51
|
Vigué A, Vautier D, Kaytoue A, Senger B, Arntz Y, Ball V, Ben Mlouka A, Gribova V, Hajjar-Garreau S, Hardouin J, Jouenne T, Lavalle P, Ploux L. Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness. J Funct Biomater 2022; 13:jfb13040237. [PMID: 36412878 PMCID: PMC9680287 DOI: 10.3390/jfb13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria's mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth.
Collapse
Affiliation(s)
- Annabelle Vigué
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Dominique Vautier
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amad Kaytoue
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Bernard Senger
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Youri Arntz
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Vincent Ball
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amine Ben Mlouka
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
| | - Varvara Gribova
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Samar Hajjar-Garreau
- Mulhouse Materials Science Institute, CNRS/Haute Alsace University, 68057 Mulhouse, France
| | - Julie Hardouin
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Thierry Jouenne
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Philippe Lavalle
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Lydie Ploux
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
- CNRS, 67037 Strasbourg, France
- Correspondence:
| |
Collapse
|
52
|
Negm NA, Altalhi AA, Saleh Mohamed NE, Kana MTHA, Mohamed EA. Growth Inhibition of Sulfate-Reducing Bacteria during Gas and Oil Production Using Novel Schiff Base Diquaternary Biocides: Synthesis, Antimicrobial, and Toxicological Assessment. ACS OMEGA 2022; 7:40098-40108. [PMID: 36385895 PMCID: PMC9647739 DOI: 10.1021/acsomega.2c04836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Upstream crude oil production equipment is always exposed to destruction damagingly which is caused by sulfate-reducing bacterium (SRB) activities that produce H2S gas, which leads to increased metal corrosion (bio-fouling) rates and inflicts effective infrastructure damage. Hence, oil and gas reservoirs must be injected with biocides and inhibitors which still offer the foremost protection against harmful microbial activity. However, because of the economic and environmental risks associated with biocides, the oil and gas sectors improve better methods for their usage. This work describes the synthesis and evaluation of the biological activities as the cytotoxicity and antimicrobial properties of a series of diquaternary cationic biocides that were studied during the inhibition of microbial biofilms. The prepared diquaternary compound was synthesized by coupling vanillin and 4-aminoantipyrene to achieve the corresponding Schiff base, followed by a quaternization reaction using 1,6-bromohexane, 1,8-bromooctane, and 1,12-bromododecane. The increase of their alkyl chain length from 6 to 12 methylene groups increased the obtained antimicrobial activity and cytotoxicity. Antimicrobial efficacies of Q1-3 against various biofilm-forming microorganisms, including bacteria and fungi, were examined utilizing the diameter of inhibition zone procedures. The results revealed that cytotoxic efficacies of Q1-3 were significantly associated mainly with maximum surface excess and interfacial characteristics. The cytotoxic efficiencies of Q1-3 biocides demonstrated promising results due to their comparatively higher efficacies against SRB. Q3 exhibited the highest cytotoxic biocide against the gram +ve, gram -ve, and SRB species according to the inhibition zone diameter test. The toxicity of the studied microorganisms depended on the nature and type of the target microorganism and the hydrophobicity of the biocide molecules. Cytotoxicity assessment and antimicrobial activity displayed increased activity by the increase in their alkyl chain length.
Collapse
Affiliation(s)
- Nabel A. Negm
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Amal A. Altalhi
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Nermin E. Saleh Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Maram T. H. A. Kana
- National
Institute of LASER Enhanced Science, Cairo
University, Giza11776, Egypt
| | - Eslam A. Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| |
Collapse
|
53
|
Liu Z, Yi Y, Wang S, Dou H, Fan Y, Tian L, Zhao J, Ren L. Bio-Inspired Self-Adaptive Nanocomposite Array: From Non-antibiotic Antibacterial Actions to Cell Proliferation. ACS NANO 2022; 16:16549-16562. [PMID: 36218160 DOI: 10.1021/acsnano.2c05980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pathogenic bacterial infection and poor native tissue integration are two major issues encountered by biomaterial implants and devices, which are extremely hard to overcome within a single surface, especially for those without involvement of antibiotics. Herein, a self-adaptive surface that can transform from non-antibiotic antibacterial actions to promotion of cell proliferation is developed by in situ assembly of bacteriostatic 3,3'-diaminodipropylamine (DADP)-doped zeolitic imidazolate framework-8 (ZIF-8) on bio-inspired nanopillars. Initially, the nanocomposite surface shows impressive antibacterial effects, even under severe bacterial infection, due to the combination of mechano-bactericidal activity from a nanopillar structure and bacteriostatic activity contributed by pH-responsive release of DADP. After the complete degradation of the ZIF-8 layer, the refurbished nanopillars not only can still physically rupture bacterial membrane but also facilitate mammalian cell proliferation, due to the obvious difference in cell size. More strikingly, the nanocomposite surface totally avoids the usage of antibiotics, eradicating the potential risk of antimicrobial resistance, and the surface exhibited excellent histocompatibility and lower inflammatory response properties as revealed by in vivo tests. This type of self-adaptive surface may provide a promising alternative for addressing the intractable implant-associated requirements, where antibiotic-free antibacterial activity and native tissue integration are both highly needed.
Collapse
Affiliation(s)
- Ziting Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shujin Wang
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
54
|
Sotniczuk A, Jastrzębska A, Chlanda A, Kwiatek A, Garbacz H. How Streptococcus mutans Affects the Surface Topography and Electrochemical Behavior of Nanostructured Bulk Ti. Biomolecules 2022; 12:biom12101515. [PMID: 36291724 PMCID: PMC9599476 DOI: 10.3390/biom12101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolization of carbohydrates by Streptococcus mutans leads to the formation of lactic acid in the oral cavity, which can consequently accelerate the degradation of dental implants fabricated from commercially available microcrystalline Ti. Microstructure influences surface topography and hence interaction between bacteria cells and Ti surfaces. This work offers the first description of the effect of S. mutans on the surface topography and properties of nanostructured bulk Ti, which is a promising candidate for modern narrow dental implants owing to its superior mechanical strength. It was found that S. mutans incubation resulted in the slight, unexpected decrease of surface nanoroughness, which was previously developed owing to privileged oxidation in areas of closely spaced boundaries. However, despite the changes in nanoscale surface topography, bacteria incubation did not reduce the high level of protection afforded by the oxide layer formed on the nanostructured Ti surface. The results highlight the need–hitherto ignored–to consider Ti microstructure when analyzing its behavior in the presence of carbohydrate-metabolizing bacteria.
Collapse
Affiliation(s)
- Agata Sotniczuk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
- Correspondence:
| | - Agnieszka Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Adrian Chlanda
- Łukasiewicz Research Network—Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Halina Garbacz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| |
Collapse
|
55
|
Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ribeiro TAN, Sachs D, Penna B. Characterizing biofilm formation of Staphylococcus pseudintermedius in different suture materials. Microb Pathog 2022; 172:105796. [PMID: 36155066 DOI: 10.1016/j.micpath.2022.105796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 10/31/2022]
Abstract
Staphylococcus pseudintermedius is the primary cause of pyoderma and surgical site infection (SSI) in dogs, and biofilm formation is the main reason for persistent SSI. The presence of biofilm in medical devices can directly impact treatment. Methicillin-resistant S. pseudintermedius (MRSP) emerged rapidly in companion animals, limiting treatment options. MRSP is a public health problem since zoonotic transmission can occur. The study seeks to evaluate biofilm formation capacity via Staphylococcus pseudintermedius collected from dogs affected by topical infections, in suture materials commonly used in companion animal surgery. We tested segments of four types of sutures. Biofilm production was measured by staining with safranin and colorimetric absorbance measurement. We calculated colony-forming units (CFUs) for each type of sutures and visualized biofilm via Scanning Electron Microscopy (SEM) images. The genes associated with biofilm formation (icaA and icaD) were identified using PCR. The colorimetric tests showed that the biofilm is most abundantly formed on the cotton sutures and polyglactin 910. The ability to form biofilm on polypropylene and nylon sutures has also been demonstrated, although at varying intensities. PCR revealed the presence of the two genes (icaA and icaD) in all the isolates. We used a positive control using a reference strain and negative control without bacteria for comparisons. Suture material allowing biofilm formation makes it difficult to prevent and treat surgical site infections. Therefore, it is important to know which suture thread is more susceptible to biofilm formation by bacteria to prevent possible secondary infections at surgical sites.
Collapse
Affiliation(s)
- Camilla M Pesset
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Carolina O da Fonseca
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Milena Antunes
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Ana Luiza L Dos Santos
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Izabel M Teixeira
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Tainara A N Ribeiro
- Microbiological Testing Laboratory Associated with Materials and Drugs of the Center for Studies, Research and Innovation in Biofunctional Materials and Biotechnology, Federal, University of Itajubá, 37500-903, Itajubá, Brazil
| | - Daniela Sachs
- Microbiological Testing Laboratory Associated with Materials and Drugs of the Center for Studies, Research and Innovation in Biofunctional Materials and Biotechnology, Federal, University of Itajubá, 37500-903, Itajubá, Brazil
| | - Bruno Penna
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil.
| |
Collapse
|
56
|
Radiation synthesis and in vitro evaluation of the antimicrobial property of functionalized nanopolymer-based poly (propargyl alcohol) against multidrug-resistance microbes. Microb Pathog 2022; 172:105777. [PMID: 36152795 DOI: 10.1016/j.micpath.2022.105777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022]
Abstract
Pathogenic microorganisms are responsible for many diseases in biological organisms, including humans. Many of these infections thrive in hospitals, where people are treated with medicines and certain bacteria resist those treatments. Consequently, this research article aims to develop efficient antimicrobial material-based conjugated and functionalized polypropargyl alcohol nanoparticles (nano-PGA) synthesized by gamma irradiation. The monomer of PGA was polymerized in various mediums (water (W), chloroform (Ch), and dimethylformamide (DMF)) without catalysts under the action of γ-rays, producing π-conjugated and colored functional nano-PGA polymers. Nano-PGA is a versatile polymer demonstrated here as suitable for creating next-generation of antimicrobial systems capable of effectively preventing and killing various pathogenic microorganisms. The novelty here is the development of polymeric nanostructures by changing the solvent and irradiation doses. The antimicrobial property of nano-PGA (nanostare-like antibody structure) was examined against different pathogenic bacteria and unicellular fungi. Nano-PGA-DMF exhibits significant antimicrobial potential against Staphylococcus aureus (S. aureus) (20.20 mm; zone of inhibition (ZOI), and 0.47 μg/mL; minimum inhibitory concentration (MIC), followed by Escherichia coli (E. coli) (14.50 mm; ZOI, and 1.87 μg/mL; MIC, and Candida albicans (C.albicans) (12.50 mm; ZOI, and 1.87 μg/mL; MIC). In antibiofilm results, the highest inhibition percentage of the synthesized nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF was documented for S. aureus (17.01%, 37.57%, and 80.27%), followed by E. coli (25.68%, 55.16% and 78.11%), and C.albicans (40.10%, 62.65%, and 76.19%), respectively. The amount of bacterial protein removed is directly proportional after increasing the concentration of nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF samples (at different concentrations) and counted to be 70.58, 102.89, and 200.87 μg/mL, respectively following the treatment with 1.0 mg/mL of each sample. It was found that the nano-PGA polymer prepared in DMF has better antimicrobial activity than one prepared in chloroform than in water.
Collapse
|
57
|
Ma R, Hu X, Zhang X, Wang W, Sun J, Su Z, Zhu C. Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle. Front Cell Infect Microbiol 2022; 12:1003033. [PMID: 36211965 PMCID: PMC9534288 DOI: 10.3389/fcimb.2022.1003033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Su
- *Correspondence: Chen Zhu, ; Zheng Su,
| | - Chen Zhu
- *Correspondence: Chen Zhu, ; Zheng Su,
| |
Collapse
|
58
|
Maksimova Y, Bykova Y, Maksimov A. Functionalization of Multi-Walled Carbon Nanotubes Changes Their Antibiofilm and Probiofilm Effects on Environmental Bacteria. Microorganisms 2022; 10:microorganisms10081627. [PMID: 36014045 PMCID: PMC9412586 DOI: 10.3390/microorganisms10081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Releasing multi-walled carbon nanotubes (MWCNTs) into ecosystems affects the biofilm formation and metabolic activity of bacteria in aquatic and soil environments. Pristine (pMWCNTs), oleophilic (oMWCNTs), hydrophilic (hMWCNTs), and carboxylated (cMWCNTs) carbon nanotubes were used to investigate their effects on bacterial biofilm. A pronounced probiofilm effect of modified MWCNTs was observed on the Gram-negative bacteria of Pseudomonas fluorescens C2, Acinetobacter guillouiae 11 h, and Alcaligenes faecalis 2. None of the studied nanomaterials resulted in the complete inhibition of biofilm formation. The complete eradication of biofilms exposed to MWCNTs was not observed. The functionalization of carbon nanotubes was shown to change their probiofilm and antibiofilm effects. Gram-negative bacteria were the most susceptible to destruction, and among the modified MWCNTs, oMWCNTs had the greatest effect on biofilm destruction. The number of living cells in the biofilms was assessed by the reduction of XTT, and metabolic activity was assessed by the reduction of resazurin to fluorescent resorufin. The biofilms formed in the presence of MWCNTs reduced tetrozolium to formazan more actively than the control biofilms. When mature biofilms were exposed to MWCNTs, dehydrogenase activity decreased in Rhodococcus erythropolis 4-1, A. guillouiae 11 h, and A. faecalis 2 in the presence of pMWCNTs and hMWCNTs, as well as in A. guillouiae 11 h exposed to cMWCNTs. When mature biofilms were exposed to pMWCNTs, hMWCNTs, and cMWCNTs, the metabolism of cells decreased in most strains, and oMWCNTs did not have a pronounced inhibitory effect. The antibiofilm and probiofilm effects of MWCNTs were strain-dependent.
Collapse
Affiliation(s)
- Yuliya Maksimova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
- Correspondence:
| | - Yana Bykova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
| | - Aleksandr Maksimov
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
| |
Collapse
|
59
|
Ardhani R, Diana R, Pidhatika B. How Porphyromonas gingivalis Navigate the Map: The Effect of Surface Topography on the Adhesion of Porphyromonas gingivalis on Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4988. [PMID: 35888454 PMCID: PMC9318924 DOI: 10.3390/ma15144988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The main purpose of this study is to develop an understanding of how Porphyromonas gingivalis responds to subperiosteal implant surface topography. A literature review was drawn from various electronic databases from 2000 to 2021. The two main keywords used were "Porphyromonas gingivalis" and "Surface Topography". We excluded all reviews and or meta-analysis articles, articles not published in English, and articles with no surface characterization process or average surface roughness (Ra) value. A total of 26 selected publications were then included in this study. All research included showed the effect of topography on Porphyromonas gingivalis to various degrees. It was found that topography features such as size and shape affected Porphyromonas gingivalis adhesion to subperiosteal implant materials. In general, a smaller Ra value reduces Porphyromonas gingivalis regardless of the type of materials, with a threshold of 0.3 µm for titanium.
Collapse
Affiliation(s)
- Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Rasda Diana
- Audy Dental Clinic, Jakarta 17214, Indonesia
| | - Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia—PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia;
| |
Collapse
|
60
|
Pellegrino L, Kriem LS, Robles ESJ, Cabral JT. Microbial Response to Micrometer-Scale Multiaxial Wrinkled Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31463-31473. [PMID: 35699282 PMCID: PMC9284519 DOI: 10.1021/acsami.2c08768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigate the effect of micrometer-scale surface wrinkling on the attachment and proliferation of model bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli K12) and fungi (Candida albicans). Specifically, sinusoidal (1D), checkerboard (C), and herringbone (H) patterns were fabricated by mechanical wrinkling of plasma-oxidized polydimethylsiloxane (PDMS) bilayers and contrasted with flat (F) surfaces. Microbial deformation and orientation were found to correlate with the aspect ratio and commensurably with surface pattern dimensions and local pattern order. Significantly, the proliferation of P. aeruginosa could be described by a linear scaling between bacterial area coverage and available surface area, defined as a fraction of the line integral along each profile with negative curvature. However, in the early stages of proliferation (up to 6 h examined), that C and H patterns disrupt the spatial arrangement of bacteria, impeding proliferation for several hours and reducing it (by ∼50%) thereafter. Our findings suggest a simple framework to rationalize the impact of micrometer-scale topography on microbial action and demonstrate that multiaxial patterning order provides an effective strategy to delay and frustrate the early stages of bacterial proliferation.
Collapse
Affiliation(s)
- Luca Pellegrino
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Lukas Simon Kriem
- Fraunhofer
Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Eric S. J. Robles
- Procter
& Gamble, Newcastle Innovation Centre, Newcastle upon Tyne NE12
9TS, United Kingdom
| | - João T. Cabral
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| |
Collapse
|
61
|
Lee SW, Johnson EL, Chediak JA, Shin H, Wang Y, Phillips KS, Ren D. High-Throughput Biofilm Assay to Investigate Bacterial Interactions with Surface Topographies. ACS APPLIED BIO MATERIALS 2022; 5:3816-3825. [PMID: 35816421 PMCID: PMC9382637 DOI: 10.1021/acsabm.2c00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The specific topography of biomaterials plays an important
role
in their biological interactions with cells and thus the safety of
medical implants. Antifouling materials can be engineered with topographic
features to repel microbes. Meanwhile, undesired topographies of implants
can cause complications such as breast implant-associated anaplastic
large cell lymphoma (BIA-ALCL). While the cause of BIA-ALCL is not
well understood, it is speculated that textured surfaces are prone
to bacterial biofilm formation as a contributing factor. To guide
the design of safer biomaterials and implants, quantitative screening
approaches are needed to assess bacterial adhesion to different topographic
surface features. Here we report the development of a high-throughput
microplate biofilm assay for such screening. The assay was used to
test a library of polydimethylsiloxane (PDMS) textures composed of
varying sizes of recessive features and distances between features
including those in the range of breast implant textures. Outliers
of patterns prone to bacterial adhesion were further studied using
real-time confocal fluorescence microscopy. The results from these
analyses revealed that surface area itself is a poor predictor for
adhesion, while the size and spacing of topographic features play
an important role. This high-throughput biofilm assay can be applied
to studying bacteria–material interactions and rational development
of materials that inhibit bacterial colonization.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.,Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Erick L Johnson
- Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - J Alex Chediak
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Mathematical Sciences, California Baptist University, Riverside, California 92504, United States
| | - Hainsworth Shin
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yi Wang
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - K Scott Phillips
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States.,Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
62
|
Titanium or Biodegradable Osteosynthesis in Maxillofacial Surgery? In Vitro and In Vivo Performances. Polymers (Basel) 2022; 14:polym14142782. [PMID: 35890557 PMCID: PMC9316877 DOI: 10.3390/polym14142782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosynthesis systems are used to fixate bone segments in maxillofacial surgery. Titanium osteosynthesis systems are currently the gold standard. However, the disadvantages result in symptomatic removal in up to 40% of cases. Biodegradable osteosynthesis systems, composed of degradable polymers, could reduce the need for removal of osteosynthesis systems while avoiding the aforementioned disadvantages of titanium osteosyntheses. However, disadvantages of biodegradable systems include decreased mechanical properties and possible foreign body reactions. In this review, the literature that focused on the in vitro and in vivo performances of biodegradable and titanium osteosyntheses is discussed. The focus was on factors underlying the favorable clinical outcome of osteosyntheses, including the degradation characteristics of biodegradable osteosyntheses and the host response they elicit. Furthermore, recommendations for clinical usage and future research are given. Based on the available (clinical) evidence, biodegradable copolymeric osteosyntheses are a viable alternative to titanium osteosyntheses when applied to treat maxillofacial trauma, with similar efficacy and significantly lower symptomatic osteosynthesis removal. For orthognathic surgery, biodegradable copolymeric osteosyntheses are a valid alternative to titanium osteosyntheses, but a longer operation time is needed. An osteosynthesis system composed of an amorphous copolymer, preferably using ultrasound welding with well-contoured shapes and sufficient mechanical properties, has the greatest potential as a biocompatible biodegradable copolymeric osteosynthesis system. Future research should focus on surface modifications (e.g., nanogel coatings) and novel biodegradable materials (e.g., magnesium alloys and silk) to address the disadvantages of current osteosynthesis systems.
Collapse
|
63
|
Leonard H, Jiang X, Arshavsky-Graham S, Holtzman L, Haimov Y, Weizman D, Halachmi S, Segal E. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. NANOSCALE HORIZONS 2022; 7:729-742. [PMID: 35616534 DOI: 10.1039/d2nh00130f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With new advances in infectious disease, antifouling surfaces, and environmental microbiology research comes the need to understand and control the accumulation and attachment of bacterial cells on a surface. Thus, we employ intrinsic phase-shift reflectometric interference spectroscopic measurements of silicon diffraction gratings to non-destructively observe the interactions between bacterial cells and abiotic, microstructured surfaces in a label-free and real-time manner. We conclude that the combination of specific material characteristics (i.e., substrate surface charge and topology) and characteristics of the bacterial cells (i.e., motility, cell charge, biofilm formation, and physiology) drive bacteria to adhere to a particular surface, often leading to a biofilm formation. Such knowledge can be exploited to predict antibiotic efficacy and biofilm formation, and enhance surface-based biosensor development, as well as the design of anti-biofouling strategies.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yuri Haimov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Daniel Weizman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sarel Halachmi
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
64
|
Ravel G, Bergmann M, Trubuil A, Deschamps J, Briandet R, Labarthe S. Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy. eLife 2022; 11:76513. [PMID: 35699414 PMCID: PMC9273218 DOI: 10.7554/elife.76513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are spatially organized communities of microorganisms embedded in a self-produced organic matrix, conferring to the population emerging properties such as an increased tolerance to the action of antimicrobials. It was shown that some bacilli were able to swim in the exogenous matrix of pathogenic biofilms and to counterbalance these properties. Swimming bacteria can deliver antimicrobial agents in situ, or potentiate the activity of antimicrobial by creating a transient vascularization network in the matrix. Hence, characterizing swimmer trajectories in the biofilm matrix is of particular interest to understand and optimize this new biocontrol strategy in particular, but also more generally to decipher ecological drivers of population spatial structure in natural biofilms ecosystems. In this study, a new methodology is developed to analyze time-lapse confocal laser scanning images to describe and compare the swimming trajectories of bacilli swimmers populations and their adaptations to the biofilm structure. The method is based on the inference of a kinetic model of swimmer populations including mechanistic interactions with the host biofilm. After validation on synthetic data, the methodology is implemented on images of three different species of motile bacillus species swimming in a Staphylococcus aureus biofilm. The fitted model allows to stratify the swimmer populations by their swimming behavior and provides insights into the mechanisms deployed by the micro-swimmers to adapt their swimming traits to the biofilm matrix. Anyone who has ever cleaned a bathroom probably faced biofilms, the dark, slimy deposits that lurk around taps and pipes. These structures are created by bacteria which abandon their solitary lifestyle to work together as a community, secreting various substances that allow the cells to organise themselves in 3D and to better resist external aggression. Unwanted biofilms can impair industrial operations or endanger health, for example when they form inside medical equipment or water supplies. Removing these structures usually involves massive application of substances which can cause long-term damage to the environment. Recently, researchers have observed that a range of small rod-shaped bacteria – or ‘bacilli’ – can penetrate a harmful biofilm and dig transient tunnels in its 3D structure. These ‘swimmers’ can enhance the penetration of anti-microbial agents, or could even be modified to deliver these molecules right inside the biofilm. However, little is known about how the various types of bacilli, which have very different shapes and propelling systems, can navigate the complex environment that is a biofilm. This knowledge would be essential for scientists to select which swimmers could be the best to harness for industrial and medical applications. To investigate this question, Ravel et al. established a way to track how three species of bacilli swim inside a biofilm compared to in a simple fluid. A mathematical model was created which integrated several swimming behaviors such as speed adaptation and direction changes in response to the structure and density of the biofilm. This modelling was then fitted on microscopy images of the different species navigating the two types of environments. Different motion patterns for the three bacilli emerged, each showing different degrees of adapting to moving inside a biofilm. One species, in particular, was able to run straight in and out of this environment because it could adapt its speed to the biofilm density as well as randomly change direction. The new method developed by Ravel et al. can be redeployed to systematically study swimmer candidates in different types of biofilms. This would allow scientists to examine how various swimming characteristics impact how bacteria-killing chemicals can penetrate the altered biofilms. In addition, as the mathematical model can predict trajectories, it could be used in computational studies to examine which species of bacilli would be best suited in industrial settings.
Collapse
|
65
|
Yang Y, Li M, Zhou B, Jiang X, Zhang D, Luo H, Lei S. Novel Therapeutic Strategy for Bacteria‐Contaminated Bone Defects: Reconstruction with Multi‐Biofunctional GO/Cu‐Incorporated 3D Scaffolds. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Yang
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
- State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 P.R. China
| | - Min Li
- Department of Oncology Changsha Central Hospital University of South China Changsha 410006 P.R. China
| | - Bixia Zhou
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
| | - Xulei Jiang
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
| | - Dou Zhang
- Department of Oncology Changsha Central Hospital University of South China Changsha 410006 P.R. China
| | - Hang Luo
- Department of Oncology Changsha Central Hospital University of South China Changsha 410006 P.R. China
| | - Shaorong Lei
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
| |
Collapse
|
66
|
Xu LC, Siedlecki CA. Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. J Biomed Mater Res A 2022; 110:1238-1250. [PMID: 35128791 PMCID: PMC9885517 DOI: 10.1002/jbm.a.37369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Surface topography modification with nano- or micro-textured structures has been an efficient approach to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection without modification of surface chemistry/bulk properties of materials and without causing antibiotic resistance. This manuscript focuses on submicron-textured patterns with ordered arrays of pillars on polyurethane (PU) biomaterial surfaces in an effort to understand the effects of surface pillar features and surface properties on adhesion and colonization responses of two staphylococcal strains. Five submicron patterns with a variety of pillar dimensions were designed and fabricated on PU film surfaces and bacterial adhesion and biofilm formation of Staphylococcal strains (Staphylococcus epidermidis RP62A and Staphylococcus aureus Newman D2C) were characterized. Results show that all submicron textured surface significantly reduced bacterial adhesion and inhibited biofilm formation, and bacterial adhesion linearly decreased with the reduction in top surface area fraction. Surface wettability did not show a linear correlation with bacterial adhesion, suggesting that surface contact area dominates bacterial adhesion. From this, it appears that the design of textured patterns should minimize surface area fraction to reduce the bacterial interaction with surfaces but in a way that ensures the mechanical strength of pillars in order to avoid collapse. These findings may provide a rationale for design of polymer surfaces for antifouling medical devices.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Department of Biomedical Engineering,The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Correspondence: Dr. Christopher A. Siedlecki, The Pennsylvania State University, Milton S. Hershey Medical Center, College of Medicine, H151, 500 University Dr., Hershey, PA 17033. Phone: (717) 531-5716. Fax: (717) 531-4464.
| |
Collapse
|
67
|
Maalouf M, Abou Khalil A, Di Maio Y, Papa S, Sedao X, Dalix E, Peyroche S, Guignandon A, Dumas V. Polarization of Femtosecond Laser for Titanium Alloy Nanopatterning Influences Osteoblastic Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1619. [PMID: 35630841 PMCID: PMC9147489 DOI: 10.3390/nano12101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/23/2022]
Abstract
Ultrashort pulse lasers have significant advantages over conventional continuous wave and long pulse lasers for the texturing of metallic surfaces, especially for nanoscale surface structure patterning. Furthermore, ultrafast laser beam polarization allows for the precise control of the spatial alignment of nanotextures imprinted on titanium-based implant surfaces. In this article, we report the biological effect of beam polarization on human mesenchymal stem cell differentiation. We created, on polished titanium-6aluminum-4vanadium (Ti-6Al-4V) plates, a laser-induced periodic surface structure (LIPSS) using linear or azimuthal polarization of infrared beams to generate linear or radial LIPSS, respectively. The main difference between the two surfaces was the microstructural anisotropy of the linear LIPSS and the isotropy of the radial LIPSS. At 7 d post seeding, cells on the radial LIPSS surface showed the highest extracellular fibronectin production. At 14 days, qRT-PCR showed on the same surface an increase in osteogenesis-related genes, such as alkaline phosphatase and osterix. At 21 d, mineralization clusters indicative of final osteoinduction were more abundant on the radial LIPSS. Taken together, we identified that creating more isotropic than linear surfaces enhances cell differentiation, resulting in an improved osseointegration. Thus, the fine tuning of ultrashort pulse lasers may be a promising new route for the functionalization of medical implants.
Collapse
Affiliation(s)
- Mathieu Maalouf
- SAINBIOSE Laboratory INSERM U1509, Jean Monnet University, University of Lyon, F-42270 Saint Priest en Jarez, France; (S.P.); (E.D.); (S.P.); (A.G.)
| | - Alain Abou Khalil
- Hubert-Curien Laboratory, Jean Monnet University, University of Lyon, UMR 5516 CNRS, F-42000 Saint-Etienne, France; (A.A.K.); (X.S.)
| | - Yoan Di Maio
- GIE Manutech-USD, F-42000 Saint-Etienne, France;
| | - Steve Papa
- SAINBIOSE Laboratory INSERM U1509, Jean Monnet University, University of Lyon, F-42270 Saint Priest en Jarez, France; (S.P.); (E.D.); (S.P.); (A.G.)
| | - Xxx Sedao
- Hubert-Curien Laboratory, Jean Monnet University, University of Lyon, UMR 5516 CNRS, F-42000 Saint-Etienne, France; (A.A.K.); (X.S.)
- GIE Manutech-USD, F-42000 Saint-Etienne, France;
| | - Elisa Dalix
- SAINBIOSE Laboratory INSERM U1509, Jean Monnet University, University of Lyon, F-42270 Saint Priest en Jarez, France; (S.P.); (E.D.); (S.P.); (A.G.)
| | - Sylvie Peyroche
- SAINBIOSE Laboratory INSERM U1509, Jean Monnet University, University of Lyon, F-42270 Saint Priest en Jarez, France; (S.P.); (E.D.); (S.P.); (A.G.)
| | - Alain Guignandon
- SAINBIOSE Laboratory INSERM U1509, Jean Monnet University, University of Lyon, F-42270 Saint Priest en Jarez, France; (S.P.); (E.D.); (S.P.); (A.G.)
| | - Virginie Dumas
- Laboratory of Tribology and Systems Dynamics, Ecole Nationale d’Ingénieurs de Saint Etienne, Ecole Centrale de Lyon, University of Lyon, UMR 5513 CNRS, F-42100 Saint-Etienne, France;
| |
Collapse
|
68
|
Liu H, Xu D, Ma Y, Qian J, Yang Y, Yu B, Ren L, Yang K. Mechanisms of Hierarchical Topographies Tuning Bacteria and Cell Biological Responses to the Surfaces of Pure Titanium and Cu-Bearing Titanium Alloy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19226-19240. [PMID: 35446537 DOI: 10.1021/acsami.2c02802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The competition between cells integration and bacterial colonization determines the fate of implantations. To reveal the effects of clinical implant topographies on osteoblast differentiation and bacterial biofilm formation, a series of micron/submicron/nano-hierarchical structures were created at pure titanium surfaces (Ti-I, Ti-II, Ti-III). It was found that the hierarchical structures promoted MC3T3-E1 cell differentiation through contact guidance and Ti-II processed the best osteogenic ability. Undesirably, hierarchical surfaces further accelerated the biofilm formation due to submicron structures with low interaction. To reduce the risk of bacterial infections, hierarchical structures were prepared on the antibacterial Cu-bearing titanium alloy surfaces (TiCu-I, TiCu-II, TiCu-III). Hierarchical topographies not only endowed TiCu surfaces with antibacterial trapping characteristics due to CuO doped in the outermost oxides layer but also shifted the corrosion behavior of TiCu alloy into activation-passivation, increasing the Cu-ion release rate and further promoting the osteogenic differentiation. TiCu-III possessed excellent antibacterial trapping ability and optimal osteogenic action. Finally, in the osteomyelitis-modeled mice, hierarchical topographies aggravated the bacterial infection around Ti implants, which entirely lost the osseointegration, while all of the TiCu surfaces significantly inhibited the infection and accelerated the formation of new bone tunnels around the implants. In vivo studies successfully confirmed the tuning mechanism of hierarchical topographies on the biological responses of bacteria and cells to the Ti and TiCu alloys, which would pave the way to develop novel biofunctionalized metal implants.
Collapse
Affiliation(s)
- Hui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Daorong Xu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Ma
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jikun Qian
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Ke Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
69
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
70
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
71
|
Surface Modification of Titanium by Femtosecond Laser in Reducing Bacterial Colonization. COATINGS 2022. [DOI: 10.3390/coatings12030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past few decades, titanium and its alloys have been widely used in the orthopaedic field. However, because titanium is bioinert and lacks antibacterial properties, infection may happen when bacteria attach to implant surfaces and form biofilms. It has been studied that some naturally existing micron-scale topographies can reduce bacterial attachment such as cicada wings and gecko skins. The aim of this in vitro study was to find an implant with good biocompatibility and antimicrobial properties by the modification of micron-scale topographies. In this paper, a femtosecond laser was used to provide microtopography coatings on Ti substrates. The surface morphology of Ti substrates was observed by scanning electron microscopy (SEM). XPS was used to fulfil the chemical compositional analysis. The surface wettability was measured by contact angle measurement system. The effect of microtopography coatings with different surface microstructures on bacterial activities and bone marrow mesenchymal stem cells (BMSC) functions was investigated. The results of in vitro study revealed that microtopography coatings restrain the adhesion of Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), which are common pathogens of orthopaedic implant infections. In addition, microtopography coatings stimulated BMSC adhesion and proliferation. Our studies suggest that a microtopography-coated sample modified by femtosecond laser showed promising antibacterial properties and favourable biocompatibility. The femtosecond laser technique provides an accurate and valid way to produce microtopography coatings with outstanding biocompatibility and antimicrobial properties, and could be widely used to modify the surface of orthopaedic metal implants with great potential.
Collapse
|
72
|
Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022; 141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Bio-inspired nanostructures have demonstrated highly efficient mechano-bactericidal performances with no risk of bacterial resistance; however, they are prone to become contaminated with the killed bacterial debris. Herein, a biocompatible mechano-bactericidal nanopatterned surface with salt-responsive bacterial releasing behavior is developed by grafting salt-responsive polyzwitterionic (polyDVBAPS) brushes on a bio-inspired nanopattern surface. Benefiting from the salt-triggered configuration change of the grafted polymer brushes, this dual-functional surface shows high mechano-bactericidal efficiency in water (low ionic strength condition), while the dead bacterial residuals can be easily lifted by the extended polymer chains and removed from the surface in 1 M NaCl solution (high ionic strength conditions). Notably, this functionalized nanopatterned surface shows selective biocidal activity between bacterial cells sand eukaryotic cells. The biocompatibility with red blood cells (RBCs) and mammalian cells was tested in vitro. The histocompatibility and prevention of perioperative contamination activity were verified by in vivo evaluation in a rat subcutaneous implant model. This nanopatterned surface with bacterial killing and releasing activities may open new avenues for designing bio-inspired mechano-bactericidal platforms with long-term efficacy, thus presenting a facile alternative in combating perioperative-related bacterial infection. STATEMENT OF SIGNIFICANCE: Bioinspired nanostructured surfaces with noticeable mechano-bactericidal activity showed great potential in moderating drug-resistance. However, the nanopatterned surfaces are prone to be contaminated by the killed bacterial debris and compromised the bactericidal performance. In this study, we provide a dual-functional antibacterial conception with both mechano-bactericidal and bacterial releasing performances not requiring external chemical bactericidal agents. Additionally, this functionalized antibacterial surface also shows selective biocidal activity between bacteria and eukaryotic cells, and the excellent biocompatibility was tested in vitro and in vivo. The new concept for the functionalized mechano-bactericidal surface here illustrated presents a facile antibiotic-free alternative in combating perioperative related bacterial infection in practical application.
Collapse
|
73
|
Enhancement of Bacterial Anti−Adhesion Properties on Robust PDMS Micro−Structure Using a Simple Flame Treatment Method. NANOMATERIALS 2022; 12:nano12030557. [PMID: 35159902 PMCID: PMC8839957 DOI: 10.3390/nano12030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023]
Abstract
Biofilm-associated infections caused by an accumulation of micro-organisms and pathogens significantly impact the environment, health risks, and the global economy. Currently, a non-biocide-releasing superhydrophobic surface is a potential solution for antibacterial purposes. This research demonstrated a well-designed robust polydimethylsiloxane (PDMS) micro-structure and a flame treatment process with improved hydrophobicity and bacterial anti-adhesion properties. After the flame treatment at 700 ± 20 °C for 15 s, unique flower-petal re-entrant nano-structures were formed on pillars (PIL-F, width: 1.87 ± 0.30 μm, height: 7.76 ± 0.13 μm, aspect ratio (A.R.): 4.14) and circular rings with eight stripe supporters (C-RESS-F, width: 0.50 ± 0.04 μm, height: 3.55 ± 0.11 μm, A.R.: 7.10) PDMS micro-patterns. The water contact angle (WCA) and ethylene glycol contact angle (EGCA) of flame-treated flat-PDMS (FLT-F), PIL–F, and C–RESS-F patterns were (133.9 ± 3.8°, 128.6 ± 5.3°), (156.1 ± 1.5°, 151.5 ± 2.1°), and (146.3 ± 3.5°, 150.7 ± 1.8°), respectively. The Escherichia coli adhesion on the C-RESS-F micro-pattern with hydrophobicity and superoleophobicity was 42.6%, 31.8%, and 2.9% less than FLT-F, PIL-F, and Teflon surfaces. Therefore, the flame-treated C-RESS-F pattern is one of the promising bacterial anti-adhesion micro-structures in practical utilization for various applications.
Collapse
|
74
|
Barão VAR, Costa RC, Shibli JA, Bertolini M, Souza JGS. Emerging titanium surface modifications: The war against polymicrobial infections on dental implants. Braz Dent J 2022; 33:1-12. [DOI: 10.1590/0103-6440202204860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract Dental implants made of titanium (Ti) material is recognized as the leading treatment option for edentulous patients’ rehabilitation, showing a high success rate and clinical longevity. However, dental implant surface acts as a platform for microbial adhesion and accumulation once exposed to the oral cavity. Biofilm formation on implant surfaces has been considered the main etiologic factor to induce inflammatory diseases, known as peri-implant mucositis and peri-implantitis; the latter being recognized as the key reason for late dental implant failure. Different factors, such as biofilm matrix production, source of carbohydrate exposure, and cross-kingdom interactions, have encouraged increased microbial accumulation on dental implants, leading to a microbiological community shift from a healthy to a pathogenic state, increasing inflammation and favoring tissue damage. These factors combined with the spatial organization of biofilms, reduced antimicrobial susceptibility, complex microbiological composition, and the irregular topography of implants hamper biofilm control and microbial killing. In spite of the well-known etiology, there is still no consensus regarding the best clinical protocol to control microbial accumulation on dental implant surfaces and treat peri-implant disease. In this sense, different coatings and Ti surface treatments have been proposed in order to reduce microbial loads and control polymicrobial infections on implantable devices. Therefore, this critical review aims to discuss the current evidence on biofilm accumulation on dental implants and central factors related to the pathogenesis process of implant-related infections. Moreover, the potential surface modifications with anti-biofilm properties for dental implant devices is discussed to shed light on further promising strategies to control peri-implantitis.
Collapse
|
75
|
Paluch E, Sobierajska P, Okińczyc P, Widelski J, Duda-Madej A, Krzyżanowska B, Krzyżek P, Ogórek R, Szperlik J, Chmielowiec J, Gościniak G, Wiglusz RJ. Nanoapatites Doped and Co-Doped with Noble Metal Ions as Modern Antibiofilm Materials for Biomedical Applications against Drug-Resistant Clinical Strains of Enterococcus faecalis VRE and Staphylococcus aureus MRSA. Int J Mol Sci 2022; 23:1533. [PMID: 35163457 PMCID: PMC8836119 DOI: 10.3390/ijms23031533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland;
| | - Jacek Chmielowiec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| |
Collapse
|
76
|
Vancomycin-decorated microbubbles as a theranostic agent for Staphylococcus aureus biofilms. Int J Pharm 2021; 609:121154. [PMID: 34624449 DOI: 10.1016/j.ijpharm.2021.121154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management. The antibiotic vancomycin was chemically coupled to the lipid shell of microbubbles and validated using mass spectrometry and high-axial resolution 4Pi confocal microscopy. Theranostic proof-of-principle was investigated by demonstrating the specific binding of vancomycin-decorated microbubbles (vMB) to statically and flow grown Staphylococcus aureus (S. aureus) biofilms under increasing shear stress flow conditions (0-12 dyn/cm2), as well as confirmation of microbubble oscillation and biofilm disruption upon ultrasound exposure (2 MHz, 250 kPa, and 5,000 or 10,000 cycles) during flow shear stress of 5 dyn/cm2 using time-lapse confocal microscopy combined with the Brandaris 128 ultra-high-speed camera. Vancomycin was successfully incorporated into the microbubble lipid shell. vMB bound significantly more often than control microbubbles to biofilms, also in the presence of free vancomycin (up to 1000 µg/mL) and remained bound under increasing shear stress flow conditions (up to 12 dyn/cm2). Upon ultrasound insonification biofilm area was reduced of up to 28%, as confirmed by confocal microscopy. Our results confirm the successful production of vMB and support their potential as a new theranostic tool for S. aureus biofilm infections by allowing for specific bacterial detection and biofilm disruption.
Collapse
|
77
|
Peng D, Liu G, He Y, Gao P, Gou S, Wu J, Yu J, Liu P, Cai K. Fabrication of a pH-responsive core-shell nanosystem with a low-temperature photothermal therapy effect for treating bacterial biofilm infection. Biomater Sci 2021; 9:7483-7491. [PMID: 34635886 DOI: 10.1039/d1bm01329g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, photothermal therapy (PTT) has been recognized as a viable alternative strategy against bacterial biofilm infection. However, the hyperthermia required for PTT to ablate a biofilm usually induces damage in normal tissues/organs nearby. Herein, we developed zeolite-based imidazole framework (ZIF-8)-coated mesoporous polydopamine (MPDA) core-shell nanoparticles and then loaded Pifithrin-μ (PES), a natural inhibitor of heat-shock protein (HSP) that plays an essential role in bacteria resisting heating-induced damage. The ZIF-8 shell of the MPDA@ZIF-8/PES nanoplatform enabled a rapid degradation in response to the acidic environment in bacterial biofilm infection, which triggered the controlled release of PES and Zn ions. As a result, HSP was remarkably suppressed for enhancing PTT efficacy upon mild near-infrared light irradiation. In addition, the release of Zn2+ also had an antibacterial/antibiofilm effect. Thus, the fabricated nanosystem was able to induce the effective elimination of the bacterial biofilm, realizing low-temperature PTT (∼45 °C) with excellent antibacterial efficacy. This work presented here not only provides a facile approach to fabricate the MPDA@ZIF-8/PES nanosystem with the responsiveness of the bacterial infection environment, but also proposes a promising low-temperature PTT strategy to treat bacterial biofilm-infection effectively.
Collapse
Affiliation(s)
- Dan Peng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Jinxiu Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, P. R. China
| |
Collapse
|
78
|
Richard AS, Verma RS. Bioactive nano yarns as surgical sutures for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112334. [PMID: 34474885 DOI: 10.1016/j.msec.2021.112334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022]
Abstract
Surgical sutures are the most widely used medical device in any surgical procedure worldwide. In this study, modified electrospinning technique has been used as manufacturing technique to produce nanofiber bundles twisted simultaneously to obtain nanofiber yarns. Taking the advantage of nanofiber yarns in terms of biomimetic structure, mechanical strength and handling properties, the material is chosen. Curcumin, a natural compound is incorporated to the nanofiber yarns by blend electrospinning technique for its anti-inflammatory, antibiotic and wound healing properties. The synthesized nanofiber yarns were characterized by various characterization techniques such as XRD, FTIR, SEM, Tensile testing, stem cell interaction, hemocompatibility, bacterial response, drug release profiling and in vivo studies. Curcumin loaded nanofiber yarns demonstrated sustained release with improved antibacterial, antiplatelet, cell migration and stem cell interaction in vitro. The results from skin inflammation animal model revealed that curcumin laden nanofiber yarn suture manifested reduced inflammation and cellularity. The three dimensional structure, adequate mechanical strength and biological properties of the nanofiber yarn provide naive environment for wound healing with the balanced degradation of suture material in rat model.
Collapse
Affiliation(s)
- Arthi Sunil Richard
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Rama Shankar Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
79
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
80
|
Responsive Polymeric Nanoparticles for Biofilm-infection Control. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
81
|
Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J ESTHET RESTOR DENT 2021; 34:461-472. [PMID: 34213078 DOI: 10.1111/jerd.12799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The objective of this systematic review was to describe studies that report on whether surface characteristics such as electrostatic charge, surface free energy, and surface topography promote influence on bacterial adhesion on ceramic surfaces. MATERIAL AND METHOD Searches in the SCOPUS, PubMed/Medline, Web of Science, EMBASE, and Google Scholar databases were performed between December 2020 and January 2021 and updated in March 2021. In addition, a manual search of reference lists from relevant retrieved articles was performed. The criteria included: studies that evaluated ceramic surfaces, which described factors such as surface free energy, electrostatic charges, roughness, zeta potential, and their relationship with bacteria. RESULTS Database search resulted in 348 papers. Of the 24 studies selected for full reading, 17 articles remained in this systematic review. Another five studies were found in references of articles included, totaling 22 studies. These had a high heterogeneity making it difficult to perform statistical analysis, so a descriptive analysis was performed. CONCLUSIONS For dental ceramics, not enough results were found to demonstrate the influence of the electrostatic condition, and its relationship with bacterial adhesion. However, studies of this review show that there is a correlation between bacterial adhesion, surface free energy, and topography. CLINICAL SIGNIFICANCE The knowledge of ceramics with repulsive physical-chemical interactions would allow an environment suggestive of non-adhesion of pathogenic biofilm.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
82
|
Valdez-Salas B, Beltrán-Partida E, Curiel-Álvarez M, Guerra-Balcázar M, Arjona N. Crystallographic Pattern Mediates Fungal Nanoadhesion Bond Formation on Titanium Nanotubes. ACS OMEGA 2021; 6:15625-15636. [PMID: 34179607 PMCID: PMC8223204 DOI: 10.1021/acsomega.1c00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The development of nanoadhesion bonds at the cell-material biointerface has been considered as a current prospective mechanism of microbial adhesion and colonization. However, there is a tremendous lack of evidence for the rational design of outstanding antifungal nanoconfigured materials. Therefore, extending our previous insights of evidence, we found that blocking the adhesion and biofilm formation of Candida albicans on NTs requires the inhibition of fungal nanoadhesion bonds. This work reports a concept for understanding the antifungal behavior of the crystallographic phase for anatase (NTs-annealed) and amorphous NTs. Herein, we demonstrated that the crystallographic orientation is a predominant parameter to reduce C. albicans, over the surface roughness and chemistry. We showed that the anatase phase conducted to an invasive phenotype, cellular envelopment insertion, followed by the improved cellular spread. Meanwhile, the amorphous configuration imposed reduced nanoadhesion bonds mainly appreciated over the mouths of the NTs, as revealed by cross sectioning. Moreover, our results showed that under fungal conditions, the experimental materials could reduce the surface energy. This work highlights that the crystallographic pattern predominantly controls the antifungal activity of NTs. The evaluated systems proposed that the NTs-annealed conducted an optimized insertion of fungal cells. Nonetheless, amorphous NTs inhibited the deposition of C. albicans via blocking the insertion and the development of nanoadhesion bonds, without morphology aberrations. The present discoveries can further inspire the rational design of upgraded nanoconfigured surfaces with noteworthy antifungal characteristics for antimicrobial coating technologies.
Collapse
Affiliation(s)
- Benjamín Valdez-Salas
- Laboratorio
de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C.P. 21280, México
- Laboratorio
de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C. P. 21280, México
| | - Ernesto Beltrán-Partida
- Laboratorio
de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C.P. 21280, México
- Laboratorio
de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C. P. 21280, México
| | - Mario Curiel-Álvarez
- Laboratorio
de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C. P. 21280, México
| | - Minerva Guerra-Balcázar
- Facultad
de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro C. P.
76010, México
| | - Noé Arjona
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica
S. C., Querétaro C. P. 76703, México
| |
Collapse
|
83
|
Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment? A review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:85-96. [PMID: 34188729 PMCID: PMC8215285 DOI: 10.1016/j.jdsr.2021.05.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion to the surface of dental materials play a significant role in infections. The factors that govern microbial attachment involves different types of physical-chemical interactions and biological processes. Studying bacterial adhesion makes it possible to understand the mechanisms involved in attachment and helps in the search for technologies that promote antibacterial surfaces.
Bacterial attachment to biomaterials is of great interest to the medical and dental field due to its impact on dental implants, dental prostheses, and others, leading to the need to introduce methods for biofilm control and mitigation of infections. Biofilm adhesion is a multifactorial process and involves characteristics relevant to the bacterial cell as well as biological, chemical, and physical properties relative to the surface of biomaterials. Bacteria encountered different environmental conditions during their growth and developed interspecies communication strategies, as well as various mechanisms to detect the environment and facilitate survival, such as chemical sensors or physical detection mechanisms. However, the factors that govern microbial attachment to surfaces are not yet fully understood. In order to understand how bacteria interact with surfaces, as well as to characterize the physical-chemical properties of bacteria adhesins, and to determine their interrelation with the adhesion to the substrate, in recent years new techniques of atomic force microscopy (AFM) have been developed and helped by providing quantitative results. Thus, the purpose of this review is to gather current studies about the factors that regulate microbial adhesion to surfaces in order to offer a guide to studies to obtain technologies that provide an antimicrobial surface.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréa C Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
84
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
85
|
Lee SW, Carnicelli J, Getya D, Gitsov I, Phillips KS, Ren D. Biofilm Removal by Reversible Shape Recovery of the Substrate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17174-17182. [PMID: 33822590 PMCID: PMC8153534 DOI: 10.1021/acsami.0c20697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 05/21/2023]
Abstract
Bacteria can colonize essentially any surface and form antibiotic resistant biofilms, which are multicellular structures embedded in an extracellular matrix secreted by the attached cells. To develop better biofilm control technologies, we recently demonstrated that mature biofilms can be effectively removed through on-demand shape recovery of a shape memory polymer (SMP) composed of tert-butyl acrylate (tBA). It was further demonstrated that such a dynamic substratum can sensitize the detached biofilm cells to antibiotics. However, this SMP can undergo shape change only once, limiting its application in long-term biofilm control. This motivated the present study, which aimed to prove the concept that biofilm can be effectively removed by repeated on-demand shape recovery. Reversible shape memory polymers (rSMPs) containing poly(ε-caprolactone) diisocyanatoethyl dimethacrylate (PCLDIMA) of varying molecular masses and butyl acrylate (BA) as a linker were synthesized by using benzoyl peroxide (BPO) as a thermal initiator. By comparison of several combinations of PCLDIMA of different molecular masses, a 2:1 weight ratio mixture of 2000 and 15000 g/mol PCLDIMA was the most promising because it had a shape transition (at 36.7 °C) close to body temperature. The synthesized rSMP demonstrated good reversible shape recovery and up to 94.3 ± 1.0% removal of 48 h Pseudomonas aeruginosa PAO1 biofilm cells after three consecutive shape recovery cycles. Additionally, the detached biofilm cells were found to be 5.0 ± 1.2 times more susceptible to 50 μg/mL tobramycin than the static control.
Collapse
Affiliation(s)
- Sang Won Lee
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Joseph Carnicelli
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Dariya Getya
- Department
of Chemistry, State University of New York
- College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The
Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, United States
| | - Ivan Gitsov
- Department
of Chemistry, State University of New York
- College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The
Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, United States
| | - K. Scott Phillips
- Center
for Devices and Radiological Health, Office of Science and Engineering
Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Dacheng Ren
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- (D.R.) Phone +1-315-443-4409. Fax +1-315-443-9175. Email
| |
Collapse
|