol Chem 2016; 291:10184-200. [PMID: 26969166 DOI: 10.1074/jbc.m115.688812] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is the primary regulator of mitochondrial biogenesis and was recently found to be highly expressed within the intestinal epithelium. PGC1α is decreased in the intestinal epithelium of patients with inflammatory bowel disease, but its role in pathogenesis is uncertain. We now hypothesize that PGC1α protects against the development of colitis and helps to maintain the integrity of the intestinal barrier. We selectively deleted PGC1α from the intestinal epithelium of mice by breeding a PGC1α(loxP/loxP) mouse with a villin-cre mouse. Their progeny (PGC1α(ΔIEC) mice) were subjected to 2% dextran sodium sulfate (DSS) colitis for 7 days. The SIRT1 agonist SRT1720 was used to enhance PGC1α activation in wild-type mice during DSS exposure. Mice lacking PGC1α within the intestinal epithelium were more susceptible to DSS colitis than their wild-type littermates. Pharmacologic activation of PGC1α successfully ameliorated disease and restored mitochondrial integrity. These findings suggest that a depletion of PGC1α in the intestinal epithelium contributes to inflammatory changes through a failure of mitochondrial structure and function as well as a breakdown of the intestinal barrier, which leads to increased bacterial translocation. PGC1α induction helps to maintain mitochondrial integrity, enhance intestinal barrier function, and decrease inflammation.
Collapse
Affiliation(s)
- Kellie E Cunningham
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Garret Vincent
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Chhinder P Sodhi
- the Department of Surgery, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Elizabeth A Novak
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Sarangarajan Ranganathan
- the Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, and
| | - Charlotte E Egan
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Donna Beer Stolz
- the Center for Biologic Imaging, University or Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Matthew B Rogers
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Brian Firek
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Michael J Morowitz
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - George K Gittes
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Brian S Zuckerbraun
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - David J Hackam
- the Department of Surgery, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Kevin P Mollen
- the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224,
| |
Collapse
|
83
|
Wang X, Yi F. The Nucleotide Oligomerization Domain-Like Receptors in Kidney Injury. KIDNEY DISEASES 2016; 2:28-36. [PMID: 27536689 DOI: 10.1159/000444736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammation is a hallmark of almost all forms of renal injury and the activation of the innate immune system is of importance in the development of many kidney diseases. Pattern recognition receptors (PRRs) act as sensors of the innate immune system to detect pathogen- or damage-associated molecular patterns, which initiate immune responses to resolve infections and repair damaged tissues. Abnormalities in PRR activation will lead to excessive inflammation. SUMMARY Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are recently identified intracellular PRRs that are essential to innate immune responses and tissue homeostasis. A better understanding of the function of NLRs will provide unexpected opportunities to develop new therapies for kidney diseases by modulation of the innate immune system. KEY MESSAGES NLRs are constitutively expressed in the kidney and emerging evidence has shown that activation of NLRs plays an important role in the pathogenesis of renal injury. Among NLRs, NOD2 and NLRP3 inflammasome are the best characterized members in the kidney. In this review, we summarize current knowledge about the pathological mechanisms that are related to NOD2 and NLRP3 inflammasome in various kidney diseases by their canonical and non-canonical effects and discuss the opportunities of pharmacological targeting of NLR-mediated signaling pathways at multiple levels for the treatment of renal disease.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| |
Collapse
|
84
|
Ye C, Li S, Yao W, Xu L, Qiu Y, Liu Y, Wu Z, Hou Y. The anti-inflammatory effects of baicalin through suppression of NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun 2016; 22:196-204. [DOI: 10.1177/1753425916631032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/14/2016] [Indexed: 01/23/2023] Open
Abstract
In this study, the anti-inflammatory effects and mechanisms of baicalin on LPS-induced NLRP3 inflammatory pathway were investigated in piglet mononuclear phagocytes (control, LPS stimulation, LPS stimulation + 12.5 µg/ml baicalin, LPS stimulation + 25 µg/ml baicalin, LPS stimulation + 50 µg/ml baicalin and LPS stimulation + 100 µg/ml baicalin). The levels of reactive oxygen species (ROS), the secretion levels of IL-1β, IL-18 and TNF-α, mRNA expression levels of IL-1β, IL-18, TNF-α and NLRP3, as well as the protein levels of cleaved caspase-1 p20 were significantly increased after LPS-challenge in vitro. However, LPS stimulation did not influence apoptosis-associated speck-like protein and caspase-1 mRNA levels, which are also components of the NLRP3 inflammasome. Baicalin at 50 µg/ml and 100 µg/ml could inhibit the production of ROS, TNF-α, IL-1β and IL-18, and down-regulate mRNA expression of IL-1β, IL-18, TNF-α and NLRP3, as well as expression of cleaved caspase-1 p20. These results showed that the anti-inflammatory effects of baicalin occurred via the regulation of the release of ROS and mRNA expression of NLRP3. The anti-inflammatory activity of baicalin could be related to the suppression of NLRP3 inflammasome pathway under LPS stimulation.
Collapse
Affiliation(s)
- Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Sali Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenxu Yao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| |
Collapse
|
85
|
Cárdenas A, Campos J, Ehrenfeld P, Mezzano S, Ruiz-Ortega M, Figueroa CD, Ardiles L. Up-regulation of the kinin B2 receptor pathway modulates the TGF-β/Smad signaling cascade to reduce renal fibrosis induced by albumin. Peptides 2015; 73:7-19. [PMID: 26256678 DOI: 10.1016/j.peptides.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/09/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
Abstract
The presence of high protein levels in the glomerular filtrate plays an important role in renal fibrosis, a disorder that justifies the use of animal models of experimental proteinuria. Such models have proved useful as tools in the study of the pathogenesis of chronic, progressive renal disease. Since bradykinin and the kinin B2 receptor (B2R) belong to a renoprotective system with mechanisms still unclarified, we investigated its anti-fibrotic role in the in vivo rat model of overload proteinuria. Upon up-regulating the kinin system by a high potassium diet we observed reduction of tubulointerstitial fibrosis, decreased renal expression of α-smooth muscle actin (α-SMA) and vimentin, reduced Smad3 phosphorylation and increase of Smad7. These cellular and molecular effects were reversed by HOE-140, a specific B2R antagonist. In vitro experiments, performed on a cell line of proximal tubular epithelial cells, showed that high concentrations of albumin induced expression of mesenchymal biomarkers, in concomitance with increases in TGF-β1 mRNA and its functionally active peptide, TGF-β1. Stimulation of the tubule cells by bradykinin inhibited the albumin-induced changes, namely α-SMA and vimentin were reduced, and cytokeratin recovered together with increase in Smad7 levels and decrease in type II TGF-β1 receptor, TGF-β1 mRNA and its active fragment. The protective changes produced by bradykinin in vitro were blocked by HOE-140. The development of stable bradykinin analogues and/or up-regulation of the B2R signaling pathway may prove value in the management of chronic renal fibrosis in progressive proteinuric renal diseases.
Collapse
Affiliation(s)
- Areli Cárdenas
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Javiera Campos
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio Mezzano
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos D Figueroa
- Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
| | - Leopoldo Ardiles
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
86
|
Ding LH, Liu D, Xu M, Wu M, Liu H, Tang RN, Ma KL, Chen PS, Liu BC. TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. Int J Biochem Cell Biol 2015; 69:114-20. [PMID: 26485683 DOI: 10.1016/j.biocel.2015.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 01/04/2023]
Abstract
Proteinuria is an important risk factor for chronic kidney diseases (CKD). Several studies have suggested that proteinuria initiates tubulointerstitial inflammation, while the mechanisms have not been fully understood. In this study, we hypothesized whether the activation of the TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation induced by proteinuria. We observed expression of TLR2, MyD88, NF-κB, as well as TNF-α and IL-6 detected by immunohistostaining, Western blotting and real-time PCR in albumin-overloaded (AO) nephropathy rats. In vitro, we observed these markers in HK-2 cells stimulated by albumin. We used TLR2 siRNA or the NF-κB inhibitor BAY 11-7082 to observe the influence of TNF-α and IL-6 expression caused by albumin overload. Finally, we studied these markers in non-IgA mesangioproliferative glomerulonephritis (MsPGN) patients with different levels of proteinuria. It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF-κB activation. Furthermore, TNF-α and IL-6 expression was positively correlated with the level of proteinuria. Albumin-overload induced TNF-α and IL-6 secretions by the TLR2-MyD88-NF-κB pathway activation, which could be attenuated by the TLR2 siRNA or BAY 11-7082 in HK-2 cells. In summary, we demonstrated that proteinuria may exhibit an endogenous danger-associated molecular pattern (DAMP) that induces tubulointerstitial inflammation via the TLR2-MyD88-NF-κB pathway activation.
Collapse
Affiliation(s)
- Li-Hong Ding
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Xu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ping-Sheng Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
87
|
Masood H, Che R, Zhang A. Inflammasomes in the Pathophysiology of Kidney Diseases. KIDNEY DISEASES 2015; 1:187-93. [PMID: 27536679 DOI: 10.1159/000438843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND The inflammasome is a complex of proteins in the cytoplasm that consists of three main components: a sensor protein (receptor), an adapter protein and caspase-1. Inflammasomes are the critical components of innate immunity and have been gradually recognized as a critical mediator in various autoimmune diseases; also, their role in chronic kidney disease and acute kidney injury has been gradually accepted. SUMMARY Inflammasomes triggered by infectious or sterile injuries transfer proinflammatory mediators into mature ones through innate danger-signaling platforms. Information on inflammasomes in kidney disease will help to uncover the underlying mechanisms of nephropathy and provide novel therapeutic targets in the future. KEY MESSAGES The inflammasomes can be activated by a series of exogenous and endogenous stimuli, including pathogen-and danger-associated molecular patterns released from or caused by damaged cells. The NACHT, LRR and PYD domain-containing protein 3 (NLRP3) in the kidney exerts its effect not only by the 'canonical' pathway of IL-1β and IL-18 secretion but also by 'noncanonical' pathways, such as tumor growth factor-β signaling, epithelial-mesenchymal transition and fibrosis. In both clinical and experimental data, the NLRP3 inflammasome was reported to be involved in the pathogenesis of chronic kidney disease and acute kidney injury. However, the underlying mechanisms are not fully understood. Therapies targeting the activation of the NLRP3 inflammasome or blocking its downstream effectors appear attractive for the pursuit of neuropathy treatments.
Collapse
Affiliation(s)
- Humaira Masood
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
88
|
Liu D, Wen Y, Tang TT, Lv LL, Tang RN, Liu H, Ma KL, Crowley SD, Liu BC. Megalin/Cubulin-Lysosome-mediated Albumin Reabsorption Is Involved in the Tubular Cell Activation of NLRP3 Inflammasome and Tubulointerstitial Inflammation. J Biol Chem 2015; 290:18018-18028. [PMID: 26025362 DOI: 10.1074/jbc.m115.662064] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Albuminuria contributes to the development and progression of chronic kidney disease by inducing tubulointerstitial inflammation (TI) and fibrosis. However, the exact mechanisms of TI in response to albuminuria are unresolved. We previously demonstrated that NLRP3 and inflammasomes mediate albumin-induced lesions in tubular cells. Here, we further investigated the role of endocytic receptors and lysosome rupture in NLRP3 inflammasome activation. A murine proteinuric nephropathy model was induced by albumin overload as described previously. The priming and activation signals for inflammasome complex formation were evoked simultaneously by albumin excess in tubular epithelial cells. The former signal was dependent on a albumin-triggered NF-κB pathway activation. This process is mediated by the endocytic receptor, megalin and cubilin. However, the silencing of megalin or cubilin inhibited the albumin-induced NLRP3 signal. Notably, subsequent lysosome rupture and the corresponding release of lysosomal hydrolases, especially cathepsin B, were observed in tubular epithelial cells exposed to albumin. Cathepsin B release and distribution are essential for NLRP3 signal activation, and inhibitors of cathepsin B suppressed the NLRP3 signal in tubular epithelial cells. Taken together, our findings suggest that megalin/cubilin and lysosome rupture are involved in albumin-triggered tubular injury and TI. This study provides novel insights into albuminuria-induced TI and implicates the active control of albuminuria as a critical strategy to halt the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Steve D Crowley
- Department of Medicine, Division of Nephrology, Duke University, and Durham Veterans Affairs Medical Centers, Durham, North Carolina 27710
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China.
| |
Collapse
|