51
|
Jin W, Nan J, Chen M, Song L, Wu F. Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: Responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131273. [PMID: 36996540 DOI: 10.1016/j.jhazmat.2023.131273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.
Collapse
Affiliation(s)
- Wenxing Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langrun Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
52
|
Khan KA, Shah A, Nisar J, Haleem A, Shah I. Photocatalytic Degradation of Food and Juices Dyes via Photocatalytic Nanomaterials Synthesized through Green Synthetic Route: A Systematic Review. Molecules 2023; 28:4600. [PMID: 37375155 DOI: 10.3390/molecules28124600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The unavailability of non-poisonous and hygienic food substances is the most challenging issue of the modern era. The uncontrolled usage of toxic colorant moieties in cosmetics and food manufacturing units leads to major threats to human life. The selection of environmentally benign approaches for the removal of these toxic dyes has gained the utmost attention from researchers in recent decades. This review article's main aim is the focus on the application of green-synthesized nanoparticles (NPs) for the photocatalytic degradation of toxic food dyes. The use of synthetic dyes in the food industry is a growing concern due to their harmful effects on human health and the environment. In recent years, photocatalytic degradation has emerged as an effective and eco-friendly method for the removal of these dyes from wastewater. This review discusses the various types of green-synthesized NPs that have been used for photocatalytic degradation (without the production of any secondary pollutant), including metal and metal oxide NPs. It also highlights the synthesis methods, characterization techniques, and photocatalytic efficiency of these NPs. Furthermore, the review explores the mechanisms involved in the photocatalytic degradation of toxic food dyes using green-synthesized NPs. Different factors that responsible for the photodegradation, are also highlighted. Advantages and disadvantages, as well as economic cost, are also discussed briefly. This review will be advantageous for the readers because it covers all aspects of dyes photodegradation. The future feature and limitations are also part of this review article. Overall, this review provides valuable insights into the potential of green-synthesized NPs as a promising alternative for the removal of toxic food dyes from wastewater.
Collapse
Affiliation(s)
- Kashif Ali Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
53
|
Bassi A, Kanungo K, Koo BH, Hasan I. Cellulose nanocrystals doped silver nanoparticles immobilized agar gum for efficient photocatalytic degradation of malachite green. Int J Biol Macromol 2023:125221. [PMID: 37295693 DOI: 10.1016/j.ijbiomac.2023.125221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
The present study involves the synthesis of green functional material based on the silver nanoparticle (Ag NPs) doped cellulose nanocrystals (CNC) immobilized agar gum (AA) biopolymer using chemical coprecipitation method. The stabilization of Ag NPs in cellulose matrix and functionalization of the synthesized material through agar gum was analyzed using various spectroscopic techniques such as Fourier Transform Infrared (FTIR), Scanning electron microscope (SEM), Energy X-Ray diffraction (EDX), Photoelectron X-ray (XPS), Transmission electron microscope (TEM), Selected area energy diffraction (SAED) and ultraviolet visible (UV-Vis) spectroscopy. The XRD results suggested that the synthesized AA-CNC@Ag BNC material is composed of 47 % crystalline and 53 % amorphous nature having distorted hexagonal structure due to capping of Ag NPs by amorphous biopolymer matrix. The Debye-Scherer crystallite sized was calculated as 18 nm which is found in close agreement with TEM analysis (19 nm). The SAED yellow fringes simulates the miller indices values with XRD patterns and supported the surface functionalization of Ag NPs by biopolymer blend of AA-CNC. The XPS data supported the presence of Ag0 as indexed by Ag3d orbital corresponding to Ag3d3/2 at 372.6 eV and Ag3d5/2 at 366.6 eV. The surface morphological results revealed a flaky surface of the resultant material having well distributed Ag NPs in the matrix. The EDX and atomic concentration results given by XPS supported the presence if C, O and Ag in the bionanocomposite material. The UV-Vis results suggested that the material is both UV and visible light active having multiple SPR effects with anisotropy. The material was explored as a photocatalyst for remediation of wastewater contaminated by malachite green (MG) using advance oxidation process (AOP). Photocatalytic experiments were performed in order to optimize various reaction parameters such as irradiation time, pH, catalyst dose and MG concentration. The obtained results showed that almost 98.85 % of MG was degraded by using 20 mg of catalyst at pH 9 for 60 min of irradiation. The trapping experiments revealed that •O2- radicals played primary role in MG degradation. This study will provide new possible strategies for the remediation of wastewater contaminated by MG.
Collapse
Affiliation(s)
- Akshara Bassi
- Environmental Research Lab, Department of Chemistry, Chandigarh University, Mohali, Punjab 140413, India
| | - Kushal Kanungo
- Environmental Research Lab, Department of Chemistry, Chandigarh University, Mohali, Punjab 140413, India
| | - Bon Heun Koo
- School of Materials Science and Engineering, Changwon National University, Changwon 51140, Gyeongnam, South Korea.
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
54
|
Yan J, Wang P, Wang L, Jin Q, Ali AS, He Y, Wang Y, Sun Y, Li A, Adwy W, Ahmed RH, Han X. Bio-decolorization of synthetic dyes by a novel endophytic fungus Penicillium janthinellum LM5 from blueberry pulp. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
55
|
Hirpara KS, Patel UD. Quantitative structure-activity relationship(QSAR) models for color and COD removal for some dyes subjected to electrochemical oxidation. ENVIRONMENTAL TECHNOLOGY 2023; 44:2374-2385. [PMID: 35001850 DOI: 10.1080/09593330.2022.2028014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 06/08/2023]
Abstract
Electrochemical oxidation is an efficient method for the destruction of dyes in wastewater streams. The experimental conditions during electrochemical oxidation (EO) and molecular structure of a dye greatly influence the extent of degradation. The extent of degradation for a variety of dyes by EO can be predicted conveniently by the use of Quantitative structure-activity Relationship (QSAR) models. An abundant amount of published data on dye degradation by EO using highly variable experimental conditions lies unutilized to prepare QSAR models. In this study, an effort is made to use published experimental data on EO of aqueous dyes after applying an easy method of normalization, to prepare QSAR models for percent color and COD removal. Normalized color and COD removal were obtained by multiplying the reported removal by volume of reactor and concentration of dye; and divided by total current passed and the time of electrolysis. More than 15 molecular descriptors were computed using Schrodinger-suit 2018-3. The multiple linear regression (MLR) approach was used to develop normalized color and COD removal models. The quantum chemical descriptors: highest occupied molecular orbital energy (HOMO) and lowest unoccupied molecular orbital energy (LUMO), polar surface area (PSA), hydrogen bond donor count (HBD), and number of atoms were found significant. The statistical indices: goodness-of-fit, R2 > 0.75, and internal and external validations, Q2LOOCV and Q2ext, > 0.5, satisfied the criteria for predictive models and indicated that the method of normalization used in this study is adequate. Developed QSAR models are quite simple, interpretable, and transparent.
Collapse
Affiliation(s)
- Katha S Hirpara
- Civil Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Upendra D Patel
- Civil Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
56
|
Bharathi D, Dhanasekaran S, Varshini R, Bhuvaneswari S, Periyasami G, Pandiaraj S, Lee J, Ranjithkumar R. Preparation of gallotannin loaded chitosan/zinc oxide nanocomposite for photocatalytic degradation of organic dye and antibacterial applications. Int J Biol Macromol 2023:125052. [PMID: 37245753 DOI: 10.1016/j.ijbiomac.2023.125052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Chitosan functionalization is a growing field of interest to enhance the unique characteristics of metal oxide nanoparticles. In this study, a facile synthesis method has been used to develop a gallotannin loaded chitosan/zinc oxide (CS/ZnO) nanocomposite. Initially, white color formation confirmed the formation, and physico-chemical natures of the prepared nanocomposite were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Crystalline of CS amorphous phase and ZnO patterns were demonstrated by XRD. FTIR revealed the presence of CS and gallotannin bio-active groups in the formed nanocomposite. Electron microscopy study exhibited that the produced nanocomposite had an agglomerated sheets like morphology with an average size of 50-130 nm. Further, the produced nanocomposite was assayed for methylene blue (MB) degradation activity from aqueous solution. After 30 min of irradiation, the efficiency of nanocomposite degradation was found to be 96.64 %. Moreover, prepared nanocomposite showed a potential and concentration-dependent antibacterial activity against S. aureus. In conclusion, our findings revealed that prepared nanocomposite can be used as an excellent photocatalyst as well as a bactericidal agent in industrial and clinical sectors.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - S Dhanasekaran
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India
| | - R Varshini
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India
| | - S Bhuvaneswari
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saravanan Pandiaraj
- Department of Self-Devalopment Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Rajamani Ranjithkumar
- Viyen Biotech LLP, Coimbatore 034, Tamilnadu, India; Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Nava India, Coimbatore 04, Tamilnadu, India.
| |
Collapse
|
57
|
Liang K, Liu T, Quan X. Simultaneous removal of refractory organic pollutants and nitrogen using electron shuttle suspended biofilm carriers in an integrated hydrolysis/acidification-anoxic/aerobic process. CHEMOSPHERE 2023; 333:138946. [PMID: 37196792 DOI: 10.1016/j.chemosphere.2023.138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Azo dyes wastewater contains refractory pollutant and nitrogen, which threatens human health and ecological environment when discharged into environment directly. Electron shuttle (ES) is able to participate in the extracellular electron transfer, and thus enhances the removal efficiency of refractory pollutant. However, the continuous dosing of soluble ES would rise operation cost and cause contamination inevitably. In this study, a type of insoluble ES (carbonylated graphene oxide (C-GO)) was developed and melt blended into polyethylene (PE) to prepare novel C-GO-modified suspended carriers. Compared to those of conventional carrier (31.60%), the surface active sites of novel C-GO-modified carrier increased to 52.95%. An integrated hydrolysis/acidification (HA, filled with C-GO-modified carrier) - anoxic/aerobic (AO, filled with clinoptilolite-modified carrier) process was applied to remove azo dye acid red B (ARB) and nitrogen simultaneously. ARB removal efficiency was significantly improved in the reactor filled with C-GO-modified carriers (HA2) compared to the reactor filled with conventional PE carriers (HA1) or activated sludge (HA0). Total nitrogen (TN) removal efficiency of the proposed process increased by 25.95-32.64% compared to the reactor filled with activated sludge. Moreover, the intermediates of ARB were identified by liquid chromatograph-mass spectrometer (LC-MS), and the degradation pathway of ARB through ES was proposed. C-GO-modified carriers induced ARB-removal-related bacterial enrichment (such as Chloroflexi, Lactivibrio, Longilinea, Bacteroidales and Anaerolineaceae). Besides, the relative abundance of denitrifiers and nitrifiers in the AO reactor filled with clinoptilolite-modified carrier was increased by 11.60% compared with activated sludge. Copy numbers of genes related to membrane transport, carbon/energy metabolism and nitrogen metabolism increased significantly on the surface-modified carriers. This study proposed an efficient approach for simultaneous azo dyes and nitrogen removal, showing potential in actual application.
Collapse
Affiliation(s)
- Kun Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
58
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
59
|
Hu M, Li Z, Huang X, Chen M, Hu ZT, Tang S, Chou IM, Pan Z, Wang Q, Wang J. Catalytic supercritical water oxidation of o-chloroaniline over Ru/rGO: Reaction variables, conversion pathways and nitrogen distribution. CHEMOSPHERE 2023; 333:138907. [PMID: 37169091 DOI: 10.1016/j.chemosphere.2023.138907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
To ascertain the reaction variables on o-chloroaniline (o-ClA) mineralization, total nitrogen (TN) removal rate, and N-species distribution, o-ClA was subjected to catalytic supercritical water oxidation (CSCWO) in a fused quartz tube reactor (FQTR). The findings demonstrated that when the temperature, reaction time, and excess oxidant were 400 °C, 90 min, and 150%, respectively, the mineralization rate of o-ClA could reach more than 95%. Moreover, potential degradation pathways of o-ClA in supercritical water oxidation (SCWO) was proposed according to the GC-MS results. TN removal rate is significantly impacted by Ru/rGO, despite the fact that its catalytic effect on the mineralization of o-ClA was not particularly noteworthy. Compared with no catalyst, the TN removal rate of o-ClA obviously increased from 44.1% to 90.3% at 400 °C, 10 wt% Ru loading, 90 min and 200% excess oxidant. In addition, N-species distribution in SCWO and CSCWO were also investigated. Results indicated that the Ru/rGO catalyst could accelerate the oxidation of ammonia-N and convert it to nitrate-N, promoting N2 generation. Finally, the possible N transformation pathway in CSCWO of o-ClA was proposed. As a result, this work offers fundamental information about o-ClA catalytic oxidation removal in the SCWO process.
Collapse
Affiliation(s)
- Mian Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zhibing Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xiaotong Huang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Meiqi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Suqin Tang
- Hangzhou Environmental Group Co., Ltd, Zhejiang, China
| | - I-Ming Chou
- CAS Key Laboratory of Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, Hainan, China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Qi Wang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Junliang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
60
|
Chen S, Zhang M, Chen H, Fang Y. Removal of Methylene Blue from Aqueous Solutions by Surface Modified Talc. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093597. [PMID: 37176479 PMCID: PMC10179945 DOI: 10.3390/ma16093597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
In this study, raw talc powder surface modification was conducted, and the powder was modified in two different methods using acid washing and ball milling. Modified talc was characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In order to investigate the adsorption capacity of modified talc on dyes, adsorption experiments were carried out with methylene blue (MB) in aqueous solutions as the target contaminant. The findings of the characterization revealed that both modifications increased the adsorption capacity of talc, which was attributed to changes in specific surface area and active groups. The influence of process parameters such as contact time, pH, dye concentration, and adsorbent dosage on the adsorption performance was systematically investigated. Modified talc was able to adsorb MB rapidly, reaching equilibrium within 60 min. Additionally, the adsorption performance was improved as the pH of the dye solution increased. The isotherms for MB adsorption by modified talc fitted well with the Langmuir model. The pseudo-second-order model in the adsorption kinetic model properly described the adsorption behavior. The results show that the modified talc can be used as an inexpensive and abundant candidate material for the adsorption of dyes in industrial wastewater.
Collapse
Affiliation(s)
- Shuyang Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Fang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
61
|
Vijayasree VP, Manan NSA. Magnetite carboxymethylcellulose as biological macromolecule-based absorbent for cationic dyes removal from environmental samples. Int J Biol Macromol 2023; 242:124723. [PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
Collapse
Affiliation(s)
- V P Vijayasree
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - N S A Manan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Universiti Malaya Center for Ionic Liquids, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
62
|
Dong R, Seliem MK, Mobarak M, Xue H, Wang X, Li Q, Li Z. Dual-functional marine algal carbon-based materials with highly efficient dye removal and disinfection control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60399-60417. [PMID: 37022550 DOI: 10.1007/s11356-023-26800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The design and simple, green preparation of dual-functional materials for the decontamination of both hazardous dyes and pathogenic microorganisms from wastewater remain challenging currently. Herein, a promising marine algal carbon-based material (named C-SA/SP) with both highly efficient dye adsorptive and antibacterial properties was fabricated based on the incorporation of sodium alginate and a low dose of silver phosphate via a facile and eco-friendly approach. The structure, removal of malachite green (MG) and congo red (CR), and their antibacterial performance were studied, and the adsorption mechanism was further interpreted by the statistical physics models, besides the classic models. The results show that the maximum simulated adsorption capacity for MG reached 2798.27 mg/g, and its minimal inhibit concentration for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was 0.4 mg/mL and 0.2 mg/mL, respectively. The mechanistic study suggests that silver phosphate exerted the effects of catalytic carbon formation and pore formation, while reducing the electronegativity of the material as well, thus improving its dye adsorptive performance. Moreover, the MG adsorption onto C-SA/SP showed vertical orientation and a multi-molecular way, and its adsorption sites were involved in the adsorption process with the increase of temperature. Overall, the study indicates that the as-made dual-functional materials have good applied prospects for water remediation.
Collapse
Affiliation(s)
- Ruitao Dong
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Hanjing Xue
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xuemei Wang
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Qun Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zichao Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
63
|
Algethami JS, Hassan MS, Amna T, Alqarni LS, Alhamami MAM, Seliem AF. Bismuth Vanadate Decked Polyaniline Polymeric Nanocomposites: The Robust Photocatalytic Destruction of Microbial and Chemical Toxicants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093314. [PMID: 37176198 PMCID: PMC10179250 DOI: 10.3390/ma16093314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Functional materials have long been studied for a variety of environmental applications, resource rescue, and many other conceivable applications. The present study reports on the synthesis of bismuth vanadate (BiVO4) integrated polyaniline (PANI) using the hydrothermal method. The topology of BiVO4 decked PANI catalysts was investigated by SEM and TEM. XRD, EDX, FT-IR, and antibacterial testing were used to examine the physicochemical and antibacterial properties of the samples, respectively. Microscopic images revealed that BiVO4@PANI are comprised of BiVO4 hollow cages made up of nanobeads that are uniformly dispersed across PANI tubes. The PL results confirm that the composite has the lowest electron-hole recombination compared to others samples. BiVO4@PANI composite photocatalysts demonstrated the maximum degradation efficiency compared to pure BiVO4 and PANI for rhodamine B dye. The probable antimicrobial and photocatalytic mechanisms of the BiVO4@PANI photocatalyst were proposed. The enhanced antibacterial and photocatalytic activity could be attributed to the high surface area and combined impact of PANI and BiVO4, which promoted the migration efficiency of photo-generated electron holes. These findings open up ways for the potential use of BiVO4@PANI in industries, environmental remediation, pharmaceutical and medical sectors. Nevertheless, biocompatibility for human tissues should be thoroughly examined to lead to future improvements in photocatalytic performance and increase antibacterial efficacy.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, College of Science, Albaha University, Albaha 65799, Saudi Arabia
| | - Touseef Amna
- Department of Biology, College of Science, Albaha University, Albaha 65799, Saudi Arabia
| | - Laila S Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Amal F Seliem
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
64
|
Dissanayake NSL, Pathirana MA, Wanasekara ND, Mahltig B, Nandasiri GK. Removal of Methylene Blue and Congo Red Using a Chitosan-Graphene Oxide-Electrosprayed Functionalized Polymeric Nanofiber Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1350. [PMID: 37110933 PMCID: PMC10144769 DOI: 10.3390/nano13081350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Untreated textile effluent may contain toxic organic pollutants that can have negative impacts on the ecosystem. Among the harmful chemicals present in dyeing wastewater, there are two frequently used organic dyes: methylene blue (cationic) and congo red (anionic). The current study presents investigations on a novel two-tier nanocomposite membrane, i.e., a top layer formed of electrosprayed chitosan-graphene oxide and a bottom layer consisting of an ethylene diamine functionalized polyacrylonitrile electrospun nanofiber for the simultaneous removal of the congo red and methylene blue dyes. The fabricated nanocomposite was characterized using FT-IR spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and Drop Shape Analyzer. Isotherm modeling was used to determine the efficiency of dye adsorption for the electrosprayed nanocomposite membrane and the confirmed maximum adsorptive capacities of 182.5 mg/g for congo red and 219.3 mg/g for methylene blue, which fits with the Langmuir isotherm model, suggesting uniform single-layer adsorption. It was also discovered that the adsorbent preferred an acidic pH level for the removal of congo red and a basic pH level for the removal of methylene blue. The gained results can be a first step for the development of new wastewater cleaning techniques.
Collapse
Affiliation(s)
- Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Maadri A. Pathirana
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein-University of Applied Sciences, 41065 Mönchengladbach, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| |
Collapse
|
65
|
Zou M, Tan C, Yuan Z, Wu M, Jian J, Zhang L, Zhang Y, Ma Z, Zhou H. In situ preparation of Ag@AgCl/Bio-veins composites and their photocatalytic activity and recyclability. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
66
|
Repon MR, Islam T, Islam T, Ghorab AE, Rahman MM. Cleaner pathway for developing bioactive textile materials using natural dyes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48793-48823. [PMID: 36879092 DOI: 10.1007/s11356-023-26131-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Bioactive textile materials are a promising field in the development of functional textiles. The integration of bioactive compounds, such as natural dyes, into textiles offers a range of benefits, including UV protection, anti-microbial properties, and insect repellency. Natural dyes have been shown to have bioactivity, and their integration into textiles has been extensively studied. The application of natural dyes on textile substrates will be an advantage for their inherent functional properties along with their non-toxic and eco-friendly nature. This review addresses the effect of natural dyes on surface modification of most used natural and synthetic fibers and its subsequent effects on their anti-microbial, UV protection and insect repellent properties with natural dyes. Natural dyes have proved to be environmentally friendly in an attempt to improve bioactive functions in textile materials. This review provides a clear view of sustainable resources for the dyeing and finishing of textiles to develop a cleaner pathway of bioactive textiles using natural dyes. Furthermore, the dye source, advantages and disadvantages of natural dye, main dye component, and chemical structure are listed. However, there is still a need for interdisciplinary research to further optimize the integration of natural dyes into textiles and to improve their bioactivity, biocompatibility, and sustainability. The development of bioactive textile materials using natural dyes has the potential to revolutionize the textile industry and to provide a range of benefits to consumers and society.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ahmed El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
67
|
İlktaç R. Rapid removal of crystal violet and methylene blue from aqueous solutions using chamotte clay. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
68
|
Zhang J, Shen X, Li J, Zhang S. Experimental study on the treatment of dye wastewater by plasma coupled biotechnology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57989-58001. [PMID: 36973618 DOI: 10.1007/s11356-023-26590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
In this experiment, a gas-liquid two-phase discharge water treatment inverse device was designed independently to treat the actual workshop intermediate dye wastewater from a chemical plant. Firstly, the effects of initial concentration of wastewater, initial pH, circulation flow rate of solution, content of Fe2+, content of H2O2, and addition of tert-butanol on the organic removal rate and decolorization rate of dye wastewater treatment were investigated. The results showed that Fe2+ and tert-butanol would react with the active particles (H2O2, ·OH) and inhibit the degradation of the dye wastewater, resulting in the decrease of both organic matter degradation rate and decolorization rate. The experimentally degraded dye wastewater mainly contained benzoic acid and its derivatives in addition to dye molecules, thus the degradation mechanism of benzoic acid was mainly analyzed. Then, the actual dye wastewater treated by low-temperature plasma was combined with the traditional biological treatment technology. The biochemical properties of the wastewater treated by low-temperature plasma technology were greatly improved, and the B/C was increased from the initial 0.17 to 0.33. The effluent after the combined biological method could meet the effluent discharge standard, and the final CODcr reached 198 mg/L, BOD5 reached 65 mg/L, and pH and chromaticity reached 6.39 and 50, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China.
| | - Jiaren Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Siyu Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| |
Collapse
|
69
|
Yang S, Cheng Q, Hu L, Gu Y, Wang Y, Liu Z. Study on the Adsorption Properties of Oxalic Acid-Modified Cordierite Honeycomb Ceramics for Neutral Red Dyes. ACS OMEGA 2023; 8:11457-11466. [PMID: 37008113 PMCID: PMC10061635 DOI: 10.1021/acsomega.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Removal of organic dyes from water by monolithic adsorbents is considered as an efficient and no-secondary pollution method. Herein, for the first time cordierite honeycomb ceramics (COR) treated with oxalic acid (CORA) were synthesized. This CORA exhibits outstanding removal efficiency toward the azo neutral red dyes (NR) from water. After optimizing the reaction conditions, the highest adsorption capacity of 7.35 mg·g-1 and a removal rate of 98.89% could be achieved within 300 min. Furthermore, investigation of the adsorption kinetics indicated this adsorption process could be described as a pseudo-second-order kinetic model with k 2 and q e of 0.0114 g·mg-1·min-1 and 6.94 mg·g-1, respectively. According to the fitting calculation, the adsorption isotherm could also be described as the Freundlich isotherm model. The removal efficiency could be maintained above 50% after 4 cycles, negating the need for toxic organic solvent extraction, offering a method for bringing the technology one step closer to industrial application and giving CORA promising potential in practical water treatment.
Collapse
Affiliation(s)
- Shuhui Yang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qingyan Cheng
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin
Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Liangyan Hu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yunhan Gu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanji Wang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin
Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Zhenfa Liu
- Institute
of Energy Sources, Hebei Academy of Science, Shijiazhuang, Hebei Province 050081, China
| |
Collapse
|
70
|
Tang J, Yao J, Pan D, Huang J, Wang J, Li QX, Dong F, Wu X. Characterization and catalytic mechanism of a direct demethylsulfide hydrolase for catabolism of the methylthiol-s-triazine prometryn. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130708. [PMID: 36608577 DOI: 10.1016/j.jhazmat.2022.130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Demethylthio is one of the most important ways for microorganisms to metabolize triazine herbicides. Previous studies have found that the initial reaction of prometryn catabolism in Leucobacter triazinivorans JW-1 was the hydroxylation of its methylthio group, however, the corresponding functional enzyme was not yet clear. In this study, the gene proA was responsible for the initial step of prometryn catabolism from the strain JW-1 was cloned and expressed, and the purified amidohydrolases ProA have the ability to transform prometryn to 2-hydroxypropazine and methanethiol. The optimized reaction temperature and pH of ProA were 45 °C and 7.0, respectively, and the kinetic constants Km and Vmax of ProA for the catalysis of prometryn were 32.6 μM and 0.09 μmol/min/mg, respectively. Molecular docking analyses revealed that different catalysis efficiency of ProA and TrzN (Nocardioides sp. C190) for prometryn and atrazine was due to non-covalent changes in amino acid residues. Our findings provide new insights into the understanding of s-triazine catabolism at the molecular level.
Collapse
Affiliation(s)
- Jun Tang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Jinjin Yao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Jie Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
71
|
Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
72
|
Sun H, Yuan F, Jia S, Zhang X, Xing W. Laccase encapsulation immobilized in mesoporous ZIF-8 for enhancement bisphenol A degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130460. [PMID: 36462242 DOI: 10.1016/j.jhazmat.2022.130460] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Endocrine disruptors (EDCs) such as bisphenol A (BPA) have many adverse effects on environment and human health. Laccase encapsulation immobilized in mesoporous ZIF-8 was prepared for efficient degradation of BPA. The ZIF-8 (PA) with highly ordered mesopores was synthesized using trimethylacetic acid (PA) as a template agent. On account of the improvement of skeletal stability by cross-linking agent glutaraldehyde, ZIF-8 (PA) realized laccase (FL) immobilization within the mesopores through encapsulation strategy. By replacing the template agent, the effect of pore size on the composite activity and immobilization efficiency by SEM characterization and kinetic analysis were investigated. Based on the physical protection of ZIF-8(PA) on laccase, as well as electrostatic interactions between substances and changes in surface functional groups (e.g. -OH, etc.), multifaceted enhancement including activity, stability, storability were engendered. FL@ZIF-8(PA) could maintain high activity in complex systems at pH 3-11, 10-70 °C or in organic solvent containing system, which exhibited an obvious improvement compared to free laccase and other reported immobilized laccase. Combined with TGA, FT-IR and Zeta potential analysis, the intrinsic mechanism was elaborated in detail. On this basis, FL@ZIF-8(PA) achieved efficient removal of BPA even under adverse conditions (removal rates all above 55% and up to 90.28%), and was suitable for a wide range of initial BPA concentrations. Combined with the DFT calculations on the adsorption energy and differential charge, the mesoporous could not only improve the enrichment performance of BPA on ZIFs, but also enhance the interaction stability. Finally, FL@ZIF-8(PA) was successfully applied to the degradation of BPA in coal industry wastewater. This work provides a new and ultra-high performances material for the organic pollution treatment in wastewater.
Collapse
Affiliation(s)
- Haibing Sun
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Fang Yuan
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China.
| | - Shengran Jia
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Xiaokuan Zhang
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| |
Collapse
|
73
|
Liu Q, Yang Q, Zhang Q, Lv F, Cheng A, Liu H, Ma S, Wang L, Liu Q. Mussel-inspired encapsulation of poly(pyrogallol-tetraethylenepentamine) resin into mesoporous MSU-H matrix and its rapid removal feature for Congo red from aquatic environment. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
74
|
Singh P, Ahmad M, Siddiqui KA. Ni-coordination polymer as potential remedial compound for efficient detection and seclusion of toxic aromatic dyes from contaminated water. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
75
|
Baig MT, Kayan A. Eco-friendly novel adsorbents composed of hybrid compounds for efficient adsorption of methylene blue and Congo red dyes: Kinetic and thermodynamic studies. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2166845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mirza Talha Baig
- Department of Chemistry, Faculty of Art and Science, Kocaeli University, Kocaeli, Turkey
| | - Asgar Kayan
- Department of Chemistry, Faculty of Art and Science, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
76
|
Pathirana MA, Dissanayake NSL, Wanasekara ND, Mahltig B, Nandasiri GK. Chitosan-Graphene Oxide Dip-Coated Polyacrylonitrile-Ethylenediamine Electrospun Nanofiber Membrane for Removal of the Dye Stuffs Methylene Blue and Congo Red. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:498. [PMID: 36770459 PMCID: PMC9920196 DOI: 10.3390/nano13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 05/14/2023]
Abstract
Textile wastewater accommodates many toxic organic contaminants that could potentially threaten the ecosystem if left untreated. Methylene blue is a toxic, non-biodegradable, cationic dye that is reportedly observed in significant amounts in the textile effluent stream as it is widely used to dye silk and cotton fabrics. Congo red is a carcinogenic anionic dye commonly used in the textile industry. This study reports an investigation of methylene blue and Congo red removal using a chitosan-graphene oxide dip-coated electrospun nanofiber membrane. The fabricated nanocomposite was characterized using Scanning Electron Microscopy (SEM), FT-IR Spectroscopy, Raman Spectroscopy, UV-vis Spectroscopy, Drop Shape Analyzer, and X-ray Diffraction. The isotherm modeling confirmed a maximum adsorptive capacity of 201 mg/g for methylene blue and 152 mg/g for Congo red, which were well fitted with a Langmuir isotherm model indicating homogenous monolayer adsorption.
Collapse
Affiliation(s)
- Maadri A. Pathirana
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein—University of Applied Sciences, 47707 Krefeld, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| |
Collapse
|
77
|
Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A, Bilal M, Iqbal HMN. Genetically engineered microorganisms for environmental remediation. CHEMOSPHERE 2023; 310:136751. [PMID: 36209847 DOI: 10.1016/j.chemosphere.2022.136751] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In the recent era, the increasing persistence of hazardous contaminants is badly affecting the globe in many ways. Due to high environmental contamination, almost every second species on earth facing the worst issue in their survival. Advances in newer remediation approaches may help enhance bioremediation's quality, while conventional procedures have failed to remove hazardous compounds from the environment. Chemical and physical waste cleanup approaches have been used in current circumstances; however, these methods are costly and harmful to the environment. Thus, there has been a rise in the use of bioremediation due to an increase in environmental contamination, which led to the development of genetically engineered microbes (GEMs). It is safer and more cost-effective to use engineered microorganisms rather than alternative methods. GEMs are created by introducing a stronger protein into bacteria through biotechnology or genetic engineering to enhance the desired trait. Biodegradation of oil spills, halobenzoates naphthalenes, toluenes, trichloroethylene, octanes, xylenes etc. has been accomplished using GEMs such bacteria, fungus, and algae. Biotechnologically induced microorganisms are more powerful than naturally occurring ones and may degrade contaminants faster because they can quickly adapt to new pollutants they encounter or co-metabolize. Genetic engineering is a worthy process that will benefit the environment and ultimately the health of our people.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Departement of Pharmacy, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Arooj Arshad
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Maham Intisar
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
78
|
Mahboob I, Shafiq I, Shafique S, Akhter P, Munir M, Saeed M, Nazir MS, Amjad UES, Jamil F, Ahmad N, Park YK, Hussain M. Porous Ag 3VO 4/KIT-6 composite: Synthesis, characterization and enhanced photocatalytic performance for degradation of Congo Red. CHEMOSPHERE 2023; 311:137180. [PMID: 36356802 DOI: 10.1016/j.chemosphere.2022.137180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Novel Ag3VO4/KIT-6 nanocomposite photocatalyst has been successfully fabricated by a newly-designed simple hard-template induction process, in which the particles of Ag3VO4 were grown on the KIT-6 surface and inside the porous framework of the silica matrix. The developed porous framework nanocomposite was characterized by several techniques including N2-Physiosorption analysis. The obtained nanocomposite revealed a high surface area (273.86 m2/g) along with the possession of monoclinic Ag3VO4, which is highly responsive to visible light (with distinct intensity at about 700 nm). The UV-Vis DRS reveals that the Ag3VO4/KIT-6 photocatalyst bears a bandgap of 2.29 eV which confirms that the material has a good visible light response. The synthesized nanocomposite was tested for its superior physicochemical properties by evaluating its degradation efficiency for Congo Red (CR). The novel composite exhibited superior degradation capability of CR, reaching up to 96.49%, which was around three times the pure Ag3VO4. The detailed kinetic study revealed that the as-prepared material followed a pseudo first order kinetic model for the CR degradation. The study includes a comprehensive parametric study for the formulation of the optimized reaction conditions for photocatalytic reactions. The commercial applicability of the composite material was investigated by a regeneration and recyclability test, which revealed extraordinary results. Furthermore, the possible degradation pathway for CR was also proposed.
Collapse
Affiliation(s)
- Iqra Mahboob
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Iqrash Shafiq
- Catalysis and Reaction Engineering Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan; Refinery Division, Pak-Arab Refinery Limited "Company" (PARCO), Corporate Headquarters, Korangi Creek Road, Karachi, Pakistan
| | - Sumeer Shafique
- Catalysis and Reaction Engineering Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Saeed
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Um-E-Salma Amjad
- Catalysis and Reaction Engineering Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Farrukh Jamil
- Catalysis and Reaction Engineering Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Nabeel Ahmad
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Catalysis and Reaction Engineering Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan.
| |
Collapse
|
79
|
Islam SU, Bairagi S, Kamali MR. Review on Green Biomass-Synthesized Metallic Nanoparticles and Composites and Their Photocatalytic Water Purification Applications: Progress and Perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
80
|
Ikram M, Zahoor M, Naeem M, Islam NU, Shah AB, Shahzad B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Azo dyes are extremely toxic and pose significant environmental and health risks. Consequently, mineralization and conversion to simple compounds are required to avoid their hazardous effects. A variety of enzymes from the bacterial system are thought to be involved in the degradation and metabolism of azo dyes. Bioremediation, a cost effective and eco-friendly biotechnology, involving bacteria is powered by bacterial enzymes. As mentioned, several enzymes from the bacterial system serve as molecular weapons in the degradation of these dyes. Among these enzymes, azoreductase, oxidoreductase, and laccase are of great interest for the degradation and decolorization of azo dyes. Combination of the oxidative and reductive enzymes is used for the removal of azo dyes from water. The aim of this review article is to provide information on the importance of bacterial enzymes. The review also discusses the genetically modified microorganisms in the biodegradation of azo dyes in polluted water.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Naeem
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Noor Ul Islam
- Department of Chemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus) , Institute of Agriculture and Life Sciences, Gyeongsang National University , Jinju 52828 , Korea
| | - Babar Shahzad
- Department of Biochemistry , Institute of Basic Medical Sciences, Khyber Medical University Peshawar Khyber Pakhtunkhwa , Peshawar , Pakistan
| |
Collapse
|
81
|
Wan J, Wang L, Xu W, Xu Z, Yuan J, Zhang G. Preparation of N and Ce Co-doped MIL-101(Fe) Heterogeneous Catalysts for Efficient Electro-Fenton Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiakang Wan
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Ling Wang
- Hangzhou Special Equipments Inspection and Research Institute, Hangzhou310014, China
| | - Wentao Xu
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Zehai Xu
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Junsheng Yuan
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Guoliang Zhang
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| |
Collapse
|
82
|
Huang J, Cai XL, Peng JR, Fan YY, Xiao X. Extracellular pollutant degradation feedback regulates intracellular electron transfer process of exoelectrogens: Strategy and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158630. [PMID: 36084783 DOI: 10.1016/j.scitotenv.2022.158630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Exoelectrogens possess extraordinary degradation ability to various pollutants through extracellular electron transfer (EET). Compared with extracellular electron release process, intracellular electron transfer network is not yet fully recognized. Especially, controversy remains regarding the role of CymA, an essential electron-transfer hub of Shewanella oneidensis MR-1, in EET process. In this study, we thoroughly surveyed the intracellular transfer strategies during EET through dye decolorization. Loss of CymA severely impaired the reduction ability of S. oneidensis MR-1 to methyl orange (MO), but hardly affected the decolorization of aniline blue (AB). Complement of cymA fully restored the MO decolorization ability of ΔcymA mutant. The contribution of CymA to extracellular decolorization was subjected to MO concentrations. The defect in the decolorization ability of ΔcymA mutant was not evident at low MO concentration, but severe at high MO concentration. Further investigation revealed that EET rate determined the significance of CymA in the extracellular bioremediation by S. oneidensis MR-1. Coupled with MO concentrations increasing from 15 to 120 mg/L, the initial electron transfer rates of S. oneidensis MR-1 increased accordingly from 2.69 × 104 to 11.21 × 104 electrons CFU-1 s-1, which led to a gradual increase of the dependencyCymA. Thus, we first revealed that extracellular degradation performance could feedback regulate the intracellular electron transfer process of S. oneidensis MR-1. This work is helpful to fully understand the complex EET process of exoelectrogens and facilitates the application of exoelectrogens in bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Jing Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jie-Ru Peng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
83
|
Alharbi H, Hameed BH, Alotaibi KD, Aloud SS, Al-Modaihsh AS. Mesoporous Activated Carbon from Leaf Sheath Date Palm Fibers by Microwave-Assisted Phosphoric Acid Activation for Efficient Dye Adsorption. ACS OMEGA 2022; 7:46079-46089. [PMID: 36570315 PMCID: PMC9773966 DOI: 10.1021/acsomega.2c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Remazol Brilliant Blue R (RBBR) is a common dye used in the industry, and its presence in wastewater and discharge into the environment can create a serious concern for the ecosystem and human health. Activated carbon produced from crop residues has emerged as a promising technique for removing contaminants from wastewater. In this study, leaf sheath date palm fiber-based activated carbon (LSDAC) was synthesized via phosphoric acid, H3PO4, treatment, followed by a microwave-induced carbonization process. The produced LSDAC was found to have a BET surface area of 604.61 m2/g, a Langmuir surface area of 922.05 m2/g, a total pore volume of 0.35 cm3/g, and an average pore size of 2.75 nm. The highest removal of RBBR was achieved at a solution pH of 3 (92.56 mg/g) and a solution temperature of 50 °C (90.37 mg/g). Adsorption of RBBR onto LSDAC followed the Langmuir isotherm model with a maximum monolayer capacity, Q m, of 243.43 mg/g, whereas in terms of kinetics, this adsorption system was best described by the pseudo-first-order (PFO) model. The calculated thermodynamic parameters ΔH°, ΔS°, ΔG°, and Arrhenius activation energy, E a, were 4.71 kJ/mol, 0.10 kJ/mol·K, -26.25 kJ/mol, and 5.88 kJ/mol, respectively, indicating that the adsorption of RBBR onto LSDAC was endothermic in nature, exhibited increased randomness at the solid-liquid interface, and was spontaneous and controlled by physisorption.
Collapse
Affiliation(s)
- Hattan
A. Alharbi
- Department
of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh11451, Saudi Arabia
| | - Bassim H. Hameed
- Department
of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Khaled D. Alotaibi
- Department
of Soil Science, College of Food and Agriculture Sciences, King Saud University,
P.O. Box 2460, Riyadh11451, Saudi Arabia
| | - Saud S. Aloud
- Department
of Soil Science, College of Food and Agriculture Sciences, King Saud University,
P.O. Box 2460, Riyadh11451, Saudi Arabia
| | - Abdullah S. Al-Modaihsh
- Department
of Soil Science, College of Food and Agriculture Sciences, King Saud University,
P.O. Box 2460, Riyadh11451, Saudi Arabia
| |
Collapse
|
84
|
Tao M, Jin C, Lu H, Jin K, Yu L, Liu J, Zhang J, Zhu X, Wu Y. Living and Regenerative Material Encapsulating Self-Assembled Shewanella oneidensis-CdS Hybrids for Photocatalytic Biodegradation of Organic Dyes. Microorganisms 2022; 10:microorganisms10122501. [PMID: 36557754 PMCID: PMC9781410 DOI: 10.3390/microorganisms10122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Reductive biodegradation by microorganisms has been widely explored for detoxifying recalcitrant contaminants; however, the biodegradation capacity of microbes is limited by the energy level of the released electrons. Here, we developed a method to self-assemble Shewanella oneidensis-CdS nanoparticle hybrids with significantly improved reductive biodegradation capacity and constructed a living material by encapsulating the hybrids in hydrogels. The material confines the nano-bacteria hybrids and protects them from environmental stress, thus improving their recyclability and long-term stability (degradation capacity unhindered after 4 weeks). The developed living materials exhibited efficient photocatalytic biodegradation of various organic dyes including azo and nitroso dyes. This study highlights the feasibility and benefits of constructing self-assembled nano-bacteria hybrids for bioremediation and sets the stage for the development of novel living materials from nano-bacteria hybrids.
Collapse
Affiliation(s)
- Mingyue Tao
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Chenyang Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- Medical School, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- Correspondence: (X.Z.); (Y.W.)
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- Correspondence: (X.Z.); (Y.W.)
| |
Collapse
|
85
|
Haque MM, Haque MA, Mosharaf MK, Islam MS, Islam MM, Hasan M, Molla AH, Haque MA. Biofilm-mediated decolorization, degradation and detoxification of synthetic effluent by novel biofilm-producing bacteria isolated from textile dyeing effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120237. [PMID: 36150625 DOI: 10.1016/j.envpol.2022.120237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Biofilm-mediated bioremediation of xenobiotic pollutants is an environmental friendly biological technique. In this study, 36 out of 55 bacterial isolates developed biofilms in glass test tubes containing salt-optimized broth plus 2% glycerol (SOBG). Scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Congo red- and Calcofluor binding results showed biofilm matrices contain proteins, curli, nanocellulose-rich polysaccharides, nucleic acids, lipids, and peptidoglycans. Several functional groups including -OH, N-H, C-H, CO, COO-, -NH2, PO, C-O, and C-C were also predicted. By sequencing, ten novel biofilm-producing bacteria (BPB) were identified, including Exiguobacterium indicum ES31G, Kurthia gibsonii ES43G, Kluyvera cryocrescens ES45G, Cedecea lapagei ES48G, Enterobacter wuhouensis ES49G, Aeromonas caviae ES50G, Lysinibacillus sphaericus ES51G, Acinetobacter haemolyticus ES52G, Enterobacter soli ES53G, and Comamonas aquatica ES54G. The Direct Red (DR) 28 (a carcinogenic and mutagenic dye used in dyeing and biomedical processes) decolorization process was optimized in selected bacterial isolates. Under optimum conditions (SOBG medium, 75 mg L-1 dye, pH 7, 28 °C, microaerophilic condition and within 72 h of incubation), five of the bacteria tested could decolorize 97.8% ± 0.56-99.7% ± 0.45 of DR 28 dye. Azoreductase and laccase enzymes responsible for biodegradation were produced under the optimum condition. UV-Vis spectral analysis revealed that the azo (-NN-) bond peak at 476 nm had almost disappeared in all of the decolorized samples. FTIR data revealed that the foremost characteristic peaks had either partly or entirely vanished or were malformed or stretched. The chemical oxygen demand decreased by 83.3-91.3% in the decolorized samples, while plant probiotic bacterial growth was indistinguishable in the biodegraded metabolites and the original dye. Furthermore, seed germination (%) was higher in the biodegraded metabolites than the parent dye. Thus, examined BPB could provide potential solutions for the bioremediation of industrial dyes in wastewater.
Collapse
Affiliation(s)
- Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Amdadul Haque
- Department of Agro-processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Shahidul Islam
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Mynul Islam
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Mehedi Hasan
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Ashraful Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
86
|
Ma LX, Zhou WJ, Li LY, Zha M, Li BL, Wu B, Hu CJ. A Cu(II)-tetra(imidazole) coordination polymer and its g-C3N4 composite of photodegradation of organic dyes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
87
|
Nazari MT, Simon V, Machado BS, Crestani L, Marchezi G, Concolato G, Ferrari V, Colla LM, Piccin JS. Rhodococcus: A promising genus of actinomycetes for the bioremediation of organic and inorganic contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116220. [PMID: 36116255 DOI: 10.1016/j.jenvman.2022.116220] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Rhodococcus is a genus of actinomycetes that has been explored by the scientific community for different purposes, especially for bioremediation uses. However, the mechanisms governing Rhodococcus-mediated bioremediation processes are far from being fully elucidated. In this sense, this work aimed to compile the recent advances in the use of Rhodococcus for the bioremediation of organic and inorganic contaminants present in different environmental compartments. We reviewed the bioremediation capacity and mechanisms of Rhodococcus spp. in the treatment of polycyclic aromatic hydrocarbons, phenolic substances, emerging contaminants, heavy metals, and dyes given their human health risks and environmental concern. Different bioremediation techniques were discussed, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. The use of Rhodococcus strains in the bioremediation of several compounds is a promising approach due to their features, primarily the presence of appropriate enzyme systems, which result in high decontamination efficiencies; but that vary according to experimental conditions. Besides, the genus Rhodococcus contains a small number of opportunistic species and pathogens, representing an advantage from the point of view of safety. Advances in analytical detection techniques and Molecular Biology have been collaborating to improve the understanding of the mechanisms and pathways involved in bioremediation processes. In the context of using Rhodococcus spp. as bioremediation agents, there is a need for more studies that 1) evaluate the role of these actinomycetes on a pilot and field scale; 2) use genetic engineering tools and consortia with other microorganisms to improve the bioremediation efficiency; and 3) isolate new Rhodococcus strains from environments with extreme and/or contaminated conditions aiming to explore their adaptive capabilities for bioremediation purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Viviane Simon
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Larissa Crestani
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Gustavo Concolato
- Faculty of Engineering and Architecture, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
88
|
Iron Porphyrin as a Cytochrome P450 Model for the Degradation of Dye. Molecules 2022; 27:molecules27227948. [PMID: 36432049 PMCID: PMC9696844 DOI: 10.3390/molecules27227948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Organic dyes are widely used in the textile, biological, medical and other fields. However, a serious environmental problem has appeared because of the presence of organic dyes in industrial aqueous effluents. Thus, the efficient treatment of organic dyes in industrial wastewaters is currently in real demand. The current study investigated the oxidative degradation of the organic dye gentian violet by meso-tetra(carboxyphenyl) porphyriniron(III), [FeIII(TCPP)] as a cytochrome P450 model and iodosylbenzene (PhIO) as an oxidant at room temperature. The degradation reaction was monitored by UV-vis absorption spectroscopy via the observation of UV-vis spectral changes of the gentian violet. The results showed that the efficiency of catalyzed degradation reached more than 90% in 1 h, indicating the remarkable oxidative degradation capacity of the [FeIII(TCPP)]/PhIO system, which provided an efficient approach for the treatment of dyeing wastewater.
Collapse
|
89
|
Tian M, Yang L, Wang D, Tao Y, Wang L, Wang J, Liu S, Quan T, Ke F, Zhang K, Li X, Gao D. Preparation of sulphuric acid-mediated N,S-codoped red emissive carbon dots: Applications in food dyes detection, solid-state luminescence and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121581. [PMID: 35797950 DOI: 10.1016/j.saa.2022.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
As diseases such as cardiovascular disease and cancer caused by food problems are more and more frequent, food safety has received great attention. Among them, the safety problem caused by food dyes is more prominent. Thus, it is of great value to develop sensitive detection methods for food dyes. In present study, sulphuric acid-mediated N,S-codoped red emissive carbon dots (namely as R-CDs) had been manufactured by using N-phenyl-o-phenylenediamine as precursor, sulfuric acid as additive for the first time. The structural and fluorescence properties of R-CDs had been systematically studied. The results demonstrated that R-CDs showed uniform spherical morphology and had a graphite-like structure, for which the average diameters size was 5.05 nm. Due to the various functional groups such as hydroxyl, pyridinic N, pyrrolic N and -C-SO4, R-CDs emitted bright red fluorescence. Importantly, because of the interactions between the functional groups of R-CDs with the selected food dyes, three dyes including amaranth, brilliant blue FCF and methylene blue can sensitively quench the fluorescence of R-CDs through IFE and static quenching effects. The linearity ranges of them were separately detected as 0.20 μM -20 μM, 10 nM-1 μM and 60 nM-8 μM. The limits of detection (LODs) of them were 70 nM, 4 nM and 20 nM, respectively. Further, R-CDs was successfully applied to the sensitive detection of three dyes from various food samples. To maximize the fluorescence properties of R-CDs, a R-CDs/PVA composite gel was fabricated to make R-CDs fluoresce in solid state condition. The potential of R-CDs/PVA composite gel for preliminary visualization analysis of three dyes was studied. Finally, ascribed to the low toxicity and good biocompatibility, the potential of R-CDs as probe for cell imaging was explored preliminarily.
Collapse
Affiliation(s)
- Meng Tian
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lijuan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yongqing Tao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junji Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shaochi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tian Quan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiang Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
90
|
Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation. Catalysts 2022. [DOI: 10.3390/catal12111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preparation of heterogeneous Fenton catalysts with both adsorption and catalytic properties has become an effective strategy for the treatment of refractory organic wastewater. In this work, 4A-Fe@Cu bimetallic Fenton catalysts with a three-dimensional core-shell structure were prepared by a simple, template-free, and surfactant-free methodology and used in the adsorption and degradation of Congo red (CR). The results showed that the open three-dimensional network structure and the positive charge of the surface of the 4A-Fe@Cu catalyst could endow a high adsorption capacity for CR, reaching 432.9 mg/g. The good adsorption property of 4A-Fe@Cu for CR not only did not inactivate the catalytic site on 4A-Fe@Cu but also could promote the contact between CR and the active sites on the catalyst surface and accelerate the degradation process. The 4A-Fe@Cu bimetallic catalyst exhibited higher catalytic activity than monometallic 4A@Cu and/or 4A-Fe catalysts due to low work function value. The effects of different pH, H2O2 dosages, and catalyst dosages on the catalytic performance of 4A-Fe@Cu were explored. In the conditions of 7.2 mM H2O2, 2 g/L 4A-Fe@Cu, and 1 g/L CR solution, the degradation ratio of CR by 4A-Fe@Cu could reach 99.2% at pH 8. This strategy provided guidance to the design of high-performance Fenton-like catalysts with both adsorption and catalysis properties for dye wastewater treatment.
Collapse
|
91
|
Yaashikaa PR, Devi MK, Kumar PS. Engineering microbes for enhancing the degradation of environmental pollutants: A detailed review on synthetic biology. ENVIRONMENTAL RESEARCH 2022; 214:113868. [PMID: 35835162 DOI: 10.1016/j.envres.2022.113868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities resulted in the deposition of huge quantities of contaminants such as heavy metals, dyes, hydrocarbons, etc into an ecosystem. The serious ill effects caused by these pollutants to all living organisms forced in advancement of technology for degrading or removing these pollutants. This degrading activity is mostly depending on microorganisms owing to their ability to survive in harsh adverse conditions. Though native strains possess the capability to degrade these pollutants the development of genetic engineering and molecular biology resulted in engineering approaches that enhanced the efficiency of microbes in degrading pollutants at faster rate. Many bioinformatics tools have been developed for altering/modifying genetic content in microbes to increase their degrading potency. This review provides a detailed note on engineered microbes - their significant importance in degrading environmental contaminants and the approaches utilized for modifying microbes. The genes responsible for degrading the pollutants have been identified and modified fir increasing the potential for quick degradation. The methods for increasing the tolerance in engineered microbes have also been discussed. Thus engineered microbes prove to be effective alternate compared to native strains for degrading pollutants.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
92
|
Qiu B, Shao Q, Shi J, Yang C, Chu H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
93
|
Biodegradation of Congo Red Using Co-Culture Anode Inoculum in a Microbial Fuel Cell. Catalysts 2022. [DOI: 10.3390/catal12101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congo red is an azo dye widely used as a colouring agent in textile industries. It is a serious threat due to its carcinogenic effects. Its degradation has been challenging due to its complex yet stable structure. The present study was aimed to investigate the effective degradation of Congo red by bioremediating bacteria isolated from different environments. To investigate predominant microorganisms that degrade Congo red and its functions in microbial fuel cells (MFCs), strains isolated from cow dung (Enterococcus faecalis SUCR1) and soil (Pseudomonas aeruginosa PA1_NCHU) were used as a co-culture inocula. The remarkable results establish that E. faecalis as an excellent microbial source for the biological degradation of dye-contaminated wastewater treatment alongside bioactive treating wastewater with varied concentrations of congo red dye. The highest efficiency percentage of dye degradation was 98% after 3 days of incubation at pH 7 and 37 °C, whereas findings have shown that the decolorization at pH 5 and 6 was lower at 66% and 83.3%, respectively, under the same incubation conditions. Furthermore, the co-culture of E. faecalis SUCR1 and P. aeruginosa at a 1:1 ratio demonstrated improved power generation in MFCs. The maximum power density of 7.4 W/m3 was recorded at a 150 mg L−1 concentration of Congo red, indicating that the symbiotic relation between these bacterium resulted in improved MFCs performance simultaneous to dye degradation.
Collapse
|
94
|
Varjani S. Prospective review on bioelectrochemical systems for wastewater treatment: Achievements, hindrances and role in sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156691. [PMID: 35714749 DOI: 10.1016/j.scitotenv.2022.156691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BESs) are a relatively new arena for producing bioelectricity, desalinating sea water, and treating industrial effluents by removing organic matter. Microbial electrochemical technologies (METs) are promising for obtaining value-added products during simultaneous remediation of pollutants from wastewater. The search for more affordable desalination technology has led to the development of microbial desalination cells (MDCs). MDC combines the operation of microbial fuel cells (MFC) with electrodialysis for water desalination and energy generation. It has received notable interest of researchers in desalination and wastewater treatment because of low energy requirement and eco-friendly nature. Firstly, this article provides a brief overview of MDC technology. Secondly, factors affecting functioning of MDC and its applications have been accentuated. Additionally, challenges and future outlook on the development of this technology have been delineated. State-of-the-art information provided in this review would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| |
Collapse
|
95
|
Alkas TR, Ediati R, Ersam T, Nawfa R, Purnomo AS. Fabrication of metal-organic framework Universitetet i Oslo-66 (UiO-66) and brown-rot fungus Gloeophyllum trabeum biocomposite (UiO-66@GT) and its application for reactive black 5 decolorization. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
96
|
Fabrication of electrospun polyamide–weathered basalt nano-composite as a non-conventional membrane for basic and acid dye removal. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
In this study, an adsorptive electrospun polyamide membrane (ESPA) and electrospun polyamide–weathered basalt composite membrane (ESPA-WB) were prepared by an electrospinning process at room temperature. Hence, the WB structure was built as a polymeric membrane separation film in combination with the ESPA matrix as a composite nano-filtration membrane. Then, the ESPA and ESPA-WB membranes were characterized using BET surface area analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM). To avoid cracks forming during the sintering process, the WB should be added in certain percentages. The microstructures of the prepared membranes were investigated to evaluate their efficiency for basic and acidic dyesʼ removal and their permeation flux. Compared with the ESPA, the ESPA-WB membrane combines the characteristics of WB and ESPA, which greatly enhances the performance of both methylene blue (MB) and methyl orange (MO) dyes removal from synthetic wastewater. The outcomes of this study indicated that the dye uptake in the case of ESPA-WB is higher than that of ESPA, and it decreases with an increase in dye concentrations. The obtained membrane ESPA-WB showed both an excellent anti-dye fouling and a good rejection property for both dyes (i.e. 90% rejection for MB and 74% for MO) with no sign of contamination by the applied dyes. It was found that the structure of the ESPA-WB membrane contains a large number of several adsorption sites which leads to an increase in the removal rate of dyes. Hence, this study demonstrated a non-conventional strategy to prepare an effective adsorptive nano-composite membrane that can be applied as a highly recyclable one for the removal of organic dyes.
Graphic abstract
Collapse
|
97
|
Synthesis of Novel Zr-MOF/Cloisite-30B Nanocomposite for Anionic and Cationic Dye Adsorption: Optimization by Design-Expert, Kinetic, Thermodynamic, and Adsorption Study. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
98
|
Brindha R, Rajeswari S, Jennet Debora J, Rajaguru P. Evaluation of global research trends in photocatalytic degradation of dye effluents using scientometrics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115600. [PMID: 35772271 DOI: 10.1016/j.jenvman.2022.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/26/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis technology is observed to be an effective approach for its outstanding performance to eliminate wide range of organic pollutants including dyes in textile effluent. Despite growing number of studies, there is no scientometric perspective addressing the research topic "photocatalytic degradation of dye effluents". In this regard, a total of 954 documents were extracted from the Web of Science (WoS) database using keywords search to cover all the published documents during the period 1996-2020. Publications in this area started to increase exponentially from year 2007. The most dominant subject categories were Engineering, Chemistry and Environmental Science & Ecology. Applied Catalysis B-Environmental and Desalination & Water Treatment were identified as the most-impactful and productive journals respectively. Authors based in India accounted for 29.6% of total publications followed by China (14.2%); but in terms of citations Spain and Italy were more influential. Based on keyword analysis, azo dyes, TiO2, nanoparticles, adsorption, methylene blue, visible light, ZnO and kinetics are the most studied, and visible light mediated photocatalysis, hybrid treatment systems, nano based photocatalysis and more recently, metal based photocatalysis, have received most attention. Studies on cost and energy analysis, recovery of value-added products, development of more efficient photocatalytic materials and new photocatalyst regeneration approaches should be considered for future research. This study therefore, provides a comprehensive understanding about the trends and patterns of the specified research field worldwide.
Collapse
Affiliation(s)
- R Brindha
- Department of Biotechnology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - S Rajeswari
- Department of Library, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - J Jennet Debora
- Department of Biotechnology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - P Rajaguru
- Department of Life Sciences, Central University of Tamilnadu, Thiruvarur, 610005, Tamilnadu, India.
| |
Collapse
|
99
|
Deka R, Shreya S, Mourya M, Sirotiya V, Rai A, Khan MJ, Ahirwar A, Schoefs B, Bilal M, Saratale GD, Marchand J, Saratale RG, Varjani S, Vinayak V. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. ENVIRONMENTAL RESEARCH 2022; 212:113454. [PMID: 35597291 DOI: 10.1016/j.envres.2022.113454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.
Collapse
Affiliation(s)
- Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Shristi Shreya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana,133203, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Justine Marchand
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India.
| |
Collapse
|
100
|
Zhang L, Lin Y, Zhu Z, Li X, Wang S, Peng Y. Rapidly recovering and maintaining simultaneous partial nitrification, denitrification and anammox process through hydroxylamine addition to advance nitrogen removal from domestic sewage. BIORESOURCE TECHNOLOGY 2022; 360:127645. [PMID: 35868463 DOI: 10.1016/j.biortech.2022.127645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The collapse of simultaneous partial nitrification, denitrification and anammox (SPNDA) system, caused by the destruction of partial nitrification (PN), is the most likely phenomenon to occur. Therefore, recovering the process quickly and maintaining efficient nitrogen removal is a valuable topic for research. In the anaerobic/aerobic/anoxic operation mode, SPNDA process was used to treat domestic sewage in a sequencing batch biofilm reactor. After the deterioration of PN effect, with the addition of hydroxylamine, the activity of ammonia-oxidizing bacteria in the nitrobacteria increased (61.0-91.3 %), whereas the accumulation of nitrite quickly recovered to 90.4 % within 5 days. Meanwhile, the nitrogen removal efficiency improved (61.8-95.6 %) and the effluent TN was 2.1 mg/L. Furthermore, Candidatus Brocadia was enriched (0.50-1.82 %) in the system. The results indicated that the addition of hydroxylamine was an effective strategy to recover and economically maintain the SPNDA process for advanced nitrogen removal from domestic sewage.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|