51
|
Characterization of Thermophilic Microorganisms in the Geothermal Water Flow of El Chichón Volcano Crater Lake. WATER 2020. [DOI: 10.3390/w12082172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study reports for the first time the isolation, identification and characterization of lipase-producing thermophilic strain from the geothermal water of the El Chichón volcano crater lake. Two strains were identified by 16S rRNA sequencing as Geobacillus jurassicus CHI2 and Geobacillus stearothermophilus CHI1. Results showed that G. jurassicus CHI2 is Gram-positive, able to ferment maltose, fructose and sucrose and to hydrolyze starch and casein; while G. stearothermophilus CHI1 showed to be Gram-variable, able to ferment maltose and fructose and to hydrolyze starch. Colonies of both strains presented irregular shape, umbilicated elevation of gummy texture and cells presented flagellar movement to survive in fluids with high temperature and mass gradients due to complex phenomena of heat and mass transfer present in the geothermal fluids. Lipase production for G. stearothermophilus CHI1 was also evaluated. It was found that this strain possesses a growth associated with extracellular lipase production with a high activity of 143 U/mL at 8.3 h of incubation time, superior to the activities reported for other microorganisms of genus Geobacillus; for this reason, it can be said that the thermal flow of the El Chichón volcano crater lake can be a useful source of lipase-producing thermophilic bacteria.
Collapse
|
52
|
Ganesan M, Mathivani Vinayakamoorthy R, Thankappan S, Muniraj I, Uthandi S. Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:124. [PMID: 32684977 PMCID: PMC7362481 DOI: 10.1186/s13068-020-01764-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The current production of bioethanol based on lignocellulosic biomass (LCB) highly depends on thermostable enzymes and extremophiles owing to less risk of contamination. Thermophilic bacterial cellulases are preferred over fungi due to their higher growth rate, presence of complex multi-enzymes, stability, and enhanced bioconversion efficiency. Corncob, underutilized biomass, ensures energy conservation due to high lignocellulosic and more fermentable sugar content. In the present study, the thermophilic bacterium Bacillus aerius CMCPS1, isolated from the thermal springs of Manikaran, Himachal Pradesh, India, was characterized in terms of its activity, stability, and hydrolytic capacity. A two-step process comprising: (i) a combined strategy of hydrodynamic cavitation reaction (HCR)-coupled enzymatic (LccH at 6.5 U) pretreatment for delignification and (ii) subsequent hydrolysis of pre-treated (HCR-LccH) corncob biomass (CCB) using a thermostable cocktail of CMCPS1 was adopted to validate the efficiency of the process. Some of the parameters studied include lignin reduction, cellulose increase, and saccharification efficiency. RESULT Among the five isolates obtained by in situ enrichment on various substrates, B. aerius CMCPS1, isolated from hot springs, exhibited the maximum hydrolytic activity of 4.11. The GH activity of the CMCPS1 strain under submerged fermentation revealed maximum filter paper activity (FPA) and endoglucanase activity of 4.36 IU mL-1 and 2.98 IU mL-1, respectively, at 44 h. Similarly, the isolate produced exoglucanase and β-glucosidase with an activity of 1.76 IU mL-1 and 1.23 IU mL-1 at 48 h, respectively. More specifically, the enzyme endo-1,4-β-d glucanase E.C.3.2.1.4 (CMCase) produced by B. aerius CMCPS1 displayed wider stability to pH (3-9) and temperature (30-90 °C) than most fungal cellulases. Similarly, the activity of CMCase increased in the presence of organic solvents (118% at 30% acetone v/v). The partially purified CMCase from the culture supernatant of CMCPS1 registered 64% yield with twofold purification. The zymogram and SDS-PAGE analyses further confirmed the CMCase activity with an apparent molecular mass of 70 kDa. The presence of genes specific to cellulases, such as cellulose-binding domain CelB, confirmed the presence of GH family 46 and β-glucosidase activity (GH3). The multifunctional cellulases of CMCPS1 were evaluated for their saccharification efficiency on laccase (LccH, a fungal laccase from Hexagonia hirta MSF2)-pretreated corncob in a HCR. The lignin and hemicelluloses removal efficiency of HCR-LccH was 54.1 and 6.57%, respectively, with an increase in cellulose fraction (42.25%). The saccharification efficiency of 55% was achieved with CMCPS1 multifunctional cellulases at 50 °C and pH 5.0. CONCLUSION The multifunctional cellulase complex of B. aerius CMCPS1 is a potential biocatalyst for application in lignocellulosic biomass-based biorefineries. The saccharification ability of HCR-LccH-pretreated corncob at elevated temperatures would be an advantage for biofuel production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Meena Ganesan
- Biocatalysts Lab., Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003 India
| | | | - Sugitha Thankappan
- Biocatalysts Lab., Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003 India
| | - Iniyakumar Muniraj
- Department of Crop Management, Kumaraguru Institute of Agriculture, Sakthi Nagar, Erode, 638315 India
| | - Sivakumar Uthandi
- Biocatalysts Lab., Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003 India
| |
Collapse
|
53
|
Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front Bioeng Biotechnol 2020; 8:483. [PMID: 32596215 PMCID: PMC7303364 DOI: 10.3389/fbioe.2020.00483] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The biorefining technology for biofuels and chemicals from lignocellulosic biomass has made great progress in the world. However, mobilization of laboratory research toward industrial setup needs to meet a series of criteria, including the selection of appropriate pretreatment technology, breakthrough in enzyme screening, pathway optimization, and production technology, etc. Extremophiles play an important role in biorefinery by providing novel metabolic pathways and catalytically stable/robust enzymes that are able to act as biocatalysts under harsh industrial conditions on their own. This review summarizes the potential application of thermophilic, psychrophilic alkaliphilic, acidophilic, and halophilic bacteria and extremozymes in the pretreatment, saccharification, fermentation, and lignin valorization process. Besides, the latest studies on the engineering bacteria of extremophiles using metabolic engineering and synthetic biology technologies for high-efficiency biofuel production are also introduced. Furthermore, this review explores the comprehensive application potential of extremophiles and extremozymes in biorefinery, which is partly due to their specificity and efficiency, and points out the necessity of accelerating the commercialization of extremozymes.
Collapse
Affiliation(s)
- Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wasiu Adewale Adebisi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fiaz Ahmad
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Blessing Danso
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
54
|
Govil T, Saxena P, Samanta D, Singh SS, Kumar S, Salem DR, Sani RK. Adaptive Enrichment of a Thermophilic Bacterial Isolate for Enhanced Enzymatic Activity. Microorganisms 2020; 8:E871. [PMID: 32526936 PMCID: PMC7355623 DOI: 10.3390/microorganisms8060871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
The mimicking of evolution on a laboratory timescale to enhance biocatalyst specificity, substrate utilization activity, and/or product formation, is an effective and well-established approach that does not involve genetic engineering or regulatory details of the microorganism. The present work employed an evolutionary adaptive approach to improve the lignocellulose deconstruction capabilities of the strain by inducing the expression of laccase, a multicopper oxidase, in Geobacillus sp. strain WSUCF1. This bacterium is highly efficient in depolymerizing unprocessed lignocellulose, needing no preprocessing/pretreatment of the biomasses. However, it natively produces low levels of laccase. After 15 rounds of serially adapting this thermophilic strain in the presence of unprocessed corn stover as the selective pressure, we recorded a 20-fold increase in catalytic laccase activity, at 9.23 ± 0.6 U/mL, in an adapted yet stable strain of Geobacillus sp. WSUCF1, compared with the initial laccase production (0.46 ± 0.04 U/mL) obtained with the unadapted strain grown on unprocessed corn stover before optimization. Chemical composition analysis demonstrated that lignin removal by the adapted strain was 22 wt.% compared with 6 wt.% removal by the unadapted strain. These results signify a favorable prospect for fast, cost competitive bulk production of this thermostable enzyme. Also, this work has practical importance, as this fast adaptation of the Geobacillus sp. strain WSUCF1 suggests the possibility of growing industrial quantities of Geobacillus sp. strain WSUCF1 cells as biocatalysts on reasonably inexpensive carbon sources for commercial use. This work is the first application of the adaptive laboratory evolution approach for developing the desired phenotype of enhanced ligninolytic capability in any microbial strain.
Collapse
Affiliation(s)
- Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India; (P.S.); (S.K.)
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
| | - Sindhu Suresh Singh
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Sudhir Kumar
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India; (P.S.); (S.K.)
| | - David R. Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
- BuG ReMeDEE consortium, Rapid City, SD 57701, USA
| |
Collapse
|
55
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
56
|
Cui M, Duan Y, Ma Y, Al-Shwafy KWA, Liu Y, Zhao X, Huang R, Qi W, He Z, Su R. Real-Time QCM-D Monitoring of the Adsorption-Desorption of Expansin on Lignin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4503-4510. [PMID: 32241112 DOI: 10.1021/acs.langmuir.0c00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expansin has nonhydrolytic disruptive activity and synergistically acts with cellulases to enhance the hydrolysis of cellulose. The adsorption-desorption of expansin on noncellulosic lignin can greatly affect the action of expansin on lignocellulose. In this study, three lignins with different sources (kraft lignin (KL), sodium lignin sulfonate (SLS), and enzymatic hydrolysis lignin (EHL)) were selected as the substrates. The real-time adsorption-desorption of Bacillus subtilis expansin (BsEXLX1) on lignins was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The effects of temperature and Tween 80 on the adsorption-desorption behaviors were also investigated. The results show that BsEXLX1 exhibited high binding ability on lignin and achieved maximum adsorption of 283.2, 273.8, and 266.9 ng cm-2 at 25 °C on KL, SLS, and EHL, respectively. The maximum adsorption decreased to 148.2-192.8 ng cm-2 when the temperature increased from 25 to 45 °C. Moreover, Tween 80 competitively bound to lignin and significantly prevented expansin adsorption. After irreversible adsorption of Tween 80, the maximum adsorption of BsEXLX1 greatly decreased to 33.3, 37.2, and 10.3 ng cm-2 at 25 °C on KL, SLS, and EHL, respectively. Finally, a kinetic model was developed to analyze the adsorption-desorption process of BsEXLX1. BsEXLX1 has a higher adsorption rate constant (kA) and a lower desorption rate constant (kD) on KL than on SLS and EHL. The findings of this study provide useful insights into the adsorption-desorption of expansin on lignin.
Collapse
Affiliation(s)
- Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuhao Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory of Tianjin University R&D Center for Petrochemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Khaled W A Al-Shwafy
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yudong Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xudong Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Renliang Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
57
|
Agave Leaves as a Substrate for the Production of Cellulases by Penicillium sp . and the Obtainment of Reducing Sugars. J CHEM-NY 2020. [DOI: 10.1155/2020/6092165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lignocellulosic biomass can be used to obtain fermentable sugars by enzymatic hydrolysis, and also it serves as a carbon source to produce cellulases by solid-state fermentation. In this study, we propose the use of leaves of Agave salmiana as a carbon source to produce cellulases by the fungus Penicillium sp., isolated from the same plant. The crude enzymatic extract was used to obtain sugars from the hydrolysis of the parenchymal cells of the leaves. The enzymes produced were characterized (endoglucanase 14.4 U/g; exoglucanase 3.5 U/g; β-glucosidase 4.14 U/g). The enzymes showed activities at elevated temperatures: 50°C for endoglucanase and exoglucanase and 70°C for β-glucosidase. Furthermore, the crude enzymatic extract obtained was able to hydrolyze the parenchyma in 51.6% in 48 h. The evidence presented in this paper shows the potential of the agave leaves as a source of carbon in the production of enzymes by fermentation with the consequent production of reducing sugars. In addition, the enzymes produced by Penicillium sp. could be used in the production of bioethanol, since they work at high temperatures.
Collapse
|
58
|
Han C, Yang R, Sun Y, Liu M, Zhou L, Li D. Identification and Characterization of a Novel Hyperthermostable Bifunctional Cellobiohydrolase- Xylanase Enzyme for Synergistic Effect With Commercial Cellulase on Pretreated Wheat Straw Degradation. Front Bioeng Biotechnol 2020; 8:296. [PMID: 32328483 PMCID: PMC7160368 DOI: 10.3389/fbioe.2020.00296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
The novel cellobiohydrolase gene ctcel7 was identified from Chaetomium thermophilum, and its recombinant protein CtCel7, a member of glycoside hydrolase family 7, was heterologously expressed in Pichia pastoris and biochemically characterized. Compared with commercial hydrolases, purified CtCel7 exhibited superior bifunctional cellobiohydrolase and xylanase activities against microcrystalline cellulose and xylan, respectively, under optimal conditions of 60°C and pH 4.0. Moreover, CtCel7 displayed remarkable thermostability with over 90% residual activity after heat (60°C) treatment for 180 min. CtCel7 was insensitive to most detected cations and reagents and preferentially cleaved the β-1,4-glycosidic bond to generate oligosaccharides through the continuous saccharification of lignocellulosic substrates, which are crucial for various practical applications. Notably, the hydrolysis effect of a commercial cellulase cocktail on pretreated wheat straw was substantively improved by its combination with CtCel7. Taken together, these excellent properties distinguish CtCel7 as a robust candidate for the biotechnological production of biofuels and biobased chemicals.
Collapse
Affiliation(s)
- Chao Han
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ruirui Yang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yanxu Sun
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Lifan Zhou
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Duochuan Li
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
59
|
Oni OD, Oke MA, Sani A. Mixing of Prosopis africana pods and corn cob exerts contrasting effects on the production and quality of Bacillus thuringiensis crude endoglucanase. Prep Biochem Biotechnol 2020; 50:735-744. [PMID: 32129150 DOI: 10.1080/10826068.2020.1734939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, attention has shifted to the use of mixed lignocellulosic substrates for the production of cellulolytic enzymes. However, researchers have focused mainly on achieving increased enzyme yields while neglecting other properties of the enzymes when using such mixtures. In this first-ever report of the application of Prosopis africana pod (PAP) in cellulase production, we investigated the effect of its combination with corn cob (CC), as an inducing carbon source, on the amounts and quality of crude endoglucanase produced by Bacillus thuringiensis SS12. The organism was grown on PAP, CC or their 1:1% w/w mixture (MS) and the crude endoglucanases produced were tested for activity, hydrolytic efficiency, and thermostability. PAP supported the highest enzyme activity (0.138 U/mL) and its endoglucanase was the most effective in hydrolyzing CMC and filter paper while CC-derived endoglucanase was the best for hydrolysis of alkali-pretreated CC. Enzyme activity of MS-derived endoglucanase (0.110 U/mL) was intermediate to that of PAP and CC (0.091 U/mL) and was the most stable at elevated temperatures (70 and 80 °C). It also liberated the least amount of reducing sugars from all tested substrates. Combination of both the substrates, thus, favored enzyme production and thermostability but was detrimental to hydrolytic efficiency.
Collapse
Affiliation(s)
- Oyewole Daniel Oni
- Faculty of Life Sciences, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Mushafau Adebayo Oke
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, School of Applied Sciences and Technology, Northern Alberta Institute of Technology, Edmonton, Canada
| | - Alhassan Sani
- Faculty of Life Sciences, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
60
|
Ganguly J, Martin‐Pascual M, van Kranenburg R. CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313. Microb Biotechnol 2020; 13:339-349. [PMID: 31802632 PMCID: PMC7017836 DOI: 10.1111/1751-7915.13516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023] Open
Abstract
Hungateiclostridium thermocellum DSM 1313 has biotechnological potential as a whole-cell biocatalyst for ethanol production using lignocellulosic renewable sources. The full exploitation of H. thermocellum has been hampered due to the lack of simple and high-throughput genome engineering tools. Recently in our research group, a thermophilic bacterial CRISPR-Cas9-based system has been developed as a transcriptional suppression tool for regulation of gene expression. We applied ThermoCas9-based CRISPR interference (CRISPRi) to repress the H. thermocellum central metabolic lactate dehydrogenase (ldh) and phosphotransacetylase (pta) genes. The effects of repression on target genes were studied based on transcriptional expression and product formation. Single-guide RNA (sgRNA) under the control of native intergenic 16S/23S rRNA promoter from H. thermocellum directing the ThermodCas9 to the promoter region of both pta and ldh silencing transformants reduced expression up to 67% and 62% respectively. This resulted in 24% and 17% decrease in lactate and acetate production, correspondingly. Hence, the CRISPRi approach for H. thermocellum to downregulate metabolic genes can be used for remodelling of metabolic pathways without the requisite for genome engineering. These data established for the first time the feasibility of employing CRISPRi-mediated gene repression of metabolic genes in H. thermocellum DSM 1313.
Collapse
Affiliation(s)
| | - Maria Martin‐Pascual
- Laboratory of MicrobiologyWageningen UniversityStippeneng 46708WE WageningenThe Netherlands
| | - Richard van Kranenburg
- CorbionArkelsedijk 464206AC GorinchemThe Netherlands
- Laboratory of MicrobiologyWageningen UniversityStippeneng 46708WE WageningenThe Netherlands
| |
Collapse
|
61
|
Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A. An overview on bioethanol production from lignocellulosic feedstocks. CHEMOSPHERE 2020; 242:125080. [PMID: 31675581 DOI: 10.1016/j.chemosphere.2019.125080] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Lignocellulosic ethanol has been proposed as a green alternative to fossil fuels for many decades. However, commercialization of lignocellulosic ethanol faces major hurdles including pretreatment, efficient sugar release and fermentation. Several processes were developed to overcome these challenges e.g. simultaneous saccharification and fermentation (SSF). This review highlights the various ethanol production processes with their advantages and shortcomings. Recent technologies such as singlepot biorefineries, combined bioprocessing, and bioenergy systems with carbon capture are promising. However, these technologies have a lower technology readiness level (TRL), implying that additional efforts are necessary before being evaluated for commercial availability. Solving energy needs is not only a technological solution and interlinkage of various factors needs to be assessed beyond technology development.
Collapse
Affiliation(s)
- Manju Toor
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion - 7505101, Israel
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
62
|
Zhu M, Zhang L, Yang F, Cha Y, Li S, Zhuo M, Huang S, Li J. A Recombinant β-Mannanase from Thermoanaerobacterium aotearoense SCUT27: Biochemical Characterization and Its Thermostability Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:818-825. [PMID: 31845578 DOI: 10.1021/acs.jafc.9b06246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
β-Mannanase was expressed in Thermoanaerobacterium aotearoense SCUT27 induced by locust bean gum (LBG). The open reading frame encoding a GH26 β-mannanase was identified and encoded a preprotein of 515 amino acids with a putative signal peptide. The enzyme without a signal sequence (Man25) was overexpressed in Escherichia coli with a specific activity of 1286.2 U/mg. Moreover, a facile method for β-mannanase activity screening was established based on agar plates. The optimum temperature for the purified Man25 using LBG as a substrate was 55 °C. The catalytic activity and thermostability of Man25 displayed a strong dependence on calcium ions. Through saturation mutagenesis at the putative Ca2+ binding sites in Man25, the best mutant ManM3-3 (D143A) presented improvements in thermostability with 3.6-fold extended half-life at 55 °C compared with that of the wild-type. The results suggest that mutagenesis at metal binding sites could be an efficient approach to increase enzyme thermostability.
Collapse
Affiliation(s)
- Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology , Guangdong Academy of Sciences , Guangzhou 510070 , China
| | | | - Fang Yang
- Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou 510642 , China
| | | | | | | | | | - Jianjun Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology , Guangdong Academy of Sciences , Guangzhou 510070 , China
| |
Collapse
|
63
|
A highly thermostable crude endoglucanase produced by a newly isolated Thermobifida fusca strain UPMC 901. Sci Rep 2019; 9:13526. [PMID: 31537863 PMCID: PMC6753106 DOI: 10.1038/s41598-019-50126-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
A thermophilic Thermobifida fusca strain UPMC 901, harboring highly thermostable cellulolytic activity, was successfully isolated from oil palm empty fruit bunch compost. Its endoglucanase had the highest activity at 24 hours of incubation in carboxymethyl-cellulose (CMC) and filter paper. A maximum endoglucanase activity of 0.9 U/mL was achieved at pH 5 and 60 °C using CMC as a carbon source. The endoglucanase properties were further characterized using crude enzyme preparations from the culture supernatant. Thermal stability indicated that the endoglucanase activity was highly stable at 70 °C for 24 hours. Furthermore, the activity was found to be completely maintained without any loss at 50 °C and 60 °C for 144 hours, making it the most stable than other endoglucanases reported in the literature. The high stability of the endoglucanase at an elevated temperature for a prolonged period of time makes it a suitable candidate for the biorefinery application.
Collapse
|
64
|
Li Y, Hu J, Qu C, Chen L, Guo X, Fu H, Wang J. Engineered Thermoanaerobacterium aotearoense with nfnAB knockout for improved hydrogen production from lignocellulose hydrolysates. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:214. [PMID: 31528202 PMCID: PMC6737674 DOI: 10.1186/s13068-019-1559-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND As a renewable and clean energy carrier, the production of biohydrogen from low-value feedstock such as lignocellulose has increasingly garnered interest. The NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (NfnAB) complex catalyzes electron transfer between reduced ferredoxin and NAD(P)+, which is critical for production of NAD(P)H-dependent products such as hydrogen and ethanol. In this study, the effects on end-product formation of deletion of nfnAB from Thermoanaerobacterium aotearoense SCUT27 were investigated. RESULTS Compared with the parental strain, the NADH/NAD+ ratio in the ∆nfnAB mutant was increased. The concentration of hydrogen and ethanol produced increased by (41.1 ± 2.37)% (p < 0.01) and (13.24 ± 1.12)% (p < 0.01), respectively, while the lactic acid concentration decreased by (11.88 ± 0.96)% (p < 0.01) when the ∆nfnAB mutant used glucose as sole carbon source. No obvious inhibition effect was observed for either SCUT27 or SCUT27/∆nfnAB when six types of lignocellulose hydrolysate pretreated with dilute acid were used for hydrogen production. Notably, the SCUT27/∆nfnAB mutant produced 190.63-209.31 mmol/L hydrogen, with a yield of 1.66-1.77 mol/mol and productivity of 12.71-13.95 mmol/L h from nonsterilized rice straw and corn cob hydrolysates pretreated with dilute acid. CONCLUSIONS The T. aotearoense SCUT27/∆nfnAB mutant showed higher hydrogen yield and productivity compared with those of the parental strain. Hence, we demonstrate that deletion of nfnAB from T. aotearoense SCUT27 is an effective approach to improve hydrogen production by redirecting the electron flux, and SCUT27/∆nfnAB is a promising candidate strain for efficient biohydrogen production from lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chunyun Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Lili Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| |
Collapse
|
65
|
Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
66
|
Purification, characterization and functional properties of exopolysaccharide from a novel halophilic Natronotalea sambharensis sp. nov. Int J Biol Macromol 2019; 136:547-558. [DOI: 10.1016/j.ijbiomac.2019.06.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
|
67
|
Xian L, Li Z, Tang AX, Qin YM, Li QY, Liu HB, Liu YY. A novel neutral and thermophilic endoxylanase from Streptomyces ipomoeae efficiently produced xylobiose from agricultural and forestry residues. BIORESOURCE TECHNOLOGY 2019; 285:121293. [PMID: 30999191 DOI: 10.1016/j.biortech.2019.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Endoxylanases capable of producing high ratios of xylobiose from agricultural and forestry residues in neutral and high temperature conditions are attractive for the prebiotic and alternative sweetener industries. In this study, a putative glycosyl hydrolase gene from Streptomyces ipomoeae was cloned and expressed in Escherichia coli. The recombinant enzyme, named as SipoEnXyn10A, hydrolyzed beechwood xylan in endo-action mode releasing xylobiose as its main end product. It was most active at pH 6.5 and 75-80 °C and showed remarkable stability at 65 °C. The xylobiose yield from 10 g corncob and moso bamboo reached 1.123 ± 0.021 and 0.229 ± 0.005 g, respectively, at pH 6.5 and 70 °C, whichwas higher than other reports using the same material. Moreover, high ratios of xylobiose in the xylose-based product of about 85% were obtained from corncob, moso bamboo sawdust, cassava stem and Chinese fir sawdust. These results demonstrated that SipoEnXyn10A has potential for industrial application.
Collapse
Affiliation(s)
- Liang Xian
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zhong Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Yi-Min Qin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Qing-Yun Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - You-Yan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China.
| |
Collapse
|
68
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
69
|
The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil. Int J Biol Macromol 2019; 133:316-323. [DOI: 10.1016/j.ijbiomac.2019.04.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/06/2023]
|
70
|
Singleton C, Gilman J, Rollit J, Zhang K, Parker DA, Love J. A design of experiments approach for the rapid formulation of a chemically defined medium for metabolic profiling of industrially important microbes. PLoS One 2019; 14:e0218208. [PMID: 31188885 PMCID: PMC6561596 DOI: 10.1371/journal.pone.0218208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Geobacillus thermoglucosidans DSM2542 is an industrially important microbe, however the complex nutritional requirements of Geobacilli confound metabolic engineering efforts. Previous studies have utilised semi-defined media recipes that contain complex, undefined, biologically derived nutrients which have unknown ingredients that cannot be quantified during metabolic profiling. This study used design of experiments to investigate how individual nutrients and interactions between these nutrients contribute to growth. A mathematically derived defined medium has been formulated that has been shown to robustly support growth of G. thermoglucosidans in two different environmental conditions (96-well plate and shake flask) and with a variety of lignocellulose-based carbohydrates. This enabled the catabolism of industrially relevant carbohydrates to be investigated.
Collapse
Affiliation(s)
- Chloe Singleton
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
| | - James Gilman
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
| | - Jessica Rollit
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kun Zhang
- Shell Technology Centre, Houston, Texas, United States of America
| | - David A. Parker
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
- Shell Technology Centre, Houston, Texas, United States of America
| | - John Love
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
71
|
Singh DN, Sood U, Singh AK, Gupta V, Shakarad M, Rawat CD, Lal R. Genome Sequencing Revealed the Biotechnological Potential of an Obligate Thermophile Geobacillus thermoleovorans Strain RL Isolated from Hot Water Spring. Indian J Microbiol 2019; 59:351-355. [PMID: 31388213 DOI: 10.1007/s12088-019-00809-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
In the present study, we report the draft genome sequence of an obligate thermophile Geobacillus thermoleovorans strain RL isolated from Manikaran hot water spring located atop the Himalayan ranges, India. Strain RL grew optimally at 70 °C but not below 45 °C. The draft genome (3.39 Mb) obtained by Illumina sequencing contains 138 contigs with an average G + C content of 52.30%. RAST annotation showed that amino acid metabolism pathways were most dominant followed by carbohydrate metabolism. Genome-wide analysis using NCBI's Prokaryotic Genome Annotation Pipeline revealed that strain RL encodes for a cocktail of industrially important hydrolytic enzymes glycoside hydrolase, α-and β-glucosidase, xylanase, amylase, neopullulanase, pullulanase and lipases required for white biotechnology. In addition, the presence of genes encoding green biocatalyst multicopper polyphenol oxidase (laccase) and an anticancer enzyme l-glutaminase reflects the significance of strain RL in gray and red biotechnology, respectively. Strain RL is a thermophilic multi-enzyme encoding bacterium which could be the source for the recombinant production of biotechnologically significant enzymes. In, addition whole cells of strain RL may be used in bioremediation studies.
Collapse
Affiliation(s)
| | - Utkarsh Sood
- 1Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: PhiXGen Private Limited, Gurugram, Haryana 122001 India
| | - Amit Kumar Singh
- 3Department of Biotechnology, Jamia Millia Islamia, New Delhi, Delhi 110025 India
| | - Vipin Gupta
- 1Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: PhiXGen Private Limited, Gurugram, Haryana 122001 India
| | | | - Charu Dogra Rawat
- 4Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007 India
| | - Rup Lal
- 1Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: PhiXGen Private Limited, Gurugram, Haryana 122001 India
| |
Collapse
|
72
|
Sahoo K, Sahoo RK, Gaur M, Subudhi E. Cellulolytic thermophilic microorganisms in white biotechnology: a review. Folia Microbiol (Praha) 2019; 65:25-43. [DOI: 10.1007/s12223-019-00710-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
|
73
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
74
|
Guo X, Yang F, Liu H, Hou Y, Wang Y, Sun J, Chen X, Liu Y, Li X. Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe. Macromol Res 2019. [DOI: 10.1007/s13233-019-7059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
75
|
Wang K, Cao R, Wang M, Lin Q, Zhan R, Xu H, Wang S. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pretreated corn stover hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:48. [PMID: 30899328 PMCID: PMC6408826 DOI: 10.1186/s13068-019-1389-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cellulose and hemicellulose are the two largest components in lignocellulosic biomass. Enzymes with activities towards cellulose and xylan have attracted great interest in the bioconversion of lignocellulosic biomass, since they have potential in improving the hydrolytic performance and reducing the enzyme costs. Exploring glycoside hydrolases (GHs) with good thermostability and activities on xylan and cellulose would be beneficial to the industrial production of biofuels and bio-based chemicals. RESULTS A novel GH10 enzyme (XynA) identified from a xylanolytic strain Bacillus sp. KW1 was cloned and expressed. Its optimal pH and temperature were determined to be pH 6.0 and 65 °C. Stability analyses revealed that XynA was stable over a broad pH range (pH 6.0-11.0) after being incubated at 25 °C for 24 h. Moreover, XynA retained over 95% activity after heat treatment at 60 °C for 60 h, and its half-lives at 65 °C and 70 °C were about 12 h and 1.5 h, respectively. More importantly, in terms of substrate specificity, XynA exhibits hydrolytic activities towards xylans, microcrystalline cellulose (filter paper and Avicel), carboxymethyl cellulose (CMC), cellobiose, p-nitrophenyl-β-d-cellobioside (pNPC), and p-nitrophenyl-β-d-glucopyranoside (pNPG). Furthermore, the addition of XynA into commercial cellulase in the hydrolysis of pretreated corn stover resulted in remarkable increases (the relative increases may up to 90%) in the release of reducing sugars. Finally, it is worth mentioning that XynA only shows high amino acid sequence identity (88%) with rXynAHJ14, a GH10 xylanase with no activity on CMC. The similarities with other characterized GH10 enzymes, including xylanases and bifunctional xylanase/cellulase enzymes, are no more than 30%. CONCLUSIONS XynA is a novel thermostable GH10 xylanase with a wide substrate spectrum. It displays good stability in a broad range of pH and high temperatures, and exhibits activities towards xylans and a wide variety of cellulosic substrates, which are not found in other GH10 enzymes. The enzyme also has high capacity in saccharification of pretreated corn stover. These characteristics make XynA a good candidate not only for assisting cellulase in lignocellulosic biomass hydrolysis, but also for the research on structure-function relationship of bifunctional xylanase/cellulase.
Collapse
Affiliation(s)
- Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Cao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Meiling Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Qibin Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Sidi Wang
- College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| |
Collapse
|
76
|
Ji L, Lei F, Zhang W, Song X, Jiang J, Wang K. Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: Substrate digestibility, cellulase absorption and fermentability. BIORESOURCE TECHNOLOGY 2019; 276:300-309. [PMID: 30641328 DOI: 10.1016/j.biortech.2019.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Utilization of sustainable energy is limited by energy requirement for the manufacturing of renewable fuels. Moso bamboo was pretreated with industrially derived crude glycerol obtained from different sources at 150/160 °C for 3 h. This bamboo, pretreated with base biodiesel glycerol with pressure filtration removal method, showed a high glucose yield of 94.95% and an ethanol yield of 73.10% of the theoretical. Major glycerol content was removed by pressure filtration, leaving a small amount of fatty acid soap in the pretreated sample, which formed an emulsion that reduced lignin redisposition onto the biomass surface and effectively blocked lignin absorption of cellulase, allowing greater enzymatic hydrolysis and fermentation system function. The surface was more hydrophilic and a higher lignin removal was achieved: 39.24% with base biodiesel glycerol pretreatment compared to 26.08% with sodium hydroxide glycerol pretreatment. This study provides a useful and cost-effective process, BBGP, for high-yield ethanol production.
Collapse
Affiliation(s)
- Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xianliang Song
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
77
|
de Oliveira Simões LC, da Silva RR, de Oliveira Nascimento CE, Boscolo M, Gomes E, da Silva R. Purification and Physicochemical Characterization of a Novel Thermostable Xylanase Secreted by the Fungus Myceliophthora heterothallica F.2.1.4. Appl Biochem Biotechnol 2019; 188:991-1008. [DOI: 10.1007/s12010-019-02973-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/01/2019] [Indexed: 01/13/2023]
|
78
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
79
|
Optimization of cell culture and cell disruption processes to enhance the production of thermophilic cellulase FnCel5A in E.coli using response surface methodology. PLoS One 2019; 14:e0210595. [PMID: 30653549 PMCID: PMC6336418 DOI: 10.1371/journal.pone.0210595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022] Open
Abstract
FnCel5A from Fervidobacterium nodosum is one of the most thermostable endoglucanases that have phenomenal characteristics, such as high activity, pH stability, and multi-specificity towards various substrates. However, large-scale thermophilic enzyme production is still a challenge. Herein, we focus on an optimization approach based on response surface methodology to improve the production of this enzyme. First, a Box-Behnken design was used to examine physiochemical parameters such as induction temperatures, isopropylβ-D-1-thiogalactopyranoside concentrations and induction times on the heterogeneous expression of FnCel5A gene in E. coli. The best culture was collected after adding 0.56 mM IPTG and incubating it for 29.5 h at 24°C. The highest enzymatic activity observed was 3.31 IU/mL. Second, an economical "thermolysis" cell lysis method for the liberation of the enzymes was also optimized using Box-Behnken design. The optimal levels of the variables were temperature 77°C, pH 7.71, and incubation time of 20 min, which gave about 74.3% higher activity than the well-established bead-milling cell disruption method. The maximum productivity of FnCel5A achieved (5772 IU/L) illustrated that its production increased significantly after combining both optimal models. This strategy can be scaled-up readily for overproduction of FnCel5A from recombinant E.coli to facilitate its usage in biomass energy production.
Collapse
|
80
|
Basic Mechanism of Lignocellulose Mycodegradation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
81
|
Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem Soc Rev 2019; 48:4791-4822. [DOI: 10.1039/c8cs00543e] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The waste-to-wealth concept aims to promote a future sustainable lifestyle where waste valorization is seen not only for its intrinsic benefits to the environment but also to develop new technologies, livelihoods and jobs.
Collapse
Affiliation(s)
- Chunping Xu
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | | | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi
- Universita Ca Foscari
- Venezia Mestre
- Italy
- Departamento de Quimica Organica
| | - Zahra Issaabadi
- Department of Chemistry
- Faculty of Science
- University of Qom
- Qom 3716146611
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Cordoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| |
Collapse
|
82
|
Characterization, Phylogenetic Analysis and Potential Applications of Heterotrophic Bacteria Inhabit Sand Dunes of Thar Desert, India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
83
|
Srivastava N, Srivastava M, Gupta VK, Ramteke PW, Mishra PK. A novel strategy to enhance biohydrogen production using graphene oxide treated thermostable crude cellulase and sugarcane bagasse hydrolyzate under co-culture system. BIORESOURCE TECHNOLOGY 2018; 270:337-345. [PMID: 30241067 DOI: 10.1016/j.biortech.2018.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) treated thermostable crude cellulase has been obtained via fungal co-cultivation of strain Cladosporium cladosporioides NS2 and Emericella variecolor NS3 using mix substrate of orange peel and rice straw under solid state fermentation (SSF). Enzyme activity of 60 IU/gds FP, 300 IU/gds EG and 400 IU/gds BGL are recorded in the presence of 1.0% GO in 96 h. This crude enzyme showed 50 °C as optimum incubation temperature, thermally stable at 55 °C for 600 min and stability in the pH range 4.5-8.0. Further, 70.04 g/L of sugar hydrolyzate is obtained from enzymatic conversion of 3.0% alkali pre-treated baggase using GO treated crude cellulase. Finally, 2870 ml/L cumulative biohydrogen production having bacterial biomass ∼2.2 g/L and the complimentary initial pH 7.0 is recorded from sugar hydrolyzate via dark fermentation using co-culture of Clostridium pasteurianum (MTCC116) and a newly isolated Bacillus subtilis PF_1.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - P W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (Formerly Allahabad Agricultural Institute), Allahabad 221007, Uttar Pradesh, India
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
84
|
Pazhang M, Younesi FS, Mehrnejad F, Najavand S, Tarinejad A, Haghi M, Rashno F, Khajeh K. Ig-like Domain in Endoglucanase Cel9A from Alicyclobacillus acidocaldarius Makes Dependent the Enzyme Stability on Calcium. Mol Biotechnol 2018; 60:698-711. [PMID: 30062637 DOI: 10.1007/s12033-018-0105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) has an Ig-like domain and the enzyme stability is dependent to calcium. In this study the effect of calcium on the structure and stability of the wild-type enzyme and the truncated form (the wild-type enzyme without Ig-like domain, AaCel9AΔN) was investigated. Fluorescence quenching results indicated that calcium increased and decreased the rigidity of the wild-type and truncated enzymes, respectively. RMSF results indicated that AaCel9A has two flexible regions (regions A and B) and deleting the Ig-like domain increased the truncated enzyme stability by decreasing the flexibility of region B probably through increasing the hydrogen bonds. Calcium contact map analysis showed that deleting the Ig-like domain decreased the calcium contacting residues and their calcium binding affinities, especially, in region B which has a role in calcium binding site in AaCel9A. Metal depletion and activity recovering as well as stability results showed that the structure and stability of the wild-type and truncated enzymes are completely dependent on and independent of calcium, respectively. Finally, one can conclude that the deletion of Ig-like domain makes AaCel9AΔN independent of calcium via decreasing the flexibility of region B through increasing the hydrogen bonds. This suggests a new role for the Ig-like domain which makes AaCel9A structure dependent on calcium.
Collapse
Affiliation(s)
- Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Fereshteh S Younesi
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Saeed Najavand
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Tarinejad
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mehrnaz Haghi
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Fatemeh Rashno
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
85
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
86
|
Thankappan S, Kandasamy S, Joshi B, Sorokina KN, Taran OP, Uthandi S. Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express 2018; 8:168. [PMID: 30324223 PMCID: PMC6188974 DOI: 10.1186/s13568-018-0690-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/26/2018] [Indexed: 01/17/2023] Open
Abstract
The harnessing of biocatalysts from extreme environment hot spring niche for biomass conversion is significant and promising owing to the special characteristics of extremozymes attributed by intriguing biogeochemistry and extreme conditions of these environments. Hence, in the present study 38 bacterial isolates obtained from hot springs of Manikaran (~ 95 °C), Kalath (~ 50 °C) and Vasist (~ 65 °C) of Himachal Pradesh were screened for glycosyl hydrolases by in situ enrichment technique using lignocellulosic biomass (LCB). Based on their hydrolytic potential 5 isolates were selected and they were Bacillus tequilensis (VCB1, VCB2 and VSDB4), and B. licheniformis (KBFB2 and KBFB3). Cellulolytic activity assayed by growth under submerged fermentation showed that B. tequilensis VCB1 had maximum FPA activity (3.38 IU ml−1) in 48 h, while B. licheniformis KBFB3 excelled for endoglucanase (EGA of 4.81 IU ml−1 in 24 h) and cellobiase (0.71 IU ml−1 in 48 h) activities. Among all the thermophilic biocatalysts evaluated, highest exoglucanase (0.06 IU ml−1) activity was observed in B. tequilensis VSDB4 while endoglucanase of B. licheniformis KBFB3 showed optimum specific activity at pH 7 and 70 °C. Further, the presence of celS, celB and xlnB genes in the isolates suggest their possible role in biomass conversion. Protein profiling by SDS-PAGE analysis revealed that cellulase isoforms migrated with molecular masses of 75 kDa. The endoglucanase activity of promising strain B. licheniformis KBFB3 was enhanced in the presence of Ca2+, mercaptoethanol and sodium hypochlorite whereas moderately inhibited by Cu2+, Zn2+, urea, SDS and H2O2. The results of this study indicate scope for the possible development of novel biocatalysts with multifunctional thermostable glycosyl hydrolases from hot springs for efficient hydrolysis of the complex lignocellulosic biomass into simple sugars and other derived bioproducts leading to biomass valorization.
Collapse
|
87
|
Bibra M, Kumar S, Wang J, Bhalla A, Salem DR, Sani RK. Single pot bioconversion of prairie cordgrass into biohydrogen by thermophiles. BIORESOURCE TECHNOLOGY 2018; 266:232-241. [PMID: 29982043 DOI: 10.1016/j.biortech.2018.06.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present work was to use a thermophilic consortium for H2 production using lignocellulosic biomass in a single pot. The thermophilic consortium, growing at 60 °C utilized both glucose and xylose, making it an ideal source of microbes capable of utilizing and fermenting both hexose and pentose sugars. The optimization of pH, temperature, and substrate concentration increased the H2 production from 1.07 mmol H2/g of prairie cordgrass (PCG) to 2.2 mmol H2/g PCG by using the thermophilic consortium. A sequential cultivation of a thermostable lignocellulolytic enzyme producing strain Geobacillus sp. strain WSUCF1 (aerobic) with the thermophilic consortium (anaerobic) further increased H2 production with PCG 3-fold (3.74 mmol H2/g PCG). A single pot sequential culturing of aerobic and anaerobic microbes can be sustainable and advantageous for industrial scale production of biofuels.
Collapse
Affiliation(s)
- Mohit Bibra
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Sudhir Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Aditya Bhalla
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI 48823, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
88
|
Expression and characterisation of a thermophilic endo-1,4-β-glucanase from Sulfolobus shibatae of potential industrial application. Mol Biol Rep 2018; 45:2201-2211. [DOI: 10.1007/s11033-018-4381-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
|
89
|
Thermostable Xylanase Production by Geobacillus sp. Strain DUSELR13, and Its Application in Ethanol Production with Lignocellulosic Biomass. Microorganisms 2018; 6:microorganisms6030093. [PMID: 30189618 PMCID: PMC6164562 DOI: 10.3390/microorganisms6030093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
The aim of the current study was to optimize the production of xylanase, and its application for ethanol production using the lignocellulosic biomass. A highly thermostable crude xylanase was obtained from the Geobacillus sp. strain DUSELR13 isolated from the deep biosphere of Homestake gold mine, Lead, SD. Geobacillus sp. strain DUSELR13 produced 6 U/mL of the xylanase with the beechwood xylan. The xylanase production was improved following the optimization studies, with one factor at a time approach, from 6 U/mL to 19.8 U/mL with xylan. The statistical optimization with response surface methodology further increased the production to 31 U/mL. The characterization studies revealed that the crude xylanase complex had an optimum pH of 7.0, with a broad pH range of 5.0⁻9.0, and an optimum temperature of 75 °C. The ~45 kDa xylanase protein was highly thermostable with t1/2 of 48, 38, and 13 days at 50, 60, and 70 °C, respectively. The xylanase activity increased with the addition of Cu+2, Zn+2, K+, and Fe+2 at 1 mM concentration, and Ca+2, Zn+2, Mg+2, and Na⁺ at 10 mM concentration. The comparative analysis of the crude xylanase against its commercial counterpart Novozymes Cellic HTec and Dupont, Accellerase XY, showed that it performed better at higher temperature, hydrolyzing 65.4% of the beechwood at 75 °C. The DUSEL R13 showed the mettle to hydrolyze, and utilize the pretreated, and untreated lignocellulosic biomass: prairie cord grass (PCG), and corn stover (CS) as the substrate, and gave a maximum yield of 20.5 U/mL with the untreated PCG. When grown in co-culture with Geobacillus thermoglucosidasius, it produced 3.53 and 3.72 g/L ethanol, respectively with PCG, and CS. With these characteristics the xylanase under study could be an industrial success for the high temperature bioprocesses.
Collapse
|
90
|
Couger B, Weirick T, Damásio ARL, Segato F, Polizeli MDLTDM, de Almeida RSC, Goldman GH, Prade RA. The Genome of a Thermo Tolerant, Pathogenic Albino Aspergillus fumigatus. Front Microbiol 2018; 9:1827. [PMID: 30154766 PMCID: PMC6102483 DOI: 10.3389/fmicb.2018.01827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
Biotechnologists are interested in thermo tolerant fungi to manufacture enzymes active and stable at high temperatures, because they provide improved catalytic efficiency, strengthen enzyme substrate interactions, accelerate substrate enzyme conversion rates, enhance mass transfer, lower substrate viscosity, lessen contamination risk and offer the potential for enzyme recycling. Members of the genus Aspergillus live a wide variety of lifestyles, some embrace GRAS status routinely employed in food processing while others such as Aspergillus fumigatus are human pathogens. A. fumigatus produces melanins, pyomelanin protects the fungus against reactive oxygen species and DHN melanin produced by the pksP gene cluster confers the gray-greenish color. pksP mutants are attenuated in virulence. Here we report on the genomic DNA sequence of a thermo tolerant albino Aspergillus isolated from rain forest composted floors. Unexpectedly, the nucleotide sequence was 95.7% identical to the reported by Aspergillus fumigatus Af293. Genome size and predicted gene models were also highly similar, however differences in DNA content and conservation were observed. The albino strain, classified as Aspergillus fumigatus var. niveus, had 160 gene models not present in A. fumigatus Af293 and A. fumigatus Af293 had 647 not found in the albino strain. Furthermore, the major pigment generating gene cluster pksP appeared to have undergone genomic rearrangements and a key tyrosinase present in many aspergilli was missing from the genome. Remarkably however, despite the lack of pigmentation A. fumigatus var. niveus killed neutropenic mice and survived macrophage engulfment at similar rates as A. fumigatus Af293.
Collapse
Affiliation(s)
- Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Tyler Weirick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - André R. L. Damásio
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
| | - Fernando Segato
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
- Departamento de Biotecnologia da Escola de Engenharia de Lorena, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Gustavo H. Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, São Paulo, Brazil
| | - Rolf A. Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
| |
Collapse
|
91
|
Escuder-Rodríguez JJ, DeCastro ME, Cerdán ME, Rodríguez-Belmonte E, Becerra M, González-Siso MI. Cellulases from Thermophiles Found by Metagenomics. Microorganisms 2018; 6:microorganisms6030066. [PMID: 29996513 PMCID: PMC6165527 DOI: 10.3390/microorganisms6030066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023] Open
Abstract
Cellulases are a heterogeneous group of enzymes that synergistically catalyze the hydrolysis of cellulose, the major component of plant biomass. Such reaction has biotechnological applications in a broad spectrum of industries, where they can provide a more sustainable model of production. As a prerequisite for their implementation, these enzymes need to be able to operate in the conditions the industrial process requires. Thus, cellulases retrieved from extremophiles, and more specifically those of thermophiles, are likely to be more appropriate for industrial needs in which high temperatures are involved. Metagenomics, the study of genes and gene products from the whole community genomic DNA present in an environmental sample, is a powerful tool for bioprospecting in search of novel enzymes. In this review, we describe the cellulolytic systems, we summarize their biotechnological applications, and we discuss the strategies adopted in the field of metagenomics for the discovery of new cellulases, focusing on those of thermophilic microorganisms.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| |
Collapse
|
92
|
Boyce A, Walsh G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl Biochem Biotechnol 2018; 186:712-730. [DOI: 10.1007/s12010-018-2761-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
|
93
|
Lee LS, Goh KM, Chan CS, Annie Tan GY, Yin WF, Chong CS, Chan KG. Microbial diversity of thermophiles with biomass deconstruction potential in a foliage-rich hot spring. Microbiologyopen 2018; 7:e00615. [PMID: 29602271 PMCID: PMC6291792 DOI: 10.1002/mbo3.615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/12/2022] Open
Abstract
The ability of thermophilic microorganisms and their enzymes to decompose biomass have attracted attention due to their quick reaction time, thermostability, and decreased risk of contamination. Exploitation of efficient thermostable glycoside hydrolases (GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for biomass degradation at high temperatures have not yet been thoroughly studied. We examined a Malaysian Y-shaped Sungai Klah hot spring located within a wooded area. The fallen foliage that formed a thick layer of biomass bed under the heated water of the Y-shaped Sungai Klah hot spring was an ideal environment for the discovery and analysis of microbial biomass decay communities. We sequenced the hypervariable regions of bacterial and archaeal 16S rRNA genes using total community DNA extracted from the hot spring. Data suggested that 25 phyla, 58 classes, 110 orders, 171 families, and 328 genera inhabited this hot spring. Among the detected genera, members of Acidimicrobium, Aeropyrum, Caldilinea, Caldisphaera, Chloracidobacterium, Chloroflexus, Desulfurobacterium, Fervidobacterium, Geobacillus, Meiothermus, Melioribacter, Methanothermococcus, Methanotorris, Roseiflexus, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobaculum, and Thermosipho were the main thermophiles containing various GHs that play an important role in cellulose and hemicellulose breakdown. Collectively, the results suggest that the microbial community in this hot spring represents a good source for isolating efficient biomass degrading thermophiles and thermozymes.
Collapse
Affiliation(s)
- Li Sin Lee
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Geok Yuan Annie Tan
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kok-Gan Chan
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia.,Jiangsu University, Zhenjiang, China
| |
Collapse
|
94
|
Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5. AMB Express 2018; 8:44. [PMID: 29564574 PMCID: PMC5862715 DOI: 10.1186/s13568-018-0576-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
Xylanase with a high thermostability will satisfy the needs of raising the temperature of hydrolysis to improve the rheology of the broth in industry of biomass conversion. In this study, a xylanase gene (xyn10A), predicted to encode a hydrolase domain of GH10, a linker region and a CBM1 domain, was cloned from a superior lignocellulose degrading strain Aspergillus fumigatus Z5 and successfully expressed in Pichia pastoris X33. Xyn10A has a specific xylanase activity of 34.4 U mg−1, and is optimally active at 90 °C and pH 6.0. Xyn10A shows quite stable at pHs ranging from 3.0 to 11.0, and keeps over 40% of xylanase activity after incubation at 70 °C for 1 h. Removal of CBM1 domain has a slight negative effect on its thermostability, but the further cleavage of linker region significantly decreased its stability at high temperature. The transfer of CBM1 and linker region to another GH10 xylanase can help to increase the thermostability. In addition, hydrolase domains between the two Xyn10A proteins naturally formed a dimer structure, which became more thermostable after removing the CBM1 or/and linker region. This thermostable Xyn10A is a suitable candidate for the highly efficient fungal enzyme cocktails for biomass conversion.
Collapse
|
95
|
Characterization of a Thermophilic Monosaccharide Stimulated β-Glucosidase from Acidothermus cellulolyticus. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7408-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Moniz P, Serralheiro C, Matos CT, Boeriu CG, Frissen AE, Duarte LC, Roseiro LB, Pereira H, Carvalheiro F. Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
97
|
Liu C, Ha CM, Dixon RA. Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview. Methods Mol Biol 2018; 1822:315-337. [PMID: 30043312 DOI: 10.1007/978-1-4939-8633-0_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In addition to its value as a model system for studies on symbiotic nitrogen fixation, Medicago truncatula has recently become an organism of choice for dissection of complex pathways of secondary metabolism. This work has been driven by two main reasons, both with practical implications. First Medicago species possess a wide range of flavonoid and terpenoid natural products, many of which, for example, the isoflavonoids and triterpene saponins, have important biological activities impacting both plant and animal (including human) health. Second, M. truncatula serves as an excellent model for alfalfa, the world's major forage legume, and forage quality is determined in large part by the concentrations of products of secondary metabolism, particularly lignin and condensed tannins. We here review recent progress in understanding the pathways leading to flavonoids, lignin, and triterpene saponins through utilization of genetic resources in M. truncatula.
Collapse
Affiliation(s)
- Chenggang Liu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
98
|
|
99
|
Lee BD, Apel WA, Sheridan PP, DeVeaux LC. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:110. [PMID: 29686728 PMCID: PMC5901876 DOI: 10.1186/s13068-018-1110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX. RESULTS Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were downregulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, showing a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. CONCLUSIONS Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases were not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader substrate range than that represented by the glycoside hydrolase family in which the enzymes were categorized.
Collapse
Affiliation(s)
- Brady D. Lee
- Biological Systems Department, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415 USA
- Department of Biological Sciences, Idaho State University, Campus Box 8007, Pocatello, ID 83209 USA
- Present Address: Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA USA
| | - William A. Apel
- Biological Systems Department, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415 USA
| | - Peter P. Sheridan
- Department of Biological Sciences, Idaho State University, Campus Box 8007, Pocatello, ID 83209 USA
| | - Linda C. DeVeaux
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Socorro, NM 87801 USA
| |
Collapse
|
100
|
Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M. State of the art review of biofuels production from lignocellulose by thermophilic bacteria. BIORESOURCE TECHNOLOGY 2017. [PMID: 28634129 DOI: 10.1016/j.biortech.2017.05.142] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|