51
|
Pal S, Maity S, Sardar S, Parvej H, Das N, Chakraborty J, Chandra Halder U. Curcumin inhibits the Al(iii) and Zn(ii) induced amyloid fibrillation of β-lactoglobulin in vitro. RSC Adv 2016. [DOI: 10.1039/c6ra24570f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of ordered protein aggregates (or amyloids) is responsible for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Sampa Pal
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Sanhita Maity
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Subrata Sardar
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Hasan Parvej
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Niloy Das
- Department of Chemistry
- Durgapur Govt. College
- Durgapur
- India
| | | | | |
Collapse
|
52
|
How SC, Yang SM, Hsin A, Tseng CP, Hsueh SS, Lin MS, Chen RPY, Chou WL, Wang SSS. Examining the inhibitory potency of food additive fast green FCF against amyloid fibrillogenesis under acidic conditions. Food Funct 2016; 7:4898-4907. [DOI: 10.1039/c6fo00792a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid fibril formation of hen lysozyme (HEWL) can be attenuated by fast green FCF.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Szu-Ming Yang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Ai Hsin
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chia-Ping Tseng
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Shu-Shun Hsueh
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | | | - Rita P.-Y. Chen
- Institute of Biochemical Sciences
- National Taiwan University
- Taipei 10617
- Taiwan
- Institute of Biological Chemistry
| | - Wei-Lung Chou
- Department of Safety
- Health and Environmental Engineering
- Hungkuang University
- Taichung City 433
- Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
53
|
Mohammadi F, Mahmudian A, Moeeni M, Hassani L. Inhibition of amyloid fibrillation of hen egg-white lysozyme by the natural and synthetic curcuminoids. RSC Adv 2016. [DOI: 10.1039/c5ra18992f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the strategies for synthesis of novel amyloid inhibitors, chemical modification of the natural curcuminoids framework can be introduced.
Collapse
Affiliation(s)
- Fakhrossadat Mohammadi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Afshin Mahmudian
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Marzieh Moeeni
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Leila Hassani
- Department of Biological Sciences
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
54
|
Zhang D, Li H, Wang JB. Echinacoside inhibits amyloid fibrillization of HEWL and protects against Aβ-induced neurotoxicity. Int J Biol Macromol 2015; 72:243-53. [DOI: 10.1016/j.ijbiomac.2014.08.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 01/23/2023]
|
55
|
Ratnaparkhi A, Muthu SA, Shiriskar SM, Pissurlenkar RR, Choudhary S, Ahmad B. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies? J Biomol Struct Dyn 2014; 33:1866-79. [DOI: 10.1080/07391102.2014.975746] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
56
|
Ngoungoure VLN, Schluesener J, Moundipa PF, Schluesener H. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol Nutr Food Res 2014; 59:8-20. [DOI: 10.1002/mnfr.201400290] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Viviane L. Ndam Ngoungoure
- Laboratory of Pharmacology and Toxicology; University of Yaoundé I; Yaoundé Cameroon
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| | - Jan Schluesener
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| | - Paul F. Moundipa
- Laboratory of Pharmacology and Toxicology; University of Yaoundé I; Yaoundé Cameroon
| | - Hermann Schluesener
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
57
|
He J, Wang Y, Chang AK, Xu L, Wang N, Chong X, Li H, Zhang B, Jones GW, Song Y. Myricetin prevents fibrillogenesis of hen egg white lysozyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9442-9449. [PMID: 25196984 DOI: 10.1021/jf5025449] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Myricetin is a natural flavonol found in many grapes, berries, fruits, vegetables, and herbs as well as other plants. Recent studies have identified potential antiamyloidogenic activity for this compound. In this study, the kinetics of amyloid fibril formation by hen egg white lysozyme (HEWL) and the antifibril-forming activity of myricetin were investigated. We demonstrate that myricetin significantly inhibits the fibrillation of HEWL and the inhibitory effect is dose-dependent. Interestingly, the inhibitory effect toward HEWL fibrillation was stronger than that exerted by the previously characterized fibril-forming inhibitor quercetin, which has high structural similarity with myricetin. Spectrofluorometric and computational studies suggest that the mechanism underlying the inhibitory action of myricetin at a molecular level is to reduce the population of partially unfolded HEWL intermediates. This action is achieved by the tight binding of myricetin to the aggregation-prone region of the β-domain of HEWL and linking to the relatively stable α-domain, thus resulting in the inhibition of amyloid fibril formation.
Collapse
Affiliation(s)
- Jianwei He
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University , Shenyang 110036, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Stefani M, Rigacci S. Beneficial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors 2014; 40:482-93. [PMID: 24890399 DOI: 10.1002/biof.1171] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/05/2022]
Abstract
Mediterranean and Asian diets are currently considered as the most healthy traditional feeding habits effective against risk of age-associated, particularly cardiovascular and neurodegenerative, diseases. A common feature of these two regimens is the abundance of foods and beverages of plant origin (green tea, extra virgin olive oil, red wine, spices, berries, and aromatic herbs) that are considered responsible for the observed beneficial effects. Epidemiological data suggest that the phenolic component remarkably enriched in these foods plays an important role in reducing the incidence of amyloid diseases, pathological conditions associated to tissue deposition of toxic protein aggregates responsible for progressive functional deterioration. Great effort is being spent to provide knowledge on the effects of several natural phenols in this context, moving from the test tube to animal models and, more slowly, to the patient's bed. An emerging feature that makes these molecules increasingly attractive for amyloid disease prevention and therapy is their wide spectrum of activity: recent pieces of evidence suggest that they can inhibit the production of amyloidogenic peptides from precursors, increase antioxidant enzyme activity, activate autophagy and reduce inflammation. Our concept should than shift from considering natural phenols simply as antioxidants or, at the best, as amyloid aggregation inhibitors, to describing them as potentially multitargeting drugs. A main concern is the low bioavailability of such compounds and efforts aimed at improving it are underway, with encapsulation strategies being the most promising ones.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | | |
Collapse
|
59
|
Kumar P, Choonara Y, Modi G, Naidoo D, Pillay V. Cur(Que)min: A neuroactive permutation of Curcumin and Quercetin for treating spinal cord injury. Med Hypotheses 2014; 82:437-41. [DOI: 10.1016/j.mehy.2014.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/18/2014] [Indexed: 11/26/2022]
|
60
|
Palmal S, Maity AR, Singh BK, Basu S, Jana NR, Jana NR. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry 2014; 20:6184-91. [PMID: 24691975 DOI: 10.1002/chem.201400079] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Inhibition of amyloid fibrillation and clearance of amyloid fibrils/plaques are essential for the prevention and treatment of various neurodegenerative disorders involving protein aggregation. Herein, we report curcumin-functionalized gold nanoparticles (Au-curcumin) of hydrodynamic diameter 10-25 nm, which serve to inhibit amyloid fibrillation and disintegrate/dissolve amyloid fibrils. In nanoparticle form, curcumin is water-soluble and can efficiently interact with amyloid protein/peptide, offering enhanced performance in inhibiting amyloid fibrillation and dissolving amyloid fibrils. Our results imply that nanoparticle-based artificial molecular chaperones may offer a promising therapeutic approach to combat neurodegenerative disease.
Collapse
Affiliation(s)
- Sharbari Palmal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032 (India)
| | | | | | | | | | | |
Collapse
|
61
|
Borana MS, Mishra P, Pissurlenkar RR, Hosur RV, Ahmad B. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:670-80. [DOI: 10.1016/j.bbapap.2014.01.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
62
|
Whiteley CG. Arginine metabolising enzymes as targets against Alzheimers’ disease. Neurochem Int 2014; 67:23-31. [DOI: 10.1016/j.neuint.2014.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 01/26/2023]
|
63
|
Wu JW, Liu KN, How SC, Chen WA, Lai CM, Liu HS, Hu CJ, Wang SSS. Carnosine's effect on amyloid fibril formation and induced cytotoxicity of lysozyme. PLoS One 2013; 8:e81982. [PMID: 24349167 PMCID: PMC3859581 DOI: 10.1371/journal.pone.0081982] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/20/2013] [Indexed: 11/23/2022] Open
Abstract
Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Josephine W. Wu
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung, Taiwan,
- * E-mail: (JWW); (SSSW)
| | - Kuan-Nan Liu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Su-Chun How
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-An Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Min Lai
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Hwai-Shen Liu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Steven S. -S. Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
- * E-mail: (JWW); (SSSW)
| |
Collapse
|
64
|
Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta Gen Subj 2013; 1830:4860-71. [PMID: 23820032 DOI: 10.1016/j.bbagen.2013.06.029] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases. SCOPE OF REVIEW In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof. MAJOR CONCLUSIONS Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity. GENERAL SIGNIFICANCE Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.
Collapse
|
65
|
Stefani M, Rigacci S. Protein folding and aggregation into amyloid: the interference by natural phenolic compounds. Int J Mol Sci 2013; 14:12411-57. [PMID: 23765219 PMCID: PMC3709793 DOI: 10.3390/ijms140612411] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/17/2023] Open
Abstract
Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
- Research Centre on the Molecular Basis of Neurodegeneration, Viale Morgagni 50, Florence 50134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-55-275-8307; Fax: +39-55-275-8905
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
| |
Collapse
|
66
|
Vuong QV, Siposova K, Nguyen TT, Antosova A, Balogova L, Drajna L, Imrich J, Li MS, Gazova Z. Binding of Glyco-Acridine Derivatives to Lysozyme Leads to Inhibition of Amyloid Fibrillization. Biomacromolecules 2013; 14:1035-43. [DOI: 10.1021/bm301891q] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Quan Van Vuong
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward,
Thu Duc District, Ho Chi Minh
City, Vietnam
| | - Katarina Siposova
- Department of Biophysics, Institute of Experimental
Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Trang Truc Nguyen
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward,
Thu Duc District, Ho Chi Minh
City, Vietnam
| | - Andrea Antosova
- Department of Biophysics, Institute of Experimental
Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | | | | | | | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental
Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
67
|
Khan MS, Al-Senaidy AM, Priyadarshini M, Shah A, Bano B. Different Conformation of Thiol Protease Inhibitor During Amyloid Formation: Inhibition by Curcumin and Quercetin. J Fluoresc 2013; 23:451-7. [DOI: 10.1007/s10895-013-1158-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
|
68
|
Rabiee A, Ebrahim-Habibi A, Ghasemi A, Nemat-Gorgani M. How curcumin affords effective protection against amyloid fibrillation in insulin. Food Funct 2013; 4:1474-80. [DOI: 10.1039/c3fo00019b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
69
|
Liu KN, Lai CM, Lee YT, Wang SN, Chen RPY, Jan JS, Liu HS, Wang SSS. Curcumin's pre-incubation temperature affects its inhibitory potency toward amyloid fibrillation and fibril-induced cytotoxicity of lysozyme. Biochim Biophys Acta Gen Subj 2012; 1820:1774-86. [DOI: 10.1016/j.bbagen.2012.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/07/2012] [Accepted: 07/24/2012] [Indexed: 01/24/2023]
|
70
|
Abstract
Rottlerin and curcumin are natural plant polyphenols with a long tradition in folk medicine. Over the past two decades, curcumin has been extensively investigated, while rottlerin has received much less attention, in part, as a consequence of its reputation as a selective PKCδ inhibitor. A comparative analysis of genomic, proteomic, and cell signaling studies revealed that rottlerin and curcumin share a number of targets and have overlapping effects on many biological processes. Both molecules, indeed, modulate the activity and/or expression of several enzymes (PKCδ, heme oxygenase, DNA methyltransferase, cyclooxygenase, lipoxygenase) and transcription factors (NF-κB, STAT), and prevent aggregation of different amyloid precursors (α-synuclein, amyloid Aβ, prion proteins, lysozyme), thereby exhibiting convergent antioxidant, anti-inflammatory, and antiamyloid actions. Like curcumin, rottlerin could be a promising candidate in the fight against a variety of human diseases.
Collapse
Affiliation(s)
- Emanuela Maioli
- Department of Physiology, University of Siena, Siena, Italy.
| | | | | |
Collapse
|
71
|
Wen WS, Lai JK, Lin YJ, Lai CM, Huang YC, Wang SSS, Jan JS. Effects of copolypeptides on amyloid fibrillation of hen egg-white lysozyme. Biopolymers 2011; 97:107-16. [DOI: 10.1002/bip.21707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 01/21/2023]
|
72
|
Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011; 28:1937-55. [PMID: 21979811 DOI: 10.1039/c1np00051a] [Citation(s) in RCA: 435] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin's binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Sarkar N, Kumar M, Dubey VK. Rottlerin dissolves pre-formed protein amyloid: a study on hen egg white lysozyme. Biochim Biophys Acta Gen Subj 2011; 1810:809-14. [PMID: 21723915 DOI: 10.1016/j.bbagen.2011.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Deposition of protein fibrillar aggregates called amyloids in the tissue, is the principal cause of several degenerative diseases. Here, we have shown the disaggregation potential of rottlerin towards hen egg white lysozyme (HEWL) fibrils formed under alkaline conditions (pH-12.2). METHODS Several biophysical methods like Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and fluorescence emission spectra were used for the study. RESULTS AND CONCLUSION Rottlerin exhibited instantaneous disaggregation effect on HEWL fibrils as monitored by Thioflavin T assay, anisotropy study and AFM imaging. Further we have monitored the conformational changes induced by rottlerin on the fibril in terms of surface hydrophobicity and secondary structure through 8-anilino-1-naphthalene sulfonic acid (ANS) fluorescence and FTIR study respectively. We have also attempted to elucidate the type of interaction between HEWL and rottlerin at pH-12.2 employing techniques like quenching study and FTIR. GENERAL SIGNIFICANCE Rottlerin seems to have potential application as anti-amyloid compound.
Collapse
Affiliation(s)
- Nandini Sarkar
- Department of Biotechnology, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
74
|
Sarkar N, Kumar M, Dubey VK. Effect of sodium tetrathionate on amyloid fibril: Insight into the role of disulfide bond in amyloid progression. Biochimie 2011; 93:962-8. [DOI: 10.1016/j.biochi.2011.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
75
|
Sarkar N, Kumar M, Dubey VK. Exploring possibility of promiscuity of amyloid inhibitor: Studies on effect of selected compounds on folding and amyloid formation of proteins. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
76
|
Wang SSS, Hung YT, Wen WS, Lin KC, Chen GY. Exploring the inhibitory activity of short-chain phospholipids against amyloid fibrillogenesis of hen egg-white lysozyme. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:301-13. [DOI: 10.1016/j.bbalip.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/22/2011] [Accepted: 02/04/2011] [Indexed: 01/27/2023]
|
77
|
Antosova A, Chelli B, Bystrenova E, Siposova K, Valle F, Imrich J, Vilkova M, Kristian P, Biscarini F, Gazova Z. Structure-activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim Biophys Acta Gen Subj 2011; 1810:465-74. [DOI: 10.1016/j.bbagen.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/23/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
78
|
Wang SSS, Liu KN, Wen WS, Wang P. Fibril Formation of Bovine α-Lactalbumin Is Inhibited by Glutathione. FOOD BIOPHYS 2011. [DOI: 10.1007/s11483-010-9199-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|