51
|
Hong L, Yan L, Xin Z, Hao J, Liu W, Wang S, Liao S, Wang H, Yang X. Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage. J Mol Cell Biol 2021; 12:372-385. [PMID: 31742349 PMCID: PMC7288746 DOI: 10.1093/jmcb/mjz105] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/31/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic agents are extensively used to treat malignancies. However, chemotherapy-induced ovarian damage and reduced fertility are severe side effects. Recently, stem cell transplantation has been reported to be an effective strategy for premature ovarian insufficiency (POI) treatment, but safety can still be an issue in stem cell-based therapy. Here, we show the protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium (hUCMSC-CM) on a cisplatin (Cs)-induced ovarian injury model. hUCMSC-CM can relieve Cs-induced depletion of follicles and preserve fertility. In addition, hUCMSC-CM can decrease apoptosis of oocytes and granulosa cells induced by Cs. RNA sequencing analysis reveals the differentially expressed genes of ovaries after Cs and hUCMSC-CM treatments, including genes involved in cell apoptosis. Furthermore, we show that the granulocyte colony-stimulating factor (G-CSF)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway plays an important role in protecting granulosa cells from Cs-induced apoptosis. Together, we confirm the protective effects of hUCMSC-CM on ovarian reserve and fertility in mice treated with Cs, highlighting the remarkable therapeutic effects of hUCMSC-CM.
Collapse
Affiliation(s)
- Liming Hong
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhimin Xin
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Shujie Liao
- Department of Gynaecology and Obstetrics, Reproductive Medical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| |
Collapse
|
52
|
Shareghi-Oskoue O, Aghebati-Maleki L, Yousefi M. Transplantation of human umbilical cord mesenchymal stem cells to treat premature ovarian failure. Stem Cell Res Ther 2021; 12:454. [PMID: 34380572 PMCID: PMC8359553 DOI: 10.1186/s13287-021-02529-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
As one of the problems and diseases for women before 40 years, premature ovarian failure (POF) could be characterized by amenorrhea, low estrogen levels, infertility, high gonadotropin levels, and lack of mature follicles. Causes of the disease involve some genetic disorders, autoimmunity diseases, and environmental factors. Various approaches have been employed to treat POF, however with limited success. Today, stem cells are used to treat POF, since they have the potential to self-repair and regenerate, and are effective in treating ovarian failure and infertility. As mesenchymal stem cell (MSC) could simultaneously activate several mechanisms, many researchers consider MSC transplantation to be the best and most effective approach in cell therapy. A good source for mesenchymal stem cells is human umbilical cord (HUCMSC). Animal models with cyclophosphamide are required for stem cell treatment and performance of HUCMSC transplantation. Stem cell therapy could indicate the levels of ovarian markers and follicle-stimulating hormone receptor. It also increases ovarian weight, plasma E2 levels, and the amount of standard follicles. Herein, the causes of POF, effective treatment strategies, and the effect of HUCMSC transplantation for the treatment of premature ovarian failure are reviewed. Many studies have been conducted in this field, and the results have shown that stem cell treatment is an effective approach to treat infertility.
Collapse
Affiliation(s)
- Oldouz Shareghi-Oskoue
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Immunology, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
53
|
Xiang D, Liu Y, Zhou E, Wang Y. Advances in the applications of polymer biomaterials for in vitro follicle culture. Biomed Pharmacother 2021; 140:111422. [PMID: 34098195 DOI: 10.1016/j.biopha.2021.111422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
The ovarian reserve (OR) indicates ovarian function by representing the quantity and quality of ovarian follicles, and it gradually decreases with increasing age. With the prolongation of women's lives, the protection provided by estrogen is lost for decades in postmenopausal women, and the related cardiovascular and cerebrovascular diseases, osteoporosis, and decreased immunity are the main risk factors affecting women's quality of life and longevity. Pharmacologic hormone replacement therapy (PHRT) has been controversial, and the construction of artificial ovary (AO) has attracted increasing attention. The most critical step of AO generation is the establishment of an in vitro culture (IVC) system to support the development of isolated follicles. This article mainly compares the advantages and disadvantages of different polymer biomaterials for use in follicle IVC, provides theoretical support for the development and construction of the follicle IVC system using natural biological materials, and provides a theoretical basis for establishing mature AO technology.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
54
|
Shin EY, Kim DS, Lee MJ, Lee AR, Shim SH, Baek SW, Han DK, Lee DR. Prevention of chemotherapy-induced premature ovarian insufficiency in mice by scaffold-based local delivery of human embryonic stem cell-derived mesenchymal progenitor cells. Stem Cell Res Ther 2021; 12:431. [PMID: 34332643 PMCID: PMC8325282 DOI: 10.1186/s13287-021-02479-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is one of the most serious side effects of chemotherapy in young cancer survivors. It may not only reduce fecundity but also affect lifelong health. There is no standard therapy for preserving ovarian health after chemotherapy. Recently, administration of embryonic stem cell-derived mesenchymal progenitor cells (ESC-MPCs) has been considered a new therapeutic option for preventing POI. However, the previous method of directly injecting cells into the veins of patients exhibits low efficacy and safety. This study aimed to develop safe and effective local delivery methods for the prevention of POI using two types of bioinspired scaffolds. METHODS Female mice received intraperitoneal cisplatin for 10 days. On day 11, human ESC-MPCs were delivered through systemic administration using intravenous injection or local administration using intradermal injection and intradermal transplantation with a PLGA/MH sponge or hyaluronic acid (HA) gel (GEL) type of scaffold. PBS was injected intravenously as a negative control. Ovarian function and fertility were evaluated 4 weeks after transplantation. Follicle development was observed using hematoxylin and eosin staining. The plasma levels of sex hormones were measured using ELISA. Expression levels of anti-Müllerian hormone (AMH) and ki-67 were detected using immunostaining, and the quality of oocytes and embryos was evaluated after in vitro fertilization. The estrous cycles were observed at 2 months after transplantation. RESULTS The local administration of human ESC-MPCs using the bioinspired scaffold to the backs of mice effectively prolonged the cell survival rate in vivo. The HA GEL group exhibited the best recovered ovarian functions, including a significantly increased number of ovarian reserves, estrogen levels, and AMH levels and decreased apoptotic levels. Furthermore, the HA GEL group showed improved quality of oocytes and embryos and estrous cycle regularity. CONCLUSIONS HA GEL scaffolds can be used as new delivery platforms for ESC-MPC therapy, and this method may provide a novel option for the clinical treatment of chemotherapy-induced POI.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Da-Seul Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min Ji Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Seung Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
55
|
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front Endocrinol (Lausanne) 2021; 12:665645. [PMID: 34248842 PMCID: PMC8261239 DOI: 10.3389/fendo.2021.665645] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
56
|
Current Understandings of Core Pathways for the Activation of Mammalian Primordial Follicles. Cells 2021; 10:cells10061491. [PMID: 34199299 PMCID: PMC8231864 DOI: 10.3390/cells10061491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovary has two main functions-producing mature oocytes for fertilization and secreting hormones for maintaining the ovarian endocrine functions. Both functions are vital for female reproduction. Primordial follicles are composed of flattened pre-granulosa cells and a primary oocyte, and activation of primordial follicles is the first step in follicular development and is the key factor in determining the reproductive capacity of females. The recent identification of the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway as the key controller for follicular activation has made the study of primordial follicle activation a hot research topic in the field of reproduction. This review systematically summarizes the roles of the PI3K/PTEN signaling pathway in primordial follicle activation and discusses how the pathway interacts with various other molecular networks to control follicular activation. Studies on the activation of primordial follicles have led to the development of methods for the in vitro activation of primordial follicles as a treatment for infertility in women with premature ovarian insufficiency or poor ovarian response, and these are also discussed along with some practical applications of our current knowledge of follicular activation.
Collapse
|
57
|
Lee HJ, Park MJ, Joo BS, Joo JK, Kim YH, Yang SW, Kim CW, Kim KH. Effects of coenzyme Q10 on ovarian surface epithelium-derived ovarian stem cells and ovarian function in a 4-vinylcyclohexene diepoxide-induced murine model of ovarian failure. Reprod Biol Endocrinol 2021; 19:59. [PMID: 33888135 PMCID: PMC8061220 DOI: 10.1186/s12958-021-00736-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have shown that coenzyme Q10 (CoQ10) can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility due to ovarian aging. However, few studies have examined the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs and recovers ovarian function in a 4-vinylcyclohexene diepoxide (VCD)-induced mouse model of ovarian failure. METHODS Forty female C57BL/6 mice aged 6 weeks were randomly divided into four groups (n = 10/group): a control group administered saline orally, a CoQ10 group administered 150 mg/kg/day of CoQ10 orally in 1 mL of saline daily for 14 days, a VCD group administered 160 mg/kg/day of VCD i.p. in 2.5 mL of saline/kg for 5 days, and a VCD + CoQ10 group administered VCD i.p. for 5 days injection and CoQ10 (150 mg/kg/day) orally for 14 days. After treatment, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure counts and the expressions of Oct-4 and MVH were also evaluated after culturing OSE for 3 weeks. In a second experiment, 32 female mice were administered CoQ10 as described above, induced to superovulate using PMSG and hCG, and mated. Numbers of zygotes and embryo development rate were examined. RESULTS Postcultured OSE showed significant increases in the numbers of oocyte-like structure and that the expression of Oct-4 and MVH were higher in the VCD + CoQ10 group than in the VCD group (p < 0.05). Numbers of surviving follicles from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.01). Serum AMH level and ovarian expressions of Bmp-15, Gdf-9 and c-Kit were also significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.05). In contrast, serum ROS level was significantly lower in the VCD + CoQ10 group than in the VCD group (p < 0.05). CONCLUSION This study shows that CoQ10 stimulates the differentiation of OSE-derived OSCs and confirms that CoQ10 can reduce ROS levels and improve ovarian function and oocyte quality in mice with VCD-induced ovarian failure.
Collapse
Affiliation(s)
- Hyun Joo Lee
- grid.262229.f0000 0001 0719 8572Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- grid.412588.20000 0000 8611 7824Biomedical Research Institute, Pusan National University Hospital, Busan, 49241 Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jong Kil Joo
- grid.262229.f0000 0001 0719 8572Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- grid.412588.20000 0000 8611 7824Biomedical Research Institute, Pusan National University Hospital, Busan, 49241 Republic of Korea
| | - Yeon Hee Kim
- grid.264381.a0000 0001 2181 989XDepartment of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwoon, Kyungsang Nam-Do Republic of Korea
| | - Sun Woo Yang
- grid.264381.a0000 0001 2181 989XDepartment of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwoon, Kyungsang Nam-Do Republic of Korea
| | - Chang-Woon Kim
- grid.264381.a0000 0001 2181 989XDepartment of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwoon, Kyungsang Nam-Do Republic of Korea
| | - Ki Hyung Kim
- grid.262229.f0000 0001 0719 8572Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- grid.412588.20000 0000 8611 7824Biomedical Research Institute, Pusan National University Hospital, Busan, 49241 Republic of Korea
| |
Collapse
|
58
|
Huang Y, Ma Z, Kuang X, Zhang Q, Li H, Lai D. Sodium alginate-bioglass-encapsulated hAECs restore ovarian function in premature ovarian failure by stimulating angiogenic factor secretion. Stem Cell Res Ther 2021; 12:223. [PMID: 33794993 PMCID: PMC8015041 DOI: 10.1186/s13287-021-02280-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/10/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Human amniotic epithelial cells (hAECs) exhibit a strong capability to restore ovarian function in chemotherapy-induced premature ovarian failure (POF). However, the therapeutic efficacy of hAECs is usually affected by the limited number and proliferative ability of grafted hAECs in target organs. The transplantation of stem cells encapsulated in sodium alginate-bioglass (SA-BG) composite hydrogel has recently been shown to be an effective strategy for tissue regeneration. The current study aims to investigate the therapeutic potential of hAECs or hAEC-derived conditioned medium (CM) encapsulated in SA-BG in mice with chemotherapy-induced POF. METHODS C57BL/6 mice were intraperitoneally injected with chemotherapy drugs to induce POF. hAECs or CM were harvested and encapsulated in SA-BG composite hydrogel, which were transplanted onto the injured ovaries of mice with POF. Follicle development, granulosa cell function, and ovarian angiogenesis were evaluated by morphological methods. To further elucidate the effect of SA-BG-encapsulated hAECs/CM on vascularization, the tube formation of human umbilical vein epithelial cells (hUVECs) was conducted in vitro. Cytokine array and ELISA were used to analyze and quantify the effects of bioactive components released by SA-BG on the secretion of angiogenic factors by hAECs. RESULTS The transplantation of SA-BG-encapsulated hAECs/CM restored follicle development, repaired granulosa cell function, and enhanced ovarian angiogenesis in POF mice. The further study showed that SA-BG significantly promoted the tube formation of hUVECs in vitro. Moreover, encapsulating hAECs could facilitate the effect of SA-BG on inducing the formation of the capillary tube in a paracrine manner. In addition, we found that SA-BG extracts significantly enhanced the viability of hAECs and stimulated the secretion of pro-angiogenic factors of hAECs. Notably, compared with SA-BG/CM, SA-BG/hAECs achieve better therapeutic effects, possibly because stimulation of BG enhanced the viability and paracrine capacity of hAECs. CONCLUSIONS The present study initially demonstrates that SA-BG-encapsulated hAECs or CM can exert a therapeutic effect on chemotherapy-induced POF mainly by protecting granulosa cell function and enhancing ovarian vascularization, which might provide a novel strategy for the delivery of hAECs for treating POF.
Collapse
Affiliation(s)
- Yating Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Hua-Shan Road, Shanghai, 200030, People's Republic of China
| | - Zhijie Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, People's Republic of China
| | - Xiaojun Kuang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Hua-Shan Road, Shanghai, 200030, People's Republic of China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Hua-Shan Road, Shanghai, 200030, People's Republic of China. .,Shanghai Key Laboratory of Embryo Original Diseases, 145 Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| | - Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, People's Republic of China. .,Chemical and Environmental Engineering, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC, 3000, Australia.
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Hua-Shan Road, Shanghai, 200030, People's Republic of China. .,Shanghai Key Laboratory of Embryo Original Diseases, 145 Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
59
|
Human Umbilical Cord Mesenchymal Stem Cells Improve Ovarian Function in Chemotherapy-Induced Premature Ovarian Failure Mice Through Inhibiting Apoptosis and Inflammation via a Paracrine Mechanism. Reprod Sci 2021; 28:1718-1732. [PMID: 33751459 DOI: 10.1007/s43032-021-00499-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cell (UC-MSC) application is a promising arising therapy for the treatment of premature ovarian failure (POF). However, little is known about the inflammation regulatory effects of human umbilical cord MSCs (UC-MSCs) on chemotherapy-induced ovarian damage, regardless of in vivo or in vitro. This study was designed to investigate the therapeutic effects of UC-MSC transplantation and underlying mechanisms regarding both apoptosis and inflammation in POF mice. The chemotherapy-induced POF models were induced by intraperitoneal injection of cyclophosphamide. Ovarian function parameters, granulosa cell (GC) apoptosis, and inflammation were examined. Morphological staining showed that UC-MSC treatment increased the ovary size, and the numbers of primary and secondary follicles, but decreased the number of atretic follicles. Estradiol levels in the UC-MSC-treated group were increased while follicle-stimulating hormone levels were reduced compared to those in the POF group. UC-MSCs inhibited cyclophosphamide-induced GC apoptosis and inflammation. Meanwhile, phosphorylation of AKT and P38 was elevated after UC-MSC treatment. Tracking of UC-MSCs in vivo indicated that transplanted UC-MSCs were only located in the interstitium of ovaries rather than in follicles. Importantly, UC-MSC-derived extracellular vesicles protected GCs from alkylating agent-induced apoptosis and inflammation in vitro. Our results suggest that UC-MSC transplantation can reduce ovary injury and improve ovarian function in chemotherapy-induced POF mice through anti-apoptotic and anti-inflammatory effects via a paracrine mechanism.
Collapse
|
60
|
Meftahpour V, Malekghasemi S, Baghbanzadeh A, Aghebati-Maleki A, Pourakbari R, Fotouhi A, Aghebati-Maleki L. Platelet lysate: a promising candidate in regenerative medicine. Regen Med 2021; 16:71-85. [PMID: 33543999 DOI: 10.2217/rme-2020-0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human platelet lysate has attracted much interest from many researchers as it is growth-factor rich for cell expansion, which is employed as a new therapeutic strategy. Not only are human platelet lysates used for cell therapy, but they are also used for the completion of basal media in mesenchymal stem cell cultures. Due to the presence of a large number of growth factors, platelet lysates have potential roles in wound healing, treatment of ocular graft-versus-host disease, osteoarthritis, Parkinson's disease, tendon regeneration, infertility, androgenetic alopecia, nerve repair and regenerative tissue, such as bone regeneration. In this review, we summarize that platelet lysates could be valuable candidates for the treatment of a variety of diseases in regenerative medicine.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| |
Collapse
|
61
|
Mashayekhi M, Mirzadeh E, Chekini Z, Ahmadi F, Eftekhari-Yazdi P, Vesali S, Madani T, Aghdami N. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res 2021; 14:5. [PMID: 33407794 PMCID: PMC7786909 DOI: 10.1186/s13048-020-00743-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Premature ovarian failure (POF) is characterized by the loss of ovarian activity before the age of 40 years. Stem cell therapy has the capability to create a regenerative microenvironment and is a proposed treatment for POF-related infertility due to the presence of renewal folliculogenesis and germ cells in the adult ovaries. In this study, we assessed the safety, feasibility, efficacy and dose adjustment of autologous adipose-derived stromal cells (ADSCs) and their ability to improve ovarian function in POF patients. Methods This study was a non-randomized clinical trial, phase I. Nine women with a definitive diagnosis of POF were divided into three groups (n = 3 per group) that received either 5 × 106, 10 × 106, or 15 × 106 autologous ADSCs suspension transplanted in the one ovary. Participants were followed-up at 24 h after the transplantation, and at 1 and 2 weeks, and 1, 2, 3, 6, and 12 months after the transplantation. The primary objective was to evaluate the safety of ADSCs transplantation. Secondary objectives included the effects of ADSCs transplantation on the resumption of menstruation, hormones level (Follicle-stimulating hormone (FSH) and anti-Müllerian hormone), ovarian function (Antral follicle count and ovary volume by ultrasonography evaluation) as well as dose escalation. Results Participants had not shown any early-onset possible side effects and secondary complications during follow-up. The menstruation resumption was observed in four patients which established for several months. In the 15 × 106 group, two POF patients had a return of menstruation second months after the intervention. Two other POF patients in 5 × 106 and 10 × 106 cell groups reported menstruation resumption at 1 month after the intervention. We observed decreased serum FSH levels of less than 25 IU/l in four patients. In two patients in 5 × 106 and 10 × 106 cell groups, serum FSH showed an inconsistent decline during a 1 year follow up after ADSCs transplantation. The ovarian volume, AMH, and AFC were variable during the follow-up and no significant differences between cell groups (p > 0.05). Conclusions We showed the intra-ovarian embedding of ADSCs is safe and feasible and is associated with an inconsistent decline in serum FSH. This should be further investigated with a large RCT. Trial registration NCT02603744, Registered 13 November 2015 - Retrospectively registered, http://www.Clinicaltrials.gov
Collapse
Affiliation(s)
- M Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - E Mirzadeh
- Department of Regenerative Medicine, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P. O Box: 16635-148, Shaghayegh Alley, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - Z Chekini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - F Ahmadi
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - P Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - S Vesali
- Department of Diabetes, Obesity and Metabolism, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - T Madani
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran.
| | - N Aghdami
- Department of Regenerative Medicine, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P. O Box: 16635-148, Shaghayegh Alley, Banihashem Sq., Resalat Highway, Tehran, Iran.
| |
Collapse
|
62
|
Arjmand B, Alaei S, Heravani NF, Alavi-Moghadam S, Payab M, Ebrahimpour M, Aghayan HR, Goodarzi P, Larijani B. Regenerative Medicine Perspectives in Polycystic Ovary Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:125-141. [PMID: 33748932 DOI: 10.1007/5584_2021_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynecologic endocrine disorder in women between the ages of 15 and 40, with uncertain etiology. It is mostly presented with hyperandrogenism and insulin resistance along with a variety of comorbidities that significantly reduce a patient's quality of life. Many disturbed metabolic pathways are correlated with PCOS. Moreover, it is evident that there is a strong genetic factor for PCOS. Indeed, several altered gene expressions have been found in PCOS subjects, but the exact genetic origins are still unclear. The major treatment options such as pharmacological treatments are to improve the symptoms. In addition, surgical procedures (Bariatric surgery and assisted reproductive technologies) can be used to treat some of the patient's complications and reduce their severity. Generally, using pharmacological agents for a long period of time can increase the risk of adverse effects. Moreover, surgical options may have high-risk consequences. Herein, there is an undeniable need for a different multidisciplinary approach to PCOS. Regenerative medicine with the help of stem cells can develop a worthy alternative approach for the treatment of PCOS. Furthermore, animal models can provide valuable knowledge of genetic alterations and metabolic pathway disturbances in PCOS. They can also be used for testing novel treatments in pre-clinical stages. Therein, the current knowledge of PCOS and investigation about the potential role of regenerative medicine in developing new and more efficient treatments for PCOS are summarized here.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpour
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
64
|
Ayers CD, Carlson KS. Spontaneous Pregnancy in the Setting of Primary Ovarian Insufficiency and Breastfeeding: Does Immunosuppression Play a Role? AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e926980. [PMID: 33127872 PMCID: PMC7643410 DOI: 10.12659/ajcr.926980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patient: Female, 34-year-old Final Diagnosis: Pregnancy • premature ovarian insufficiency Symptoms: Amenorrhea • pregnancy Medication: — Clinical Procedure: — Specialty: Obstetrics and Gynecology
Collapse
Affiliation(s)
- Caleb D Ayers
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karen S Carlson
- Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
65
|
Abstract
Primary ovarian insufficiency (POI) is an uncommon yet devastating occurrence that results from a premature depletion of the ovarian pool of primordial follicles. Our understanding of both putative and plausible mechanisms underlying POI, previously considered to be largely "idiopathic", has been furthered over the past several years, largely due to advances in the field of genetics and through expansion of translational models for experimental research. In this review, our goal is to familiarize the multidisciplinary readers of the F1000 platform with the strides made in the field of reproductive medicine that hold both preventative and therapeutic implications for those women who are at risk for or who have POI.
Collapse
Affiliation(s)
- Victoria Wesevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanada N Kellen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lubna Pal
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
66
|
Huang Q, Liu B, Jiang R, Liao S, Wei Z, Bi Y, Liu X, Deng R, Jin Y, Tan Y, Yang Y, Qin A. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma accelerate restoration of ovarian function in cyclophosphamide-induced POI rats†. Biol Reprod 2020; 101:91-101. [PMID: 31034039 DOI: 10.1093/biolre/ioz077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) are rich in hematopoietic cells and mesenchymal stem cells. Platelet-rich plasma (PRP) is rich in various growth factors. PBMCs and PRP have been suggested, individually, to restore ovarian function by improving the local microenvironment. The current study investigated the effect of granulocyte colony-stimulating factor (G-CSF)-mobilized PBMCs combined with PRP on restoring ovarian function in rats with primary ovarian insufficiency (POI). Thirty adult female rats were randomly subdivided into five groups: normal control (control), cyclophosphamide (CTX) plus subsequent PBS (POI + PBS), CTX plus subsequent PRP (POI + PRP), CTX plus subsequent G-CSF-mobilized PBMCs (POI + PBMCs), and CTX plus subsequent G-CSF-mobilized PBMCs combined with PRP (POI + PBMCs + PRP). CTX exposure induced the typical POI phenotype with increased diestrus; shortened estrus; follicle arrest at all stages; decreased serum levels of estradiol-17β (E2) and anti-Mullerian hormone (AMH); and increased levels of follicle-stimulating hormone (FSH). Transplantation of mobilized PBMCs with PRP resulted in a much earlier restoration of the estrous cycle, sex hormone levels, and preantral follicle growth in POI rats. Expression of the male-specific Sry gene in the ovarian tissues of POI + PBMCs + PRP female recipient rats was evident at 5, 10, and 20 days posttransplantation along with significant increases in the expression of angiogenesis markers CD34+ and VEGF and folliculogenesis markers AMH and FSHR. Additionally, PBMCs in combination with PRP mitigated granulosa cell apoptosis by downregulating BAX and upregulating BCL-2. These results demonstrate that G-CSF-mobilized PBMCs combined with PRP accelerate the restoration of ovarian function in POI rats by increasing ovarian neovascularization, reducing granulosa cell apoptosis, and promoting folliculogenesis.
Collapse
Affiliation(s)
- Qiuyan Huang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rufang Jiang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengbin Liao
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiyao Wei
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yin Bi
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xueyuan Liu
- Center of Reproductive Medicine, The Guangxi Zhuang Autonomous Region Family Planning Research Center, Nanning, Guangxi, China
| | - Rong Deng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yufu Jin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying Tan
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
67
|
Li M, Xie L, Li Y, Liu J, Nie G, Yang H. Synergistic effect of Huyang Yangkun Formula and embryonic stem cells on 4-vinylcyclohexene diepoxide induced premature ovarian insufficiency in mice. Chin Med 2020; 15:83. [PMID: 32774448 PMCID: PMC7405416 DOI: 10.1186/s13020-020-00362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background Huyang Yangkun Formula (HYYKF) was developed based on theory of traditional Chinese medicine as well as clinical experience and used to improve ovarian function of premature ovarian insufficiency (POI) patients. Transplantation of embryonic stem cells (ESCs) has great potential in improving POI, and studies have confirmed that traditional Chinese medicine promoted the treatment effect of ESCs. In the present study, we compared the effect of combining HYYKF and ESCs, single HYYKF treatment and single ESCs intervention on POI mice to explore the effect of combination of HYYKF and ESCs in improving ovarian function. Methods C57BL/6 mice were used to create a POI model by 15-day intraperitoneal injection of 160 mg/kg of 4-vinylcyclonhexene diepoxide (VCD) and then treated with HYYKF, ESCs transplantation and combination of ESCs and HYYKF. When the treatments were finished, estrus cycle, ovarian follicle counting, serum sex hormone level, and expression of key nodes in the transforming growth factor beta/transforming growth factor beta-activated kinase 1 (TGF-β/TAK1) signaling pathway were determined. Results Combination therapy brought down the abnormal estrus cycle rate to 5.26%, significantly lower than that of HYYKF or ESCs alone (30%, 25%, respectively). The numbers of follicles at all levels were increased significantly in the combination ESCs with HYYKF group (P < 0.05), especially that of antral follicles (P < 0.01), which was not increased significantly when HYYKF or ESCs was single used. The level of anti-Mullerian hormone (AMH) was more significantly increased in the combination ESCs with HYYKF group (P < 0.01) than that of HYYKF or ESCs alone (both P < 0.05). The expression of the key nodes TGF-β1, TAK1, JNK, Smad4 and FSHR in the TGF-β/TAK1 pathway were obviously affected in the SCHY group. Conclusion Both HYYKF and ESCs improve the ovarian function of POI induced by VCD, and a combination of HYYKF and ESCs has the advantage that they work together to promote follicles developing probably by inhibiting expression of the TGF-β1/TAK1 pathway.
Collapse
Affiliation(s)
- Meifang Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Li Xie
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Yang Li
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Jian Liu
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Guangning Nie
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Hongyan Yang
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120 China
| |
Collapse
|
68
|
Igboeli P, El Andaloussi A, Sheikh U, Takala H, ElSharoud A, McHugh A, Gavrilova-Jordan L, Levy S, Al-Hendy A. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Rep 2020; 14:108. [PMID: 32680541 PMCID: PMC7368722 DOI: 10.1186/s13256-020-02426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background Premature ovarian failure is a relatively common condition that affects 1–3% of adult women. Premature ovarian failure occurs when there is loss of ovarian function in women younger than 40 years of age. The causes are mostly iatrogenic or idiopathic. Amenorrhea and infertility are the most important clinical manifestations. So far, no therapeutic intervention has been proved effective in restoring fertility in patients with premature ovarian failure. Attempts to stimulate ovarian function through hormone manipulation typically prove unsuccessful, and patients usually resort to egg donation to achieve pregnancy. In our preclinical work, intraovarian administration of human bone marrow–derived mesenchymal stem cells was able to restore ovarian hormone production, reactivate folliculogenesis, and reverse infertility in a chemotherapy-induced ovarian failure mouse model. Case presentation We present two cases of Caucasian women with premature ovarian failure who resumed ovarian estrogen production and menses 7 months following autologous bone marrow–derived mesenchymal stem cell injections into the ovary. This pilot clinical study is registered with ClinicalTrials.gov (identifier NCT02696889). In this report, we present data from our first two cases that have completed study procedures so far. The bone marrow–derived mesenchymal stem cells were harvested from the bone marrow of the iliac crest of the patients with premature ovarian failure and nucleated cells concentrated and enriched in bone marrow–derived mesenchymal stem cells intraoperatively, and then injected into the patient’s right ovary via laparoscopy. Autologous bone marrow stem cell engraftment into the ovary resulted in several improvements in the treated patients with premature ovarian failure. In measurements by transvaginal ultrasound, there were increases of approximately 50% in volume of the treated ovaries in comparison with the contralateral control ovaries that persisted to the end of the study (1 year). Serum levels of estrogen increased by approximately 150% compared with the preoperative levels. Each of the two patients had an episode of menses, and also both of them reported marked improvement of their menopausal symptoms that also persisted to the end of the study (1 year). The bone marrow–derived mesenchymal stem cell implantation procedure was very well tolerated with no reported adverse events. Conclusions Our study reveals promising improvement of premature ovarian failure–related clinical manifestations in two patients after intraovarian autologous bone marrow–derived mesenchymal stem cells engraftment. These early observations call for additional assessment and further development of intraovarian bone marrow–derived mesenchymal stem cell injection for possible treatment of patients with premature ovarian failure.
Collapse
Affiliation(s)
- Prosper Igboeli
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Abdeljabar El Andaloussi
- Department of Pathology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Ujalla Sheikh
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Hajra Takala
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Amro ElSharoud
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Ashley McHugh
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | | | - Steven Levy
- MD Stem Cells, Sylvan Road South, Westport, CT, 06880, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
69
|
Pan W, Ye X, Zhu Z, Li C, Zhou J, Liu J. A case-control study of arsenic exposure with the risk of primary ovarian insufficiency in women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25220-25229. [PMID: 32347494 DOI: 10.1007/s11356-020-08806-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/07/2020] [Indexed: 05/18/2023]
Abstract
Arsenic, a well-known toxic metalloid, is ubiquitously existed in environment. Arsenic exposure has been associated with female reproductive health. However, a potential association between arsenic exposure and primary ovarian insufficiency (POI) in women has not been recognized yet. In this case-control study, a total of 169 POI cases and 209 healthy controls were recruited to determine urinary concentrations of arsenic and serum levels of reproductive hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Mullerian hormone (AMH) and estradiol). The median concentration of urinary arsenic in cases (21.5 μg/L, 28.0 μg/g for creatinine adjustment) was significantly higher than that of controls (13.8 μg/L, 19.3 μg/g for creatinine adjustment). Urinary arsenic concentrations were significantly positively associated with the risk of POI (adjusted odds ratio (OR) = 2.66, 95% CI: 1.43-4.95 for the highest vs lowest tertile of arsenic, p = 0.002; p for trend = 0.004). We also assessed the associations between arsenic exposure and reproductive hormones that are important for ovarian functions. FSH and LH levels were positively associated with urinary arsenic, whereas AMH and estradiol levels were negatively correlated with this element. This study provided evidence that arsenic exposure could be the potential risk factor for POI in women.
Collapse
Affiliation(s)
- Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
70
|
Na J, Kim GJ. Recent trends in stem cell therapy for premature ovarian insufficiency and its therapeutic potential: a review. J Ovarian Res 2020; 13:74. [PMID: 32576209 PMCID: PMC7313218 DOI: 10.1186/s13048-020-00671-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell therapy is attracting attention in the field of regenerative medicine and is advancing rapidly. Many recent studies have applied stem cell therapy to treat reproductive system diseases; however, data are not yet available as to whether this therapy shows enhanced therapeutic effects. This paper analyzes recent preclinical studies on stem cell therapy for ovarian dysfunction in several types of animal models. Several clinical trials and pending projects are also discussed. This review will provide a background for developing stem cell therapies to enhance ovarian function.
Collapse
Affiliation(s)
- Jeeyoon Na
- Department of Biology, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
71
|
Yang W, Zhang J, Xu B, He Y, Liu W, Li J, Zhang S, Lin X, Su D, Wu T, Li J. HucMSC-Derived Exosomes Mitigate the Age-Related Retardation of Fertility in Female Mice. Mol Ther 2020; 28:1200-1213. [PMID: 32097602 DOI: 10.1016/j.ymthe.2020.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
In mammals, resting primordial follicles serve as the ovarian reserve. The decline in ovarian function with aging is characterized by a gradual decrease in both the quantity and quality of the oocytes residing within the primordial follicles. Many reports show that mesenchymal stem cells have the ability to recover ovarian function in premature ovarian insufficiency (POI) or natural aging animal models; however, the underlying mechanism remains unclear. In this study, using exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-exos), we found the specific accumulation of exosomes in primordial oocytes. The stimulating effects of exosomes on primordial follicles were manifested as the activation of the oocyte phosphatidylinositol 3-kinase (PI3K)/mTOR signaling pathway and the acceleration of follicular development after kidney capsule transplantation. Further analysis revealed the stimulatory effects of HucMSC-exos on primordial follicles were through carrying functional microRNAs, such as miR-146a-5p or miR-21-5p. In aged female mice, the intrabursal injection of HucMSC-exos demonstrated the recovery of decreased fertility with increased oocyte production and improved oocyte quality. Although assisted reproductive technologies have been widely used to treat infertility, their overall success rates remain low, especially for women in advanced maternal age. We propose HucMSC-exos as a new approach to mitigate the age-related retardation of fertility in women.
Collapse
Affiliation(s)
- Weijie Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jiazhao Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Dongming Su
- Centre of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tinghe Wu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institutes of Tsinghua University, Jiaxing 314006, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
72
|
Ozcan P, Takmaz T, Tok OE, Islek S, Yigit EN, Ficicioglu C. The protective effect of platelet-rich plasma administrated on ovarian function in female rats with Cy-induced ovarian damage. J Assist Reprod Genet 2020; 37:865-873. [PMID: 32020412 DOI: 10.1007/s10815-020-01689-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE We evaluated the protective effect of PRP on ovarian function in female rats with cyclophosphamide (Cy)-induced ovarian damage. METHODS Thirty-two adult female Sprague-Dawley rats were randomly divided into four groups. Group 1 (control-sodium chloride 0.9%; 1 mL/kg, single-dose ip injection), group 2 (Cy); 75 mg/kg, single-dose ip injection and sodium chloride 0.9% (1 mL/kg, single-dose ip injection), group 3 Cy plus PRP, Cy (75 mg/kg, single-dose and PRP (200 μl, single-dose) ip injection), group 4 (PRP, 200 μl, single-dose ip injection). Primordial, antral, and atretic follicle counts; serum anti-Müllerian hormone (AMH) levels; AMH-positive granulosa cells; and gene expression analysis of Ddx4 were assessed. RESULTS Serum AMH levels were significantly lower in group 2 compared to groups 1, 3, and 4 (p < 0.01, p < 0.01, and p = 0.04, respectively). A significant difference was found in the primordial, primary, secondary, antral, and atretic follicle counts between all groups (p < 0.01). There was a statistically significant difference in AMH-positive staining primary, secondary, and antral follicles count between the groups (p < 0.01). There was a statistically significant difference in primary, secondary, and antral AMH positive staining follicle intensity score between the groups (p < 0.01). Ddx4 expression in group 4 was highest compared to other groups. CONCLUSION Our study may provide evidence that PRP could protect ovarian function against ovarian damage induced by Cy. It could lead to improved primordial, primary, secondary, and antral follicle numbers.
Collapse
Affiliation(s)
- Pinar Ozcan
- Department of Obstetrics and Gynecology, Bezmialem University Faculty of Medicine, İskender Paşa Mh Adnan Menderes Bulvarı, Vatan Cad, 34093, Fatih/İstanbul, Turkey. .,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Bezmialem University Faculty of Medicine, İstanbul, Turkey.
| | - Taha Takmaz
- Department of Obstetrics and Gynecology, Bezmialem University Faculty of Medicine, İskender Paşa Mh Adnan Menderes Bulvarı, Vatan Cad, 34093, Fatih/İstanbul, Turkey
| | - Olgu Enis Tok
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Sevde Islek
- Department of Obstetrics and Gynecology, Bezmialem University Faculty of Medicine, İskender Paşa Mh Adnan Menderes Bulvarı, Vatan Cad, 34093, Fatih/İstanbul, Turkey
| | - Esra Nur Yigit
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Cem Ficicioglu
- Department of Obstetrics and Gynecology, Acibadem Health Group, Istanbul, Turkey
| |
Collapse
|
73
|
Liu M, Qiu Y, Xue Z, Wu R, Li J, Niu X, Yuan J, Wang Y, Wu Q. Small extracellular vesicles derived from embryonic stem cells restore ovarian function of premature ovarian failure through PI3K/AKT signaling pathway. Stem Cell Res Ther 2020; 11:3. [PMID: 31900201 PMCID: PMC6942273 DOI: 10.1186/s13287-019-1508-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Premature ovarian failure (POF) has a great impact on reproductive endocrine function in females, and it is an important cause of infertility. Previous studies have demonstrated that small extracellular vesicles (sEVs) derived from stem cells play an important role in tissue regeneration. This study aimed to investigate the therapeutic effect of sEVs derived from embryonic stem cells (ESCs-sEVs) on damaged ovaries and explore the underlying molecular mechanisms. METHODS Mice POF models were established by injecting mice with cyclophosphamide and busulfan. Then, ESCs-sEVs were intravenously transplanted into POF mice. The plasma of mice was harvested at 1 and 2 weeks after treatment to analyze the levels of anti-Mullerian hormone (AMH), estradiol (E2), and follicle stimulating hormone (FSH) by ELISA. The morphology of ovaries and follicles was observed by H&E staining, and apoptosis of granulosa cells was detected by TUNEL. In vitro, EdU and CCK-8 tests were used to evaluate the proliferation of cultured granulosa cells stimulated by ESCs-sEVs. Western blotting was used to determine the expression of PI3K/AKT and apoptotic-related proteins. RESULTS After transplantation of ESCs-sEVs, the levels of serum sex hormones recovered to normal levels. In addition, the number of follicles was significantly increased, and the number of apoptotic cells was decreased. The results in vitro revealed that ESCs-sEVs could significantly improve the proliferation rate of granulosa cells and increase the expression of phosphorylated PI3K and AKT. Meanwhile, the positive effect on proliferation and the negative effect on apoptosis observed in granulosa cells were obviously decreased when the PI3K/AKT signaling pathway was inhibited. CONCLUSION Our findings suggested that ESCs-sEVs could improve ovarian function by regulating the PI3K/AKT signaling pathway, which could provide a promising clinical therapy for POF.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
- Medical College of Soochow University, Suzhou, 215006, China
| | - Yu Qiu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Zhuowei Xue
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Ruoyu Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China.
| | - Qingkai Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
74
|
Polonio AM, García-Velasco JA, Herraiz S. Stem Cell Paracrine Signaling for Treatment of Premature Ovarian Insufficiency. Front Endocrinol (Lausanne) 2020; 11:626322. [PMID: 33716956 PMCID: PMC7943922 DOI: 10.3389/fendo.2020.626322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian insufficiency is a common disorder affecting young women and represents the worst-case ovarian scenario due to the substantial impact on the reproductive lifespan of these patients. Due to the complexity of this condition, which is not fully understood, non-effective treatments have yet been established for these patients. Different experimental approaches are being explored and strategies based on stem cells deserve special attention. The regenerative and immunomodulatory properties of stem cells have been successfully tested in different tissues, including ovary. Numerous works point out to the efficacy of stem cells in POI treatment, and a wide range of clinical trials have been developed in order to prove safety and effectiveness of stem cells therapy-in diminished ovarian reserve and POI women. The main purpose of this review is to describe the state of the art of the treatment of POI involving stem cells, especially those that use mobilization of stem cells or paracrine signaling.
Collapse
Affiliation(s)
- Alba M. Polonio
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- *Correspondence: Alba M. Polonio,
| | - Juan A. García-Velasco
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVI RMA, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Sonia Herraiz
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
75
|
Huang B, Qian C, Ding C, Meng Q, Zou Q, Li H. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1. Stem Cell Res Ther 2019; 10:362. [PMID: 31783916 PMCID: PMC6884777 DOI: 10.1186/s13287-019-1490-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.
Collapse
Affiliation(s)
- Boxian Huang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Chunfeng Qian
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qingxia Meng
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qinyan Zou
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| |
Collapse
|
76
|
Zhang Q, Huang Y, Sun J, Gu T, Shao X, Lai D. Immunomodulatory effect of human amniotic epithelial cells on restoration of ovarian function in mice with autoimmune ovarian disease. Acta Biochim Biophys Sin (Shanghai) 2019; 51:845-855. [PMID: 31287492 DOI: 10.1093/abbs/gmz065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
Autoimmune ovarian disease (AOD) is considered to be a major cause of premature ovarian failure (POF). The immunomodulatory properties of human amniotic epithelial cells (hAECs) have been studied in many disease models. We previously reported that hAECs restored ovarian function in chemotherapy-induced POF mice, but the immunomodulatory mechanism of hAECs is still unclear. To investigate the effect of hAECs on recipient mice, especially on regulatory Treg cells, hAECs and hAEC-conditioned medium (hAEC-CM) were intravenously injected into AOD mice immunized with zona pellucida protein 3 peptides (pZP3). Ovarian function was evaluated through estrous cycle, hormone secretion, follicle development, and cell apoptosis analysis. Immune cells including CD3, CD4, CD8 and Treg cells in the spleens were tested by flow cytometry. To elucidate the effect of hAEC-CM on macrophage function, inflammation model in vitro was established in RAW264.7 cells induced by lipopolysaccharide (LPS). hAECs and hAEC-CM regulated estrous cycles, promoted follicle development, ameliorated cell apoptosis and fibrosis in ovaries of AOD mice. In addition, hAECs significantly reversed the decrease of pZP3-induced Treg cells in the spleens. In vitro, hAEC-CM significantly inhibited the inflammatory reaction induced by LPS in RAW264.7 cells via up-regulating the expression of M2 macrophage genes. Further study demonstrated that hAEC-secreted transforming growth factor-beta and macrophage inhibitory factor played important roles in the macrophage polarization and migration under inflammatory stimulation. Taken together, hAECs restored ovarian function by up-regulating Treg cells in the spleens and reduced the inflammatory reaction via modulating the activated macrophage function in a paracrine manner in the ovaries of AOD mice.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Yating Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Speciality, Shanghai, China
| |
Collapse
|
77
|
Effects of VEGF
+
Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model. Stem Cell Rev Rep 2019; 15:558-573. [DOI: 10.1007/s12015-019-09892-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
78
|
Human Amniotic Epithelial Cell-Derived Exosomes Restore Ovarian Function by Transferring MicroRNAs against Apoptosis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:407-418. [PMID: 31022607 PMCID: PMC6479666 DOI: 10.1016/j.omtn.2019.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/16/2019] [Indexed: 02/08/2023]
Abstract
Premature ovarian failure (POF) is one of the most common complications among female patients with tumors treated with chemotherapy and requires advanced treatment strategies. Human amniotic epithelial cell (hAEC)-based therapy mediates tissue regeneration in a variety of diseases, and increasing evidence suggests that the therapeutic efficacy of hAECs mainly depends on paracrine action. This study aimed to identify exosomes derived from hAECs and explored the therapeutic potential in ovaries damaged by chemotherapy and the underlying molecular mechanism. hAEC-derived exosomes exhibited a cup- or sphere-shaped morphology with a mean diameter of 100 nm and were positive for Alix, CD63, and CD9. hAEC exosomes increased the number of follicles and improved ovarian function in POF mice. During the early stage of transplantation, hAEC exosomes significantly inhibited granulosa cell apoptosis, protected the ovarian vasculature from damage, and were involved in maintaining the number of primordial follicles in the injured ovaries. Enriched microRNAs (miRNAs) existed in hAEC exosomes, and target genes were enriched in phosphatidylinositol signaling and apoptosis pathways. Studies in vitro demonstrated that hAEC exosomes inhibited chemotherapy-induced granulosa cell apoptosis via transferring functional miRNAs, such as miR-1246. Our findings demonstrate that hAEC-derived exosomes have the potential to restore ovarian function in chemotherapy-induced POF mice by transferring miRNAs.
Collapse
|
79
|
Yoon SY. Mesenchymal stem cells for restoration of ovarian function. Clin Exp Reprod Med 2019; 46:1-7. [PMID: 30827071 PMCID: PMC6436469 DOI: 10.5653/cerm.2019.46.1.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.
Collapse
Affiliation(s)
- Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
80
|
Umbilical Cord Blood Mesenchymal Stem Cells as an Infertility Treatment for Chemotherapy Induced Premature Ovarian Insufficiency. Biomedicines 2019; 7:biomedicines7010007. [PMID: 30669278 PMCID: PMC6466426 DOI: 10.3390/biomedicines7010007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Premature ovarian insufficiency (POI) is a challenging disease, with limited treatment options at the moment. Umbilical cord blood mesenchymal stem cells (UCMSCs) have demonstrated promising regenerative abilities in several diseases including POI. Materials and Method: A pre-clinical murine case versus vehicle control randomized study. Two experiments ran in parallel in each of the three groups. The first was to prove the ability of UCMSCs in restoring ovarian functions. The second was to prove improved fertility. A total of 36 mice were randomly assigned; 6 mice into each of 3 groups for two experiments. Group 1 (control), group 2 (sham chemotherapy), group 3 (stem cells). Results: In the first experiment, post-UCMSCs treatment (group 3) showed signs of restored ovarian function in the form of increased ovarian weight and estrogen-dependent organs (liver, uterus), increased follicular number, and a significant decrease in FSH serum levels (p < 0.05) compared to group 2, and anti-Mullerian hormone (AMH) serum levels increased (p < 0.05) in group 3 versus group 2. Immuno-histochemistry analysis demonstrated a higher expression of AMH, follicle stimulating hormone receptor (FSHR) and Inhibin A in the growing follicles of group 3 versus group 2. In the second experiment, post-UCMSCs treatment (group 3) pregnancy rates were higher than group 2, however, they were still lower than group 1. Conclusion: We demonstrated the ability of UCMSCs to restore fertility in female cancer survivors with POI and as another source of stem cells with therapeutic potentials.
Collapse
|
81
|
Hypothalamic-Pituitary-Ovarian Axis Disorders Impacting Female Fertility. Biomedicines 2019; 7:biomedicines7010005. [PMID: 30621143 PMCID: PMC6466056 DOI: 10.3390/biomedicines7010005] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis is a tightly regulated system controlling female reproduction. HPO axis dysfunction leading to ovulation disorders can be classified into three categories defined by the World Health Organization (WHO). Group I ovulation disorders involve hypothalamic failure characterized as hypogonadotropic hypogonadism. Group II disorders display a eugonadal state commonly associated with a wide range of endocrinopathies. Finally, group III constitutes hypergonadotropic hypogonadism secondary to depleted ovarian function. Optimal evaluation and management of these disorders is based on a careful analysis tailored to each patient. This article reviews ovulation disorders based on pathophysiologic mechanisms, evaluation principles, and currently available management options.
Collapse
|
82
|
Manshadi MD, Navid S, Hoshino Y, Daneshi E, Noory P, Abbasi M. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech 2018; 82:635-642. [PMID: 30582244 DOI: 10.1002/jemt.23120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Many studies have reported that human endometrial mesenchymal stem cells (HuMenSCs) are capable of repairing damaged tissues. The aim of the present study was to investigate the effects of HuMenSCs transplantation as a treatment modality in premature ovarian failure (POF) associated with chemotherapy-induced ovarian damage. HuMenSCs were isolated from menstrual blood samples of five women. After the in vitro culture of HuMenSCs, purity of the cells was assessed by cytometry using CD44, CD90, CD34, and CD45 FITC conjugate antibody. Twenty-four female Wistar rats were randomly divided into four groups: negative control, positive control, sham, and treatment groups. The rat models of POF used in our study were established by injecting busulfan intraperitoneally into the rats during the first estrus cycle. HuMenSCs were transplanted by injection via the tail vein into the POF-induced rats. Four weeks after POF induction, ovaries were collected and the levels of Amh, Fst, and Fshr expression in the granulosa cell (GC) layer, as well as plasma estradiol (E2) and progesterone (P4) levels were evaluated. Moreover, migration and localization of DiI-labeled HuMenSCs were detected, and the labeled cells were found to be localized in GCs layer of immature follicles. In addition to DiI-labelled HuMenSCs tracking, increased levels of expression of Amh and Fshr and Fst, and the high plasma levels of E2 and P4 confirmed that HuMenSC transplantation had a significant effect on follicle formation and ovulation in the treatment group compared with the negative control (POF) group.
Collapse
Affiliation(s)
- Marjan D Manshadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Erfan Daneshi
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Parastoo Noory
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
83
|
Asghari S, Valizadeh Dizajeykan A, Ahmadi M, Barzegari A, Rikhtegar R, Dolati S, Danaii S, Abdollahi‐Fard S, Nouri M, Mahdipour M, Yousefi M. Evaluation of ovarian cancer risk in granulosa cells treated with steroid‐depleted endometriosis serum: Role of NF‐κB/RelA and AKT. J Cell Physiol 2018; 234:12011-12018. [DOI: 10.1002/jcp.27862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Samira Asghari
- Students’ Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Barzegari
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
| | - Sanam Dolati
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
| | - Shahla Danaii
- Department of Gynecology Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR Tabriz Iran
| | - Sedigheh Abdollahi‐Fard
- Department of Gynecology Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR Tabriz Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
84
|
Reproduction in premature ovarian insufficiency patients - from latest studies to therapeutic approach. MENOPAUSE REVIEW 2018; 17:117-119. [PMID: 30356967 PMCID: PMC6196776 DOI: 10.5114/pm.2018.78554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/27/2018] [Indexed: 11/17/2022]
Abstract
Normal function of the ovaries, which is responsible for the hormonal and reproductive processes, is one of the most important determinants of fertility. Premature ovarian insufficiency (POI) is defined as cessation of menstrual cycle, increased serum follicle-stimulating hormone (FSH) levels, and decrease serum oestradiol levels in women before the age of 40 years. POI concerns about 1% of women and is characterised by severely diminished fertility. For the POI patient, this is one of the most dramatic problems. It influences their psychological status and functioning in society. The chance for spontaneous conception is very limited and ranges from 4 to 8%. For contemporary medicine, infertility treatment in POI patients is a challenge. The problem is that there are no effective therapies to augment ovarian activity in POI patients. At present, oocyte donation is regarded as the only proven method in the treatment of infertility in POI patients. However, nowadays we can observe important progress in the development of fertility preservation methods. In the POI field it refers to cryopreservation of oocytes, embryos, and ovarian tissue. Additionally, new methods known as in vitro activation of dormant follicles and possible use of stem cells should be mentioned.
Collapse
|