51
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
52
|
Philippe V, Laurent A, Abdel-Sayed P, Hirt-Burri N, Ann Applegate L, Martin R. Human Platelet Lysate as an Alternative to Autologous Serum for Human Chondrocyte Clinical Use. Cartilage 2021; 13:509S-518S. [PMID: 34330164 PMCID: PMC8808884 DOI: 10.1177/19476035211035433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE A pivotal aspect of cartilage tissue engineering resides in cell culture medium supplementation, in view of maximizing in vitro cell proliferation and preserving cellular functionality. Autologous human serum (aHS) is commonly used as an inducive supplement for safe human articular chondrocyte (HAC) proliferation prior to clinical implantation. However, practical clinical use of aHS is hindered by constraining manufacturing requirements and quality assurance-driven downstream processing. The present study investigated potential alternative use of commercial human platelet lysate (hPL) supplements in HAC manufacturing workflows related to clinical therapeutic pathways. DESIGN Differential effects of hPL, aHS, and fetal bovine serum were assessed on primary cultured HAC parameters (viability, proliferative rates, and morphology) in 2-dimensional in vitro systems. A 3-dimensional HAC pellet model served for postexpansion assessment of cellular functionality, by visualizing proteoglycan production (Alcian blue staining), and by using qRT-PCR relative quantification of chondrogenic marker (SOX9, COL2-A1, and ACAN) genetic expression. RESULTS We found that monolayer HAC culture with hPL or aHS supplements presented similar characteristics (elongated cell morphology and nearly identical growth kinetics). Chondrogenic activity appeared as conserved in HACs expanded with human or bovine supplements, wherein histologic analysis indicated a progressive sGAG accumulation and SOX9, COL2-A1, ACAN gene expression was upregulated in 3-dimensional HAC pellet models. CONCLUSION This study therefore supports the use of hPL as a functional equivalent and alternative to aHS for cultured HAC batch preparation, with the potential to effectively alleviate pressure on clinical and manufacturing bottlenecks in cell therapy approaches for cartilage regeneration.
Collapse
Affiliation(s)
- Virginie Philippe
- Service of Orthopaedic Surgery and
Traumatology, Lausanne University Hospital, University of Lausanne,
Switzerland,Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland,Virginie Philippe, Service of Orthopaedic
Surgery and Traumatology, Lausanne University Hospital, Pierre-Decker 4,
Lausanne, CH-1011, Switzerland. Email
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Robin Martin
- Service of Orthopaedic Surgery and
Traumatology, Lausanne University Hospital, University of Lausanne,
Switzerland
| |
Collapse
|
53
|
Nebie O, Carvalho K, Barro L, Delila L, Faivre E, Renn TY, Chou ML, Wu YW, Nyam-Erdene A, Chou SY, Buée L, Hu CJ, Peng CW, Devos D, Blum D, Burnouf T. Human platelet lysate biotherapy for traumatic brain injury: preclinical assessment. Brain 2021; 144:3142-3158. [PMID: 34086871 PMCID: PMC8634089 DOI: 10.1093/brain/awab205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury (TBI) leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from TBI can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signalling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfil these requirements as it is composed of a plethora of biomolecules readily accessible as a TBI biotherapy. In the present study, we tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of TBI. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56°C 30 min heat treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals' cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µl in the lesioned area, followed by daily 60 µl intranasal administration from Day 1 to 6 post-injury. Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ∼1-50 ng/ml levels. We demonstrate, using two mouse models of TBI, that topical application and intranasal platelet lysate consistently improved mouse motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that heat-treated platelet pellet lysate reversed several pathways promoted by both controlled cortical impact and cortical brain scratch and related to transport, postsynaptic density, mitochondria or lipid metabolism. The present data strongly support, for the first time, that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.
Collapse
Affiliation(s)
- Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of
Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog—Lille Neuroscience and
Cognition, Lille F-59000, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000,
France
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog—Lille Neuroscience and
Cognition, Lille F-59000, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000,
France
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, Taipei Medical
University, Taipei, 11031, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of
Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Emilie Faivre
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog—Lille Neuroscience and
Cognition, Lille F-59000, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000,
France
| | - Ting-Yi Renn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical
University, Taipei, 11031, Taiwan
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of
Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University,
Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of
Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ariunjargal Nyam-Erdene
- International PhD Program in Biomedical Engineering, Taipei Medical
University, Taipei, 11031, Taiwan
| | - Szu-Yi Chou
- NeuroTMULille International Laboratory, Taipei Medical
University, Taipei, 11031, Taiwan
- PhD Program for Neural Regenerative Medicine, College of Medical Science and
Technology, Taipei Medical University and National Health Research
Institutes, Taipei, 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science
and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog—Lille Neuroscience and
Cognition, Lille F-59000, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000,
France
- NeuroTMULille International Laboratory, Univ. Lille, Lille,
F-59000 France
| | - Chaur-Jong Hu
- NeuroTMULille International Laboratory, Taipei Medical
University, Taipei, 11031, Taiwan
- PhD Program for Neural Regenerative Medicine, College of Medical Science and
Technology, Taipei Medical University and National Health Research
Institutes, Taipei, 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science
and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical
University, New Taipei City, 23561, Taiwan
- Neurology, School of Medicine, College of Medicine, Taipei Medical
University, Taipei, 11031, Taiwan
| | - Chih-Wei Peng
- International PhD Program in Biomedical Engineering, Taipei Medical
University, Taipei, 11031, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei
Medical University, Taipei, 11031, Taiwan
| | - David Devos
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog—Lille Neuroscience and
Cognition, Lille F-59000, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille,
F-59000 France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog—Lille Neuroscience and
Cognition, Lille F-59000, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000,
France
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science
and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of
Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, Taipei Medical
University, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University,
Taipei, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei
Medical University, Taipei, 11031, Taiwan
- International PhD Program in Cell Therapy and Regeneration, College of
Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Brain and Consciousness Research Centre, Taipei Medical University Shuang Ho
Hospital, New Taipei City, 23561, Taiwan
| |
Collapse
|
54
|
Karimi Ghahfarrokhi E, Meimandi-Parizi A, Oryan A, Ahmadi N. Effects of Combination of BMP7, PFG, and Autograft on Healing of the Experimental Critical Radial Bone Defect by Induced Membrane (Masquelet) Technique in Rabbit. THE ARCHIVES OF BONE AND JOINT SURGERY 2021; 9:585-597. [PMID: 34692943 DOI: 10.22038/abjs.2020.50852.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Background Healing of large segmental bone defects can be challenging for orthopedic surgeons. This research was conducted to provide further insight into the effects of BMP7 in combination with autograft and platelet fibrin glue (PFG) on bone regeneration by Masquelet technique (MT). Methods Twenty five domestic male rabbits, more than 6 months old, weighing 2.00±0.25 kg were randomly divided into five equal groups as follows: MT-blank cavity (without any biological or synthetic materials) (1), blank cavity (2), MT-autograft (3), MT-autograft-BMP7 (4), and MT-BMP7-PFG (5). A 20 mm segmental defect was made in radial bone in both forelimbs. The Masquelet technique was done in all groups except group 2. The study was evaluated by radiology, biomechanics, histopathology and scanning electron microscopy. Results The results showed that Masquelet technique enhanced the healing process, as, the structural and functional criteria of the injured bone showed significantly improved bone healing (P<0.05). Treatment by PFG-BMP7, Autograft-BMP7, and autograft demonstrated beneficial effects on bone healing. However, Autograft-BMP7 was more effective than autograft in healing of the radial defect in rabbits. Conclusion Our findings introduce the osteogenic materials in combination with Masquelet technique as an alternative for reconstruction of the big diaphyseal defects in the long bones in animal models. Our findings may be useful for clinical application in future.
Collapse
Affiliation(s)
| | | | - Ahmad Oryan
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
55
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
56
|
Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112319. [PMID: 34474870 DOI: 10.1016/j.msec.2021.112319] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Chronic wounds are highly susceptible to bacterial infections. Previously, we loaded a natural antimicrobial peptide of low cost and high safety, ε-polylysine (EPL), into the electrospun nanofiber mat of starch. The mat showed comparable antibacterial activity but markedly better biocompatibility than the commercial silver-containing dressing. To further optimize material property, in this paper, we use hyaluronic acid (HA) to replace starch. Results show that EPL-loaded HA nanofiber mats (OHA-EPL) have suitable water vapor permeability, good biocompatibility and broad-spectrum antibacterial property similar to that of EPL-loaded starch nanofiber mat (Starch-EPL). Differently, the content of EPL in OHA-EPL nanofiber mats increases from 19.2% to 27.9%, the tensile strength rises from 0.3 MPa to 0.6 MPa, the elongation grows from 62.0% to 130.0%, and the fiber degradation and EPL release accelerates. In addition, OHA-EPL can absorb up to 26.3-times exudate, which is much higher than Starch-EPL (15.1 times). Combined with the excellent biological activity of HA, OHA-EPL may produce better therapeutic effects than Starch-EPL.
Collapse
|
57
|
A purified human platelet pellet lysate rich in neurotrophic factors and antioxidants repairs and protects corneal endothelial cells from oxidative stress. Biomed Pharmacother 2021; 142:112046. [PMID: 34426259 DOI: 10.1016/j.biopha.2021.112046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human platelet lysate (HPL) is a complex mixture of potent bioactive molecules instrumental in tissue repair and regeneration. Due to their remarkable safety, cost-effective production, and availability at global level from collected platelet concentrates, HPLs can become a powerful biotherapy for various therapeutic applications, if standardized and carefully validated through pre-clinical and clinical studies. In this work, the possibility to use a tailor-made HPL as a corneal transplant alternative to treat the gradual decrease in the number of corneal endothelial cells (CECs) associated with aging, was evaluated. The HPL preparation was thoroughly characterized using various proteomics tools that revealed a remarkable richness in multiple growth factors and antioxidants. Treatment of B4G12 and BCE C/D-1b CECs with the HPL increased their viability, enhanced the wound closure rate, and maintained cell growth and typical hexagonal morphology. Besides, this HPL significantly protected against tert-butyl hydroperoxide (TBHP)-induced oxidative stress as evidenced by increasing CEC viability, decreased cell death and reactive oxygen species formation, and enhanced antioxidant capacity. Proteomics analysis of treated CECs confirmed that HPL treatment triggered the corneal healing pathway and enhanced oxidative stress. These data strongly support further pre-clinical evaluation of this tailor-made HPL as a novel CEC regeneration biotherapy. HPL treatment may eventually represent a pragmatic and cost-effective alternative to corneal transplant to treat damages of the corneal endothelium which is a major cause of blindness worldwide.
Collapse
|
58
|
Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers (Basel) 2021; 13:polym13132114. [PMID: 34203144 PMCID: PMC8271496 DOI: 10.3390/polym13132114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.
Collapse
|
59
|
Calabriso N, Stanca E, Rochira A, Damiano F, Giannotti L, Di Chiara Stanca B, Massaro M, Scoditti E, Demitri C, Nitti P, Palermo A, Siculella L, Carluccio MA. Angiogenic Properties of Concentrated Growth Factors (CGFs): The Role of Soluble Factors and Cellular Components. Pharmaceutics 2021; 13:pharmaceutics13050635. [PMID: 33946931 PMCID: PMC8146902 DOI: 10.3390/pharmaceutics13050635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Blood-derived concentrated growth factors (CGFs) represent a novel autologous biomaterial with promising applications in regenerative medicine. Angiogenesis is a key factor in tissue regeneration, but the role played by CGFs in vessel formation is not clear. The purpose of this study was to characterize the angiogenic properties of CGFs by evaluating the effects of its soluble factors and cellular components on the neovascularization in an in vitro model of angiogenesis. CGF clots were cultured for 14 days in cell culture medium; after that, CGF-conditioned medium (CGF-CM) was collected, and soluble factors and cellular components were separated and characterized. CGF-soluble factors, such as growth factors (VEGF and TGF-β1) and matrix metalloproteinases (MMP-2 and -9), were assessed by ELISA. Angiogenic properties of CGF-soluble factors were analyzed by stimulating human cultured endothelial cells with increasing concentrations (1%, 5%, 10%, or 20%) of CGF-CM, and their effect on cell migration and tubule-like formation was assessed by wound healing and Matrigel assay, respectively. The expression of endothelial angiogenic mediators was determined using qRT-PCR and ELISA assays. CGF-derived cells were characterized by immunostaining, qRT-PCR and Matrigel assay. We found that CGF-CM, consisting of essential pro-angiogenic factors, such as VEGF, TGF-β1, MMP-9, and MMP-2, promoted endothelial cell migration; tubule structure formation; and endothelial expression of multiple angiogenic mediators, including growth factors, chemokines, and metalloproteinases. Moreover, we discovered that CGF-derived cells exhibited features such as endothelial progenitor cells, since they expressed the CD34 stem cell marker and endothelial markers and participated in the neo-angiogenic process. In conclusion, our results suggest that CGFs are able to promote endothelial angiogenesis through their soluble and cellular components and that CGFs can be used as a biomaterial for therapeutic vasculogenesis in the field of tissue regeneration.
Collapse
Affiliation(s)
- Nadia Calabriso
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
| | - Eleonora Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Alessio Rochira
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Fabrizio Damiano
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Laura Giannotti
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Benedetta Di Chiara Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Marika Massaro
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
| | - Egeria Scoditti
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
| | - Christian Demitri
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (C.D.); (P.N.)
| | - Paola Nitti
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (C.D.); (P.N.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
- Correspondence: (L.S.); (M.A.C.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
- Correspondence: (L.S.); (M.A.C.)
| |
Collapse
|
60
|
Resumed ovarian function and pregnancy in early menopausal women by whole dimension subcortical ovarian administration of platelet-rich plasma and gonadotropins. ACTA ACUST UNITED AC 2021; 28:660-666. [PMID: 33784262 DOI: 10.1097/gme.0000000000001746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study was designed to investigate if whole dimension subcortical ovarian administration of platelet-rich plasma with gonadotropin, in proximity to most ovarian follicles, is effective in restoring ovarian functions in women during early menopause. METHODS Platelet-rich plasma, prepared from 40 mL of autologous peripheral blood using the buffy coat method, was injected into extended subcortical area of bilateral ovaries along with recombinant follicle-stimulating hormone (rFSH) (Gonal-F 300IU) under laparoscopic guidance. The posttreatment ovarian folliculogenesis and serum levels of FSH, luteinizing hormone (LH), and estradiol were followed up for 6 months at weekly to monthly intervals. IVF was carried out in women resuming ovulatory functions. RESULTS Twelve early menopausal women with mean age of 44.42 ± 2.84 were enrolled. After treatment, 11 women resumed their menstrual period in 37.1 ± 23.5 days. Their average serum FSH was 70.47 ± 20.92 and 26.22 ± 17.55 IU/L, luteinizing hormone was 34.81 ± 11.86 and 14.3 ± 12.8 IU/L, before and after treatment, respectively. The mid-cycle E2 was 251.1 ± 143.8 pg/mL. Ten oocyte retrievals were carried out among six participants, four of them received controlled ovarian stimulation and another two using natural ovulation cycles. Thirteen mature eggs were retrieved which were then ICSI fertilized to obtain 10 normally fertilized 2PN oocytes. Two participants had cleavage stage embryos transferred of which one achieved clinical pregnancy. CONCLUSIONS Whole dimension subcortical ovarian administration of platelet-rich plasma with gonadotropin was shown to restore ovarian functions, at least temporarily, and could increase the probability of pregnancy using autologous oocytes in women with early menopause.
Collapse
|
61
|
Valizadeh A, Asghari S, Bastani S, Sarvari R, Keyhanvar N, Razin SJ, Khiabani AY, Yousefi B, Yousefi M, Shoae-Hassani A, Mahmoodpoor A, Hamishehkar H, Tavakol S, Keshel SH, Nouri M, Seifalian AM, Keyhanvar P. Will stem cells from fat and growth factors from blood bring new hope to female patients with reproductive disorders? Reprod Biol 2021; 21:100472. [PMID: 33639342 DOI: 10.1016/j.repbio.2020.100472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 01/05/2023]
Abstract
Female reproductive system disorders (FRSD) with or without infertility are prevalent women's health problems with a variety of treatment approaches including surgery and hormone therapy. It currently considering to sub-branch of regenerative medicine including stem cells or growth factors injection-based delivery treatment might be improved female reproductive health life. The most common products used for these patients treatment are autologous cell or platelet-based products from patients, including platelet-rich plasma, plasma rich in growth factor, platelet-rich fibrin, and stromal vascular fraction. In this review, we discuss each of the above products used in treatment of FRSD and critically evaluate the clinical outcome.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bastani
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran
| | - Sepideh Jalilzadeh Razin
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Yousefzadeh Khiabani
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Andam Baft Yakhteh (ABY) Company (Ltd), Tehran, Iran
| | - Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran; Zist Andam Yakhteh Azerbaijan (ZAYA) Company (PHT), Medical Instrument Technology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander Marcus Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London NW1 0NH, United Kingdom
| | - Peyman Keyhanvar
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran; Zist Andam Yakhteh Azerbaijan (ZAYA) Company (PHT), Medical Instrument Technology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; HealthNBICS Group, Convergence of Knowledge and Technology to the benefit of Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
62
|
Chenna D, Shastry S, Das S. Cocktail Protocol for Preparation of Platelet-Rich Fibrin Glue for Autologous Use. Malays J Med Sci 2021; 28:35-40. [PMID: 33679218 PMCID: PMC7909360 DOI: 10.21315/mjms2021.28.1.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/19/2020] [Indexed: 10/26/2022] Open
Abstract
Background Biomaterials containing platelets have been used to promote healing of ulcers and burns, as well as in implantology and maxillofacial and plastic surgery to achieve wound healing and tissue repair. Commercial devices to prepare autologous biomaterials involve diverse preparation methods that can have high production costs and low yields. Hence, we designed a protocol for preparation of large amounts of autologous platelet-rich fibrin (PRF) glue using conventional processing techniques for blood components. Methods Autologous whole blood collected 72 h before surgery was processed to prepare platelet concentrates and cryoprecipitate. In a closed system, calcium was added to the cryoprecipitate to release autologous thrombin and generate a firm fibrin clot. The fibrin clot, platelets and calcium were then placed in a conical flask in which a PRF glue formed. The protocol was validated through determination of pre- and post-platelet counts and fibrinogen amounts in the product. Results Platelets were recovered with 68% efficiency during the preparation. Essentially no platelets or fibrinogen were found in the supernatant of the PRF glue, suggesting that nearly all had been incorporated in a PRF glue having a relatively large (8 cm × 10 cm) size. Conclusion The protocol described here is a cost-effective, simple and closed system that can be used to produce large-size PRF glue to promote repair of major surgical defects.
Collapse
Affiliation(s)
- Deepika Chenna
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College of Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College of Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Soumya Das
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College of Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Transfusion Medicine, All India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
63
|
Farmani AR, Nekoofar MH, Ebrahimi Barough S, Azami M, Rezaei N, Najafipour S, Ai J. Application of Platelet Rich Fibrin in Tissue Engineering: Focus on Bone Regeneration. Platelets 2021; 32:183-188. [PMID: 33577378 DOI: 10.1080/09537104.2020.1869710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone tissue engineering (BTE) is a strategy for reconstructing bone lesions, which is rapidly developing in response to higher demands for bone repairing. Recently, this method, along with the emergence of functionally graded, biocompatible and biodegradable materials, has been expanded. Moreover, scaffolds with chemical, physical and external patterns have induced bone regeneration. However, the maintenance of healthy bone and its regeneration in the human body needs a series of complex and accurate processes. Hence, many studies have been accompanied for reconstructing bone by using blood-derived biomaterials, especially platelet-rich fabricates. The most important reason for using platelet-rich formulations in bone regeneration is based on releasing growth factors from alpha granules in platelets, which can induce osteogenesis. Moreover, the presence of fibrin nano-fiber structures as a constituent can provide a good substrate for cell attachments. This study attempts to review the history, structure, and biology of platelet-rich fibrin (PRF) as well as in vitro, pre-clinical, and clinical studies on the use of PRF for bone regeneration.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Ebrahimi Barough
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sohrab Najafipour
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Chan GKL, Guo MS, Dai DK, Lai QWS, Fung KWC, Zheng BZ, Wu KQ, Man BKK, Dong TT, Tsim KWK. An Optimized Extract, Named Self-Growth Colony, from Platelet-Rich Plasma Shows Robust Skin Rejuvenation and Anti-Ageing Properties: A Novel Technology in Development of Cosmetics. Skin Pharmacol Physiol 2021; 34:74-85. [PMID: 33556953 DOI: 10.1159/000513052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Inspired by application of platelet-rich plasma (PRP) in skin treatment during injuries, an extracting method was developed here to recover high amounts of cytokines and growth factors from PRP; this prepared extract was named as self-growth colony (SGC). METHODS In optimization of SGC preparation, various parameters were tested, for example, centrifugation force, freeze-thaw, sonication, and inclusion of calcium chelator. The amounts of cytokines and growth factors, including platelet factor 4, β-thromboglobulin, epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, were measured by ELISA assay. RESULTS By comparing to PRP, the prepared SGC contained a significant higher amount of measured growth factors. In addition, the degradation of growth factors within SGC during the storage was calibrated, which showed better stability as compared to that of PRP preparation. Having possible application in skin care, the optimized SGC was chemically standardized by using the enrichment of growth factors. Application of SGC in cultured keratinocytes stimulated the wound healing of injured cultures. In line to this notion, SGC was applied onto human skin, and thereafter the robust improvement of skin properties was revealed. CONCLUSIONS The potential application of SGC in treating skin rejuvenation and ageing, as well as its elaborated application for medical purpose, that is, wound healing, was illustrated.
Collapse
Affiliation(s)
- Gallant Kar Lun Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maggie Suisui Guo
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Diana Kun Dai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Queenie Wing Sze Lai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Kelly Wing Chi Fung
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Brody Zhongyu Zheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kevin Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Brian King Ki Man
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China, .,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China,
| |
Collapse
|
65
|
Meftahpour V, Malekghasemi S, Baghbanzadeh A, Aghebati-Maleki A, Pourakbari R, Fotouhi A, Aghebati-Maleki L. Platelet lysate: a promising candidate in regenerative medicine. Regen Med 2021; 16:71-85. [PMID: 33543999 DOI: 10.2217/rme-2020-0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human platelet lysate has attracted much interest from many researchers as it is growth-factor rich for cell expansion, which is employed as a new therapeutic strategy. Not only are human platelet lysates used for cell therapy, but they are also used for the completion of basal media in mesenchymal stem cell cultures. Due to the presence of a large number of growth factors, platelet lysates have potential roles in wound healing, treatment of ocular graft-versus-host disease, osteoarthritis, Parkinson's disease, tendon regeneration, infertility, androgenetic alopecia, nerve repair and regenerative tissue, such as bone regeneration. In this review, we summarize that platelet lysates could be valuable candidates for the treatment of a variety of diseases in regenerative medicine.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| |
Collapse
|
66
|
Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Mater Today Bio 2021; 9:100096. [PMID: 33665604 PMCID: PMC7903011 DOI: 10.1016/j.mtbio.2021.100096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Scaffolds for bone tissue regeneration should provide the right cues for stem cell adhesion and proliferation, but also lead to their osteogenic differentiation. Hydrogels of modified platelet lysates (PLMA) show the proper mechanical stability for cell encapsulation and contain essential bioactive molecules required for cell maintenance. We prepared a novel PLMA-based nanocomposite for bone repair and regeneration capable of releasing biofactors to induce osteogenic differentiation. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were encapsulated in PLMA hydrogels containing bioactive mesoporous silica nanoparticles previously loaded with dexamethasone and functionalized with calcium and phosphate ions. After 21 d of culture, hBM-MSCs remained viable, presented a stretched morphology, and showed signs of osteogenic differentiation, namely the presence of significant amounts of alkaline phosphatase, bone morphogenic protein-2 and osteopontin, hydroxyapatite, and calcium nodules. Developed for the first time, PLMA/MSNCaPDex nanocomposites were able to guide the differentiation of hBM-MSCs without any other osteogenic supplementation.
Collapse
|
67
|
Yang Y, Xiao Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv Healthc Mater 2020; 9:e2000726. [PMID: 32691989 DOI: 10.1002/adhm.202000726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Blood coagulation in tissue healing not only prevents blood loss, but also forms a natural scaffold for tissue repair and regeneration. As blood clot formation is the initial and foremost phase upon bone injury, and the quality of blood clot (hematoma) orchestrates the following inflammatory and cellular processes as well as the subsequent callus formation and bone remodeling process. Inspired by the natural healing hematoma, tissue-engineered biomimic scaffold/hydrogels and blood prefabrication strategies attract significant interests in developing functional bone substitutes. The alteration of the fracture hematoma ca significantly accelerate or impair the overall bone healing process. This review summarizes the impact of biomaterials on blood coagulation and provides evidence on fibrin network structure, growth factors, and biomolecules that contribute to bone healing within the hematoma. The aim is to provide insights into the development of novel implant and bone biomaterials for enhanced osteogenesis. Advances in the understanding of biomaterial characteristics (e.g., morphology, chemistry, wettability, and protein adsorption) and their effect on hematoma properties are highlighted. Emphasizing the importance of the initial healing phase of the hematoma endows the design of advanced biomaterials with the desired regulatory properties for optimal coagulation and hematoma properties, thereby facilitating enhanced osteogenesis and ideal therapeutic effects.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
68
|
Barro L, Burnouf PA, Chou ML, Nebie O, Wu YW, Chen MS, Radosevic M, Knutson F, Burnouf T. Human platelet lysates for human cell propagation. Platelets 2020; 32:152-162. [PMID: 33251940 DOI: 10.1080/09537104.2020.1849602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pathogen-free and standardized xeno-free supplement of growth media is required for the ex vivo propagation of human cells used as advanced therapeutic medicinal products and for clinical translation in regenerative medicine and cell therapies. Human platelet lysate (HPL) made from therapeutic-grade platelet concentrate (PC) is increasingly regarded as being an efficient xeno-free alternative growth medium supplement to fetal bovine serum (FBS) for clinical-grade isolation and/or propagation of human cells. Most experimental studies establishing the superiority of HPL over FBS were conducted using mesenchymal stromal cells (MSCs) from bone marrow or adipose tissues. Data almost unanimously concur that MSCs expanded in a media supplemented with HPL have improved proliferation, shorter doubling times, and preserved clonogenicity, immunophenotype, in vitro trilineage differentiation capacity, and T-cell immunosuppressive activity. HPL can also be substituted for FBS when propagating MSCs from various other tissue sources, including Wharton jelly, the umbilical cord, amniotic fluid, dental pulp, periodontal ligaments, and apical papillae. Interestingly, HPL xeno-free supplementation is also proving successful for expanding human-differentiated cells, including chondrocytes, corneal endothelium and corneal epithelium cells, and tenocytes, for transplantation and tissue-engineering applications. In addition, the most recent developments suggest the possibility of successfully expanding immune cells such as macrophages, dendritic cells, and chimeric antigen receptor-T cells in HPL, further broadening its use as a growth medium supplement. Therefore, strong scientific rationale supports the use of HPL as a universal growth medium supplement for isolating and propagating therapeutic human cells for transplantation and tissue engineering. Efforts are underway to ensure optimal standardization and pathogen safety of HPL to secure its reliability for clinical-grade cell-therapy and regenerative medicine products and tissue engineering.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan
| | - Pierre-Alain Burnouf
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,INSERM UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Saint-Antoine Hospital, Paris, France
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Miryana Radosevic
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
69
|
Delila L, Wu YW, Nebie O, Widyaningrum R, Chou ML, Devos D, Burnouf T. Extensive characterization of the composition and functional activities of five preparations of human platelet lysates for dedicated clinical uses. Platelets 2020; 32:259-272. [PMID: 33245683 DOI: 10.1080/09537104.2020.1849603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelet lysates (HPLs), rich in various growth factors and cell growth-promoting molecules, encompass a new range of blood products that are being used for regenerative medicine, cell therapies, and tissue engineering. Well-characterized dedicated preparations, tailor-made to best fit specific therapeutic applications, are needed for optimal clinical efficacy and safety. Here, five types of HPL were prepared from the same platelet concentrates and extensively characterized to determine and compare their proteins, growth factors, cytokines, biochemical profiles, thrombin-generating capacities, thrombin-associated proteolytic activities, phospholipid-associated procoagulant potential, contents of extracellular vesicles expressing phosphatidylserine and tissue factor, and antioxidative properties. Our results revealed that all five HPL preparations contained detectable supraphysiological levels, in the ca. 0.1 ~ 350-ng/ml range, of all growth factors assessed, except insulin-like growth factor-1 detected only in HPL containing plasma. There were significant differences observed among these HPLs in total protein content, fibrinogen, complement components C3 and C4, albumin, and immunoglobulin G, and, most importantly, in their functional coagulant and procoagulant activities and antioxidative capacities. Our data revealed that the biochemical and functional properties of HPL preparations greatly vary depending upon their mode of production, with potential impacts on the safety and efficacy for certain clinical indications. Modes of preparation of HPLs should be carefully designed, and the product properties carefully evaluated based on the intended therapeutic use to ensure optimal clinical outcomes.
Collapse
Affiliation(s)
- Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Rifa Widyaningrum
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Research Center of Biomedical Devices, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine Taipei Medical University, Taipei, Taiwan.,PhD Program in Graduate Institute of Mind Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
70
|
Growth factors-based beneficial effects of platelet lysate on umbilical cord-derived stem cells and their synergistic use in osteoarthritis treatment. Cell Death Dis 2020; 11:857. [PMID: 33057008 PMCID: PMC7560841 DOI: 10.1038/s41419-020-03045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Poor viability of mesenchymal stem cells (MSCs) at the transplanted site often hinders the efficacy of MSCs-based therapy. Platelet lysate (PL) contains rich amounts of growth factors, which benefits cell growth. This study aimed to explore how human PL benefits umbilical cord-derived MSCs (huc-MSCs), and whether they have synergistic potential in osteoarthritis (OA) treatment. As quality control, flow cytometry and specific staining were performed to identify huc-MSCs, and ELISA was used to quantify growth factors in PL. CCK-8 and flow cytometry assays were performed to evaluate the effects of PL on the cell viability and cell cycle progression of huc-MSCs. Wound healing and transwell assays were conducted to assess the migration of huc-MSCs. RNA sequencing, real time PCR, and Western blot assays were conducted to explore the growth factors-based mechanism of PL. The in vitro results showed that PL significantly promoted the proliferation, cell cycle, and migration of huc-MSCs by upregulating relevant genes/proteins and activating beclin1-dependent autophagy via the AMPK/mTOR signaling pathway. The main growth factors (PDGF-AA, IGF-1, TGF-β, EGF, and FGF) contributed to the effects of PL in varying degrees. The in vivo data showed that combined PL and huc-MSCs exerted significant synergistic effect against OA. The overall study determined the beneficial effects and mechanism of PL on huc-MSCs and indicated PL as an adjuvant for huc-MSCs in treating OA. This is the first report on the growth factors-based mechanism of PL on huc-MSCs and their synergistic application. It provides novel knowledge of PLʹs roles and offers a promising strategy for stem cell-based OA therapy by combining PL and huc-MSCs.
Collapse
|
71
|
Mikael PE, Golebiowska AA, Kumbar SG, Nukavarapu SP. Evaluation of Autologously Derived Biomaterials and Stem Cells for Bone Tissue Engineering. Tissue Eng Part A 2020; 26:1052-1063. [PMID: 32375566 PMCID: PMC7580602 DOI: 10.1089/ten.tea.2020.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022] Open
Abstract
Despite progress, clinical translation of tissue engineering (TE) products/technologies is limited. A significant effort is underway to develop biomaterials and cells through a minimally modified process for clinical translation of TE products. Recently, bone marrow aspirate (BMA) was identified as an autologous source of cells for TE applications and is currently being tested in clinical therapies, but the isolation methods need improvement to avoid potential for contamination and increase progenitor cell yield. To address these issues, we reproducibly processed human peripheral blood (PB) and BMA to develop autologously derived biomaterials and cells. We demonstrated PB-derived biomaterial/gel cross-linking and fibrin gel formation with varied gelation times as well as biocompatibility through support of human bone marrow-derived stem cell survival and growth in vitro. Next, we established a plastic culture-free process that concentrates and increases the yield of CD146+/CD271+ early mesenchymal progenitor cells in BMA (concentrated BMA [cBMA]). cBMA exhibited increased colony formation and multipotency (including chondrogenic differentiation) in vitro compared with standard BMA. PB-derived gels encapsulated with cBMA also demonstrated increased cell proliferation and enhanced mineralization when assessed for bone TE in vitro. This strategy can potentially be developed for use in any tissue regeneration application; however, bone regeneration was used as a test bed for this study.
Collapse
Affiliation(s)
- Paiyz E. Mikael
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | | | - Sangamesh G. Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| | - Syam P. Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
72
|
Pennati A, Apfelbeck T, Brounts S, Galipeau J. Washed Equine Platelet Extract as an Anti-Inflammatory Biologic Pharmaceutical. Tissue Eng Part A 2020; 27:582-592. [PMID: 32854583 DOI: 10.1089/ten.tea.2020.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian platelets participate in the immediate tissue injury response by initiating coagulation and further promoting tissue injury mitigation and repair. The latter properties are deployed following platelet release of presynthetized morphogens, cytokines, and growth and chemotactic factors, which launch a tissue regenerative, angiogenic, and anti-inflammatory program. Several blood-derived biologic products, like platelet-rich plasma (PRP) and platelet lysate (PL), are currently on the market to allow proper healing and tissue regeneration. However, not all growth factors are released from the platelets and the final products contain plasma proteins such as albumin, fibrinogen, complement, and immunoglobulins, increasing the risks of serum sickness or allergic reaction. To address this problem, we developed a new platelet extract where equine blood platelets are concentrated, washed, and thereafter lysed by detergent Triton X-114. Distinct from PRP, this extract is devoid of albumin, fibrinogen, and immunoglobulins and is 266-fold enriched in platelet-derived growth factor content relative to PRP. Washed equine platelet extract (WEPLEX) is amenable to lyophilization without loss of biological activity. In vitro, WEPLEX significantly inhibits human and equine T cell proliferative response to phytohemagglutinin and also polarizes murine CD45+/CD11b+ peritoneal macrophages to an IL-10+ M2-like phenotype. In vivo, WEPLEX substantially improves clinical outcome of murine experimental dextran sulfate sodium colitis. We propose that equine-sourced, zoonosis-free WEPLEX may serve as an anti-inflammatory biological therapy across mammalian species.
Collapse
Affiliation(s)
- Andrea Pennati
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Taylor Apfelbeck
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Surgical Sciences, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Sabrina Brounts
- Department of Surgical Sciences, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
73
|
Yang L, Zang G, Li J, Li X, Li Y, Zhao Y. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater 2020; 7:349-358. [PMID: 32793380 PMCID: PMC7414994 DOI: 10.1093/rb/rbaa019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a key mechanism underlying the pathogenesis of cardiovascular disease, which is associated with high morbidity and mortality. In the field of precision medicine for the treatment of atherosclerosis, nanoparticle (NP)-mediated drug delivery systems have great potential, owing to their ability to release treatment locally. Cell-derived biomimetic NPs have attracted extensive attention at present due to their excellent targeting to atherosclerotic inflammatory sites, low immunogenicity and long blood circulation time. Here, we review the utility of cell-derived biomimetic NPs, including whole cells, cell membranes and extracellular vesicles, in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Long Yang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Jingwen Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Yuanzhu Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
- Correspondence address. Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China. Tel: +86 18883256765; E-mail:
| |
Collapse
|
74
|
Anitua E, Nurden P, Nurden AT, Padilla S. More than 500 million years of evolution in a fibrin-based therapeutic scaffold. Regen Med 2020; 15:1493-1498. [PMID: 32441555 DOI: 10.2217/rme-2020-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
75
|
D'Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G, Misso S, Migliaccio T, Liguoro P, Oriente F, Fortunato L, Beguinot F, Sammartino JC, Formisano P, Gasparro R. Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 2020; 14:701-713. [PMID: 32174023 DOI: 10.1002/term.3032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, ASL-CE, Caserta, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Pietro Formisano
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roberta Gasparro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
76
|
Wu YW, Huang CC, Changou CA, Lu LS, Goubran H, Burnouf T. Clinical-grade cryopreserved doxorubicin-loaded platelets: role of cancer cells and platelet extracellular vesicles activation loop. J Biomed Sci 2020; 27:45. [PMID: 32200762 PMCID: PMC7087392 DOI: 10.1186/s12929-020-00633-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human platelets (PLT) and PLT-extracellular vesicles (PEV) released upon thrombin activation express receptors that interact with tumour cells and, thus, can serve as a delivery platform of anti-cancer agents. Drug-loaded nanoparticles coated with PLT membranes were demonstrated to have improved targeting efficiency to tumours, but remain impractical for clinical translation. PLT and PEV targeted drug delivery vehicles should facilitate clinical developments if clinical-grade procedures can be developed. METHODS PLT from therapeutic-grade PLT concentrate (PC; N > 50) were loaded with doxorubicin (DOX) and stored at - 80 °C (DOX-loaded PLT) with 6% dimethyl sulfoxide (cryopreserved DOX-loaded PLT). Surface markers and function of cryopreserved DOX-loaded PLT was confirmed by Western blot and thromboelastography, respectively. The morphology of fresh and cryopreserved naïve and DOX-loaded PLT was observed by scanning electron microscopy. The content of tissue factor-expressing cancer-derived extracellular vesicles (TF-EV) present in conditioned medium (CM) of breast cancer cells cultures was measured. The drug release by fresh and cryopreserved DOX-loaded PLT triggered by various pH and CM was determined by high performance liquid chromatography. The thrombin activated PEV was analyzed by nanoparticle tracking analysis. The cellular uptake of DOX from PLT was observed by deconvolution microscopy. The cytotoxicities of DOX-loaded PLT, cryopreserved DOX-loaded PLT, DOX and liposomal DOX on breast, lung and colon cancer cells were analyzed by CCK-8 assay. RESULTS 15~36 × 106 molecules of DOX could be loaded in each PLT within 3 to 9 days after collection. The characterization and bioreactivity of cryopreserved DOX-loaded PLT were preserved, as evidenced by (a) microscopic observations, (b) preservation of important PLT membrane markers CD41, CD61, protease activated receptor-1, (c) functional activity, (d) reactivity to TF-EV, and (e) efficient generation of PEV upon thrombin activation. The transfer of DOX from cryopreserved PLT to cancer cells was achieved within 90 min, and stimulated by TF-EV and low pH. The cryopreserved DOX-loaded PLT formulation was 7~23-times more toxic to three cancer cells than liposomal DOX. CONCLUSIONS Cryopreserved DOX-loaded PLT can be prepared under clinically compliant conditions preserving the membrane functionality for anti-cancer therapy. These findings open perspectives for translational applications of PLT-based drug delivery systems.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - Cheng-Chain Huang
- Graduate Institute of Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun Austin Changou
- Graduate Institute of Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
77
|
Azevedo MM, Lisboa C, Cobrado L, Pina-Vaz C, Rodrigues A. Hard-to-heal wounds, biofilm and wound healing: an intricate interrelationship. ACTA ACUST UNITED AC 2020; 29:S6-S13. [PMID: 32167817 DOI: 10.12968/bjon.2020.29.5.s6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hard-to-heal wounds are a major public health problem that incur high economic costs. A major source of morbidity, they can have an overwhelming impact on patients, caregivers and society. In contrast to acute wound healing, which follows an 'orderly and timely reparative process', the healing of hard-to-heal wounds is delayed because the usual biological progression is interrupted. This article discusses hard-to-heal wounds, the impact they have on patients and healthcare systems, and how biofilms and other factors affect the wound-healing process. Controlling and preventing infection is of utmost importance for normal wound healing. Rational use of anti-infectious agents is crucial and is particularly relevant in the context of rising healthcare costs. Knowledge of the complex relationship between hard-to-heal wounds, biofilm formation and wound healing is vital for efficient management of hard-to-heal wounds.
Collapse
Affiliation(s)
- Maria-Manuel Azevedo
- Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Teacher, Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal, and Physician, Department of Dermatovenereology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Luís Cobrado
- Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
| | - Cidália Pina-Vaz
- Teacher, Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Teacher and Head, Microbiology Department, Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal, and Physician, Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Porto, Portugal
| |
Collapse
|
78
|
Nebie O, Barro L, Wu YW, Knutson F, Buée L, Devos D, Peng CW, Blum D, Burnouf T. Heat-treated human platelet pellet lysate modulates microglia activation, favors wound healing and promotes neuronal differentiation in vitro. Platelets 2020; 32:226-237. [PMID: 32106742 DOI: 10.1080/09537104.2020.1732324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neurorestorative efficacy of human platelet lysates in neurodegenerative disorders is still under investigation. Platelets prepared from standard and pathogen reduced platelet concentrates were pelletized, washed, concentrated, and subjected to freeze-thawing. The lysate was heated to 56°C for 30 min and characterized. Toxicity was evaluated using SH-SY5Y neuroblastoma, BV-2 microglial, and EA-hy926 endothelial cells. Inflammatory activity was tested by examining tumor necrosis factor (TNF) and cyclooxygenase (COX)-2 expressions by BV-2 microglia with or without stimulation by lipopolysaccharides (LPS). The capacity to stimulate wound healing was evaluated by a scratch assay, and the capacity to differentiate SH-SY5Y into neurons was also examined. Platelet lysates contained a range of neurotrophins. They were not toxic to SH-SY5Y, EA-hy926, or BV-2 cells, did not induce the expression of TNF or COX-2 inflammatory markers by BV-2 microglia, and decreased inflammation after LPS stimulation. They stimulated the wound closure in the scratch assay and induced SH-SY5Y differentiation as revealed by the increased length of neurites as well as β3-tubulin and neurofilament staining. These data confirm the therapeutic potential of platelet lysates in the treatment of disorders of the central nervous system and support further evaluation as novel neurorestorative biotherapy in preclinical models.
Collapse
Affiliation(s)
- Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, France
| | - Chih-Wei Peng
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - David Blum
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,PhD Program in Mind, Brain & Consciousness, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
79
|
Natural polymeric biomaterials in growth factor delivery for treating diabetic foot ulcers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
80
|
Martinotti S, Patrone M, Balbo V, Mazzucco L, Ranzato E. Endothelial response boosted by platelet lysate: the involvement of calcium toolkit. Int J Mol Sci 2020; 21:ijms21030808. [PMID: 31991927 PMCID: PMC7036775 DOI: 10.3390/ijms21030808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Wound repair is a dynamic process during which crucial signaling pathways are regulated by growth factors and cytokines released by several kinds of cells directly involved in the healing process. However, the limited applications and heterogeneous clinical results of single growth factors in wound healing encouraged the use of a mixture of bioactive molecules such as platelet derivatives for best results in wound repair. An interesting platelet derivative, obtained from blood samples, is platelet lysate (PL), which has shown potential clinical application. PL is obtained from freezing and thawing of platelet-enriched blood samples. Intracellular calcium (Ca2+) signals play a central role in the control of endothelial cell survival, proliferation, motility, and differentiation. We investigated the role of Ca2+ signaling in the PL-driven endothelial healing process. In our experiments, the functional significance of Ca2+ signaling machinery was highlighted performing the scratch wound assay in presence of different inhibitors or specific RNAi. We also pointed out that the PL-induced generation of intracellular ROS (reactive oxygen species) via NOX4 (NADPH oxidase 4) is necessary for the activation of TRPM2 and the resulting Ca2+ entry from the extracellular space. This is the first report of the mechanism of wound repair in an endothelial cell model boosted by the PL-induced regulation of [Ca2+]i.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant’Eusebio 5, 13100 Vercelli, Italy
- Correspondence: ; Tel.: +39-0131-360260; Fax: +39-0131-360243
| | - Mauro Patrone
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
| | - Valeria Balbo
- Laboratorio Produzione Emocomponenti e Medicina Rigenerativa, SIMT—AO “SS Antonio e Biagio”, 15121 Alessandria, Italy; (V.B.); (L.M.)
| | - Laura Mazzucco
- Laboratorio Produzione Emocomponenti e Medicina Rigenerativa, SIMT—AO “SS Antonio e Biagio”, 15121 Alessandria, Italy; (V.B.); (L.M.)
| | - Elia Ranzato
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|
81
|
Hesler M, Kohl Y, Wagner S, von Briesen H. Non-pooled Human Platelet Lysate: A Potential Serum Alternative for In Vitro Cell Culture. Altern Lab Anim 2019; 47:116-127. [PMID: 31698922 DOI: 10.1177/0261192919882516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Serum supplementation is crucial in in vitro cell culture to provide all the essential nutrients needed for cellular processes. Fetal bovine serum (FBS) is considered the 'gold standard', but its production raises serious ethical concerns. Human-derived alternatives to FBS exist in the form of human platelet lysates (hPLs) or human AB serum (ABS). However, these serum products are usually pooled from several donors, in order to have a standardised product without patient-specific deviations. Nevertheless, the use of patient-specific serum in cell culture might be the key to successful transplantation of the cultured cells in medical applications, particularly as it avoids the transmission of infectious components or xenogenic proteins. In addition, the production of non-pooled hPL from single donors is likely to be a cost-effective and time-saving method. The current study used hPL units isolated from single donors and tested their performance as medium supplements for cell culture in comparison with FBS or ABS. This proof-of-concept study aimed to assess the potential of non-pooled hPL for personalised serum supplementation, and thus optimise in vitro models by making them more relevant to human physiology. We showed that A549, HepG2 and Caco-2 human cell lines were generally able to adapt to the new culture conditions and maintain viability, morphology and certain cell-specific characteristics. These results indicate that non-pooled, single patient-derived hPL could be a suitable alternative for in vitro serum supplementation.
Collapse
Affiliation(s)
- Michelle Hesler
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach/Saar, Germany
| | - Yvonne Kohl
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach/Saar, Germany
| | - Sylvia Wagner
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach/Saar, Germany
| | - Hagen von Briesen
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach/Saar, Germany
| |
Collapse
|
82
|
Gao Y, Ku NJ, Sung TC, Higuchi A, Hung CS, Lee HHC, Ling QD, Cheng NC, Umezawa A, Barro L, Burnouf T, Ye Q, Chen H. The effect of human platelet lysate on the differentiation ability of human adipose-derived stem cells cultured on ECM-coated surfaces. J Mater Chem B 2019; 7:7110-7119. [PMID: 31513217 DOI: 10.1039/c9tb01764j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human mesenchymal stem cells (hMSCs), such as human adipose-derived stem cells (hADSCs), present heterogeneous characteristics, including varying differentiation abilities and genotypes. hADSCs isolated under different conditions exhibit differences in stemness. We isolated hADSCs from human fat tissues via culture on different cell culture biomaterials including tissue culture polystyrene (TCPS) dishes and extracellular matrix protein (ECM)-coated dishes in medium supplemented with 5% or 10% serum-converted human platelet lysate (hPL) or 10% fetal bovine serum (FBS) as a control. Currently, it is not clear whether xeno-free hPL in the cell culture medium promotes the ability of hMSCs such as hADSCs to differentiate into several cell lineages compared to the xenomaterial FBS. We investigated whether a synchronized effect of ECM (Matrigel, fibronectin, and recombinant vitronectin) coatings on TCPS dishes for efficient hADSC differentiation could be observed when hADSCs were cultured in hPL medium. We found that Matrigel-coated dishes promoted hADSC differentiation into osteoblasts and suppressed differentiation into chondrocytes in 10% hPL medium. Recombinant vitronectin- and fibronectin-coated dishes greatly promoted hADSC differentiation into osteoblasts and chondrocytes in 5% and 10% hPL media. hPL promoted hADSC differentiation into osteoblasts and chondrocytes compared to FBS on the fibronectin-coated surface and recombinant vitronectin-coated surface.
Collapse
Affiliation(s)
- Yan Gao
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.
| | - Nien-Ju Ku
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China. and Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan and Center for Emergent Matter Science, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Wenzhou Institute, University of Chinese Academy of Science, No. 16, Xinsan Road, Hi-Tech Industry Park, Wenzhou, Zhejiang, China
| | - Chi-Sheng Hung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan and Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei 100, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan and Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Qingsong Ye
- Regenerative Dentistry Group, School of Dentistry, The University of Queensland, 288 Herston Road, Herston Qld, Brisbane 4006, Australia
| | - Hao Chen
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
83
|
Yip HK, Chen KH, Dubey NK, Sun CK, Deng YH, Su CW, Lo WC, Cheng HC, Deng WP. Cerebro- and renoprotective activities through platelet-derived biomaterials against cerebrorenal syndrome in rat model. Biomaterials 2019; 214:119227. [DOI: 10.1016/j.biomaterials.2019.119227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
|
84
|
Gouel F, Rolland AS, Devedjian JC, Burnouf T, Devos D. Past and Future of Neurotrophic Growth Factors Therapies in ALS: From Single Neurotrophic Growth Factor to Stem Cells and Human Platelet Lysates. Front Neurol 2019; 10:835. [PMID: 31428042 PMCID: PMC6688198 DOI: 10.3389/fneur.2019.00835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically results in death within 3–5 years after diagnosis. To date, there is no curative treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative treatments. Due to their spectrum of capacities in the central nervous system—e.g., development, plasticity, maintenance, neurogenesis—neurotrophic growth factors (NTF) have been exploited for therapeutic strategies in ALS for decades. In this review we present the initial strategy of using single NTF by different routes of administration to the use of stem cells transplantation to express a multiple NTFs-rich secretome to finally focus on a new biotherapy based on the human platelet lysates, the natural healing system containing a mix of pleitropic NTF and having immunomodulatory function. This review highlights that this latter treatment may be crucial to power the neuroprotection and/or neurorestoration therapy requested in this devastating disease.
Collapse
Affiliation(s)
- Flore Gouel
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France.,Department of Neurology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| |
Collapse
|
85
|
Pal A, Tripathi K, Pathak C, Vernon BL. Plasma-based fast-gelling biohybrid gels for biomedical applications. Sci Rep 2019; 9:10881. [PMID: 31350449 PMCID: PMC6659638 DOI: 10.1038/s41598-019-47366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Blood based biomaterials are widely researched and used in different biomedical applications including cell therapy, drug delivery, sealants etc. due to their biocompatibility and biodegradability. Blood derived gels are successfully used in clinical studies due to the presence of fibrinogen and several platelet growth factors. In spite of their wide applications, it is challenging to use blood-based biomaterials due to their low mechanical stability, poor adhesive property and contamination risk. In this study, we used porcine plasma to form gel in presence of biodegradable synthetic crosslinkers. Mechanical strength of this plasma gel could be tailored by altering the amount of crosslinkers for any desired biomedical applications. These plasma gels, formed by the synthetic crosslinkers, were utilized as a drug delivery platform for wound healing due to their low cytotoxicity. A model drug release study with these plasma gels indicated slow and sustained release of the drugs.
Collapse
Affiliation(s)
- Amrita Pal
- Arizona State University, Tempe, AZ, 85287, USA
| | | | | | | |
Collapse
|
86
|
Zamani M, Yaghoubi Y, Movassaghpour A, Shakouri K, Mehdizadeh A, Pishgahi A, Yousefi M. Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? J Cell Physiol 2019; 234:17172-17186. [PMID: 30912141 DOI: 10.1002/jcp.28496] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.
Collapse
Affiliation(s)
- Majid Zamani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Shakouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Pishgahi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
87
|
Samberg M, Stone R, Natesan S, Kowalczewski A, Becerra S, Wrice N, Cap A, Christy R. Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta Biomater 2019; 87:76-87. [PMID: 30665019 DOI: 10.1016/j.actbio.2019.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Despite great advances in skin wound care utilizing grafting techniques, the resulting severe scarring, deformity and ineffective vascularization remains a challenge. Alternatively, tissue engineering of new skin using patient-derived stem cells and scaffolding materials promises to greatly increase the functional and aesthetic outcome of skin wound healing. This work focused on the optimization of a polyethylene glycol modified (PEGylated) platelet-rich plasma (PRP) hydrogel for the protracted release of cytokines, growth factors, and signaling molecules and also the delivery of a provisional physical framework for stem cell angiogenesis. Freshly collected whole blood was utilized to synthesize PEGylated PRP hydrogels containing platelet concentrations ranging from 0 to 200,000 platelets/µl. Hydrogels were characterized using thromboelastography and impedance aggregometry for platelet function and were visualized using scanning electron microscopy. To assess the effects of PEGylated PRP hydrogels on cells, PRP solutions were seeded with human adipose-derived stem cells (ASCs) prior to gelation. Following 14 days of incubation in vitro, increased platelet concentrations resulted in higher ASC proliferation and vascular gene and protein expression (assessed via RT-PCR, ELISA, and immunochemistry). Using a rat skin excision model, wounds treated with PRP + ASC hydrogels increased the number of vessels in the wound by day 8 (80.2 vs. 62.6 vessels/mm2) compared to controls. In conclusion, the proposed PEGylated PRP hydrogel promoted both in vitro and transient in vivo angiogenesis of ASCs for improved wound healing. STATEMENT OF SIGNIFICANCE: Our findings support an innovative means of cellular therapy intervention to improve surgical wound healing in a normal wound model. ASCs seeded within PEGylated PRP could be an efficacious and completely autologous therapy for treating patients who have poorly healing wounds caused by vascular insufficiency, previous irradiation, or full-thickness burns. Because wound healing is a dynamic and complex process, the application of more than one growth factor with ASCs demonstrates an advantageous way of improving healing.
Collapse
Affiliation(s)
- Meghan Samberg
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Randolph Stone
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Shanmugasundaram Natesan
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Andrew Kowalczewski
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Sandra Becerra
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Nicole Wrice
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Andrew Cap
- U.S. Army Institute of Surgical Research, Coagulation and Blood Research, JBSA Fort Sam Houston, TX, USA
| | - Robert Christy
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA.
| |
Collapse
|
88
|
Nicoletti G, Saler M, Villani L, Rumolo A, Tresoldi MM, Faga A. Platelet Rich Plasma Enhancement of Skin Regeneration in an ex-vivo Human Experimental Model. Front Bioeng Biotechnol 2019; 7:2. [PMID: 30701173 PMCID: PMC6343075 DOI: 10.3389/fbioe.2019.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study reports on the development of an original, ex-vivo wounded skin culture protocol using autologous Platelet Rich Plasma (PRP) and enriched Dulbecco's Modified Eagle's Medium (DMEM). Human skin samples obtained from specimens harvested during reduction mammoplasty procedures, were injured in their central portion—to create a standard wound—and cultured under three different conditions: – enriched DMEM with saline solution in the central wound (control) – enriched DMEM with the same medium in the central wound – enriched DMEM plus 2.5% autologous PRP, with the same PRP added medium in the central wound. Morphological analysis was carried out at 0 h (T0) and on days 1, 3, 5 and 10 (T1-T3-T5-T10) using Hematoxylin and Eosin; Masson's trichrome staining; Weigert staining and Ki-67 staining to identify the skin histological features in the different experimental conditions. The combination of DMEM and PRP allowed a favorable modulation of the epithelial cells and fibroblasts proliferation, and a relevant anti-inflammatory action. PRP also demonstrated an inhibitory effect on both the collagen and elastic fibers' de-structuration and a favorable modulation of the re-organization of these fibers. The step by step histological and immune-histo-chemical regenerative effects of PRP on human skin wound repair and regeneration process was observed over a period of 10 days.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Marco Saler
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Laura Villani
- Pathological Anatomy and Histology Unit, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Agnese Rumolo
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Mario Tresoldi
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
89
|
Santos SC, Custódio CA, Mano JF. Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Adv Healthc Mater 2018; 7:e1800849. [PMID: 30387328 DOI: 10.1002/adhm.201800849] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/30/2018] [Indexed: 12/31/2022]
Abstract
3D cell culture platforms have emerged as a setting that resembles in vivo environments replacing the traditional 2D platforms. Over the recent years, an extensive effort has been made on the development of more physiologically relevant 3D cell culture platforms. Extracellular matrix-based materials have been reported as a bioactive and biocompatible support for cell culture. For example, human plasma derivatives have been extensively used in cell culture. Despite all the promising results, in most cases these types of materials have poor mechanical properties and poor stability in vitro. Here plasma-based hydrogels with increased stability are proposed. Platelet lysates are modified by addition of methacryloyl groups (PLMA) that polymerize in controlled geometries upon UV light exposure. The hydrogels could also generate porous scaffolds after lyophilization. The results show that PLMA materials have increased mechanical properties that can be easily adjusted by changing PLMA concentration or modification degree. Cells readily adhere, proliferate, and migrate, exhibiting high viability when encapsulated in PLMA hydrogels. The innovation potential of PLMA materials is based on the fact that it is a complete xeno-free solution for human cell culture, thus an effective alternative to the current gold standards for 3D cell culture based on animal products.
Collapse
Affiliation(s)
- Sara C. Santos
- Department of ChemistryCICECOUniversity of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Catarina A. Custódio
- Department of ChemistryCICECOUniversity of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - João F. Mano
- Department of ChemistryCICECOUniversity of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| |
Collapse
|
90
|
Santos SC, Sigurjonsson ÓE, Custódio CA, Mano JF. Blood Plasma Derivatives for Tissue Engineering and Regenerative Medicine Therapies. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:454-462. [PMID: 29737237 PMCID: PMC6443031 DOI: 10.1089/ten.teb.2018.0008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelet-rich plasma (PRP) and its derivatives have been investigated and applied in regenerative medicine. The use of PRP as a supplement of cell culture media has consistently shown to potentiate stem cell proliferation, migration, and differentiation. In addition, the clinical utility of PRP is supported by evidence that PRP contains high concentrations of growth factors (GFs) and proteins which contribute to the regenerative process. PRP based therapies are cost effective and also benefit from the accessibility and safety of using the patient's own GFs. In the last years, a great development has been witnessed on PRP based biomaterials, with both structural and functional purposes. In this study we overview the most relevant PRP applications encompassing PRP based materials for tissue engineering and regenerative medicine. This review also summarizes the challenges in the fields of tissue engineering and regenerative medicine and provides a perspective on future directions.
Collapse
Affiliation(s)
- SC Santos
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ólafur Eysteinn Sigurjonsson
- 1) The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101 Reykjavik, Iceland 2) School of Science and Engineering, University of Reykjavik, Menntavegur 1, 101 Reykjavik
| | - Catarina Almeida Custódio
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Filipe Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
91
|
Aryal B, Yamakuchi M, Shimizu T, Kadono J, Furoi A, Gejima K, Komokata T, Hashiguchi T, Imoto Y. Therapeutic implication of platelets in liver regeneration -hopes and hues. Expert Rev Gastroenterol Hepatol 2018; 12:1219-1228. [PMID: 30791793 DOI: 10.1080/17474124.2018.1533813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mounting evidence highlights platelet involvement in liver regeneration via interaction with liver cells, growth factors release, and signaling contributions. Existing research suggests a compelling biological rationale for utilizing platelet biology, with the goal of improving liver function and accelerating its regenerative potential. Despite its expanding application in several clinical areas, the contribution of the platelet and its therapeutic implementation in liver regeneration so far has not yet fulfilled the initial high expectations. Areas covered: This review scrutinizes the progress, current updates, and discusses how recent understanding - particularly in the clinical implications of platelet-based therapy - may enable strategies to introduce and harness the therapeutic potential of the platelet during liver regeneration. Expert commentary: Several clinical and translational studies have facilitated a platform for the development of platelet-based therapy to enhance liver regeneration. While some of these therapies are effective to augment liver regeneration, the others have had some detrimental outcomes. The existing evidence represents a challenge for future projects that are focused on directly incorporating platelet-based therapies to induce liver regeneration.
Collapse
Affiliation(s)
- Bibek Aryal
- a Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Munekazu Yamakuchi
- b Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Toshiaki Shimizu
- b Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Jun Kadono
- c Department of Surgery , Kirishima Medical Center , Kirishima , Japan
| | - Akira Furoi
- c Department of Surgery , Kirishima Medical Center , Kirishima , Japan
| | - Kentaro Gejima
- a Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Teruo Komokata
- d Department of Surgery , Kagoshima Medical Center . Kagoshima , Japan
| | - Teruto Hashiguchi
- b Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Yutaka Imoto
- a Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
92
|
Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D, Li Y. Microtia patients: Auricular chondrocyte ECM is promoted by CGF through IGF‐1 activation of the IGF‐1R/PI3K/AKT pathway. J Cell Physiol 2018; 234:21817-21824. [PMID: 30471105 DOI: 10.1002/jcp.27316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Xia Chen
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhicheng Xu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Feng Xu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yiyuan Li
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
93
|
Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials 2018; 192:440-460. [PMID: 30500725 DOI: 10.1016/j.biomaterials.2018.11.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
The healing of vascularized mammalian tissue injuries initiate with hemostasis and clotting as part of biological defense system leading to the formation of a fibrin clot in which activated platelets are trapped to quickly stop bleeding and destroy microbials. In order to harness the therapeutic potential of biomolecules secreted by platelets and stemmed from plasma, blood deconstruction has allowed to yield autologous platelet-and plasma-derived protein fibrin scaffold. The autologous growth factors and microparticles stemmed from platelets and plasma, interact with fibrin, extracellular matrix, and tissue cells in a combinatorial, synergistic, and multidirectional way on mechanisms governing tissue repair. This interplay will induce a wide range of cell specifications during inflammation and repair process including but not limited to fibrogenesis, angiogenesis, and immunomodulation. As biology-as-a-drug approach, autologous platelet-and plasma-derived protein fibrin scaffold is emerging as a safe and efficacious natural human-engineered growth factor delivery system to repair musculoskeletal tissues, and skin and corneal ulcers and burns. In doing so, it acts as therapeutic agent not perfect but close to biological precision. However, this autologous, biocompatible, biodegradable, and long in vivo lasting strategy faces several challenges, including its non-conventional single dose-response effect, the lack of standardization in its preparation and application, and the patient's biological features. In this review, we give an account of the main events of tissue repair. Then, we describe the procedure to prepare autologous platelet-and plasma-derived protein fibrin scaffolds, and the rationale behind these biomaterials, and finally, we highlight the significance of strategic accuracy in their application.
Collapse
|
94
|
Bari E, Perteghella S, Faragò S, Torre ML. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. Int J Biol Macromol 2018; 119:37-47. [DOI: 10.1016/j.ijbiomac.2018.07.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
|
95
|
Development and evaluation of a spray applicator for platelet-rich plasma. Colloids Surf B Biointerfaces 2018; 171:214-223. [DOI: 10.1016/j.colsurfb.2018.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
|
96
|
Nageh M, Ahmed GM, El-Baz AA. Assessment of Regaining Pulp Sensibility in Mature Necrotic Teeth Using a Modified Revascularization Technique with Platelet-rich Fibrin: A Clinical Study. J Endod 2018; 44:1526-1533. [DOI: 10.1016/j.joen.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
97
|
Mendes BB, Gómez-Florit M, Pires RA, Domingues RMA, Reis RL, Gomes ME. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. NANOSCALE 2018; 10:17388-17401. [PMID: 30203823 DOI: 10.1039/c8nr04273j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular matrix (ECM)-biomimetic fibrillar structure of platelet lysate (PL) gels along with their enriched milieu of biomolecules has drawn significant interest in regenerative medicine applications. However, PL-based gels have poor structural stability, which severely limits their performance as a bioinstructive biomaterial. Here, rod-shaped cellulose nanocrystals (CNC) are used as a novel approach to modulate the physical and biochemical microenvironment of PL gels enabling their effective use as injectable human-based cell scaffolds with a level of biomimicry that is difficult to recreate with synthetic biomaterials. The incorporation of CNC (0 to 0.61 wt%) into the PL fibrillar network during the coagulation cascade leads to decreased fiber branching, increased interfiber porosity (from 66 to 83%) and modulates fiber (from 1.4 ± 0.7 to 27 ± 12 kPa) and bulk hydrogel (from 18 ± 4 to 1256 ± 82 Pa) mechanical properties. As a result of these physicochemical alterations, nanocomposite PL hydrogels resist the typical extensive clot retraction (from 76 ± 1 to 24 ± 3 at day 7) and show favored retention of PL bioactive molecules. The feedback of these cues on the fate of human adipose-derived stem cells is evaluated, showing how it can be explored to modulate the commitment of encapsulated stem cells toward different genetic phenotypes without the need for additional external biological stimuli. These fibrillar nanocomposite hydrogels allow therefore the exploration of the outstanding biological properties of human-based PL as an efficient engineered ECM which can be tailored to trigger specific regenerative pathways in minimal invasive strategies.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal.
| | | | | | | | | | | |
Collapse
|
98
|
Yaprak E, Kasap M, Akpinar G, Islek EE, Sinanoglu A. Abundant proteins in platelet-rich fibrin and their potential contribution to wound healing: An explorative proteomics study and review of the literature. J Dent Sci 2018; 13:386-395. [PMID: 30895150 PMCID: PMC6388803 DOI: 10.1016/j.jds.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/01/2018] [Indexed: 01/12/2023] Open
Abstract
Background/purpose It is well-known that diverse types of blood proteins contribute to healing process via different mechanisms. Presence and potential involvements of blood-derived abundant proteins in the platelet-rich fibrin (PRF) to its regenerative capacity have not been sufficiently emphasized in the literature. The aim of this paper was to analyze the abundant proteome content of PRF and summarize previously reported effects of identified proteins on wound healing via a literature review. Materials and methods The PRF samples obtained from non-smoking, systemically healthy volunteers were subjected to 2D gel electrophoresis after extracting the proteins from fibrin matrices. All matching spots were excised from the gels and identified by MALDI TOF/TOF MS/MS analysis. A literature review was conducted to reveal possible contributions of identified proteins to wound healing. Results Totally, thirty-five blood proteins were commonly identified among all studied samples. These proteins included serine protease inhibitors, such as alpha-1-antitrypsin, alpha-1-antichymotrypsin, alpha-1-acid glycoprotein, inter-alpha-trypsin-inhibitor, protease C1 inhibitor, and complement proteins. In addition, abundant presence of immunoglobulin G was observed. The abundance of albumin, haptoglobin, ceruloplasmin vitronectin, fetuin-A, ficolin-3 and transthyretin was also detected. Conclusion The results of this study indicated that PRF abundantly contains blood-origin actors which were previously reported for their direct contribution to wound healing. Further studies exploring the protein content of PRF are needed to reveal its undisclosed potential roles in the healing process.
Collapse
Affiliation(s)
- Emre Yaprak
- Kocaeli University, Faculty of Dentistry, Department of Periodontology, Kocaeli, Turkey
- Corresponding author. Kocaeli University, Faulty of Dentistry, Department of Periodontology, Yuvacik, Basiskele, Kocaeli, Turkey. Fax: +90 2623442109.
| | - Murat Kasap
- Kocaeli University, Faculty of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Gurler Akpinar
- Kocaeli University, Faculty of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Eylul Ece Islek
- Kocaeli University, Faculty of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Alper Sinanoglu
- Kocaeli University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Oral Diagnosis Clinic, Kocaeli, Turkey
| |
Collapse
|
99
|
Injectable Platelet-, Leukocyte-, and Fibrin-Rich Plasma (iL-PRF) in the Management of Androgenetic Alopecia. Dermatol Surg 2018; 44:1183-1190. [DOI: 10.1097/dss.0000000000001584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
100
|
Vácz G, Major B, Gaál D, Petrik L, Horváthy DB, Han W, Holczer T, Simon M, Muir JM, Hornyák I, Lacza Z. Hyperacute serum has markedly better regenerative efficacy than platelet-rich plasma in a human bone oxygen-glucose deprivation model. Regen Med 2018; 13:531-543. [PMID: 30132395 DOI: 10.2217/rme-2017-0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Platelet-rich plasma (PRP) and hyperacute serum (HAS) were compared in a novel human model of ex vivo bone damage induced by oxygen-glucose deprivation (OGD). MATERIALS & METHODS Osteoarthritic subchondral bone pieces were harvested from discarded femoral heads during hip replacement surgery and subjected to transient OGD. RESULTS Proteome profiling revealed that PRP is more angiopoietic, whereas HAS is more antiangiopoietic in composition. However, treatment of OGD-exposed bone with multiple PRP preparations had no effect on cell counts, whereas HAS restored cell proliferation capacity and rescued viable cell number following OGD. CONCLUSION A similar pro-proliferation effect was observed with recombinant growth factors, indicating that HAS may be an alternative agent for enhancing the regeneration of damaged bone cells.
Collapse
Affiliation(s)
- Gabriella Vácz
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, Hungary, 1094
| | - Bálint Major
- Polyclinic of the Hospitaller Brothers of St. John of God in Budapest, Orthopaedic Department, Frankel Leo u. 54., Budapest, Hungary, 1023
| | - Dorottya Gaál
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, Hungary, 1094
| | - Laura Petrik
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, Hungary, 1094
| | - Dénes Balázs Horváthy
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, Hungary, 1094
| | - Weiping Han
- Bioimaging Consortium, A-STAR, Singapore, Helios, Biopolis Way 11
| | - Tünde Holczer
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad t. 4, Budapest, Hungary, 1089
| | - Melinda Simon
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, Hungary, 1094
| | - Jeffrey M Muir
- Motion Research, 3-35 Stone Church Rd, Suite 215, Ancaster, Ontario, L9K 3S9 Canada
| | - István Hornyák
- OrthoSera GmbH, Dr. Karl-Dorrek-Straße 23-29, 3500 Krems an der Donau, Austria
| | - Zsombor Lacza
- OrthoSera GmbH, Dr. Karl-Dorrek-Straße 23-29, 3500 Krems an der Donau, Austria.,University of Physical Education, Alkotás u. 44, Budapest, Hungary 1123
| |
Collapse
|