51
|
Zhang Y, Du W, Smuda K, Georgieva R, Bäumler H, Gao C. Inflammatory activation of human serum albumin- or ovalbumin-modified chitosan particles to macrophages and their immune response in human whole blood. J Mater Chem B 2018; 6:3096-3106. [DOI: 10.1039/c7tb03096g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan particles modified with different albumins cause immune response in human whole blood via platelet activation and phagocytosis.
Collapse
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
| | - Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
| | - Kathrin Smuda
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine
| |
Collapse
|
52
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
53
|
Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, Chun M, Li P, Gohara DW, Dolinsky T, Konecny R, Koes DR, Nielsen JE, Head-Gordon T, Geng W, Krasny R, Wei GW, Holst MJ, McCammon JA, Baker NA. Improvements to the APBS biomolecular solvation software suite. Protein Sci 2017; 27:112-128. [PMID: 28836357 DOI: 10.1002/pro.3280] [Citation(s) in RCA: 1480] [Impact Index Per Article: 185.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.
Collapse
Affiliation(s)
| | - Dave Engel
- Pacific Northwest National Laboratory, Richland, Washington
| | - Keith Star
- Pacific Northwest National Laboratory, Richland, Washington
| | - Kyle Monson
- Pacific Northwest National Laboratory, Richland, Washington
| | - Juan Brandi
- Pacific Northwest National Laboratory, Richland, Washington
| | | | | | | | - Jiahui Chen
- Southern Methodist University, Dallas, Texas
| | - Karina Liles
- Pacific Northwest National Laboratory, Richland, Washington
| | - Minju Chun
- Pacific Northwest National Laboratory, Richland, Washington
| | - Peter Li
- Pacific Northwest National Laboratory, Richland, Washington
| | | | | | - Robert Konecny
- University of California San Diego, San Diego, California
| | - David R Koes
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Weihua Geng
- Southern Methodist University, Dallas, Texas
| | | | - Guo-Wei Wei
- Michigan State University, East Lansing, Michigan
| | | | | | - Nathan A Baker
- Pacific Northwest National Laboratory, Richland, Washington.,Brown University, Providence, Rhode Island
| |
Collapse
|
54
|
Lai W, Wang Q, Li L, Hu Z, Chen J, Fang Q. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns. Colloids Surf B Biointerfaces 2017; 152:317-325. [DOI: 10.1016/j.colsurfb.2017.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/03/2023]
|
55
|
Dyawanapelly S, Jagtap DD, Dandekar P, Ghosh G, Jain R. Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas. Colloids Surf B Biointerfaces 2017; 154:408-420. [PMID: 28388527 DOI: 10.1016/j.colsurfb.2017.03.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
We have investigated the electrostatic interaction between bare iron oxide nanoparticles (IONPs) or low molecular weight chitosan coated iron oxide nanoparticles (LMWC-IONPs) and hen egg white lysozyme (HEWL) at different pH values using protein-nanoparticle reverse charge parity model. Physicochemical characterization of both IONPs and LMWC-IONPs were carried out using DLS, TEM, FE-SEM, XRD, TGA, XPS and VSM analysis. DLS, TEM and FE-SEM results indicated that both IONPs were monodispersed, with size ranging from 8 to 20nm. The coating of LMWC on IONPs was confirmed using zeta potential, TGA, XRD and XPS measurements. The cytotoxicity of both IONPs and LMWC-IONPs was studied in vitro in A549 human lung alveolar epithelial cells to assess their use in biomedical applications. Furthermore, the interactions between protein-nanoparticles were investigated by UV-visible, fluorescence and circular dichroism spectroscopic techniques. The present study suggests that water soluble LMWC surface modified IONPs are the promising nanomaterials. The safety and biocompatibility of these nanoparticles render them suitable for biomedical applications.
Collapse
Affiliation(s)
- Sathish Dyawanapelly
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
| | - Dhanashree D Jagtap
- Division of Structural Biology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
| | - Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Trombay, Mumbai 400085, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
56
|
Wang Z, Wang C, Liu S, He W, Wang L, Gan J, Huang Z, Wang Z, Wei H, Zhang J, Dong L. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis. ACS NANO 2017; 11:1659-1672. [PMID: 28085241 DOI: 10.1021/acsnano.6b07461] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A corona is a layer of macromolecules formed on a nanoparticle surface in vivo. It can substantially change the biological identity of nanomaterials and possibly trigger adverse responses from the body tissues. Dissecting the role of the corona in the development of a particular disease may provide profound insights for understanding toxicity of nanomaterials in general. In our present study, we explored the capability of different silica nanoparticles (SiNPs) to induce silicosis in the mouse lung and analyzed the composition of coronas formed on these particles. We found that SiNPs of certain size and surface chemistry could specifically recruit transforming growth factor β1 (TGF-β1) into their corona, which subsequently induces the development of lung fibrosis. Once embedded into the corona on SiNPs, TGF-β1 was remarkably more stable than in its free form, and its fibrosis-triggering activity was significantly prolonged. Our study meaningfully demonstrates that a specific corona component on a certain nanoparticle could initiate a particular pathogenic process in a clinically relevant disease model. Our findings may shed light on the understanding of molecular mechanisms of human health risks correlated with exposure to small-scale substances.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR, China
| | - Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Wei He
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - JingJing Gan
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhenheng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Haoyang Wei
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
- Jiangsu Provincial Laboratory for Nano-Technology, Nanjing University , Nanjing 210093, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| |
Collapse
|
57
|
Simak J, De Paoli S. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28078811 DOI: 10.1002/wnan.1448] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 01/16/2023]
Abstract
The blood coagulation balance in the organism is achieved by the interaction of the blood platelets (PLTs) with the plasma coagulation system (PCS) and the vascular endothelial cells. In healthy organism, these systems prevent thrombosis and, in events of vascular damage, enable blood clotting to stop bleeding. The dysregulation of hemostasis may cause serious thrombotic and/or hemorrhagic pathologies. Numerous engineered nanomaterials are being investigated for biomedical purposes and are unavoidably exposed to the blood. Also, nanomaterials may access vascular system after occupational, environmental, or other types of exposure. Thus, it is essential to evaluate the effects of engineered nanomaterials on hemostasis. This review focuses on investigations of nanomaterial interactions with the blood components involved in blood coagulation: the PCS and PLTs. Particular emphases include the pathophysiology of effects of nanomaterials on the PCS, including the kallikrein-kinin system, and on PLTs. Methods for investigating these interactions are briefly described, and a review of the most important studies on the interactions of nanomaterials with plasma coagulation and platelets is provided. WIREs Nanomed Nanobiotechnol 2017, 9:e1448. doi: 10.1002/wnan.1448 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jan Simak
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia De Paoli
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
58
|
Ma J, Li R, Qu G, Liu H, Yan B, Xia T, Liu Y, Liu S. Carbon nanotubes stimulate synovial inflammation by inducing systemic pro-inflammatory cytokines. NANOSCALE 2016; 8:18070-18086. [PMID: 27714147 DOI: 10.1039/c6nr06041b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes (CNTs) have promising applications in a wide range of biomedical fields, including imaging, drug/gene delivery and other therapeutics; however, the biosafety concerns of CNTs should be addressed. To date, many reports have documented the toxicological effects on the cells, tissue or organs that are in direct contact with the tubes; however, there is limited evidence to unravel the secondary toxicity upon CNT treatment. Moreover, more effort is needed to gain a definitive understanding of the adverse outcome pathway (AOP) for CNTs, and a pragmatic framework for risk assessment has not been established yet. In the current study, we aimed to decipher the secondary toxicity to joints under CNT exposure. We demonstrated that carboxylated multi-wall CNTs (MWCNTs-COOH) significantly provoked systemic pro-inflammatory responses, leading to synovial inflammation within knee joints, as evidenced by the infiltration of pro-inflammatory cells in the synovium and meniscus. Mechanistic studies showed that MWCNTs-COOH stimulated pro-inflammatory effects by activating macrophages, and the secreted pro-inflammatory cytokines primed the synoviocytes and chondrocytes, resulting in enhanced production of a large array of enzymes involved in articular cartilage degeneration, including matrix metalloproteinase (MMP) members and cyclooxygenase (COX) members, and increased enzymatic activity of MMPs was demonstrated. Blockade of the cytokines by antibodies significantly attenuated the production of these enzymes. Our current study thus suggests that there is a novel secondary toxicity of CNTs, namely a new AOP to understand the indirect effects of carbon nanotubes: synovial inflammation due to the alteration of the priming state of synoviocytes and chondrocytes under CNT-induced systemic inflammatory conditions.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huiyu Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing 100035, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
59
|
Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1615-25. [DOI: 10.1016/j.nano.2016.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/20/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
|
60
|
Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L. An Evaluation of Blood Compatibility of Silver Nanoparticles. Sci Rep 2016; 6:25518. [PMID: 27145858 PMCID: PMC4857076 DOI: 10.1038/srep25518] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) have tremendous potentials in medical devices due to their excellent antimicrobial properties. Blood compatibility should be investigated for AgNPs due to the potential blood contact. However, so far, most studies are not systematic and have not provided insights into the mechanisms for blood compatibility of AgNPs. In this study, we have investigated the blood biological effects, including hemolysis, lymphocyte proliferation, platelet aggregation, coagulation and complement activation, of 20 nm AgNPs with two different surface coatings (polyvinyl pyrrolidone and citrate). Our results have revealed AgNPs could elicit hemolysis and severely impact the proliferation and viability of lymphocytes at all investigated concentrations (10, 20, 40 μg/mL). Nevertheless, AgNPs didn't show any effect on platelet aggregation, coagulation process, or complement activation at up to ~40 μg/mL. Proteomic analysis on AgNPs plasma proteins corona has revealed that acidic and small molecular weight blood plasma proteins were preferentially adsorbed onto AgNPs, and these include some important proteins relevant to hemostasis, coagulation, platelet, complement activation and immune responses. The predicted biological effects of AgNPs by proteomic analysis are mostly consistent with our experimental data since there were few C3 components on AgNPs and more negative than positive factors involving platelet aggregation and thrombosis.
Collapse
Affiliation(s)
- He Huang
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Wenjia Lai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Menghua Cui
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ling Liang
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuchen Lin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qiaojun Fang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ying Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Liming Xie
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|
61
|
Tegegn TZ, De Paoli SH, Orecna M, Elhelu OK, Woodle SA, Tarandovskiy ID, Ovanesov MV, Simak J. Characterization of procoagulant extracellular vesicles and platelet membrane disintegration in DMSO-cryopreserved platelets. J Extracell Vesicles 2016; 5:30422. [PMID: 27151397 PMCID: PMC4858502 DOI: 10.3402/jev.v5.30422] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Freezing is promising for extended platelet (PLT) storage for transfusion. 6% DMSO cryopreserved PLTs (CPPs) are currently in clinical development. CPPs contain significant amount of platelet membrane vesicles (PMVs). PLT-membrane changes and PMV release in CPP are poorly understood, and haemostatic effects of CPP PMVs are not fully elucidated. This study aims to investigate PLT-membrane alterations in CPPs and provide comprehensive characterization of CPP PMVs, and their contribution to procoagulant activity (PCA) of CPPs. METHODS CPPs and corresponding liquid-stored PLTs (LSPs) were characterized by flow cytometry (FC), fluorescence polarization (FP), nanoparticle tracking analysis (NTA), electron microscopy (SEM, TEM), atomic force microscopy (AFM) and thrombin-generation (TG) test. RESULTS SEM and TEM revealed disintegration and vesiculation of the PLT-plasma membrane and loss of intracellular organization in 60% PLTs in CPPs. FP demonstrated that 6% DMSO alone and with freezing-thawing caused marked increase in PLT-membrane fluidity. The FC counts of annexin V-binding PMVs and CD41a(+) PMVs were 68- and 56-folds higher, respectively, in CPPs than in LSPs. The AFM and NTA size distribution of PMVs in CPPs indicated a peak diameter of 100 nm, corresponding to exosome-size vesicles. TG-based PCA of CPPs was 2- and 9-folds higher per PLT and per volume, respectively, compared to LSPs. Differential centrifugation showed that CPP supernatant contributed 26% to CPP TG-PCA, mostly by the exosome-size PMVs and their TG-PCA was phosphatidylserine dependent. CONCLUSIONS Major portion of CPPs does not show activation phenotype but exhibits grape-like membrane disintegration with significant increase of membrane fluidity induced by 6% DMSO alone and further aggravated by freezing-thawing process. DMSO cryopreservation of PLTs is associated with the release of PMVs and marked increase of TG-PCA, as compared to LSPs. Exosome-size PMVs have significant contribution to PCA of CPPs.
Collapse
Affiliation(s)
- Tseday Z Tegegn
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia H De Paoli
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Martina Orecna
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Oumsalama K Elhelu
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Samuel A Woodle
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ivan D Tarandovskiy
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mikhail V Ovanesov
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jan Simak
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA;
| |
Collapse
|
62
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 958] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
63
|
Fröhlich E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr Med Chem 2016; 23:408-30. [PMID: 26063498 PMCID: PMC5403968 DOI: 10.2174/0929867323666160106151428] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Nanomaterials can get into the blood circulation after injection or by release from implants but also by permeation of the epithelium after oral, respiratory or dermal exposure. Once in the blood, they can affect hemostasis, which is usually not intended. This review addresses effects of biological particles and engineered nanomaterials on hemostasis. The role of platelets and coagulation in normal clotting and the interaction with the immune system are described. Methods to identify effects of nanomaterials on clotting and results from in vitro and in vivo studies are summarized and the role of particle size and surface properties discussed. The literature overview showed that mainly pro-coagulative effects of nanomaterials have been described. In vitro studies suggested stronger effects of smaller than of larger NPs on coagulation and a greater importance of material than of surface charge. For instance, carbon nanotubes, polystyrene particles, and dendrimers inferred with clotting independent from their surface charge. Coating of particles with polyethylene glycol was able to prevent interaction with clotting by some particles, while it had no effect on others and the more recently developed bio-inspired surfaces might help to design coatings for more biocompatible particles. The mainly pro-coagulative action of nanoparticles could present a particular risk for individuals affected by common diseases such as diabetes, cancer, and cardiovascular diseases. Under standardized conditions, in vitro assays using human blood appear to be a suitable tool to study mechanisms of interference with hemostasis and to optimize hemocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, Stiftingtalstr 24, 8010 Graz, Austria.
| |
Collapse
|
64
|
Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond) 2016; 11:81-100. [PMID: 26653875 PMCID: PMC4910943 DOI: 10.2217/nnm.15.188] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers.
Collapse
Affiliation(s)
- Claudia Corbo
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
- Fondazione SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Roberto Molinaro
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
| | - Alessandro Parodi
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
- Fondazione SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Naama E Toledano Furman
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
| |
Collapse
|
65
|
Ahmad F, Zhou Y, Ling Z, Xiang Q, Zhou X. Systematic elucidation of interactive unfolding and corona formation of bovine serum albumin with cobalt ferrite nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02850k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nanoparticles (NPs) are extensively being used in modern nano-based therapies and nano-protein formulations.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- China
| | - Ying Zhou
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- China
- Research Center of Analysis and Measurement
| | - Zhaoxing Ling
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- China
| | - Qingqing Xiang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- China
| | - Xing Zhou
- College of Atmospheric Science
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
66
|
Sobczynski DJ, Fish MB, Fromen CA, Carasco-Teja M, Coleman RM, Eniola-Adefeso O. Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems. Ther Deliv 2015; 6:915-34. [PMID: 26272334 PMCID: PMC4618056 DOI: 10.4155/tde.15.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular wall endothelial cells control several physiological processes and are implicated in many diseases, making them an attractive candidate for drug targeting. Vascular-targeted drug carriers (VTCs) offer potential for reduced side effects and improved therapeutic efficacy, however, only limited therapeutic success has been achieved to date. This is perhaps due to complex interactions of VTCs with blood components, which dictate VTC transport and adhesion to endothelial cells. This review focuses on VTC interaction with blood as well as novel 'bio-inspired' designs to mimic and exploit features of blood in VTC development. Advanced approaches for enhancing VTCs are discussed along with applications in regenerative medicine, an area of massive potential growth and expansion of VTC utility in the near future.
Collapse
Affiliation(s)
- Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Mariana Carasco-Teja
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Rhima M Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
67
|
Zhang H, Wu P, Zhu Z, Wang Y. Interaction of γ-Fe₂O₃ nanoparticles with fibrinogen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:40-47. [PMID: 26123604 DOI: 10.1016/j.saa.2015.06.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
In this article, an attempt is made to analysis the binding mechanism of γ-Fe2O3 nanoparticles with fibrinogen by using a combination of circular dichroism, UV-vis, fluorescence spectroscopic and computational methods. The multi-spectroscopic data revealed that the complex easily formed between γ-Fe2O3 nanoparticles and fibrinogen by mainly hydrogen bonding forces. The binding constants of fibrinogen with γ-Fe2O3 nanoparticles were 2.24×10(7), 1.15×10(7) and 0.72×10(7)Lmol(-1) at 298, 304, and 310K, respectively. Furthermore, the results from circular dichroism, UV-vis, synchronous fluorescence, and three-dimensional fluorescence studies showed that the strong binding interaction of γ-Fe2O3 nanoparticles with fibrinogen induced an obvious perturbation in the protein secondary and tertiary structure. Moreover, the results of molecular modeling indicated the existence of the preferable binding site on fibrinogen for γ-Fe2O3 NPs model.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Peirong Wu
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Zhaohua Zhu
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
68
|
Mariam J, Sivakami S, Dongre PM. Albumin corona on nanoparticles – a strategic approach in drug delivery. Drug Deliv 2015; 23:2668-2676. [DOI: 10.3109/10717544.2015.1048488] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Jessy Mariam
- Department of Biophysics, University of Mumbai, Mumbai, India
| | - S. Sivakami
- Department of Biophysics, University of Mumbai, Mumbai, India
| | | |
Collapse
|
69
|
Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials. Sci Rep 2015; 5:10886. [PMID: 26041015 PMCID: PMC4455116 DOI: 10.1038/srep10886] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/23/2015] [Indexed: 12/12/2022] Open
Abstract
The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.
Collapse
|
70
|
The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci Rep 2015; 5:10873. [PMID: 26034971 PMCID: PMC4451687 DOI: 10.1038/srep10873] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
With its many unique properties, graphene has shown great potential in various biomedical applications, while its biocompatibility has also attracted growing concerns. Previous studies have shown that the formation of protein-graphene corona could effectively reduce its cytotoxicity; however, the underlying molecular mechanism remains not well-understood. Herein, we use extensive molecular dynamics simulations to demonstrate that blood proteins such as bovine fibrinogen (BFG) can absorb onto the graphene surface quickly and tightly to form a corona complex. Aromatic residues contributed significantly during this adsorption process due to the strong π−π stacking interactions between their aromatic rings and the graphene sp2-carbons. Somewhat surprisingly, basic residues like arginine, also played an equally or even stronger role during this process. The strong dispersion interactions between the sidechains of these solvent-exposed basic residues and the graphene surface provide the driving force for a tight binding of these basic residues. To the best of our knowledge, this is the first study with blood proteins to show that, in addition to the aromatic residues, the basic residues also play an important role in the formation of protein-graphene corona complexes.
Collapse
|
71
|
Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. J Colloid Interface Sci 2015; 448:347-55. [DOI: 10.1016/j.jcis.2015.02.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 01/26/2023]
|
72
|
Pajnič M, Drašler B, Šuštar V, Krek JL, Štukelj R, Šimundić M, Kononenko V, Makovec D, Hägerstrand H, Drobne D, Kralj-Iglič V. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles. J Nanobiotechnology 2015; 13:28. [PMID: 25886274 PMCID: PMC4391140 DOI: 10.1186/s12951-015-0087-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. RESULTS We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CONCLUSIONS CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable methods for the study of effects of various substances on biological membranes and therefrom derived effects on organisms.
Collapse
Affiliation(s)
- Manca Pajnič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Barbara Drašler
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Vid Šuštar
- Lymphocyte Cytoskeleton Group, Institute of Biomedicine/Pathology, BioCity, University of Turku, Tykistökatu 6B, Turku, SF-20520, Finland.
| | - Judita Lea Krek
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Roman Štukelj
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Metka Šimundić
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Veno Kononenko
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Darko Makovec
- J. Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Henry Hägerstrand
- Department of Biosciences, BioCity, Åbo Akademi University, BioCity, Artillerigatan 6, Åbo/Turku, SF-20520, Finland.
| | - Damjana Drobne
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
73
|
Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z. Towards understanding of nanoparticle–protein corona. Arch Toxicol 2015; 89:519-39. [DOI: 10.1007/s00204-015-1458-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
|
74
|
Sasidharan A, Riviere JE, Monteiro-Riviere NA. Gold and silver nanoparticle interactions with human proteins: impact and implications in biocorona formation. J Mater Chem B 2015; 3:2075-2082. [DOI: 10.1039/c4tb01926a] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallic NP interaction with human proteins, biocorona formation and their impact on cellular uptake.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Nanotechnology Innovation Center of Kansas State
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| | - Nancy A. Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| |
Collapse
|
75
|
Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomedicine 2014; 10:97-113. [PMID: 25565807 PMCID: PMC4275058 DOI: 10.2147/ijn.s72998] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the cytotoxicity of nanoparticles (NPs) is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses.
Collapse
Affiliation(s)
- Yeon Kyung Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Eun-Ju Choi
- Division of Sport Science, College of Science and Technology, Konkuk University, Chungju, South Korea
| | - Thomas J Webster
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dongwoo Khang
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
76
|
Wang C, Dong L. Exploring 'new' bioactivities of polymers at the nano-bio interface. Trends Biotechnol 2014; 33:10-4. [PMID: 25441258 DOI: 10.1016/j.tibtech.2014.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/29/2023]
Abstract
A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages. Emerging findings about polycations, polysaccharides, immobilised multivalent ligands, and biomolecular coronas provide evidence that polymers are activated at the nano-bio interface, while emphasising the current theoretical and practical challenges. Our increasing understanding of the nano-bio interface and evolving approaches to establish the therapeutic potential of polymers enable the development of polymer drugs with high specificities for broad applications.
Collapse
Affiliation(s)
- Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China.
| |
Collapse
|
77
|
Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014; 7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.capr-14-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherri L Patterson
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|