51
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
52
|
Li J, Jia N, Cui M, Li Y, Li X, Chu X. The intestinal mucosal barrier - A key player in rheumatoid arthritis? Clin Anat 2023; 36:977-985. [PMID: 37191299 DOI: 10.1002/ca.24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Rheumatoid arthritis (RA) is a recurrent chronic autoimmune disease, which is not only difficult to treat, but also has a great adverse impact on the physical and mental health of patients. The intestinal mucosa barrier has some relationship with RA and it consists of mechanical barrier, chemical barrier, immune barrier, and microflora barrier. It is a dynamic system that contributes to the stability of the intestinal environment by regulating the absorption of relevant substances from the lumen into the circulation, while limiting the passage of harmful substances. This article summarizes the connection between the intestinal mucosa barrier and RA, and proposes the role of relevant Chinese medicines on RA from the point of improving barriers, to provide new perspectives on the pathogenesis and therapeutic strategies of RA.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, China
| |
Collapse
|
53
|
Chen Z, Liu Y, Li M, Song J, Lin J, Ai D. Paeoniflorin relieves arterial stiffness induced by a high-fat/high-sugar diet by disrupting the YAP-PPM1B interaction. LIFE MEDICINE 2023; 2:lnad029. [PMID: 39872890 PMCID: PMC11749085 DOI: 10.1093/lifemedi/lnad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 01/30/2025]
Affiliation(s)
- Zhipeng Chen
- National Key Laboratory of Blood Science, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yanan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Mengke Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Jiawei Song
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Jianping Lin
- College of Pharmacy, NanKai University, Tianjin 300350, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Ding Ai
- National Key Laboratory of Blood Science, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
54
|
Park MC, Lee JH, Seong EJ, Lee DS, Jo EH. Chronic Atopic Dermatitis with Eosinophilia Improved by Daesiho-Tang: A Case Report. Clin Cosmet Investig Dermatol 2023; 16:2561-2572. [PMID: 37750085 PMCID: PMC10518174 DOI: 10.2147/ccid.s424225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/03/2023] [Indexed: 09/27/2023]
Abstract
Purpose This study is to report a case of chronic atopic dermatitis (AD) with eosinophilia, which did not respond to conventional therapy and was improved by Daesiho-tang (DSHT). Patients and Methods The patient visited our clinic with symptoms of atopic dermatitis including skin lesions and pruritus. Based on her symptoms, DSHT was prescribed. At each visit, the Scoring Atopic Dermatitis (SCORAD), Dermatology Life Quality Index (DLQI), and accompanying systemic symptoms (ASS) were measured. Multiple Allergen Simultaneous Test (MAST) was initially performed for 108 allergens and analyzed by Western blotting using an Alternate Scoring Method (ASM) according to the specific IgE concentration. Also, peripheral blood laboratory (Lab) tests were performed three times during the patient's visit. Results After taking DSHT, the total SCORAD score improved from 62.9 to 23.5, while the patient's ASS also improved. The DLQI score improved from 19 to 5. The total number of eosinophils in the peripheral blood, which showed a mild increase, recovered from 17.2% (0.98 x103/μL) to 4.5% (0.24 x103/μL). The total IgE slightly decreased, while AST and ALT were also restored to normal ranges. Conclusion Based on this case, DSHT is considered a potential alternative treatment for AD.
Collapse
Affiliation(s)
- Min-Cheol Park
- Department of Korean Medicine Ophthalmology and Otolaryngology and Dermatology, Wonkwang University Korean Medicine Hospital, Iksan, Jeollabuk-do, 54538, Republic of Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
| | - Ju-Hyun Lee
- Department of Medical Support, Imsil-Gun Medical Center, Imsil, Jeollabuk-do, 55927, Republic of Korea
| | - Eun-Jin Seong
- Seoul Clinic, Hanam, Gyeonggi-do, 12945, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Jeollanam-do, 61452, Republic of Korea
| | - Eun-Heui Jo
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
- Department of Acupuncture and Moxibustion, Wonkwang University Korean Medicine Hospital, Jeonju, Jeollabuk-do, 54887, Republic of Korea
| |
Collapse
|
55
|
Fang X, Song J, Zhou K, Zi X, Sun B, Bao H, Li L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023; 28:5645. [PMID: 37570615 PMCID: PMC10419790 DOI: 10.3390/molecules28155645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and its incidence continues to increase each year. Yet, there is still no definitive drug that can stop its development. This review focuses mainly on lipotoxicity, oxidative stress, inflammation, and intestinal flora dysbiosis to understand NAFLD's pathogenesis. In this review, we used NCBI's PubMed database for retrieval, integrating in vivo and in vitro experiments to reveal the therapeutic effects of natural compounds on NAFLD. We also reviewed the mechanisms by which the results of these experiments suggest that these compounds can protect the liver from damage by modulating inflammation, reducing oxidative stress, decreasing insulin resistance and lipid accumulation in the liver, and interacting with the intestinal microflora. The natural compounds discussed in these papers target a variety of pathways, such as the AMPK pathway and the TGF-β pathway, and have significant therapeutic effects. This review aims to provide new possible therapeutic lead compounds and references for the development of novel medications and the clinical treatment of NAFLD. It offers fresh perspectives on the development of natural compounds in preventing and treating NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.F.)
| |
Collapse
|
56
|
Zhang L, Wang Y, Wang D. Paeoniflorin increases the survival of Pseudomonas aeruginosa infected Caenorhabditis elegans at the immunosuppression stage by activating PMK-1, BAR-1, and EGL-1 signals. Arch Pharm Res 2023; 46:616-628. [PMID: 37535304 DOI: 10.1007/s12272-023-01459-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Paeoniflorin is the major active compound of total glycoside of paeony in Paeonia lactiflora Pall. Although several aspects of beneficial effects of paeoniflorin have been described, whether the paeoniflorin treatment is helpful for inhibiting the pathogen infection-induced immunosuppression remains largely unclear. Using the immunosuppression model in Caenorhabditis elegans induced by Pseudomonas aeruginosa infection, we here examined the beneficial effect of paeoniflorin treatment against the immunosuppression induced by bacterial pathogen infection. In this immunosuppression model, we observed that the survival rate of P. aeruginosa infected nematodes at the immunosuppression stage could be significantly increased by 25-100 mg/L paeoniflorin treatment. P. aeruginosa accumulation in intestinal lumen of nematodes at the immunosuppression stage was reduced by paeoniflorin treatment. Paeoniflorin could activate the expressions of antimicrobial genes (lys-1 and lys-8) in nematodes at the immunosuppression stage. Moreover, at the immunosuppression stage, paeoniflorin treatment increased the expressions of bar-1, pmk-1, and egl-1 required for the control of innate immunity against bacterial infection. Meanwhile, RNAi of bar-1, pmk-1, and egl-1 inhibited the beneficial effect of paeoniflorin treatment in increasing the survival, reducing the P. aeruginosa accumulation in intestinal lumen, and activating the expressions of antimicrobial genes (lys-1 and lys-8) in nematodes at the immunosuppression stage. Therefore, paeoniflorin treatment could effectively inhibit the immunosuppression induced by bacterial pathogen infection in the hosts.
Collapse
Affiliation(s)
- Le Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuxing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
57
|
Liu T, Zhuang Z, Wang D. Paeoniflorin mitigates high glucose-induced lifespan reduction by inhibiting insulin signaling in Caenorhabditis elegans. Front Pharmacol 2023; 14:1202379. [PMID: 37405055 PMCID: PMC10315627 DOI: 10.3389/fphar.2023.1202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
In organisms, high glucose can cause several aspects of toxicity, including the lifespan reduction. Paeoniflorin is the major component of Paeoniaceae plants. Nevertheless, the possible effect of paeoniflorin to suppress high glucose toxicity in reducing lifespan and underlying mechanism are largely unclear. Thus, in this study, we examined the possible effect of paeoniflorin in suppressing high glucose (50 mM)-induced lifespan reduction and the underlying mechanism in Caenorhabditis elegans. Administration with 16-64 mg/L paeoniflorin could prolong the lifespan in glucose treated nematodes. Accompanied with this beneficial effect, in glucose treated nematodes, expressions of daf-2 encoding insulin receptor and its downstream kinase genes (age-1, akt-1, and akt-2) were decreased and expression of daf-16 encoding FOXO transcriptional factor was increased by 16-64 mg/L paeoniflorin administration. Meanwhile, the effect of paeoniflorin in extending lifespan in glucose treated nematodes was enhanced by RNAi of daf-2, age-1, akt-1, and akt-2 and inhibited by RNAi of daf-16. In glucose treated nematodes followed by paeoniflorin administration, the increased lifespan caused by daf-2 RNAi could be suppressed by RNAi of daf-16, suggesting that DAF-2 acted upstream of DAF-16 to regulate pharmacological effect of paeoniflorin. Moreover, in glucose treated nematodes followed by paeoniflorin administration, expression of sod-3 encoding mitochondrial Mn-SOD was inhibited by daf-16 RNAi, and the effect of paeoniflorin in extending lifespan in glucose treated nematodes could be suppressed by sod-3 RNAi. Molecular docking analysis indicated the binding potential of paeoniflorin with DAF-2, AGE-1, AKT-1, and AKT-2. Therefore, our results demonstrated the beneficial effect of paeoniflorin administration in inhibiting glucose-induced lifespan reduction by suppressing signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16-SOD-3 in insulin signaling pathway.
Collapse
Affiliation(s)
- Tianwen Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
- Medical School, Southeast University, Nanjing, China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
58
|
Zhu Q, Tang Y, Zhou T, Yang L, Zhang G, Meng Y, Zhang H, Gao J, Wang C, Su YX, Ye J. Exosomes derived from mesenchymal stromal cells promote bone regeneration by delivering miR-182-5p-inhibitor. Pharmacol Res 2023; 192:106798. [PMID: 37211240 DOI: 10.1016/j.phrs.2023.106798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Exosomes, small extracellular vesicles that function as a key regulator of cell-to-cell communication, are emerging as a promising candidate for bone regeneration. Here, we aimed to investigate the effect of exosomes from pre-differentiated human alveolar bone-derived bone marrow mesenchymal stromal cells (AB-BMSCs) carrying specific microRNAs on bone regeneration. Exosomes secreted from AB-BMSCs pre-differentiated for 0 and 7 days were cocultured with BMSCs in vitro to investigate their effect on the differentiation of the BMSCs. MiRNAs from AB-BMSCs at different stages of osteogenic differentiation were analyzed. BMSCs seeded on poly-L-lactic acid(PLLA) scaffolds were treated with miRNA antagonist-decorated exosomes to verify their effect on new bone regeneration. Exosomes pre-differentiated for 7 days effectively promoted the differentiation of BMSCs. Bioinformatic analysis revealed that miRNAs within the exosomes were differentially expressed, including the upregulation of osteogenic miRNAs (miR-3182, miR-1468) and downregulation of anti-osteogenic miRNAs (miR-182-5p, miR-335-3p, miR-382-5p), causing activation of the PI3K/Akt signaling pathway. The treatment of BMSC-seeded scaffolds with anti-miR-182-5p decorated exosomes demonstrated enhanced osteogenic differentiation and efficient formation of new bone. In conclusion, Osteogenic exosomes secreted from pre-differentiated AB-BMSCs were identified and the gene modification of exosomes provides great potential as a bone regeneration strategy. DATA AVAILABILITY STATEMENT: Data generated or analyzed in this paper partly are available in the GEO public data repository(http://www.ncbi.nlm.nih.gov/geo).
Collapse
Affiliation(s)
- Qinghai Zhu
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuting Tang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian Zhou
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gao Zhang
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Ying Meng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huixin Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing 211166, China
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing 211166, China
| | - Chenxing Wang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yu-Xiong Su
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, SAR, China.
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
59
|
Wang L, Lei J, Zhao Z, Jia J, Wang L. Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats. J Vet Sci 2023; 24:e23. [PMID: 37271501 PMCID: PMC10244138 DOI: 10.4142/jvs.22083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). OBJECTIVES To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. METHOD Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. RESULT In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. CONCLUSIONS PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin 300192, China
- Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Jinyan Lei
- Tianjin Institute of Hepatology, Tianjin 300192, China
- Department of Integrated Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Zeyu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Jianwei Jia
- Tianjin Institute of Hepatology, Tianjin 300192, China
- Department of Integrated Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin 300192, China.
| | - Li Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin 300192, China
- Academy of Medical Engineering and Transnational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
60
|
Hua X, Feng X, Hua Y, Wang D. Paeoniflorin attenuates polystyrene nanoparticle-induced reduction in reproductive capacity and increase in germline apoptosis through suppressing DNA damage checkpoints in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162189. [PMID: 36775158 DOI: 10.1016/j.scitotenv.2023.162189] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Due to high sensitivity to environmental exposures, Caenorhabditis elegans is helpful for toxicity evaluation and toxicological study of pollutants. Using this animal model, we investigated the reproductive toxicity of 20 nm polystyrene nanoparticle (PS-NP) in the range of μg/L and the following pharmacological intervention of paeoniflorin. After exposure from L1-larvae to young adults, 10-100 μg/L PS-NP could cause the reduction in reproductive capacity reflected by the endpoints of brood size and number of fertilized eggs in uterus. Meanwhile, the enhancements in germline apoptosis analyzed by AO staining and germline DNA damage as shown by alteration in HUS-1::GFP signals were detected in 10-100 μg/L PS-NP exposed nematodes, suggesting the role of DNA damage-induced germline apoptosis in mediating PS-NP toxicity on reproductive capacity. Following the exposure to 100 μg/L PS-NP, posttreatment with 25-100 mg/L paeoniflorin increased the reproductive capacity and inhibited both germline apoptosis and DNA damage. In addition, in 100 μg/L PS-NP exposed nematodes, treatment with 100 mg/L paeoniflorin modulated the expressions of genes governing germline apoptosis as indicated by the decrease in ced-3, ced-4, an egl-1 expressions and the increase in ced-9 expression. After exposure to 100 μg/L PS-NP, treatment with 100 mg/L paeoniflorin also decreased expressions of genes (cep-1, clk-2, hus-1, and mrt-2) governing germline DNA damage. Molecular docking analysis further demonstrated the binding potential of paeoniflorin with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2). Therefore, our data suggested the toxicity of PS-NP in the range of μg/L on reproductive capacity after exposure from L1-larvae to young adults, which was associated with the enhancement in DNA damage-induced germline apoptosis. More importantly, the PS-NP-induced reproductive toxicity on nematodes could be inhibited by the following paeoniflorin treatment.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingshun Hua
- Lintao Maternity and Child Health Center, Lintao 730500, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
61
|
Chen WC, Liang XY, Xie LY, Wu MA, Shen Q, Yao LM, Zhao W, Zhang SJ, Wang Q, Liang Y, Li WR. Comparative Study on the Pharmacokinetics of Paeoniflorin, White Peony Root Water Extract, and Taohong Siwu Decoction After Oral Administration in Rats. Eur J Drug Metab Pharmacokinet 2023; 48:301-310. [PMID: 37079249 DOI: 10.1007/s13318-023-00825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Taohong Siwu Decoction (TSD) is a classic traditional Chinese medicine (TCM) compound with pharmacological effects such as vasodilation and hypolipidemia. Paeoniflorin (PF) is one of the active ingredients of TSD. The aim of this study was to evaluate the pharmacokinetics of PF in herbal extracts and their purified forms in rats. METHOD A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method for the determination of PF in rat plasma was developed. Rats were divided into three groups, and given PF solution, water extract of white peony root (WPR), or TSD by gavage. At different predetermined timepoints after gavage, blood was collected from the orbital vein. The pharmacokinetic parameters of PF in the plasma of rats in the three groups was determined. RESULTS The pharmacokinetic studies showed that the time to reach maximum concentration (Tmax) of PF in the purified forms group was relatively high, while the half-lives (T½) of PF in the TSD and WPR groups were longer. Among the three groups, PF in the purified forms group had the maximum area under the concentration-time curve (AUC0-t = 732.997 µg/L·h) and the largest maximum concentration (Cmax = 313.460 µg/L), which showed a significant difference compared with the TSD group (P < 0.05). Compared with the purified group, the clearance (CLz/F = 86.004 L/h/kg) and the apparent volume of distribution (Vz/F = 254.787 L/kg) of PF in the TSD group increased significantly (P < 0.05). CONCLUSIONS A highly specific, sensitive, and rapid HPLC-MS-MS method was developed and applied for the determination of PF in rat plasma. It was found that TSD and WPR can prolong the action time of paeoniflorin in the body.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Xiao-Yi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Li-Yuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Ming-An Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Qi Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Li-Mei Yao
- School of TCM Healthcare, Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China.
| | - Wei-Rong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
62
|
Wang Q, Li H, You J, Yan B, Jin W, Shen M, Sheng Y, He B, Wang X, Meng X, Qin L. An integrated strategy of spectrum-effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba. ANAL SCI 2023:10.1007/s44211-023-00334-4. [PMID: 37037970 DOI: 10.1007/s44211-023-00334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum-effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum-effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Jinling You
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Binjun Yan
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Menglan Shen
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Bingqian He
- Academy of Chinese Medical Science, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinrui Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| |
Collapse
|
63
|
Wang XB, Wang ML, Chu YJ, Zhou PP, Zhang XY, Zou J, Zuo LH, Shi YY, Kang J, Li B, Cheng WB, Sun Z, Zhang XJ, Du SZ. Integrated pharmacokinetics and pharmacometabolomics to reveal the synergistic mechanism of a multicomponent Chinese patent medicine, Mailuo Shutong pills against thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154709. [PMID: 36774843 DOI: 10.1016/j.phymed.2023.154709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Mailuo Shutong Pills (MLST) have displayed pharmacological activity against thromboangiitis obliterans (TAO). However, the active ingredients and therapeutic mechanism of MLST against TAO remained to be further clarified. PURPOSE The aim of this study was to explore the active components of MLST and their synergistic mechanism against TAO by integrating pharmacokinetics (PK) and pharmacometabolomics (PM). METHODS TAO model rats were established by sodium laurate solution. Firstly, the efficacy of MLST was evaluated by gangrene score, blood flow velocity, and hematoxylin-eosin (H&E) staining. Secondly, PK research was conducted on bioavailable components to characterize their dynamic behaviors under TAO. Thirdly, multiple plasma and urine metabolic biomarkers for sodium laurate-induced TAO rats were found by untargeted metabolomics, and then variations in TAO-altered metabolites following MLST treatment were analyzed utilizing multivariate and bioinformatic analysis. Additionally, metabolic pathway analysis was performed using MetaboAnalyst. Finally, the dynamic link between absorbed MLST-compounds and TAO-associated endogenous metabolites was established by correlation analysis. RESULTS MLST significantly alleviated gangrene symptoms by improving the infiltration of inflammatory cells and blood supply in TAO rats. Significant differences in metabolic profiles were found in 17 differential metabolites in plasma and 24 in urine between Sham and TAO rats. The 10 bioavailable MLST-compounds, such as chlorogenic acid and paeoniflorin, showed positive or negative correlations with various TAO-altered metabolites related to glutamate metabolism, histidine metabolism, arachidonic acid metabolism and so on. CONCLUSION This study originally investigated the dynamic interaction between MLST and the biosystem, providing unique insight for disclosing the active components of MLST and their synergistic mechanisms against TAO, which also shed light on new therapeutic targets for TAO and treatment.
Collapse
Affiliation(s)
- Xiao-Bao Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Meng-Li Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Yao-Juan Chu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Pei-Pei Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Xiang-Yu Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Jing Zou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Li-Hua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Ying-Ying Shi
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Jian Kang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Bing Li
- State Key Laboratory of Common Technology of Traditional Chinese Medicine and Pharmaceuticals, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wen-Bo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| | - Xiao-Jian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| | - Shu-Zhang Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| |
Collapse
|
64
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
65
|
Han SY, Lim SK, Kim H. Effect of Paeoniae Radix Rubra (Paeonia lactiflora Pall.) extract on mucin secretion, gene expression in human airway epithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115959. [PMID: 36436716 DOI: 10.1016/j.jep.2022.115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall., is a traditional Chinese medicine which has the effects of regulating various inflammatory diseases, treating blood stasis, and enhancing blood circulation. AIM OF THE STUDY This study examined whether Paeoniae Radix rubra extract (PRRE) and Paeoniflorin (PF) affect mucin production, gene expression including MUC5AC, and protein expression related to the ERK pathway induced by TNF-α from human airway epithelial cells. MATERIALS AND METHODS NCI-H292 cells induced by TNF-α were treated with each agent. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction, staining, and enzyme-linked immunosorbent assay. Western blot was used to investigate the cell signaling pathways. RESULTS PRRE and PF inhibited the production of MUC5AC mucin protein and gene expression in TNF-α-induced H292 cells. In Western blot, PRRE was involved in protein expression related to the ERK pathway. CONCLUSIONS Overall, PRRE effectively inhibited the MUC5AC, and inflammatory cytokines expression caused by TNF-α, which was closely involved in the ERK pathway. PRRE may have the potential for treating mucus producing respiratory inflammation.
Collapse
Affiliation(s)
- Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa, Goyang, Gyeonggi-do, Republic of Korea.
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa, Goyang, Gyeonggi-do, Republic of Korea.
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa, Goyang, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
66
|
Shen J, Yang F, Wang G, Mou X, Li J, Ding X, Wang X, Li H. Paeoniflorin alleviates inflammation in bovine mammary epithelial cells induced by Staphylococcus haemolyticus through TLR2/NF-κB signaling pathways. Res Vet Sci 2023; 156:95-103. [PMID: 36796241 DOI: 10.1016/j.rvsc.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is one of the most common coagulase-negative staphylococci (CoNS) isolates from bovine mastitis. Paeoniflorin (PF) shows anti-inflammatory effects on different inflammatory diseases in vitro studies and in vivo animal experiments. In this study, the viability of bovine mammary epithelial cells (bMECs) was detected by the cell counting kit-8 experiment. Subsequently, bMECs were induced with S. haemolyticus, and the induction dosage was determined. The expression of pro-inflammatory cytokines and toll-like receptor (TLR2) and nuclear factor kappa-B (NF-κB) signaling pathway-related genes were investigated by quantitative real-time PCR. The critical pathway proteins were detected by western blot. The results showed that the multiplicity of infection (MOI; the ratio of bacteria to bMECs) 5:1 of S. haemolyticus for 12 h could cause cellular inflammation, which was selected to establish the inflammatory model. Incubation with 50 μg/ml PF for 12 h was the best intervention condition for cells stimulated by S. hemolyticus. Quantitative real-time PCR and western blot analysis showed that PF inhibited the activation of TLR2 and NF-κB pathway-related genes and the expression of related proteins. Western blot results showed that PF suppressed the expression of NF-κB unit p65, NF-κB unit p50, and MyD88 in bMECs stimulated by S. haemolyticus. The inflammatory response pathway and molecular mechanism caused by S. haemolyticus on bMECs are related to TLR2-mediated NF-κB signaling pathways. The anti-inflammatory mechanism of PF may also be through this pathway. Therefore, PF is expected to develop potential drugs against CoNS-induced bovine mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guibo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaoqing Mou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jinyu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
67
|
Xu F, Xie Q, Kuang W, Dong Z. Interactions Between Antidepressants and Intestinal Microbiota. Neurotherapeutics 2023; 20:359-371. [PMID: 36881351 PMCID: PMC10121977 DOI: 10.1007/s13311-023-01362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The microbiota-gut-brain axis has been shown to influence human health and diseases, including depression. The interactions between drugs and intestinal microbiota are complex and highly relevant to treat diseases. Studies have shown an interaction between antidepressants and intestinal microbiota. Antidepressants may alter the abundance and composition of intestinal microbiota, which are closely related to the treatment outcomes of depression. Intestinal microbiota can influence the metabolism of antidepressants to change their availability (e.g., tryptophan can be metabolized to kynurenine by intestinal microbiota) and regulate their absorption by affecting intestinal permeability. In addition, the permeability of the blood-brain barrier can be altered by intestinal microbiota, influencing antidepressants to reach the central nervous system. Bioaccumulation is also a type of drug-microbiota interaction, which means bacteria accumulate drugs without biotransformation. These findings imply that it is important to consider intestinal microbiota when evaluating antidepressant therapy regimens and that intestinal microbiota can be a potential target for depression treatment.
Collapse
Affiliation(s)
- Feiyu Xu
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
68
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
69
|
Paul-Traversaz M, Umehara K, Watanabe K, Rachidi W, Sève M, Souard F. Kampo herbal ointments for skin wound healing. Front Pharmacol 2023; 14:1116260. [PMID: 36860294 PMCID: PMC9969195 DOI: 10.3389/fphar.2023.1116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
The management of skin wound healing problems is a public health issue in which traditional herbal medicines could play a determining role. Kampo medicine, with three traditionally used ointments, provides interesting solutions for these dermatological issues. These ointments named Shiunkō, Chuōkō, and Shinsen taitsukō all have in common a lipophilic base of sesame oil and beeswax from which herbal crude drugs are extracted according to several possible manufacturing protocols. This review article brings together existing data on metabolites involved in the complex wound healing process. Among them are representatives of the botanical genera Angelica, Lithospermum, Curcuma, Phellodendron, Paeonia, Rheum, Rehmannia, Scrophularia, or Cinnamomum. Kampo provides numerous metabolites of interest, whose content in crude drugs is very sensitive to different biotic and abiotic factors and to the different extraction protocols used for these ointments. If Kampo medicine is known for its singular standardization, ointments are not well known, and research on these lipophilic formulas has not been developed due to the analytical difficulties encountered in biological and metabolomic analysis. Further research considering the complexities of these unique herbal ointments could contribute to a rationalization of Kampo's therapeutic uses for wound healing.
Collapse
Affiliation(s)
- Manon Paul-Traversaz
- Univ. Grenoble Alpes, CNRS, TIMC UMR 5525, EPSP, Grenoble, France,Yokohama University of Pharmacy, Kampo Natural Product Chemistry Laboratory, Yokohama, Japan,Yokohama University of Pharmacy, Yokohama, Japan,Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France,*Correspondence: Manon Paul-Traversaz,
| | - Kaoru Umehara
- Yokohama University of Pharmacy, Kampo Natural Product Chemistry Laboratory, Yokohama, Japan,Yokohama University of Pharmacy, Yokohama, Japan
| | | | - Walid Rachidi
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France
| | - Michel Sève
- Univ. Grenoble Alpes, CNRS, TIMC UMR 5525, EPSP, Grenoble, France
| | - Florence Souard
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, Grenoble, France,Univ. libre de Bruxelles, Department of Pharmacotherapy and Pharmaceutics, Faculty of Pharmacy, Brussels, Belgium
| |
Collapse
|
70
|
Identification of a Novel Angiogenesis Signalling circSCRG1/miR-1268b/NR4A1 Pathway in Atherosclerosis and the Regulatory Effects of TMP-PF In Vitro. Molecules 2023; 28:molecules28031271. [PMID: 36770940 PMCID: PMC9919304 DOI: 10.3390/molecules28031271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis contributes to plaque instability in atherosclerosis and further increases cardio-cerebrovascular risk. Circular RNAs (circRNAs) are promising biomarkers and potential therapeutic targets for atherosclerosis. Previous studies have demonstrated that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination treatment (TMP-PF) inhibited oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis in vitro. However, whether circRNAs regulate angiogenesis in atherosclerosis and whether TMP-PF can regulate angiogenesis-related target circRNAs in atherosclerosis are unknown. In this study, human RNA sequencing (RNA-seq) data were analysed to identify differentially expressed (DE) circRNAs in atherosclerosis and to obtain angiogenesis-associated circRNA-microRNA (miRNA)-messenger RNA (mRNA) networks. Target circRNA-related mechanisms in angiogenesis in atherosclerosis and the regulatory effects of TMP-PF on target circRNA signalling were studied in ox-LDL-induced human umbilical vein endothelial cells (HUVECs) by cell proliferation, migration, tube formation, and luciferase reporter assays, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. A novel circRNA (circular stimulator of chondrogenesis 1, circSCRG1) was initially identified associated with angiogenesis in atherosclerosis, and circSCRG1 silencing up-regulated miR-1268b expression, increased nuclear receptor subfamily 4 group A member 1 (NR4A1) expression and then promoted ox-LDL-induced angiogenesis. TMP-PF (1 μmol/L TMP combined with 10 μmol/L PF) up-regulated circSCRG1 expression, mediated miR-1268b to suppress NR4A1 expression and then inhibited ox-LDL-induced angiogenesis. However, circSCRG1 silencing abolished the inhibitory effects of TMP-PF on ox-LDL-induced angiogenesis, which were rescued by the miR-1268b inhibitor. In conclusion, circSCRG1 might serve as a new target regulating angiogenesis in atherosclerosis via the circSCRG1/miR-1268b/NR4A1 axis and TMP-PF could regulate the circSCRG1/miR-1268b/NR4A1 axis to inhibit angiogenesis in atherosclerosis in vitro, indicating a novel angiogenesis signalling circSCRG1/miR-1268b/NR4A1 pathway in atherosclerosis and the regulatory effects of TMP-PF, which might provide a new pharmaceutical strategy to combat atherosclerotic plaque instability.
Collapse
|
71
|
Luo C, Yang D, Hou C, Tan T, Chao C. Paeoniflorin protects NOD mice from T1D through regulating gut microbiota and TLR4 mediated myD88/TRIF pathway. Exp Cell Res 2023; 422:113429. [PMID: 36402426 DOI: 10.1016/j.yexcr.2022.113429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the effect of PF in regulating the progression of T1D through regulating gut microbiota and inhibiting TLR4-myD88/TRIF pathway. T1D mouse models were established and received PF treatment through intraperitoneal injection. The glucose, sugar tolerance, the incidence of T1D and H&E staining were detected to verify the effect of PF on T1D. Meanwhile, the changes of gut microbiota and the permeability of intestines in mice were also measured. On parallel, the number and function of immune cells were detected by Flow Cytometry. The expressions of ZO-1, ZO-2 and TLR4-myD88/TRIF pathway related proteins were detected by western blotting. Mice received PF treatment had decreased incidence of T1D and inflammatory infiltration in islet tissues compared with those received PBS treatment. In addition to that, PF treated mice had increased Sutterella species and decreased intestinal permeability, in which the decreased ratio of Th1/Th17 and increased Treg cells were also identified. The expression of TLR4-myD88/TRIF pathway was also suppressed in response to PF treatment. Moreover, further treatment with TLR4 agonist, LPS, could reverse the effect of PF on T1D mice. PF can suppress the TLR4 mediated myD88/TRIF pathway to change the distribution of gut microbiota, so as to protect NOD mice from T1D.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Can Hou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Tingting Tan
- Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan Province, PR China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
72
|
Yu W, Ilyas I, Hu X, Xu S, Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front Immunol 2022; 13:1072007. [PMID: 36618414 PMCID: PMC9811007 DOI: 10.3389/fimmu.2022.1072007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that the incidence, prevalence and mortality of atherosclerotic cardiovascular disease (ASCVD) are increasing globally. Atherosclerosis is characterized as a chronic inflammatory disease which involves inflammation and immune dysfunction. P. lactiflora Pall. is a plant origin traditional medicine that has been widely used for the treatment of various diseases for more than a millennium in China, Japan and Korean. Paeoniflorin is a bioactive monomer extracted from P. lactiflora Pall. with anti-atherosclerosis effects. In this article, we comprehensively reviewed the potential therapeutic effects and molecular mechanism whereby paeoniflorin protects against atherosclerosis from the unique angle of inflammation and immune-related pathway dysfunction in vascular endothelial cells, smooth muscle cells, monocytes, macrophages, platelets and mast cells. Paeoniflorin, with multiple protective effects in atherosclerosis, has the potential to be used as a promising therapeutic agent for the treatment of atherosclerosis and its complications. We conclude with a detailed discussion of the challenges and future perspective of paeoniflorin in translational cardiovascular medicine.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China,Center for Drug Research and Development, Anhui Renovo Pharmaceutical Co., Ltd, Center for Drug Research and Development, Hefei, Anhui, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuerui Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Hebei University of Technology, Tianjin, China,*Correspondence: Hui Yu,
| |
Collapse
|
73
|
Lan Z, Zhang Y, Lin H, Sun Y, Wang S, Meng J. Efficient monitoring for the nutrient changes in stir-fried Moutan Cortex using non-destructive near-infrared spectroscopy sensors. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
74
|
Lv S, Zhao Y, Wang L, Yu Y, Li J, Huang Y, Xu W, Sun G, Dai W, Zhao T, Bi D, Ma Y, Sun P. Antidepressant Active Components of Bupleurum chinense DC-Paeonia lactiflora Pall Herb Pair: Pharmacological Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1024693. [PMID: 36408279 PMCID: PMC9668458 DOI: 10.1155/2022/1024693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2024]
Abstract
Depression is a serious psychological disorder with a rapidly increasing incidence in recent years. Clinically, selective serotonin reuptake inhibitors are the main therapy. These drugs, have serious adverse reactions, however. Traditional Chinese medicine has the characteristics of multiple components, targets, and pathways, which has huge potential advantages for the treatment of depression. The antidepressant potential of the herbal combination of Bupleurum chinense DC (Chaihu) and Paeonia lactiflora Pall (Baishao) has been extensively studied previously. In this review, we summarized the antidepressant active components and mechanism of Chaihu-Baishao herb pair. We found that it works mainly through relieving oxidative stress, regulating HPA axis, and protecting neurons. Nevertheless, current research of this combined preparation still faces many challenges. On one hand, most of the current studies only stay at the level of animal models, lacking of sufficient clinical double-blind controlled trials for further verification. In addition, studies on the synergistic effect between different targets and signaling pathways are scarce. On the other hand, this preparation has numerous defects such as poor stability, low solubility, and difficulty in crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Shimeng Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Le Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yihong Yu
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaxin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufei Huang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518027, China
| | - Geqin Sun
- Zhongshan Torch Development Zone People's Hospital, Zhongshan 528400, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
75
|
Cao C, Zhao W, Chen X, Shen B, Wang T, Wu C, Rong X. Deciphering the action mechanism of paeoniflorin in suppressing pancreatic cancer: A network pharmacology study and experimental validation. Front Pharmacol 2022; 13:1032282. [PMID: 36339551 PMCID: PMC9630940 DOI: 10.3389/fphar.2022.1032282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Paeoniflorin (PF) is the main active component of Chinese herbaceous peony that has been shown to have an anti-tumor effect. However, there are few studies on the prevention and treatment of pancreatic cancer with PF. Methods: We gathered Microarray data pertaining to paeoniflorin intervention in pancreatic cancer by utilizing the GEO database (GSE97124). Then, the DEGs were filtered by the 33R program. RNA-seq data of pancreatic cancer and normal tissue samples were taken from the TCGA and GTEx databases, respectively, and the WGCNA technique was utilized to examine the pancreatic cancer-specific genes. Paeoniflorin target genes for the treatment of pancreatic cancer were determined based on the overlap between DEGs and WGCNA. GO and KEGG enrichment analyses were then performed on paeoniflorin target genes to discover which biological processes were impacted. Using the 3 hierarchical methods included in the Cytohubba plugin, we re-screened the hub genes in the target genes to find the genes most relevant to paeoniflorin treatment. The overall survival effects of hub genes were confirmed using the TCGA database. Finally, the paeoniflorin targets identified by the network pharmacology analysis were validated using PANC-1 and Capan-2 cells. Results: We identified 148 main potential PF targets, and gene enrichment analysis suggested that the aforementioned targets play a crucial role in the regulation of MAPK, PI3K-AKT, and other pathways. The further screening of the prospective targets resulted in the identification of 39 hub genes. Using the TCGA database, it was determined that around 33.33% of the hub gene’s high expression was linked with a bad prognosis. Finally, we demonstrated that PF inhibits IL-6 and IL-10 expression and p38 phosphorylation in pancreatic cancer cells, thereby reducing inflammation. Conclusion: PF may regulate inflammatory factors mainly through the p38 MAPK signal pathway. These findings provide theoretical and experimental evidence suggesting the PF as a promising natural source of anti-tumor compounds for pancreatic cancer.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Wenting Zhao
- Hubei University of Chinese Medicine, Wuhan, China
| | | | - Bin Shen
- Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Chongqing Medical University, Chongqing, China
| | - Chaoxu Wu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaofeng Rong, ; Chaoxu Wu,
| | - Xiaofeng Rong
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaofeng Rong, ; Chaoxu Wu,
| |
Collapse
|
76
|
Kobayashi K, Tang YT, Sasaki K. Paeoniflorin, a constituent of Kami-shoyo-san, suppresses blood glucose levels in postmenopausal diabetic mice by promoting the secretion of estradiol from adipocytes. Biochem Biophys Rep 2022; 32:101335. [PMID: 36510583 PMCID: PMC9734273 DOI: 10.1016/j.bbrep.2022.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Ovarian functional deterioration in women with climacteric disorders increases the prevalence of type 2 diabetes (T2D). Therefore, we revealed that paeoniflorin (PF), an ingredient of paeony root (PR), which is a constituent of Kami-shoyo-san (KS), promotes glucose uptake by increasing estradiol secretion from adipocytes. Adipocytes differentiated from 3T3-L1 cells were incubated in culture medium containing the extracts of KS, PR, KS excluding PR (KS-PR), or PF for 5 d at 37 °C and 5% CO2. The estradiol and glucose concentrations in the medium were determined using enzyme-linked immunosorbent assay (ELISA). Next, PF (1 or 10 mg/kg) was subcutaneously injected into ovariectomized mice (12-week-old, ICR strain) once daily for 19 d to perform the glucose tolerance test and determine blood estradiol and adiponectin levels. The release of estradiol from 3T3-L1 adipocytes was significantly increased by KS, PR, KS-PR, and PF, and the increased estradiol level caused by KS was significantly decreased by excluding PF from KS (KS-PR). Glucose concentration in the medium was significantly decreased by KS and PF. In in vivo experiments, the 10 mg/kg PF-treated group showed significantly suppressed blood glucose levels at 0 and 30 min after d-glucose loading by intraperitoneal injection. These findings indicate that KS, which includes PR-containing PF as the main ingredient, may have the potential to prevent T2D caused by ovarian dysfunction in menopausal women by increasing estradiol secretion from adipocytes.
Collapse
Affiliation(s)
- Kyoko Kobayashi
- Corresponding author. Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-Chome, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan.
| | | | | |
Collapse
|
77
|
Role of Caspase Family in Intervertebral Disc Degeneration and Its Therapeutic Prospects. Biomolecules 2022; 12:biom12081074. [PMID: 36008968 PMCID: PMC9406018 DOI: 10.3390/biom12081074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common musculoskeletal degenerative disease worldwide, of which the main clinical manifestation is low back pain (LBP); approximately, 80% of people suffer from it in their lifetime. Currently, the pathogenesis of IVDD is unclear, and modern treatments can only alleviate its symptoms but cannot inhibit or reverse its progression. However, in recent years, targeted therapy has led to new therapeutic strategies. Cysteine-containing aspartate proteolytic enzymes (caspases) are a family of proteases present in the cytoplasm. They are evolutionarily conserved and are involved in cell growth, differentiation, and apoptotic death of eukaryotic cells. In recent years, it has been confirmed to be involved in the pathogenesis of various diseases, mainly by regulating cell apoptosis and inflammatory response. With continuous research on the pathogenesis and pathological process of IVDD, an increasing number of studies have shown that caspases are closely related to the IVDD process, especially in the intervertebral disc (IVD) cell apoptosis and inflammatory response. Therefore, herein we study the role of caspases in IVDD with respect to the structure of caspases and the related signaling pathways involved. This would help explore the strategy of regulating the activity of the caspases involved and develop caspase inhibitors to prevent and treat IVDD. The aim of this review was to identify the caspases involved in IVDD which could be potential targets for the treatment of IVDD.
Collapse
|
78
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|
79
|
Li X, Zheng J, Wang J, Tang X, Zhang F, Liu S, Liao Y, Chen X, Xie W, Tang Y. Effects of Uremic Clearance Granules on p38 MAPK/NF-κB Signaling Pathway, Microbial and Metabolic Profiles in End-Stage Renal Disease Rats Receiving Peritoneal Dialysis. Drug Des Devel Ther 2022; 16:2529-2544. [PMID: 35946040 PMCID: PMC9357387 DOI: 10.2147/dddt.s364069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Xiaosheng Li
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jian Wang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xianhu Tang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Shufeng Liu
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yunqiang Liao
- First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiaoqing Chen
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wenjuan Xie
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yang Tang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- Correspondence: Yang Tang, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Qingnian Road, Suite 23, Ganzhou, 341000, People’s Republic of China, Email
| |
Collapse
|
80
|
Li J, Li R, Wu X, Zheng C, Shiu PHT, Rangsinth P, Lee SMY, Leung GPH. An Update on the Potential Application of Herbal Medicine in Promoting Angiogenesis. Front Pharmacol 2022; 13:928817. [PMID: 35928282 PMCID: PMC9345329 DOI: 10.3389/fphar.2022.928817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis, the formation of new capillaries from pre-existing vascular networks, plays an important role in many physiological and pathological processes. The use of pro-angiogenic agents has been proposed as an attractive approach for promoting wound healing and treating vascular insufficiency-related problems, such as ischemic heart disease and stroke, which are the leading causes of death worldwide. Traditional herbal medicine has a long history; however, there is still a need for more in-depth studies and evidence-based confirmation from controlled and validated trials. Many in vitro and in vivo studies have reported that herbal medicines and their bioactive ingredients exert pro-angiogenic activity. The most frequently studied pro-angiogenic phytochemicals include ginsenosides from Panax notoginseng, astragalosides and calycosin from Radix Astragali, salvianolic acid B from Salvia miltiorrhiza, paeoniflorin from Radix Paeoniae, ilexsaponin A1 from Ilex pubescens, ferulic acid from Angelica sinensis, and puerarin from Radix puerariae. This review summarizes the progress in research on these phytochemicals, particularly those related to pro-angiogenic mechanisms and applications in ischemic diseases, tissue repair, and wound healing. In addition, an outline of their limitations and challenges during drug development is presented.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa Macao SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: George Pak-Heng Leung,
| |
Collapse
|
81
|
Meng Y, Song C, ElGamal R, Liu C. Relationship between heat/mass transfer and color change during drying process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
82
|
Sun R, Liu J, Yu M, Xia M, Zhang Y, Sun X, Xu Y, Cui X. Paeoniflorin Ameliorates BiPN by Reducing IL6 Levels and Regulating PARKIN-Mediated Mitochondrial Autophagy. Drug Des Devel Ther 2022; 16:2241-2259. [PMID: 35860525 PMCID: PMC9289176 DOI: 10.2147/dddt.s369111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bortezomib-induced peripheral neuropathy (BiPN) is a common complication of multiple myeloma (MM) treatment that seriously affects the quality of life of patients. The purpose of the present study was to explore the therapeutic effect of paeoniflorin on BiPN and its possible mechanism. Methods ELISA was used to measure the level of interleukin-6 (IL6) in the plasma of MM patients, and bioinformatics analysis was used to predict the mechanism underlying the effect of paeoniflorin on peripheral neuropathy. Cell and animal models of BiPN were constructed to evaluate mitochondrial function by measuring cell viability and mitochondrial quality and labeling mitochondria with MitoTracker Green. Nerve injury in mice with BiPN was assessed by behavioral tests, evaluation of motor nerve conduction velocity, hematoxylin-eosin (HE) staining, electron microscopy and analysis of the levels of reactive oxygen species (ROS). Western blotting and immunohistochemistry (IHC) were used to assess the expression of autophagy-related proteins. Results In MM patients, IL6 levels were positively correlated with the degree of PN. The results of bioinformatics analysis suggested that paeoniflorin ameliorated PN by altering inflammation levels and mitochondrial autophagy. Paeoniflorin increased PC12 cell viability and mitochondrial autophagy levels, alleviated mitochondrial damage, and reduced IL6 levels. In addition, paeoniflorin effectively improved the behavior of mice with BiPN, relieved sciatic nerve injury in mice, increased the expression of LC3II/I, beclin-1, and Parkin in sciatic nerve cells, and increased the expression of LC3B and Parkin in the nerve tissue. Conclusion The present study confirmed that paeoniflorin significantly ameliorated peripheral neuropathy (PN) caused by bortezomib, possibly by reducing IL6 levels to regulate PARKIN-mediated mitochondrial autophagy and mitochondrial damage.
Collapse
Affiliation(s)
- Runjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Jiang Liu
- Department of Foreign Affairs Office, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Manya Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Mengting Xia
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yanyu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Xiaoqi Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yunsheng Xu
- Second School of Clinical Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, People’s Republic of China
- Correspondence: Yunsheng Xu; Xing Cui, Second School of Clinical Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 1 Jingba Road, Jinan, 250001, People’s Republic of China, Email ;
| | - Xing Cui
- Second School of Clinical Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, People’s Republic of China
| |
Collapse
|
83
|
Shaoyao-Gancao Decoction Promoted Microglia M2 Polarization via the IL-13-Mediated JAK2/STAT6 Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm 2022; 2022:1707122. [PMID: 35757105 PMCID: PMC9232306 DOI: 10.1155/2022/1707122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Microglia in the penumbra shifted from M2 to M1 phenotype between 3 and 5 days after cerebral ischemia-reperfusion, which promoted local inflammation and injury. Shaoyao-Gancao Decoction (SGD) has been found to result in a significant upregulation of IL-13 in the penumbra, which has been shown to induce polarization of M2 microglia. There was thus a hypothesis that SGD could exert an anti-inflammatory and neuroprotective effect by activating IL-13 to induce microglia polarization towards M2 phenotype, and the purpose of this study was to explore the influence of SGD on microglia phenotype switching and its possible mechanism. Rats who received middle cerebral artery occlusion surgery (MCAO) were treated with SGD for 3 or 6 days, to investigate the therapeutic effect and the underlying mechanism of SGD for cerebral ischemia-reperfusion injury (CI/RP). The results indicated that SGD improved neurobehavioral scores and reduced apoptosis. Furthermore, SGD significantly decreased M1 microglia and M1-like markers, but increased M2 microglia and M2 markers. Moreover, higher levels of IL-13 and ratios of p-JAK2/JAK2 and p-STAT6/STAT6 were found in the SGD group compared to the MCAO. In conclusion, it was verified that SGD prevented injury by driving microglia phenotypic switching from M1 to M2, probably via IL-13 and its downstream JAK2-STAT6 pathway. Given that no further validation tests were included in this study, it is necessary to conduct more experiments to confirm the reliability of the above results.
Collapse
|
84
|
Yan Z, Zhang K, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Kang Y, Song X, Li J. Huang Bai Jian Pi decoction alleviates diarrhea and represses inflammatory injury via PI3K/Akt/NF-κB pathway: In vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115212. [PMID: 35331876 DOI: 10.1016/j.jep.2022.115212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang Bai Jian Pi (HBJP) decoction, a Chinese herbal formula based on the Pulsatilla decoction (PD) and Si Junzi decoction, is efficacy to treat clinical diarrhea in calves. AIM OF THE STUDY The mechanism of HBJP decoction to treat calf diarrhea remains unclear. This study was to investigate the therapeutic effect and anti-inflammatory mechanism of HBJP decoction on diarrhea in rats. MATERIALS AND METHODS Thirty-six Sprague Dawley rats were randomly divided into control group, model group, PD group and three treated groups with HBJP decoction. The diarrheal model in rats was established by multiple factors including high-sugar and fat diet, high temperature and dampness environment, biological pathogenic factors. The diarrheal animals were treated with HBJP decoction or PD for 5 days. The inflammatory model of the intestinal epithelioid cell line 6 (IEC-6) was induced by TNF-α. The clinical symptoms, blood routine and biochemistry parameters, histopathology of main organs were detected. The proteins associated with PI3K/Akt/NF-κB pathway and the expression levels of cytokines associated with inflammation were detected in vivo and in vitro by Western blot and ELISA. RESULTS The model rats showed obvious diarrheal symptoms, and the obvious systemic inflammatory response accompanied with abnormal change in blood routine, biochemistry parameters and histopathology. HBJP decoction alleviated obviously the clinical symptoms, and pathological changes of the liver, colon and lung, and abnormal blood routine and biochemistry indexes in rats. The expression of P-PI3K, P-Akt, P-NF-κB, IL-1β, IL-6 was significantly increased, and the expression of IL-10 was markedly decreased in diarrheal rats and IEC-6 with inflammation. HBJP decoction significantly inhibited the PI3K/AKT/NF-κB signal pathway and adjusted the expression of these inflammatory cytokines. CONCLUSIONS The finding suggested that HBJP decoction alleviate the inflammation in diarrhea through inhibiting the PI3K/Akt/NF-κB signal pathway, which provides scientific evidences for the clinical application of HBJP decoction in diarrhea.
Collapse
Affiliation(s)
- Zunxiang Yan
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China; College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Kai Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Guibo Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Zhengying Qiu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Yandong Kang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China.
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China.
| |
Collapse
|
85
|
Wang Y, You K, You Y, Li Q, Feng G, Ni J, Cao X, Zhang X, Wang Y, Bao W, Wang X, Chen T, Li H, Huang Y, Lyu J, Yu S, Li H, Xu S, Zeng K, Shen X. Paeoniflorin prevents aberrant proliferation and differentiation of intestinal stem cells by controlling C1q release from macrophages in chronic colitis. Pharmacol Res 2022; 182:106309. [PMID: 35716915 DOI: 10.1016/j.phrs.2022.106309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
The pathological features of inflammatory bowel disease necessitate therapeutic strategies aimed at restoring intestinal mucosal barrier function in addition to controlling inflammation. Paeoniflorin, a bioactive herbal constituent isolated from the root of Paeonia albiflora Pall, has been reported to protect against acute colitis in mice. However, the direct molecular target of paeoniflorin in preventing colitis remains elusive. Here, we evaluated the therapeutical effects of Paeoniflorin using IL-10-/- chronic colitis model, and explored the precise mechanism of action involved. Our results demonstrated that intragastric administration of Paeoniflorin significantly ameliorated inflammatory response and restored the aberrant intestinal proliferation and differentiation in IL-10-/-colitis mice. By utilizing a chemical biology approach, we identified C1qa, a crucial component of C1q, is the direct target of Paeoniflorin. Binding of Paeoniflorin to C1qa prevented the cleavage of C1q on macrophages, resulting in the aggregation of surface membrane-anchored C1q and the diminished C1q secretion. The excessive surface membrane-anchored C1q significantly enhanced the phagocytic capability of macrophages and promoted the elimination of infiltrated bacteria and inflammatory cells in mouse colon. The reduced C1q secretion conferred by Paeoniflorin dampened Wnt/β-catenin signaling activation, thereby rectifying the aberrant proliferation and differentiation of intestinal stem cells (ISCs). In summary, our study demonstrates that Paeoniflorin can orchestrate mucosal healing and intestinal inflammation elimination through C1q-bridged macrophage-ISCs crosstalk, highlighting a novel strategy to treat chronic colitis by restoring mucosal homeostasis via targeting C1q.
Collapse
Affiliation(s)
- Yirui Wang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinyue Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaowen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanhang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xu Wang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuran Huang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shihang Yu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
86
|
Lei C, Chen Z, Fan L, Xue Z, Chen J, Wang X, Huang Z, Men Y, Yu M, Liu Y, Chen J. Integrating Metabolomics and Network Analysis for Exploring the Mechanism Underlying the Antidepressant Activity of Paeoniflorin in Rats With CUMS-Induced Depression. Front Pharmacol 2022; 13:904190. [PMID: 35770096 PMCID: PMC9234202 DOI: 10.3389/fphar.2022.904190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Paeoniflorin (PF) represents the major bioactive constituent of the traditional Chinese medicine plant Paeonia suffruticosa (Ranunculaceae), which has a long history as a folk medicine in Asian. Paeoniflorin, a bitter pinene monoterpene glycoside, has antidepressant effects, but its potential therapeutic mechanism has not been thoroughly explored. Methods: Experimental depression in rats was established by the chronic unpredictable mild stress (CUMS) combined with orphan method, and the efficacy of paeoniflorin on depression was evaluated by the sucrose preference test and open field test. The antidepressant mechanism of paeoniflorin was investigated by metabolomic and network pharmacology. The relevant pathways of biomarkers highlighted in metabolomics were explored, and the possible targets of paeoniflorin in the treatment of depression were further revealed through network analysis. The binding activity of paeoniflorin to key targets was verified by molecular docking. Results: Metabolomics showed that rats with CUMS-induced depression had urine metabolic disorders, which were reversed by paeoniflorin through the regulation of metabolic pathways. Metabolites that play a key role in the function of paeoniflorin include citric acid, thiamine monophosphate, gluconolactone, 5-hydroxyindoleacetic acid and stachyose. Key predicted targets are SLC6A4, TNF, IL6 and SLC6A3. An important metabolic pathway is the Citrate cycle (TCA cycle). Conclusion: Network integrative analysis in this study showed that paeoniflorin could improve depressive-like symptoms in model rats with CUMS-induced depression and overall correct the disordered metabolic profile through multiple metabolic pathways.
Collapse
Affiliation(s)
- Chaofang Lei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xihong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinian Men
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhi Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yueyun Liu, ; Jiaxu Chen,
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yueyun Liu, ; Jiaxu Chen,
| |
Collapse
|
87
|
Wang XL, Wang YT, Guo ZY, Zhang NN, Wang YY, Hu D, Wang ZZ, Zhang Y. Efficacy of paeoniflorin on models of depression: A systematic review and meta-analysis of rodent studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115067. [PMID: 35143936 DOI: 10.1016/j.jep.2022.115067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin, a bioactive compound extracted from the traditional Chinese herb, Paeonia lactiflora Pall, has been demonstrated to possess efficient antidepressant activity in previous studies. AIM OF THE STUDY Our systematic review and meta-analysis aimed to assess the effectiveness of paeoniflorin in relieving depressive-like behaviors in animal models. MATERIALS AND METHODS We searched for in vivo studies on the antidepressant effects of paeoniflorin in rodents using electronic databases from their inception to April 2021. The measurements of animal behavioral tests, including the sucrose consumption, forced swimming, tail suspension, and open field tests, were regarded as the outcomes. RESULTS Fourteen studies involving 416 animals met the inclusion criteria and were included in the meta-analysis. Statistical analysis revealed remarkable differences between the paeoniflorin and control groups. Furthermore, the paeoniflorin group showed great efficiency in improving depressive-like symptoms of animals in the sucrose consumption, forced swimming, tail suspension, and open field tests. CONCLUSIONS Our meta-analysis demonstrates that paeoniflorin can significantly improve depressive-like symptoms in animals and suggests that it can be a potential therapy for patients with depression in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuan-Yuan Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
88
|
Liu Y, Sun Y, Bai X, Li L, Zhu G. Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein Endothelial Cell Injury through IRAK1/TAK1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6584645. [PMID: 35601145 PMCID: PMC9122697 DOI: 10.1155/2022/6584645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022]
Abstract
Introduction Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid metabolism disorder and vascular endothelial damage. Albiflorin (AF) has been certified to be effective in the therapy of certain inflammatory diseases, while the therapeutic effect and mechanism of AF on AS have not been fully elucidated. Material and Methods. Model cells for AS were created by inducing oxidized low-density lipoprotein (Ox-LDL) in human umbilical vein endothelial cells (HUVECs). After processing with AF and interleukin-1 receptor-associated kinase 1- (IRAK1-) overexpressed plasmid, cell viability was assessed by CCK-8; cholesterol efflux was tested using liquid scintillation counter; IL-6 and TNF-α levels were determined with ELISA kits; ROS and apoptosis were confirmed using Flow cytometry. Besides, IRAK1-TAK1 pathway and apoptosis- and mitochondrial fusion-related proteins were monitored with western blotting analysis. Results Our results verified that AF could not only dramatically accelerate viability and cholesterol efflux but also attenuate inflammation, ROS production, and apoptosis in Ox-LDL-induced HUVECs. Meanwhile, AF could prominently prevent the activation of IRAK1-TAK1 pathway, downregulate apoptosis-related proteins, and upregulate mitochondrial fusion-related proteins in Ox-LDL-induced HUVECs. Moreover, we testified that IRAK1 overexpression memorably could reverse suppression of AF on inflammation, apoptosis, and IRAK1-TAK1 pathway and enhancement of AF on viability, cholesterol efflux, and mitochondrial fusion in Ox-LDL-induced HUVECs. Conclusions By blocking the IRAK1/TAK1 pathway, AF can significantly slow the course of AS, suggesting that it could be a viable therapeutic option for AS.
Collapse
Affiliation(s)
- Yeling Liu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Yilai Sun
- Department of Pancreatic & Hernial Surgery Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Xue Bai
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Guihua Zhu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| |
Collapse
|
89
|
Wang XZ, Xia L, Zhang XY, Chen Q, Li X, Mou Y, Wang T, Zhang YN. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomed Pharmacother 2022; 149:112800. [PMID: 35279012 DOI: 10.1016/j.biopha.2022.112800] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
Paeoniflorin is a water-soluble monoterpenoid glycoside that can be derived from multiple herbaceous plants, such as Radix Paeoniae Rubra, Radix Paeoniae Alba, Paeonia suffruticosa and Cimicifugae Foetidae. Multiple studies have suggested that Paeoniflorin possesses an excellent anti-tumor effect in variety of tumors, including liver cancer, gastric cancer, breast cancer, lung cancer, pancreatic cancer, colorectal cancer and bladder cancer. It can induce cell apoptosis, inhibit proliferation, invasion and metastasis via different molecular mechanisms, which are mainly involved in nuclear transcription factor kappα (NF-κB), B-cell lymphoma-2(Bcl-2) family, MicroRNA, neural precursor cell expressed developmentally down-regulated protein 4(NEDD4) signaling pathway, transcription activating factor (STAT3), p21, p53/14-3-3 signaling pathway, transforming growth factor-β1(TGF-β1)/Smads signaling pathway, Mitogen-activated protein kinase (MAPK) signaling pathway and Notch-1. Current studies on anti-tumor effect and mechanism of action of Paeoniflorin remain unclear. Therefore, this study reviews the research progress in the anti-tumor effect and mechanism of Paeoniflorin in an attempt to provide a new thought and theoretical basis for further development and clinical application of Paeoniflorin.
Collapse
Affiliation(s)
- Xue Zhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Yu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - Ya Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
90
|
Wang J, Li G, Zhong W, Zhang H, Yang Q, Chen L, Wang J, Yang X. Effect of Dietary Paeoniae Radix Alba Extract on the Growth Performance, Nutrient Digestibility and Metabolism, Serum Biochemistry, and Small Intestine Histomorphology of Raccoon Dog During the Growing Period. Front Vet Sci 2022; 9:839450. [PMID: 35445094 PMCID: PMC9014091 DOI: 10.3389/fvets.2022.839450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Paeoniae radix alba extract (PRA extract) has the functions of regulating immunity, resisting inflammation, and has antioxidant properties. However, current recommendations of dietary PRA extract levels for raccoon dogs were inadequate. The purpose of this experimental study was to gain information allowing for better estimating the effects of PRA extract on raccoon dogs, and their PRA requirements. Fifty healthy male raccoon dogs of (120 ± 5) days old were randomly divided into 5 groups (group PRA0, PRA1, PRA2, PRA4, PRA8) with 10 animals in each group and 1 in each replicate. Five kinds of experimental diets were prepared with five levels of Paeoniae radix alba extract (0, 1, 2, 4, 8 g/kg) in the basic diet. The prefeeding period was 7 days and the experimental period was 40 days. The results showed that the average daily feed intake in group PRA1 and PRA2 was significantly higher than that in other groups (P < 0.01). The dry matter excretion in group PRA8 was significantly higher than that in other groups (P < 0.01), while the dry matter digestibility and protein digestibility in group PRA8 were significantly lower than those in other groups (P < 0.01). Nitrogen retention in group PRA1 and PRA2 was significantly higher than that in group PRA8 (P < 0.05). With the increase of the content of Paeoniae radix alba extract in diet, the activity of alkaline phosphatase in group PRA2 was significantly higher than that in group PRA0 (P < 0.05); The activity of serum SOD in group PRA4 was significantly higher than that in other groups (P < 0.01). The content of serum IgA in group PRA2 was significantly higher than that in other groups (P < 0.05). The content of TNF-α in intestinal mucosa in group PRA1 and group PRA2 was significantly lower than that in group PRA0 (P < 0.05). In conclusion, we found that dietary Paeoniae radix alba extract intake significantly improved the feed intake and nitrogen deposition of Ussuri raccoon dog, increased the content of serum IgA and reduced the content of TNF-α in the small intestinal mucosa. We suggest that an estimated dietary Paeoniae radix alba extract level of 1 to 2 g/kg could be used as a guide to achieve the optimal performance of raccoon dogs.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| | - Wei Zhong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qianlong Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihong Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuewen Yang
- China Animal Husbandry Group, Beijing, China
| |
Collapse
|
91
|
Sang X, Ying J, Wan X, Han X, Shan Q, Lyu Q, Yang Q, Wang K, Hao M, Liu E, Cao G. Screening of Bioactive Fraction of Radix Paeoniae Alba and Enhancing Anti-Allergic Asthma by Stir-Frying Through Regulating PI3K/AKT Signaling Pathway. Front Pharmacol 2022; 13:863403. [PMID: 35431951 PMCID: PMC9009445 DOI: 10.3389/fphar.2022.863403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic asthma is a common respiratory inflammation disease. The crude Radix Paeoniae Alba (RPA) and its processed products have been used frequently as antipyretic and anti-inflammatory agents in traditional medicine. To evaluate the effect of honey and bran processing, different fractions of RPA were used for treating anti-allergic asthma in the ovalbumin (OVA)-induced mice model, and then, the most effective fraction of RPA and stir-frying Radix Paeoniae Alba with honey and bran (FRPA) for treating anti-allergic asthma were compared mutually for pharmacological effects. The results showed that the treatment of the dichloromethane fraction of RPA significantly improved the pathological condition of lung tissues, decreased the number of eosinophils and other cells in bronchoalveolar lavage fluid (BALF), and the increased the expression of various inflammatory factors. Furthermore, the study discovered that the lung pathological conditions, compared with the high dose of dichloromethane RPA fraction, could be ameliorated by high dose of dichloromethane FRPA fraction treatment. Moreover, the expression of inflammatory factors and the phosphorylation of the PI3K/AKT signaling pathway could be diminished by FRPA. Finally, the contents of compounds with a significant difference in the FRPA dichloromethane fraction were paeoniflorin, ethyl gallate, pentagalloylglucose, galloylpaeoniflorin, and others by UPLC/Q-TOF-MS analysis. These findings suggest that the dichloromethane fraction of FRPA has an enhancement effect on anti-allergic asthma and provide the experimental basis for exploring the processed mechanism of RPA.
Collapse
|
92
|
Sun X, Chen L, Yan H, Cui L, Hussain H, Xie L, Liu J, Jiang Y, Meng Z, Cao G, Park J, Wang D. An efficient high-speed counter-current chromatography method for the preparative separation of potential antioxidant from Paeonia lactiflora Pall. combination of in vitro evaluation and molecular docking. J Sep Sci 2022; 45:1856-1865. [PMID: 35338696 DOI: 10.1002/jssc.202200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022]
Abstract
Paeonia lactiflora Pall., one of the most famous classical herbal medicine, has been used to treat diseases for over 1200 years. In this research, the functional ingredients were purified by online-switch two-dimensional high-speed counter-current chromatography combined with inner-recycling and continuous injection mode. The antioxidant activity was evaluated by investigating the 2,2'-azobis (2-amidinopropane) dihydrochloride-induced oxidant damage in vitro and confirmed through molecular docking. n-Butanol/ethyl acetate/water (2:3:5, v/v) solvent system was used for the first dimensional separation and optimized the sample loading. Two pure compounds and a polyphenol-enriched fraction were separated. The polyphenol-enriched fraction was separated with a solvent system n-hexane/ethyl acetate/methanol/water (2:8:4:6, v/v) with continuous injection mode. Five compounds were successfully separated, including gallic acid (1), methyl gallate (2), albiflorin (3), paeoniflorin (4), and ethyl gallate (5). Their structures were identified by mass spectrometry and nuclear magnetic resonance. The results from antioxidant effect showed that albiflorin had stronger antioxidant activity. Molecular docking results indicated that the affinity energy of the identified compounds ranged from -3.79 to -8.22 kcal/mol and albiflorin showed the lowest affinity energy. Overall, all those findings suggested that the strong antioxidant capacity of albiflorin can be potentially used for treatment of diseases that caused by oxidation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuan Sun
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China.,School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Long Chen
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Huijiao Yan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Li Cui
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Lei Xie
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Jie Liu
- Engineering Research Center for Medicines of Orthopedic Pain of Shandong Province, Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yujuan Jiang
- Engineering Research Center for Medicines of Orthopedic Pain of Shandong Province, Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, China
| | - Jeonghill Park
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
93
|
Guo W, Yang XG, Shi YL, Wang H. The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1. J Orthop Surg Res 2022; 17:90. [PMID: 35164817 PMCID: PMC8842535 DOI: 10.1186/s13018-022-02965-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
Background The incidence of osteoporosis and osteoporotic fractures is increasing every year. Traditional Chinese Medicine (TCM) can shed new light on the treatment of osteoporosis. This study aimed to explore the role and mechanism of paeoniflorin in promoting osteogenic differentiation of an osteoblast precursor cell line (MC3T3-E1). Methods MC3T3-E1 cells were cultured in osteogenic induction medium (OIM) and OIM combined with different concentrations of paeoniflorin. The optimal dose of paeoniflorin was assessed by a cell counting kit-8 (CCK-8) assay. Then, alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining were performed to assess the osteogenic capacity of paeoniflorin. The transcription of osteogenic genes and the expression of osteogenic proteins were assessed by RT-PCR and Western blotting, respectively. The transcription of Wnt/β-catenin signaling pathway genes and proteins was assessed by RT-PCR and Western blotting, respectively. Finally, Dickkopf-1 (DKK-1), a Wnt/β-catenin signaling pathway inhibitor, was used to identify whether the Wnt/β-catenin signaling pathway was involved in the osteogenic differentiation of paeoniflorin. Osteoclastogenesis in RAW264.7 cells was identified by tartrate-resistant acid phosphatase (TRAP) staining. Results At concentrations ranging from 0.1 to 100 μM, paeoniflorin was not cytotoxic to MC3T3-E1 cells. Paeoniflorin significantly increased the osteogenic differentiation of MC3T3-E1 cells in a dose-dependent manner. Moreover, paeoniflorin significantly increased osteogenic differentiation gene and protein expression. Through bioinformatic analysis, paeoniflorin-affected genes were found to be involved in different signaling pathways, such as the Wnt/β-catenin signaling pathway. Paeoniflorin enhanced β-catenin and CyclinD1 expression compared with that of the control groups. DKK-1 partially reversed the promoting effects of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1 cells. Moreover, paeoniflorin inhibited the osteoclastogenesis of RAW264.7 cells. Conclusion Paeoniflorin promotes osteogenic differentiation in MC3T3-E1 cells by regulating the Wnt/β-catenin pathway. Paeoniflorin is a potential therapeutic agent for the treatment of osteoporosis.
Collapse
|
94
|
Hou PW, Liu SC, Tsay GJ, Tang CH, Chang HH. The Traditional Chinese Medicine "Hu-Qian-Wan" Attenuates Osteoarthritis-Induced Signs and Symptoms in an Experimental Rat Model of Knee Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5367494. [PMID: 35186100 PMCID: PMC8849814 DOI: 10.1155/2022/5367494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic, low-grade inflammatory disease that affects knee joints and causes functional disability in the elderly. KOA is typically treated with oral NSAIDs, which are commonly associated with gastrointestinal side effects or cardiovascular complications. Traditional Chinese medicine (TCM) is widely used by patients with KOA in Taiwan; the Hu-Qian-Wan (HQW) formula is typically prescribed. We investigated the therapeutic role of a modified version of the HQW decoction in Sprague-Dawley rats with KOA induced by anterior cruciate ligament transection (ACLT) of the right knee. MATERIALS AND METHODS Thirty rats were randomly assigned to five groups (six animals each): arthrotomy alone (sham surgery, controls), ACLT only, ACLT + low-dose (1,000 mg/kg) HQW, ACLT + high-dose (3,000 mg/kg) HQW, and ACLT + celecoxib (30 mg/kg). All study groups underwent weight-bearing behavioral testing, micro-computed tomography (CT), and histological examinations of the knee joint cartilage, as well as immunohistochemical analyses of levels of interleukin (IL) 1β and tumor necrosis factor (TNF) α expression in articular cartilage. RESULTS At 6 weeks, compared with ACLT group only, ACLT rats administered high-dose HQW or celecoxib exhibited the fewest weight-bearing deficits, the greatest improvements from baseline in articular cartilage architecture, and the lowest amounts of TNF-α and IL-1β staining in cartilage and synovial sections (all values were significant compared with the ACLT-only group). The only values that were significantly increased by ACLT + low-dose HQW compared with ACLT alone were bone mineral density and trabecular numbers. CONCLUSION Our findings suggest that high-dose HQW improves weight-bearing asymmetry, decreases bone loss, and reduces levels of TNF-α and IL-1β in the affected joint in ACLT-induced KOA rats. More evidence is needed to support our findings.
Collapse
Affiliation(s)
- Pu-Wei Hou
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin County 65152, Douliu, Taiwan
| | - Gregory J. Tsay
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
| | - Hen-Hong Chang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
95
|
Benić MS, Nežić L, Vujić-Aleksić V, Mititelu-Tartau L. Novel Therapies for the Treatment of Drug-Induced Liver Injury: A Systematic Review. Front Pharmacol 2022; 12:785790. [PMID: 35185538 PMCID: PMC8847672 DOI: 10.3389/fphar.2021.785790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Many drugs with different mechanisms of action and indications available on the market today are capable of inducing hepatotoxicity. Drug-induced liver injury (DILI) has been a treatment challenge nowadays as it was in the past. We searched Medline (via PubMed), CENTRAL, Science Citation Index Expanded, clinical trials registries and databases of DILI and hepatotoxicity up to 2021 for novel therapies for the management of adult patients with DILI based on the combination of three main search terms: 1) treatment, 2) novel, and 3) drug-induced liver injury. The mechanism of action of novel therapies, the potential of their benefit in clinical settings, and adverse drug reactions related to novel therapies were extracted. Cochrane Risk of bias tool and Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment approach was involved in the assessment of the certainty of the evidence for primary outcomes of included studies. One thousand three hundred seventy-two articles were identified. Twenty-eight articles were included in the final analysis. Eight randomized controlled trials (RCTs) were detected and for six the available data were sufficient for analysis. In abstract form only we found six studies which were also anaylzed. Investigated agents included: bicyclol, calmangafodipir, cytisin amidophospate, fomepizole, livina-polyherbal preparation, magnesium isoglycyrrhizinate (MgIG), picroliv, plasma exchange, radix Paeoniae Rubra, and S-adenosylmethionine. The primary outcomes of included trials mainly included laboratory markers improvement. Based on the moderate-certainty evidence, more patients treated with MgIG experienced alanine aminotransferase (ALT) normalization compared to placebo. Low-certainty evidence suggests that bicyclol treatment leads to a reduction of ALT levels compared to phosphatidylcholine. For the remaining eight interventions, the certainty of the evidence for primary outcomes was assessed as very low and we are very uncertain in any estimate of effect. More effort should be involved to investigate the novel treatment of DILI. Well-designed RCTs with appropriate sample sizes, comparable groups and precise, not only surrogate outcomes are urgently welcome.
Collapse
Affiliation(s)
- Mirjana Stanić Benić
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vesna Vujić-Aleksić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- The Republic of Srpska Agency for Certification, Accreditation and Quality Improvement in Health Care, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
96
|
Su KH, Su SY, Ko CY, Cheng YC, Huang SS, Chao J. Ethnopharmacological Survey of Traditional Chinese Medicine Pharmacy Prescriptions for Dysmenorrhea. Front Pharmacol 2022; 12:746777. [PMID: 34992529 PMCID: PMC8724257 DOI: 10.3389/fphar.2021.746777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Chinese herbal medicines have long been used for the treatment of dysmenorrhea. The treatment experiences of traditional Chinese medicine (TCM) pharmacies passed down through generations have contributed to a wealth of prescriptions for dysmenorrhea that have achieved significant therapeutic effects in countless Taiwanese women. Therefore, surveying and analyzing these prescriptions may enable us to elucidate the core medication combinations used in TCM prescriptions for dysmenorrhea. In the present study, a field investigation was conducted on various TCM pharmacies in Taiwan. A total of 96 TCM pharmacies were sampled, and 99 prescriptions for dysmenorrhea containing 77 different medicinal materials were collected. Compositae (8%) was the most common botanical source of the medicinal materials, and the predominant TCM property and flavor of the materials were warm (45%) and sweet (73%), respectively. The blood-activating and stasis-dispelling effect (23%) and the qi-tonifying effect (23%) were the most prevalent traditional effects, and the modern pharmacological effects most commonly found in the materials were anti-inflammatory (73%), antitumor (59%), and analgesic (12%) effects. Network analysis of the 77 medicinal materials used in the prescriptions, which was performed using the Traditional Chinese Medicine Inheritance Support System, yielded seven core medicinal materials and the corresponding network diagram. The seven core medicinal materials ranked in order of relative frequency of citation (RFC) were Angelica sinensis (Oliv.) Diels (Dang Gui), Ligusticum chuanxiong Hort (Chuan Qiong), Rehmannia glutinosa Libosch (Di Huang), Paeonia lactiflora Pall (Bai Shao), Hedysarum polybotrys Hand.-Mazz (Hong Qi), Lycium chinense Mill (Gou Qi Zi), and Cinnamomum cassia (L.). J. Presl (Gui Zhi). A total of 58 combinations, each consisting of two to five of the seven medicinal materials and 107 association rules among the materials, were identified. This study provides a record of valuable knowledge on TCM pharmacy prescriptions for dysmenorrhea. The rich medicinal knowledge of TCM pharmacies in Taiwan is worthy of further exploration, and the results of this study can serve as a basis for future pharmacological research and the development of naturally derived medications for dysmenorrhea.
Collapse
Affiliation(s)
- Kuo-Han Su
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| |
Collapse
|
97
|
Sun X, Zhu K, Feng C, Zhu J, Chen S, Tang W, Wang Z, Xiao L, Li H, Geng D, Wang Z. Paeoniflorin Ameliorates Hyperprolactinemia-Induced Inhibition of Osteoblastogenesis by Suppressing the NF- κB Signaling Pathway. Int J Endocrinol 2022; 2022:4572033. [PMID: 35465073 PMCID: PMC9033376 DOI: 10.1155/2022/4572033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperprolactinemia is a common endocrine disease in women of reproductive age. Research has shown that patients with hyperprolactinemia often have decreased bone mineral density and an increased risk of fractures. However, there is still a lack of effective treatments. Paeoniflorin, one of the primary bioactive components in peony, is widely used in traditional Chinese medicine. Research has shown that paeoniflorin promotes osteoblast differentiation. However, whether paeoniflorin plays a role in hyperprolactinemia-induced osteoblastogenesis inhibition is not yet clear. In this study, we investigated the effect of paeoniflorin on prolactin (PRL)-mediated inhibition of osteoblast function. Our results showed that prolactin significantly reduced the expression of alkaline phosphatase (ALP), Osterix, and runt-related transcription factor 2 (RUNX2) in MC3T3-E1 cells cultured in an osteoblast differentiation medium, suggesting that prolactin inhibited osteoblast function. After treatment with paeoniflorin (PF), the expression of these osteoblast markers was upregulated. In addition, our findings proved that paeoniflorin increased the absorbance values of ALP-positive cells and the areas of alizarin red S (ARS) deposition compared to those in the prolactin group, suggesting that paeoniflorin reversed the PRL-induced reduction in osteoblast differentiation. The PRL-induced activation of nuclear factor kappa B (NF-κB) was significantly reversed by paeoniflorin, indicating that paeoniflorin promoted osteoblast function by inhibiting the NF-κB signaling pathway. In summary, these results showed that paeoniflorin alleviated the inhibitory effect of prolactin on osteoblastogenesis by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaohong Sun
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Keda Zhu
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Chengcheng Feng
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Jie Zhu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Shuangshuang Chen
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Wenkai Tang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Zhifang Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hong Li
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhirong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| |
Collapse
|
98
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
99
|
Peng W, Chen Y, Tumilty S, Liu L, Luo L, Yin H, Xie Y. Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca 2+ and ROS homeostasis. Curr Opin Pharmacol 2021; 62:97-102. [PMID: 34959127 DOI: 10.1016/j.coph.2021.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases (NDDs) are a range of neurological disorders featured by neuronal degeneration and apoptosis. Cellular Calcium (Ca2+) and reactive oxygen species (ROS) dyshomeostasis are the earliest and important events in the development of NDDs and may yield promising therapeutic targets for NDDs. Paeoniflorin, a water-soluble monoterpene glucoside, is the major bioactive monomer extracted from the root of Paeonia lactiflora pall. Increasing evidence has suggested that this natural compound might be used to treat various NDDs, and its potential molecular mechanisms are related to the modulation of Ca2+/ROS homeostasis in cells. In addition, paeoniflorin accounts for more than 40% of the total glucosides of herbaceous peonies with abundant herbaceous sources. Furthermore, it has also been validated as a safe extraction in clinical pharmacological research with a wide therapeutic window. Hence, it is rational to anticipate paeoniflorin being a promising candidate for the treatment of NDDs via regulating Ca2+/ROS dyshomeostasis.
Collapse
Affiliation(s)
- Wei Peng
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yunhui Chen
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China.
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand
| | - Lizhou Liu
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand; Ageing Well National Science Challenge, University of Otago, Dunedin, 9054, New Zealand
| | - Ling Luo
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Haiyan Yin
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China
| |
Collapse
|
100
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|