51
|
Zhang C, Wen TH, Razak KA, Lin J, Xu C, Seo C, Villafana E, Jimenez H, Liu H. Magnesium-based biodegradable microelectrodes for neural recording. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110614. [PMID: 32204062 DOI: 10.1016/j.msec.2019.110614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/23/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
This article reports fabrication, characterization, degradation and electrical properties of biodegradable magnesium (Mg) microwires coated with two functional polymers, and the first in vivo evidence on the feasibility of Mg-based biodegradable microelectrodes for neural recording. Conductive poly(3,4‑ethylenedioxythiophene) (PEDOT) coating was first electrochemically deposited onto Mg microwire surface, and insulating biodegradable poly(glycerol sebacate) (PGS) was then spray-coated onto PEDOT surface to improve the overall properties of microelectrode. The assembled PGS/PEDOT-coated Mg microelectrodes showed high homogeneity in coating thickness, surface morphology and composition before and after in vivo recording. The charge storage capacity (CSC) of PGS/PEDOT-coated Mg microwire (1.72 mC/cm2) was nearly 5 times higher than the standard platinum (Pt) microwire widely used in implantable electrodes. The Mg-based microelectrode demonstrated excellent neural-recording capability and stability during in vivo multi-unit neural recordings in the auditory cortex of a mouse. Specifically, the Mg-based electrode showed clear and stable onset response, and excellent signal-to-noise ratio during spontaneous-activity recordings and three repeats of stimulus-evoked recordings at two different anatomical locations in the auditory cortex. During 10 days of immersion in artificial cerebrospinal fluid (aCSF) in vitro, PGS/PEDOT-coated Mg microelectrodes showed slower degradation and less change in impedance than PEDOT-coated Mg electrodes. The biodegradable PGS coating protected the PEDOT coating from delamination, and prolonged the mechanical integrity and electrical properties of Mg-based microelectrode. Mg-based novel microelectrodes should be further studied toward clinical translation because they can potentially eliminate the risks and costs associated with secondary surgeries for removal of failed or no longer needed electrodes.
Collapse
Affiliation(s)
- Chaoxing Zhang
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Teresa H Wen
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Jiajia Lin
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Changlu Xu
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Catherine Seo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Edgar Villafana
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Hector Jimenez
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Biomedical Sciences Program, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Stem Cell Center, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States.
| |
Collapse
|
52
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
53
|
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome. Neurobiol Dis 2020; 138:104794. [PMID: 32036032 DOI: 10.1016/j.nbd.2020.104794] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent EEG studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced inter-trial phase coherence of sound-evoked gamma oscillations. Identification of comparable EEG biomarkers in mouse models of FXS could facilitate the pre-clinical to clinical therapeutic pipeline. However, while human EEG studies have involved 128-channel scalp EEG acquisition, no mouse studies have been performed with more than three EEG channels. In the current study, we employed a recently developed 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in WT vs. Fmr1 KO mice. Using this system, we now report robust MEA-derived phenotypes including higher resting EEG power, altered event-related potentials (ERPs) and reduced inter-trial phase coherence to auditory chirp stimuli in Fmr1 KO mice that are remarkably similar to those reported in humans with FXS. We propose that the MEA system can be used for: (i) derivation of higher-level EEG parameters; (ii) EEG biomarkers for drug testing; and (ii) mechanistic studies of FXS pathophysiology.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America
| | - Jonathan W Lovelace
- Department of Psychology, University of California, Riverside, United States of America
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America; Neuroscience Graduate Program, University of California, Riverside, United States of America
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, United States of America; Department of Psychology, University of California, Riverside, United States of America
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America; Neuroscience Graduate Program, University of California, Riverside, United States of America.
| |
Collapse
|
54
|
Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, Razak KA, Ethell IM. Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiol Dis 2020; 134:104622. [PMID: 31698054 DOI: 10.1016/j.nbd.2019.104622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common genetic cause of autism and intellectual disability. Fragile X mental retardation gene (Fmr1) knock-out (KO) mice display core deficits of FXS, including abnormally increased sound-evoked responses, and show a delayed development of parvalbumin (PV) cells. Here, we present the surprising result that sound exposure during early development reduces correlates of auditory hypersensitivity in Fmr1 KO mice. METHODS Fmr1 KO and wild-type (WT) mice were raised in a sound-attenuated environment (AE) or sound-exposed (SE) to 14 kHz tones (5 Hz repetition rate) from P9 until P21. At P21-P23, event-related potentials (ERPs), dendritic spine density, PV expression and phosphorylation of tropomyosin receptor kinase B (TrkB) were analyzed in the auditory cortex of AE and SE mice. RESULTS Enhanced N1 amplitude of ERPs, impaired PV cell development, and increased spine density in layers (L) 2/3 and L5/6 excitatory neurons were observed in AE Fmr1 KO compared to WT mice. In contrast, developmental sound exposure normalized ERP N1 amplitude, density of PV cells and dendritic spines in SE Fmr1 KO mice. Finally, TrkB phosphorylation was reduced in AE Fmr1 KO, but was enhanced in SE Fmr1 KO mice, suggesting that BDNF-TrkB signaling may be regulated by sound exposure to influence PV cell development. CONCLUSIONS Our results demonstrate that sound exposure, but not attenuation, during early developmental window restores molecular, cellular and functional properties in the auditory cortex of Fmr1 KO mice, and suggest this approach as a potential treatment for sensory phenotypes in FXS.
Collapse
Affiliation(s)
- Anna O Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Sarah M Reinhard
- Psychology Department, University of California, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | | | - Veronica Scott
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | - Khaleel A Razak
- Psychology Department, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
55
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
56
|
Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, Razak KA, Ethell IM. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cereb Cortex 2019; 28:3951-3964. [PMID: 29040407 DOI: 10.1093/cercor/bhx258] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Abnormal sensory responses associated with Fragile X Syndrome (FXS) and autism spectrum disorders include hypersensitivity and impaired habituation to repeated stimuli. Similar sensory deficits are also observed in adult Fmr1 knock-out (KO) mice and are reversed by genetic deletion of Matrix Metalloproteinase-9 (MMP-9) through yet unknown mechanisms. Here we present new evidence that impaired development of parvalbumin (PV)-expressing inhibitory interneurons may underlie hyper-responsiveness in auditory cortex of Fmr1 KO mice via MMP-9-dependent regulation of perineuronal nets (PNNs). First, we found that PV cell development and PNN formation around GABAergic interneurons were impaired in developing auditory cortex of Fmr1 KO mice. Second, MMP-9 levels were elevated in P12-P18 auditory cortex of Fmr1 KO mice and genetic reduction of MMP-9 to WT levels restored the formation of PNNs around PV cells. Third, in vivo single-unit recordings from auditory cortex neurons showed enhanced spontaneous and sound-driven responses in developing Fmr1 KO mice, which were normalized following genetic reduction of MMP-9. These findings indicate that elevated MMP-9 levels contribute to the development of sensory hypersensitivity by influencing formation of PNNs around PV interneurons suggesting MMP-9 as a new therapeutic target to reduce sensory deficits in FXS and potentially other autism spectrum disorders.
Collapse
Affiliation(s)
- Teresa H Wen
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA.,Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA
| | - Sonia Afroz
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Sarah M Reinhard
- Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - Arnold R Palacios
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Kendal Tapia
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA.,Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA.,Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
57
|
Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019; 39:9852-9863. [PMID: 31666356 PMCID: PMC6891051 DOI: 10.1523/jneurosci.0886-19.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knock-out (KO) mouse. Therefore, the AGS may be considered a mouse model of sensory hypersensitivity. Hyperactive circuits are hypothesized to underlie dysfunction in a number of brain regions in patients with FXS and Fmr1 KO mice, and the AGS may be a result of this. But the specific cell types and brain regions underlying AGSs in the Fmr1 KO are unknown. We used conditional deletion or expression of Fmr1 in different cell populations to determine whether Fmr1 deletion in those cells was sufficient or necessary, respectively, for the AGS phenotype in males. Our data indicate that Fmr1 deletion in glutamatergic neurons that express vesicular glutamate transporter 2 (VGlut2) and are located in subcortical brain regions is sufficient and necessary to cause AGSs. Furthermore, the deletion of Fmr1 in glutamatergic neurons of the inferior colliculus is necessary for AGSs. When we demonstrate necessity, we show that Fmr1 expression in either the larger population of VGlut2-expressing glutamatergic neurons or the smaller population of inferior collicular glutamatergic neurons-in an otherwise Fmr1 KO mouse-eliminates AGSs. Therefore, targeting these neuronal populations in FXS and autism may be part of a therapeutic strategy to alleviate sensory hypersensitivity.SIGNIFICANCE STATEMENT Sensory hypersensitivity in fragile X syndrome (FXS) and autism patients significantly interferes with quality of life. Audiogenic seizures (AGSs) are arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knockout-and may be considered a model of sensory hypersensitivity in FXS. We provide the clearest and most precise genetic evidence to date for the cell types and brain regions involved in causing AGSs in the Fmr1 knockout and, more broadly, for any mouse mutant. The expression of Fmr1 in these same cell types in an otherwise Fmr1 knockout eliminates AGSs indicating possible cellular targets for alleviating sensory hypersensitivity in FXS and other forms of autism.
Collapse
Affiliation(s)
| | | | - Seth Hays
- Department of Neuroscience, Dallas, and
| | | | | | | | - Karen Pawlowski
- Department of Otolaryngology and Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9035
| | | | | |
Collapse
|
58
|
Sun H, Takesian AE, Wang TT, Lippman-Bell JJ, Hensch TK, Jensen FE. Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity. Cell Rep 2019; 23:2533-2540. [PMID: 29847785 PMCID: PMC6446922 DOI: 10.1016/j.celrep.2018.04.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/02/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP) for tonotopic map plasticity in primary auditory cortex (A1). We show that this CP is characterized by a prevalence of “silent,” NMDA-receptor (NMDAR)-only, glutamate receptor synapses in auditory cortex that become “unsilenced” due to activity-dependent AMPA receptor (AMPAR) insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anne E Takesian
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jocelyn J Lippman-Bell
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA; Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA.
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
59
|
He Q, Arroyo ED, Smukowski SN, Xu J, Piochon C, Savas JN, Portera-Cailliau C, Contractor A. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry 2019; 24:1732-1747. [PMID: 29703945 PMCID: PMC6204122 DOI: 10.1038/s41380-018-0048-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABAA receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.
Collapse
Affiliation(s)
- Qionger He
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Erica D Arroyo
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Samuel N Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Claire Piochon
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Carlos Portera-Cailliau
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
60
|
Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, Wang J, Pedapati EV, Erickson CA, Sweeney JA. Auditory EEG Biomarkers in Fragile X Syndrome: Clinical Relevance. Front Integr Neurosci 2019; 13:60. [PMID: 31649514 PMCID: PMC6794497 DOI: 10.3389/fnint.2019.00060] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Sensory hypersensitivities are common and distressing features of Fragile X Syndrome (FXS). While there are many drug interventions that reduce behavioral deficits in Fmr1 mice and efforts to translate these preclinical breakthroughs into clinical trials for FXS, evidence-based clinical interventions are almost non-existent potentially due to lack of valid neural biomarkers. Local circuit function in sensory networks is dependent on the dynamic balance of activity in inhibitory/excitatory synapses. Studies are needed to examine the association of electrophysiological alterations in neural systems with sensory and other clinical features of FXS to establish their clinical relevance. Adolescents and adults with FXS (n = 38, Mean age = 25.5, std = 10.1; 13 females) and age matched typically developing controls (n = 40, Mean age = 27.7, std = 12.1; 17 females) completed auditory chirp and auditory habituation tasks while undergoing dense array electroencephalography (EEG). Amplitude, latency, and percent change (habituation) in N1 and P2 event-related potential (ERP) components were characterized for the habituation task; time-frequency calculations using Morlet wavelets characterized phase-locking and single trial power for the habituation and chirp tasks. FXS patients showed increased amplitude but some evidence for reduced habituation of the N1 ERP, and reduced phase-locking in the low and high gamma frequency range and increased low gamma power to the chirp stimulus. FXS showed increased theta power in both tasks. While the habituation finding was weaker than previously found, the remaining findings replicate our previous work in a new sample of patients with FXS. Females showed less deficit in the chirp task but not the habituation task. Abnormal increases in gamma power were related to more severe behavioral and psychiatric features as well as reductions in neurocognitive abilities. Replicating electrophysiological deficits in a new group of patients using different EEG equipment at a new data collection site with differing levels of environmental noise that were robust to data processing techniques utilizing multiple researchers, indicates a potential for scalability to multi-site clinical trials. Given the robust replicability, relevance to clinical measures, and preclinical evidence for sensitivity of these EEG measures to pharmacological intervention, the observed abnormalities may provide novel translational markers of target engagement and potentially outcome measures in large-scale studies evaluating new treatments targeting neural hyperexcitability in FXS.
Collapse
Affiliation(s)
- Lauren E Ethridge
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lisa A De Stefano
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Nicholas E Woodruff
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Kara L Brown
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Morgan Tran
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Jun Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Ernest V Pedapati
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
61
|
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability. It is a leading known genetic cause of autism. In addition to cognitive, social, and communication deficits, humans with FXS demonstrate abnormal sensory processing including sensory hypersensitivity. Sensory hypersensitivity commonly manifests as auditory, tactile, or visual defensiveness or avoidance. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity, impaired habituation to repeated sounds, and reduced auditory attention in humans with FXS. Children with FXS also exhibit significant visuospatial impairments. Studies in infants and toddlers with FXS have documented impairments in processing texture-defined motion stimuli, temporal flicker, perceiving ordinal numerical sequence, and the ability to maintain the identity of dynamic object information during occlusion. Consistent with the observations in humans with FXS, fragile X mental retardation 1 ( Fmr1) gene knockout (KO) rodent models of FXS also show seizures, abnormal visual-evoked responses, auditory hypersensitivity, and abnormal processing at multiple levels of the auditory system, including altered acoustic startle responses. Among other sensory symptoms, individuals with FXS exhibit tactile defensiveness. Fmr1 KO mice also show impaired encoding of tactile stimulation frequency and larger size of receptive fields in the somatosensory cortex. Since sensory deficits are relatively more tractable from circuit mechanisms and developmental perspectives than more complex social behaviors, the focus of this review is on clinical, functional, and structural studies that outline the auditory, visual, and somatosensory processing deficits in FXS. The similarities in sensory phenotypes between humans with FXS and animal models suggest a likely conservation of basic sensory processing circuits across species and may provide a translational platform to not just develop biomarkers but also to understand underlying mechanisms. We argue that preclinical studies in animal models of FXS can facilitate the ongoing search for new therapeutic approaches in FXS by understanding mechanisms of basic sensory processing circuits and behaviors that are conserved across species.
Collapse
Affiliation(s)
- Maham Rais
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA
| | - Devin K Binder
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| | - Khaleel A Razak
- 2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA.,4 Psychology Department, University of California Riverside, CA, USA
| | - Iryna M Ethell
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| |
Collapse
|
62
|
Bodaleo F, Tapia-Monsalves C, Cea-Del Rio C, Gonzalez-Billault C, Nunez-Parra A. Structural and Functional Abnormalities in the Olfactory System of Fragile X Syndrome Models. Front Mol Neurosci 2019; 12:135. [PMID: 31191246 PMCID: PMC6548058 DOI: 10.3389/fnmol.2019.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability. It is produced by mutation of the Fmr1 gene that encodes for the Fragile Mental Retardation Protein (FMRP), an important RNA-binding protein that regulates the expression of multiple proteins located in neuronal synapses. Individuals with FXS exhibit abnormal sensory information processing frequently leading to hypersensitivity across sensory modalities and consequently a wide array of behavioral symptoms. Insects and mammals engage primarily their sense of smell to create proper representations of the external world and guide adequate decision-making processes. This feature in combination with the exquisitely organized neuronal circuits found throughout the olfactory system (OS) and the wide expression of FMRP in brain regions that process olfactory information makes it an ideal model to study sensory alterations in FXS models. In the last decade several groups have taken advantage of these features and have used the OS of fruit fly and rodents to understand neuronal alteration giving rise to sensory perception issues. In this review article, we will discuss molecular, morphological and physiological aspects of the olfactory information processing in FXS models. We will highlight the decreased inhibitory/excitatory synaptic balance and the diminished synaptic plasticity found in this system resulting in behavioral alteration of individuals in the presence of odorant stimuli.
Collapse
Affiliation(s)
- Felipe Bodaleo
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Christian Cea-Del Rio
- Laboratory of Neurophysiopathology, Centro de Investigacion Biomedica y Aplicada (CIBAP), School of Medicine, Universidad de Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Alexia Nunez-Parra
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Cell Physiology Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
63
|
Zerbi V, Markicevic M, Gasparini F, Schroeter A, Rudin M, Wenderoth N. Inhibiting mGluR5 activity by AFQ056/Mavoglurant rescues circuit-specific functional connectivity in Fmr1 knockout mice. Neuroimage 2019; 191:392-402. [DOI: 10.1016/j.neuroimage.2019.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
|
64
|
Lu Y. Subtle differences in synaptic transmission in medial nucleus of trapezoid body neurons between wild-type and Fmr1 knockout mice. Brain Res 2019; 1717:95-103. [PMID: 31004576 DOI: 10.1016/j.brainres.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
In animal models for fragile X syndrome where the gene for fragile X mental retardation protein is knocked out (Fmr1 KO), neurotransmission in multiple brain regions shifts excitation/inhibition balance, resulting in hyperexcitability in neural circuits. Here, using whole-cell recordings from brainstem slices, we investigated synaptic transmission at the medial nucleus of trapezoid body (MNTB, a critical nucleus in the brainstem sound localization circuit), in Fmr1 KO and wild-type (WT) mice 2-3 weeks of age in both sexes. Surprisingly, neither synaptic excitation nor inhibition in KO neurons was significantly changed. The synaptic strength, kinetics, and short-term plasticity of synaptic excitation remained largely unaltered. Subtle differences were observed in response patterns, with KO neurons displaying less all-or-none eEPSCs. Similarly, synaptic inhibition mediated by glycine and GABA remains largely unchanged, except for a slower kinetics of mixed sIPSCs. In pharmacologically isolated glycinergic and GABAergic inhibition, no significant differences in synaptic strength and kinetics were detected between the two genotypes. These results demonstrate that at the cellular level synaptic transmission at MNTB is largely unaffected in Fmr1 KO mice by 2-3 weeks after birth, suggesting the existence of compensatory mechanisms that maintain the inhibitory output of MNTB to its targets in the auditory brainstem.
Collapse
Affiliation(s)
- Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
65
|
Antoine MW, Langberg T, Schnepel P, Feldman DE. Increased Excitation-Inhibition Ratio Stabilizes Synapse and Circuit Excitability in Four Autism Mouse Models. Neuron 2019; 101:648-661.e4. [PMID: 30679017 DOI: 10.1016/j.neuron.2018.12.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
Distinct genetic forms of autism are hypothesized to share a common increase in excitation-inhibition (E-I) ratio in cerebral cortex, causing hyperexcitability and excess spiking. We provide a systematic test of this hypothesis across 4 mouse models (Fmr1-/y, Cntnap2-/-, 16p11.2del/+, Tsc2+/-), focusing on somatosensory cortex. All autism mutants showed reduced feedforward inhibition in layer 2/3 coupled with more modest, variable reduction in feedforward excitation, driving a common increase in E-I conductance ratio. Despite this, feedforward spiking, synaptic depolarization, and spontaneous spiking were largely normal. Modeling revealed that E and I conductance changes in each mutant were quantitatively matched to yield stable, not increased, synaptic depolarization for cells near spike threshold. Correspondingly, whisker-evoked spiking was not increased in vivo despite detectably reduced inhibition. Thus, elevated E-I ratio is a common circuit phenotype but appears to reflect homeostatic stabilization of synaptic drive rather than driving network hyperexcitability in autism.
Collapse
Affiliation(s)
- Michelle W Antoine
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA.
| | - Tomer Langberg
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Philipp Schnepel
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
66
|
Goswami S, Cavalier S, Sridhar V, Huber KM, Gibson JR. Local cortical circuit correlates of altered EEG in the mouse model of Fragile X syndrome. Neurobiol Dis 2019; 124:563-572. [PMID: 30639292 DOI: 10.1016/j.nbd.2019.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 12/18/2022] Open
Abstract
Electroencephalogram (EEG) recordings in Fragile X syndrome (FXS) patients have revealed enhanced sensory responses, enhanced resting "gamma frequency" (30-100 Hz) activity, and a decreased ability for sensory stimuli to modulate cortical activity at gamma frequencies. Similar changes are observed in the FXS model mouse - the Fmr1 knockout. These alterations may become effective biomarkers for diagnosis and treatment of FXS. Therefore, it is critical to better understand what circuit properties underlie these changes. We employed Channelrhodopsin2 to optically activate local circuits in the auditory cortical region in brain slices to examine how changes in local circuit function may be related to EEG changes. We focused on layers 2/3 and 5 (L2/3 and L5). In Fmr1 knockout mice, light-driven excitation of L2/3 revealed hyperexcitability and increased gamma frequency power in both local L2/3 and L5 circuits. Moreover, there is increased synchrony in the gamma frequency band between L2/3 and L5. Hyperexcitability and increased gamma power were not observed in L5 with L5 light-driven excitation, indicating that these changes were layer-specific. A component of L2/3 network hyperexcitability is independent of ionotropic receptor mediated synaptic transmission and may be mediated by increased intrinsic excitability of L2/3 neurons. Finally, lovastatin, a candidate therapeutic compound for FXS that targets ERK signaling did not normalize changes in gamma activity. In conclusion, hyperactivity and increased gamma activity in local neocortical circuits, together with increased gamma synchrony between circuits, provide a putative substrate for EEG alterations observed in both FXS patients and the FXS mouse model.
Collapse
Affiliation(s)
- Sonal Goswami
- Department of Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Sheridan Cavalier
- Department of Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Vinay Sridhar
- Department of Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Department of Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Jay R Gibson
- Department of Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
67
|
Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience 2018; 398:126-143. [PMID: 30528856 DOI: 10.1016/j.neuroscience.2018.11.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/29/2023]
Abstract
Fragile X Syndrome (FXS) is a leading genetic cause of autism and intellectual disabilities. Sensory-processing deficits are common in humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, manifesting in the auditory system as debilitating hypersensitivity and abnormal electroencephalographic (EEG) and event-related potential (ERP) phenotypes. FXS is a neurodevelopmental disorder, but how EEG/ERP phenotypes change during development is unclear. Therefore, we characterized baseline and stimulus-evoked EEG in auditory and frontal cortex of developing (postnatal day (P) 21 and P30) and adult (P60) wildtype (WT) and Fmr1 KO mice with the FVB genetic background. We found that baseline gamma-band power and N1 amplitude of auditory ERP were increased in frontal cortex of Fmr1 KO mice during development and in adults. Baseline gamma power was increased in auditory cortex at P30. Genotype differences in stimulus-evoked gamma power were present in both cortical regions, but the direction and strength of the changes were age-dependent. These findings suggest that cortical deficits are present during early development and may contribute to sensory-processing deficits in FXS, which in turn may lead to anxiety and delayed language. Developmental changes in EEG measures indicate that observations at a single time-point during development are not reflective of FXS disease progression and highlight the need to identify developmental trajectories and optimal windows for treatment.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
68
|
Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse. J Neurosci 2018; 38:8187-8199. [PMID: 30093538 DOI: 10.1523/jneurosci.0603-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromodulation mediated by metabotropic glutamate receptors (mGluRs) regulates many brain functions. However, the functions of mGluRs in the auditory system under normal and diseased states are not well understood. The medial nucleus of the trapezoid body (MNTB) is a critical nucleus in the auditory brainstem nuclei involved in sound localization. In addition to the classical calyx excitatory inputs, MNTB neurons also receive synaptic inhibition and it remains entirely unknown how this inhibition is regulated. Here, using whole-cell voltage clamp in brain slices, we investigated group I mGluR (mGluR I)-mediated modulation of the glycinergic and GABAergic inputs to MNTB neurons in both WT mice and a fragile X syndrome (FXS) mouse model (both sexes) in which the fragile X mental retardation gene 1 is knocked out (Fmr1 KO), causing exaggerated activity of mGluR I and behavioral phenotypes. Activation of mGluR I by (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) increased the frequency and amplitude of glycinergic spontaneous IPSCs (sIPSCs) in both WT and Fmr1 KO neurons in a voltage-gated sodium channel-dependent fashion, but did not modulate glycinergic evoked IPSCs (eIPSCs). In contrast, 3,5-DHPG did not affect GABAergic sIPSCs, but did suppress eIPSCs in WT neurons via endocannabinoid signaling. In the KO, the effect of 3,5-DHPG on GABAergic eIPSCs was highly variable, which supports the notion of impaired GABAergic signaling in the FXS model. The differential modulation of sIPSC and eIPSC and differential modulation of glycinergic and GABAergic transmission suggest distinct mechanisms responsible for spontaneous and evoked release of inhibitory transmitters and their modulation through the mGluR I signaling pathway.SIGNIFICANCE STATEMENT Neurons communicate with each other through the release of neurotransmitters, which assumes two basic modes, spontaneous and evoked release. These two release modes are believed to function using the same vesicle pool and machinery. Recent works have challenged this dogma, pointing to distinct vesicle release mechanisms underlying the two release modes. Here, we provide the first evidence in the central auditory system supporting this novel concept. We discovered neural-transmitter- and release-mode-specific neuromodulation of inhibitory transmission by metabotropic glutamate receptors and revealed part of the signaling pathways underlying this differential modulation. The results establish the foundation for a multitude of directions to study physiological significance of different release modes in auditory processing.
Collapse
|
69
|
Wen TH, Binder DK, Ethell IM, Razak KA. The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 2018; 11:270. [PMID: 30123106 PMCID: PMC6085424 DOI: 10.3389/fnmol.2018.00270] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Perineuronal nets (PNN) are extracellular matrix (ECM) assemblies that preferentially ensheath parvalbumin (PV) expressing interneurons. Converging evidence indicates that PV cells and PNN are impaired in a variety of neurological disorders. PNN development and maintenance is necessary for a number of processes within the CNS, including regulation of GABAergic cell function, protection of neurons from oxidative stress, and closure of developmental critical period plasticity windows. Understanding PNN functions may be essential for characterizing the mechanisms of altered cortical excitability observed in neurodegenerative and neurodevelopmental disorders. Indeed, PNN abnormalities have been observed in post-mortem brain tissues of patients with schizophrenia and Alzheimer’s disease. There is impaired development of PNNs and enhanced activity of its key regulator matrix metalloproteinase-9 (MMP-9) in Fragile X Syndrome, a common genetic cause of autism. MMP-9, a protease that cleaves ECM, is differentially regulated in a number of these disorders. Despite this, few studies have addressed the interactions between PNN expression, MMP-9 activity and neuronal excitability. In this review, we highlight the current evidence for PNN abnormalities in CNS disorders associated with altered network function and MMP-9 levels, emphasizing the need for future work targeting PNNs in pathophysiology and therapeutic treatment of neurological disorders.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Psychology Graduate Program, Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
70
|
Zerbi V, Ielacqua GD, Markicevic M, Haberl MG, Ellisman MH, A-Bhaskaran A, Frick A, Rudin M, Wenderoth N. Dysfunctional Autism Risk Genes Cause Circuit-Specific Connectivity Deficits With Distinct Developmental Trajectories. Cereb Cortex 2018; 28:2495-2506. [PMID: 29901787 PMCID: PMC5998961 DOI: 10.1093/cercor/bhy046] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2-/- mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes.
Collapse
Affiliation(s)
- Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Giovanna D Ielacqua
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, Zurich, Switzerland
| | - Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Matthias Georg Haberl
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Arjun A-Bhaskaran
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Andreas Frick
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Markus Rudin
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
71
|
Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol Dis 2018; 115:39-48. [PMID: 29605426 PMCID: PMC5969806 DOI: 10.1016/j.nbd.2018.03.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 01/29/2023] Open
Abstract
Identification of comparable biomarkers in humans and validated animal models will facilitate pre-clinical to clinical therapeutic pipelines to treat neurodevelopmental disorders. Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety, social and sensory processing deficits. Recent EEG studies in humans with FXS have identified neural oscillation deficits that include enhanced resting state gamma power and reduced inter-trial coherence of sound evoked gamma oscillations. To determine if analogous phenotypes are present in an animal model of FXS, we recorded EEGs in awake, freely moving Fmr1 knock out (KO) mice using similar stimuli as in the human studies. We report remarkably similar neural oscillation phenotypes in the Fmr1 KO mouse including enhanced resting state gamma power and reduced evoked gamma synchronization. The gamma band inter-trial coherence of neural response was reduced in both auditory and frontal cortex of Fmr1 KO mice stimulated with a sound whose envelope was modulated from 1 to 100 Hz, similar to that seen in humans with FXS. These deficits suggest a form of enhanced 'resting state noise' that interferes with the ability of the circuit to mount a synchronized response to sensory input, predicting specific sensory and cognitive deficits in FXS. The abnormal gamma oscillations are consistent with parvalbumin neuron and perineuronal net deficits seen in the Fmr1 KO mouse auditory cortex indicating that the EEG biomarkers are not only clinically relevant, but could also be used to probe cellular and circuit mechanisms of sensory hypersensitivity in FXS.
Collapse
Affiliation(s)
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, USA; Neuroscience Graduate Program, University of California, Riverside, USA.
| |
Collapse
|
72
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
73
|
Berzhanskaya J, Phillips MA, Gorin A, Lai C, Shen J, Colonnese MT. Disrupted Cortical State Regulation in a Rat Model of Fragile X Syndrome. Cereb Cortex 2018; 27:1386-1400. [PMID: 26733529 DOI: 10.1093/cercor/bhv331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Children with Fragile X syndrome (FXS) have deficits of attention and arousal. To begin to identify the neural causes of these deficits, we examined juvenile rats lacking the Fragile X mental retardation protein (FMR-KO) for disruption of cortical activity related to attention and arousal. Specifically, we examined the switching of visual cortex between activated and inactivated states that normally occurs during movement and quiet rest, respectively. In both wild-type and FMR-KO rats, during the third and fourth postnatal weeks cortical activity during periods of movement was dominated by an activated state with prominent 18-52 Hz activity. However, during quiet rest, when activity in wild-type rats became dominated by the inactivated state (3-9 Hz activity), FMR-KO rat cortex abnormally remained activated, resulting in increased high-frequency and reduced low-frequency power during rest. Firing rate correlations revealed reduced synchronization in FMR-KO rats, particularly between fast-spiking interneurons, that developmentally precede cortical state defects. Together our data suggest that disrupted inhibitory connectivity impairs the ability of visual cortex to regulate exit from the activated state in a behaviorally appropriate manner, potentially contributing to disrupted attention and sensory processing observed in children with FXS by making it more difficult to decrease cortical drive by unattended stimuli.
Collapse
Affiliation(s)
- Julia Berzhanskaya
- Department of Pharmacology and Physiology and Institute for Neuroscience
| | - Marnie A Phillips
- Department of Pharmacology and Physiology and Institute for Neuroscience
| | - Alexis Gorin
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chongxi Lai
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | - Jing Shen
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
74
|
Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, Subashi E, Bony G, Ginger M, Moujahid A, Frick A, Leinekugel X. Potential Involvement of Impaired BK Ca Channel Function in Sensory Defensiveness and Some Behavioral Disturbances Induced by Unfamiliar Environment in a Mouse Model of Fragile X Syndrome. Neuropsychopharmacology 2018; 43:492-502. [PMID: 28722023 PMCID: PMC5770751 DOI: 10.1038/npp.2017.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 01/20/2023]
Abstract
In fragile X syndrome (FXS), sensory hypersensitivity and impaired habituation is thought to result in attention overload and various behavioral abnormalities in reaction to the excessive and remanent salience of environment features that would normally be ignored. This phenomenon, termed sensory defensiveness, has been proposed as the potential cause of hyperactivity, hyperarousal, and negative reactions to changes in routine that are often deleterious for FXS patients. However, the lack of tools for manipulating sensory hypersensitivity has not allowed the experimental testing required to evaluate the relevance of this hypothesis. Recent work has shown that BMS-204352, a BKCa channel agonist, was efficient to reverse cortical hyperexcitability and related sensory hypersensitivity in the Fmr1-KO mouse model of FXS. In the present study, we report that exposing Fmr1-KO mice to novel or unfamiliar environments resulted in multiple behavioral perturbations, such as hyperactivity, impaired nest building and excessive grooming of the back. Reversing sensory hypersensitivity with the BKCa channel agonist BMS-204352 prevented these behavioral abnormalities in Fmr1-KO mice. These results are in support of the sensory defensiveness hypothesis, and confirm BKCa as a potentially relevant molecular target for the development of drug medication against FXS/ASD.
Collapse
Affiliation(s)
- Maria Isabel Carreno-Munoz
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France,University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Fabienne Martins
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maria Carmen Medrano
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Elisabetta Aloisi
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Susanna Pietropaolo
- University of Bordeaux, INCIA, Pessac, France,CNRS, INCIA, UMR 5287, Pessac, France
| | - Corentin Dechaud
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Enejda Subashi
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillaume Bony
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | | | - Andreas Frick
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Xavier Leinekugel
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France,Neurocentre Magendie, INSERM U1215, Université de Bordeaux, 146 rue Leo Saignat, 33077 Bordeaux, France, Tel: +33 6 09 55 53 39, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
75
|
Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach. J Neurodev Disord 2018; 10:4. [PMID: 29378522 PMCID: PMC5789548 DOI: 10.1186/s11689-018-9223-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Fragile X syndrome (FXS) is a neurodevelopmental genetic disorder causing cognitive and behavioural deficits. Repetition suppression (RS), a learning phenomenon in which stimulus repetitions result in diminished brain activity, has been found to be impaired in FXS. Alterations in RS have been associated with behavioural problems in FXS; however, relations between RS and intellectual functioning have not yet been elucidated. Methods EEG was recorded in 14 FXS participants and 25 neurotypical controls during an auditory habituation paradigm using repeatedly presented pseudowords. Non-phased locked signal energy was compared across presentations and between groups using linear mixed models (LMMs) in order to investigate RS effects across repetitions and brain areas and a possible relation to non-verbal IQ (NVIQ) in FXS. In addition, we explored group differences according to NVIQ and we probed the feasibility of training a support vector machine to predict cognitive functioning levels across FXS participants based on single-trial RS features. Results LMM analyses showed that repetition effects differ between groups (FXS vs. controls) as well as with respect to NVIQ in FXS. When exploring group differences in RS patterns, we found that neurotypical controls revealed the expected pattern of RS between the first and second presentations of a pseudoword. More importantly, while FXS participants in the ≤ 42 NVIQ group showed no RS, the > 42 NVIQ group showed a delayed RS response after several presentations. Concordantly, single-trial estimates of repetition effects over the first four repetitions provided the highest decoding accuracies in the classification between the FXS participant groups. Conclusion Electrophysiological measures of repetition effects provide a non-invasive and unbiased measure of brain responses sensitive to cognitive functioning levels, which may be useful for clinical trials in FXS. Electronic supplementary material The online version of this article (10.1186/s11689-018-9223-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inga Sophia Knoth
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada. .,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Tarek Lajnef
- Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada
| | - Simon Rigoulot
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada
| | - Karine Lacourse
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Phetsamone Vannasing
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Jacques L Michaud
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Faculty of Medicine, Université de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Sébastien Jacquemont
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe Major
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Karim Jerbi
- Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal (CRIUSMM), 7401 Rue Hochelaga, Montréal, QC, H1N 3M5, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4565, chemin Queen-Mary, Montreal, QC, H3W 1W5, Canada
| | - Sarah Lippé
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada
| |
Collapse
|
76
|
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice. eNeuro 2017; 4:eN-NWR-0264-17. [PMID: 29291238 PMCID: PMC5744645 DOI: 10.1523/eneuro.0264-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development.
Collapse
|
77
|
Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome. J Neurosci 2017; 37:11298-11310. [PMID: 29038238 DOI: 10.1523/jneurosci.2893-16.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS.SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS.
Collapse
|
78
|
Talebian A, Britton R, Ammanuel S, Bepari A, Sprouse F, Birnbaum SG, Szabó G, Tamamaki N, Gibson J, Henkemeyer M. Autonomous and non-autonomous roles for ephrin-B in interneuron migration. Dev Biol 2017; 431:179-193. [PMID: 28947178 DOI: 10.1016/j.ydbio.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022]
Abstract
While several studies indicate the importance of ephrin-B/EphB bidirectional signaling in excitatory neurons, potential roles for these molecules in inhibitory neurons are largely unknown. We identify here an autonomous receptor-like role for ephrin-B reverse signaling in the tangential migration of interneurons into the neocortex using ephrin-B (EfnB1/B2/B3) conditional triple mutant (TMlz) mice and a forebrain inhibitory neuron specific Cre driver. Inhibitory neuron deletion of the three EfnB genes leads to reduced interneuron migration, abnormal cortical excitability, and lethal audiogenic seizures. Truncated and intracellular point mutations confirm the importance of ephrin-B reverse signaling in interneuron migration and cortical excitability. A non-autonomous ligand-like role was also identified for ephrin-B2 that is expressed in neocortical radial glial cells and required for proper tangential migration of GAD65-positive interneurons. Our studies thus define both receptor-like and ligand-like roles for the ephrin-B molecules in controlling the migration of interneurons as they populate the neocortex and help establish excitatory/inhibitory (E/I) homeostasis.
Collapse
Affiliation(s)
- Asghar Talebian
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel Britton
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Simon Ammanuel
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asim Bepari
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francis Sprouse
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gábor Szabó
- Medical Gene Technology Division, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jay Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Henkemeyer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
79
|
Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice. J Neurosci 2017; 37:7403-7419. [PMID: 28674175 DOI: 10.1523/jneurosci.2310-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 06/06/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS (Fmr1 KO), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS.SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS.
Collapse
|
80
|
Budimirovic DB, Berry-Kravis E, Erickson CA, Hall SS, Hessl D, Reiss AL, King MK, Abbeduto L, Kaufmann WE. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord 2017; 9:14. [PMID: 28616097 PMCID: PMC5467057 DOI: 10.1186/s11689-017-9193-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Fragile X syndrome (FXS) has been the neurodevelopmental disorder with the most active translation of preclinical breakthroughs into clinical trials. This process has led to a critical assessment of outcome measures, which resulted in a comprehensive review published in 2013. Nevertheless, the disappointing outcome of several recent phase III drug trials in FXS, and parallel efforts at evaluating behavioral endpoints for trials in autism spectrum disorder (ASD), has emphasized the need for re-assessing outcome measures and revising recommendations for FXS. METHODS After performing an extensive database search (PubMed, Food and Drug Administration (FDA)/National Institutes of Health (NIH)'s www.ClinicalTrials.gov, etc.) to determine progress since 2013, members of the Working Groups who published the 2013 Report evaluated the available outcome measures for FXS and related neurodevelopmental disorders using the COSMIN grading system of levels of evidence. The latter has also been applied to a British survey of endpoints for ASD. In addition, we also generated an informal classification of outcome measures for use in FXS intervention studies as instruments appropriate to detect shorter- or longer-term changes. RESULTS To date, a total of 22 double-blind controlled clinical trials in FXS have been identified through www.ClinicalTrials.gov and an extensive literature search. The vast majority of these FDA/NIH-registered clinical trials has been completed between 2008 and 2015 and has targeted the core excitatory/inhibitory imbalance present in FXS and other neurodevelopmental disorders. Limited data exist on reliability and validity for most tools used to measure cognitive, behavioral, and other problems in FXS in these trials and other studies. Overall, evidence for most tools supports a moderate tool quality grading. Data on sensitivity to treatment, currently under evaluation, could improve ratings for some cognitive and behavioral tools. Some progress has also been made at identifying promising biomarkers, mainly on blood-based and neurophysiological measures. CONCLUSION Despite the tangible progress in implementing clinical trials in FXS, the increasing data on measurement properties of endpoints, and the ongoing process of new tool development, the vast majority of outcome measures are at the moderate quality level with limited information on reliability, validity, and sensitivity to treatment. This situation is not unique to FXS, since reviews of endpoints for ASD have arrived at similar conclusions. These findings, in conjunction with the predominance of parent-based measures particularly in the behavioral domain, indicate that endpoint development in FXS needs to continue with an emphasis on more objective measures (observational, direct testing, biomarkers) that reflect meaningful improvements in quality of life. A major continuous challenge is the development of measurement tools concurrently with testing drug safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Departments of Psychiatry and Behavioral Sciences, Kennedy Krieger Institute and Child Psychiatry, Johns Hopkins University School of Medicine, 716 N. Broadway, Baltimore, MD 21205 USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, 1725 West Harrison, Suite 718, Chicago, IL 60612 USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue MLC 4002, Cincinnati, OH 45229 USA
| | - Scott S. Hall
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305 USA
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817 USA
| | - Allan L. Reiss
- Division of Interdisciplinary Brain Sciences, Departments of Psychiatry and Behavioral Sciences, Radiology and Pediatrics, Stanford University, 401 Quarry Road, Stanford, CA 94305 USA
| | - Margaret K. King
- Autism & Developmental Medicine Institute, Geisinger Health System, Present address: Novartis Pharmaceuticals Corporation, US Medical, One Health Plaza, East Hanover, NJ 07936 USA
| | - Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817 USA
| | - Walter E. Kaufmann
- Center for Translational Research, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646 USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115 USA
| |
Collapse
|
81
|
Schaefer TL, Davenport MH, Grainger LM, Robinson CK, Earnheart AT, Stegman MS, Lang AL, Ashworth AA, Molinaro G, Huber KM, Erickson CA. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Disord 2017; 9:6. [PMID: 28616095 PMCID: PMC5467053 DOI: 10.1186/s11689-017-9184-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) occurs as a result of a silenced fragile X mental retardation 1 gene (FMR1) and subsequent loss of fragile X mental retardation protein (FMRP) expression. Loss of FMRP alters excitatory/inhibitory signaling balance, leading to increased neuronal hyperexcitability and altered behavior. Acamprosate (the calcium salt of N-acetylhomotaurinate), a drug FDA-approved for relapse prevention in the treatment of alcohol dependence in adults, is a novel agent with multiple mechanisms that may be beneficial for people with FXS. There are questions regarding the neuroactive effects of acamprosate and the significance of the molecule's calcium moiety. Therefore, the electrophysiological, cellular, molecular, and behavioral effects of acamprosate were assessed in the Fmr1-/y (knock out; KO) mouse model of FXS controlling for the calcium salt in several experiments. METHODS Fmr1 KO mice and their wild-type (WT) littermates were utilized to assess acamprosate treatment on cortical UP state parameters, dendritic spine density, and seizure susceptibility. Brain extracellular-signal regulated kinase 1/2 (ERK1/2) activation was used to investigate this signaling molecule as a potential biomarker for treatment response. Additional adult mice were used to assess chronic acamprosate treatment and any potential effects of the calcium moiety using CaCl2 treatment on behavior and nuclear ERK1/2 activation. RESULTS Acamprosate attenuated prolonged cortical UP state duration, decreased elevated ERK1/2 activation in brain tissue, and reduced nuclear ERK1/2 activation in the dentate gyrus in KO mice. Acamprosate treatment modified behavior in anxiety and locomotor tests in Fmr1 KO mice in which control-treated KO mice were shown to deviate from control-treated WT mice. Mice treated with CaCl2 were not different from saline-treated mice in the adult behavior battery or nuclear ERK1/2 activation. CONCLUSIONS These data indicate that acamprosate, and not calcium, improves function reminiscent of reduced anxiety-like behavior and hyperactivity in Fmr1 KO mice and that acamprosate attenuates select electrophysiological and molecular dysregulation that may play a role in the pathophysiology of FXS. Differences between control-treated KO and WT mice were not evident in a recognition memory test or in examination of acoustic startle response/prepulse inhibition which impeded conclusions from being made about the treatment effects of acamprosate in these instances.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Matthew H Davenport
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Lindsay M Grainger
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Chandler K Robinson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Anthony T Earnheart
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Melinda S Stegman
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anna L Lang
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 USA
| | - Amy A Ashworth
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: BlackbookHR, Cincinnati, OH 45202 USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Craig A Erickson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| |
Collapse
|
82
|
Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism 2017; 8:22. [PMID: 28596820 PMCID: PMC5463459 DOI: 10.1186/s13229-017-0140-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. Methods EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0–100 Hz over 2 s. Results Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. Conclusions This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0140-1) contains supplementary material, which is available to authorized users.
Collapse
|
83
|
Tatti R, Haley MS, Swanson O, Tselha T, Maffei A. Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits. Biol Psychiatry 2017; 81:821-831. [PMID: 27865453 PMCID: PMC5374043 DOI: 10.1016/j.biopsych.2016.09.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Brain function relies on the ability of neural networks to maintain stable levels of activity, while experiences sculpt them. In the neocortex, the balance between activity and stability relies on the coregulation of excitatory and inhibitory inputs onto principal neurons. Shifts of excitation or inhibition result in altered excitability impaired processing of incoming information. In many neurodevelopmental and neuropsychiatric disorders, the excitability of local circuits is altered, suggesting that their pathophysiology may involve shifts in synaptic excitation, inhibition, or both. Most studies focused on identifying the cellular and molecular mechanisms controlling network excitability to assess whether they may be altered in animal models of disease. The impact of changes in excitation/inhibition balance on local circuit and network computations is not clear. Here we report findings on the integration of excitatory and inhibitory inputs in healthy cortical circuits and discuss how shifts in excitation/inhibition balance may relate to pathological phenotypes.
Collapse
Affiliation(s)
- Roberta Tatti
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Melissa S. Haley
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Olivia Swanson
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Tenzin Tselha
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, The State University of New York, Stony Brook, New York.
| |
Collapse
|
84
|
Franco LM, Okray Z, Linneweber GA, Hassan BA, Yaksi E. Reduced Lateral Inhibition Impairs Olfactory Computations and Behaviors in a Drosophila Model of Fragile X Syndrome. Curr Biol 2017; 27:1111-1123. [PMID: 28366741 PMCID: PMC5405172 DOI: 10.1016/j.cub.2017.02.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 01/02/2023]
Abstract
Fragile X syndrome (FXS) patients present neuronal alterations that lead to severe intellectual disability, but the underlying neuronal circuit mechanisms are poorly understood. An emerging hypothesis postulates that reduced GABAergic inhibition of excitatory neurons is a key component in the pathophysiology of FXS. Here, we directly test this idea in a FXS Drosophila model. We show that FXS flies exhibit strongly impaired olfactory behaviors. In line with this, olfactory representations are less odor specific due to broader response tuning of excitatory projection neurons. We find that impaired inhibitory interactions underlie reduced specificity in olfactory computations. Finally, we show that defective lateral inhibition across projection neurons is caused by weaker inhibition from GABAergic interneurons. We provide direct evidence that deficient inhibition impairs sensory computations and behavior in an in vivo model of FXS. Together with evidence of impaired inhibition in autism and Rett syndrome, these findings suggest a potentially general mechanism for intellectual disability. Lack of dFMRP leads to reduced olfactory attraction and aversion in fruit flies Odor selectivity of antennal lobe projection neurons is impaired in dfmr1− flies GABAergic lateral inhibition within the antennal lobe is weaker in dfmr1− flies Deficient lateral inhibition impairs sensory computations and animal behavior
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Kapeldreef 75, 3001 Leuven, Belgium; VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zeynep Okray
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gerit A Linneweber
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Inserm, CNRS, 47 Boulevard Hôpital, 75013 Paris, France.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Kapeldreef 75, 3001 Leuven, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Olav Kyrres gate 9, 7030 Trondheim, Norway.
| |
Collapse
|
85
|
Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, Erickson CA, Byerly MJ, Sweeney JA. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord 2017; 9:11. [PMID: 28316753 PMCID: PMC5351111 DOI: 10.1186/s11689-017-9191-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cortical hyperexcitability due to abnormal fast-spiking inhibitory interneuron function has been documented in fmr1 KO mice, a mouse model of the fragile X syndrome which is the most common single gene cause of autism and intellectual disability. METHODS We collected resting state dense-array electroencephalography data from 21 fragile X syndrome (FXS) patients and 21 age-matched healthy participants. RESULTS FXS patients exhibited greater gamma frequency band power, which was correlated with social and sensory processing difficulties. Second, FXS patients showed increased spatial spreading of phase-synchronized high frequency neural activity in the gamma band. Third, we observed increased negative theta-to-gamma but decreased alpha-to-gamma band amplitude coupling, and the level of increased theta power was inversely related to the level of resting gamma power in FXS. CONCLUSIONS Increased theta band power and coupling from frontal sources may represent a mechanism providing compensatory inhibition of high-frequency gamma band activity, potentially contributing to the widely varying level of neurophysiological and behavioral abnormalities and treatment response seen in full-mutation FXS patients. These findings extend preclinical observations and provide new mechanistic insights into brain alterations and their variability across FXS patients. Electrophysiological measures may provide useful translational biomarkers for advancing drug development and individualizing treatments for neurodevelopmental disorders with associated neuronal hyperexcitability.
Collapse
Affiliation(s)
- Jun Wang
- Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang China 321004
| | - Lauren E. Ethridge
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Psychology, University of Oklahoma, Norman, OK USA
| | - Matthew W. Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS USA
| | - Stormi P. White
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Devin K. Binder
- Center for Glial-Neuronal Interactions, Neuroscience Graduate Program, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA USA
| | - Ernest V. Pedapati
- Department of Psychiatry and Behavioral Neuroscience and Division of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Craig A. Erickson
- Department of Psychiatry and Behavioral Neuroscience and Division of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Matthew J. Byerly
- Center for Mental Health Research and Recovery, Montana State University, Bozeman, MT USA
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH USA
| |
Collapse
|
86
|
Didriksen M, Fejgin K, Nilsson SR, Birknow MR, Grayton HM, Larsen PH, Lauridsen JB, Nielsen V, Celada P, Santana N, Kallunki P, Christensen KV, Werge TM, Stensbøl TB, Egebjerg J, Gastambide F, Artigas F, Bastlund JF, Nielsen J. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice. J Psychiatry Neurosci 2017; 42:48-58. [PMID: 27391101 PMCID: PMC5373712 DOI: 10.1503/jpn.150381] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/05/2016] [Accepted: 04/05/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. METHODS We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on, to our knowledge, the most comprehensive study undertaken to date in 22q11.2DS models. The study was conducted in male mice. RESULTS We found elevated postpubertal N-methyl-D-aspartate (NMDA) receptor antagonist-induced hyperlocomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR were resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. LIMITATIONS The 22q11.2 microdeletion has incomplete penetrance in humans, and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors that may unmask latent psychopathology. CONCLUSION The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the etiology of schizophrenia and other psychiatric disorders associated with the 22q11DS.
Collapse
Affiliation(s)
- Michael Didriksen
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Kim Fejgin
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Simon R.O. Nilsson
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Michelle R. Birknow
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Hannah M. Grayton
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Peter H. Larsen
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Jes B. Lauridsen
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Vibeke Nielsen
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Pau Celada
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Noemi Santana
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Pekka Kallunki
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Kenneth V. Christensen
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Thomas M. Werge
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Tine B. Stensbøl
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Jan Egebjerg
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Francois Gastambide
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Francesc Artigas
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Jesper F. Bastlund
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| | - Jacob Nielsen
- From H. Lundbeck A/S, Research DK, Valby, Denmark (Didriksen Fejgin, Birknow, Larsen, Lauridsen, Nielsen, Kallunki, Christensen, Stensbøl, Egebjerg, Nielsen); the Department of Psychology, University of Cambridge, Cambridge, UK (Nilsson); the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Nilsson); the Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Windlesham, UK (Grayton, Gastambide); the Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Celada, Artigas); the Centro de Investigación Biomédica en Red de Salud Mental, Spain (Santana, Artigas); the Institute of Biological Psychiatry, MHC Sct. Hans, Copenhagen Mental Health Services; and the Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen; iP-SYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric Research, Roskilde, Denmark (Werge)
| |
Collapse
|
87
|
Sensory hypo-excitability in a rat model of fetal development in Fragile X Syndrome. Sci Rep 2016; 6:30769. [PMID: 27465362 PMCID: PMC4964352 DOI: 10.1038/srep30769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is characterized by sensory hyper-sensitivity, and animal models suggest that neuronal hyper-excitability contributes to this phenotype. To understand how sensory dysfunction develops in FXS, we used the rat model (FMR-KO) to quantify the maturation of cortical visual responses from the onset of responsiveness prior to eye-opening, through age equivalents of human juveniles. Rather than hyper-excitability, visual responses before eye-opening had reduced spike rates and an absence of early gamma oscillations, a marker for normal thalamic function at this age. Despite early hypo-excitability, the developmental trajectory of visual responses in FMR-KO rats was normal, and showed the expected loss of visually evoked bursting at the same age as wild-type, two days before eye-opening. At later ages, during the third and fourth post-natal weeks, signs of mild hyper-excitability emerged. These included an increase in the visually-evoked firing of regular spiking, presumptive excitatory, neurons, and a reduced firing of fast-spiking, presumptive inhibitory, neurons. Our results show that early network changes in the FMR-KO rat arise at ages equivalent to fetal humans and have consequences for excitability that are opposite those found in adults. This suggests identification and treatment should begin early, and be tailored in an age-appropriate manner.
Collapse
|
88
|
Sadowski RN, Stebbings KA, Slater BJ, Bandara SB, Llano DA, Schantz SL. Developmental exposure to PCBs alters the activation of the auditory cortex in response to GABA A antagonism. Neurotoxicology 2016; 56:86-93. [PMID: 27422581 DOI: 10.1016/j.neuro.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Abstract
Developmental exposure of rats to polychlorinated biphenyls (PCBs) causes impairments in hearing and in the functioning of peripheral and central auditory structures. Additionally, recent work from our laboratory has demonstrated an increase in audiogenic seizures. The current study aimed to further characterize the effects of PCBs on auditory brain structures by investigating whether developmental exposure altered the magnitude of activation in the auditory cortex (AC) in response to electrical stimulation of thalamocortical afferents. Long-Evans female rats were fed cookies containing either 0 or 6mg/kg of an environmental PCB mixture daily from 4 weeks prior to breeding until postnatal day 21. Brain slices containing projections from the thalamus to the AC were collected from adult female offspring and were bathed in artificial cerebrospinal fluid (aCSF) alone, aCSF containing a gamma-aminobutyric acid (GABA) receptor antagonist (200nM SR95531), and aCSF containing an and N-methyl-d-aspartate (NMDA) receptor antagonist (50μM AP5). During each of these drug conditions, electrical stimulations ranging from 25 to 600μA were delivered to the thalamocortical afferents. Activation of the AC was measured using flavoprotein autofluorescence imaging. Although there were no differences seen between treatment groups in the aCSF condition, there were significant increases in the ratio of aCSF/SR95531 activation in slices from PCB-exposed animals compared to control animals. This effect was seen in both the upper and lower layers of the AC. No differences in activation were noted between treatment groups when slices were exposed to AP5. These data suggest that developmental PCB exposure leads to increased sensitivity to antagonism of GABAA receptors in the AC without a change in NMDA-mediated intrinsic excitability.
Collapse
Affiliation(s)
- Renee N Sadowski
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Kevin A Stebbings
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Bernard J Slater
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Suren B Bandara
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel A Llano
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Susan L Schantz
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
89
|
Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry 2016; 6:e787. [PMID: 27093069 PMCID: PMC4872406 DOI: 10.1038/tp.2016.48] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory hypersensitivities are common, clinically distressing features of Fragile X Syndrome (FXS). Preclinical evidence suggests this abnormality may result from synaptic hyper-excitability in sensory systems. This model predicts reduced sensory habituation to repeated stimulus presentation. Fourteen adolescents and adults with FXS and 15 age-matched controls participated in a modified auditory gating task using trains of 4 identical tones during dense array electroencephalography (EEG). Event-related potential and single trial time-frequency analyses revealed decreased habituation of the N1 event-related potential response in FXS, and increased gamma power coupled with decreases in gamma phase-locking during the early-stimulus registration period. EEG abnormalities in FXS were associated with parent reports of heightened sensory sensitivities and social communication deficits. Reduced habituation and altered gamma power and phase-locking to auditory cues demonstrated here in FXS patients parallels preclinical findings with Fmr1 KO mice. Thus, the EEG abnormalities seen in FXS patients support the model of neocortical hyper-excitability in FXS, and may provide useful translational biomarkers for evaluating novel treatment strategies targeting its neural substrate.
Collapse
Affiliation(s)
- L E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Psychology, University of Oklahoma, Norman, OK, USA,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, 1100 North East 13th Street, Nicholson Tower, Suite 4900, Oklahoma City, OK 73104, USA. E-mail:
| | - S P White
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M W Mosconi
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA,Departments of Applied Behavioral Science and Psychology, Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - J Wang
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M J Byerly
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J A Sweeney
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
90
|
Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain. Sci Rep 2016; 6:22315. [PMID: 26924462 PMCID: PMC4770424 DOI: 10.1038/srep22315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/12/2016] [Indexed: 11/08/2022] Open
Abstract
Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex.
Collapse
|
91
|
Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiol Dis 2016; 89:126-35. [PMID: 26850918 DOI: 10.1016/j.nbd.2016.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. SIGNIFICANCE Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits in habituation of neural responses to repeated sounds in the Fmr1 KO mice as seen in humans with FXS. We also report an abnormally high level of matrix metalloprotease-9 (MMP-9) in the auditory cortex of Fmr1 KO mice and that deletion of Mmp-9 from Fmr1 KO mice reverses habituation deficits. These data provide a translation relevant electrophysiological biomarker for sensory deficits in FXS and implicate MMP-9 as a target for drug discovery.
Collapse
|
92
|
Abstract
Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes.
Collapse
|
93
|
Anomal RF, de Villers-Sidani E, Brandão JA, Diniz R, Costa MR, Romcy-Pereira RN. Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism. Front Syst Neurosci 2015; 9:158. [PMID: 26635548 PMCID: PMC4644803 DOI: 10.3389/fnsys.2015.00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022] Open
Abstract
Autism is a neurodevelopmental disorder clinically characterized by deficits in communication, lack of social interaction and repetitive behaviors with restricted interests. A number of studies have reported that sensory perception abnormalities are common in autistic individuals and might contribute to the complex behavioral symptoms of the disorder. In this context, hearing incongruence is particularly prevalent. Considering that some of this abnormal processing might stem from the unbalance of inhibitory and excitatory drives in brain circuitries, we used an animal model of autism induced by valproic acid (VPA) during pregnancy in order to investigate the tonotopic organization of the primary auditory cortex (AI) and its local inhibitory circuitry. Our results show that VPA rats have distorted primary auditory maps with over-representation of high frequencies, broadly tuned receptive fields and higher sound intensity thresholds as compared to controls. However, we did not detect differences in the number of parvalbumin-positive interneurons in AI of VPA and control rats. Altogether our findings show that neurophysiological impairments of hearing perception in this autism model occur independently of alterations in the number of parvalbumin-expressing interneurons. These data support the notion that fine circuit alterations, rather than gross cellular modification, could lead to neurophysiological changes in the autistic brain.
Collapse
Affiliation(s)
| | | | | | - Rebecca Diniz
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | | |
Collapse
|
94
|
Haberl MG, Zerbi V, Veltien A, Ginger M, Heerschap A, Frick A. Structural-functional connectivity deficits of neocortical circuits in the Fmr1 (-/y) mouse model of autism. SCIENCE ADVANCES 2015; 1:e1500775. [PMID: 26702437 PMCID: PMC4681325 DOI: 10.1126/sciadv.1500775] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/13/2015] [Indexed: 05/13/2023]
Abstract
Fragile X syndrome (FXS), the most common inherited form of intellectual disability disorder and a frequent cause of autism spectrum disorder (ASD), is characterized by a high prevalence of sensory symptoms. Perturbations in the anatomical connectivity of neocortical circuits resulting in their functional defects have been hypothesized to contribute to the underlying etiology of these disorders. We tested this idea by probing alterations in the functional and structural connectivity of both local and long-ranging neocortical circuits in the Fmr1 (-/y) mouse model of FXS. To achieve this, we combined in vivo ultrahigh-field diffusion tensor magnetic resonance imaging (MRI), functional MRI, and viral tracing approaches in adult mice. Our results show an anatomical hyperconnectivity phenotype for the primary visual cortex (V1), but a disproportional low connectivity of V1 with other neocortical regions. These structural data are supported by defects in the structural integrity of the subcortical white matter in the anterior and posterior forebrain. These anatomical alterations might contribute to the observed functional decoupling across neocortical regions. We therefore identify FXS as a "connectopathy," providing a translational model for understanding sensory processing defects and functional decoupling of neocortical areas in FXS and ASD.
Collapse
Affiliation(s)
- Matthias G. Haberl
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33077 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33076 Bordeaux, France
- Institute of NeuroInformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Valerio Zerbi
- Biomedical MR Research Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 Nijmegen, Netherlands
| | - Andor Veltien
- Biomedical MR Research Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 Nijmegen, Netherlands
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33077 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33076 Bordeaux, France
| | - Arend Heerschap
- Biomedical MR Research Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 Nijmegen, Netherlands
| | - Andreas Frick
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33077 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33076 Bordeaux, France
- Corresponding author. E-mail:
| |
Collapse
|
95
|
Ruby K, Falvey K, Kulesza R. Abnormal neuronal morphology and neurochemistry in the auditory brainstem of Fmr1 knockout rats. Neuroscience 2015; 303:285-98. [DOI: 10.1016/j.neuroscience.2015.06.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/10/2015] [Accepted: 06/27/2015] [Indexed: 01/19/2023]
|
96
|
Reinhard SM, Razak K, Ethell IM. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front Cell Neurosci 2015; 9:280. [PMID: 26283917 PMCID: PMC4518323 DOI: 10.3389/fncel.2015.00280] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sarah M Reinhard
- Psychology Department, University of California, Riverside Riverside, CA, USA
| | - Khaleel Razak
- Psychology Department, University of California, Riverside Riverside, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California, Riverside Riverside, CA, USA
| |
Collapse
|
97
|
Tsukano H, Horie M, Bo T, Uchimura A, Hishida R, Kudoh M, Takahashi K, Takebayashi H, Shibuki K. Delineation of a frequency-organized region isolated from the mouse primary auditory cortex. J Neurophysiol 2015; 113:2900-20. [PMID: 25695649 PMCID: PMC4416634 DOI: 10.1152/jn.00932.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/17/2015] [Indexed: 01/30/2023] Open
Abstract
The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan;
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Bo
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Arikuni Uchimura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaharu Kudoh
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
98
|
Rotschafer SE, Marshak S, Cramer KS. Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem. PLoS One 2015; 10:e0117266. [PMID: 25679778 PMCID: PMC4332492 DOI: 10.1371/journal.pone.0117266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/21/2014] [Indexed: 01/27/2023] Open
Abstract
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1-/- mice, an animal model of FXS. We found that Fmr1-/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1-/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1-/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1-/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem.
Collapse
Affiliation(s)
- Sarah E. Rotschafer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Sonya Marshak
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
- * E-mail:
| |
Collapse
|
99
|
Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, Sans N, Rossier J, Oostra B, LeMasson G, Frick A. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci 2014; 17:1701-9. [PMID: 25383903 DOI: 10.1038/nn.3864] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
Hypersensitivity in response to sensory stimuli and neocortical hyperexcitability are prominent features of Fragile X Syndrome (FXS) and autism spectrum disorders, but little is known about the dendritic mechanisms underlying these phenomena. We found that the primary somatosensory neocortex (S1) was hyperexcited in response to tactile sensory stimulation in Fmr1(-/y) mice. This correlated with neuronal and dendritic hyperexcitability of S1 pyramidal neurons, which affect all major aspects of neuronal computation, from the integration of synaptic input to the generation of action potential output. Using dendritic electrophysiological recordings, calcium imaging, pharmacology, biochemistry and a computer model, we found that this defect was, at least in part, attributable to the reduction and dysfunction of dendritic h- and BKCa channels. We pharmacologically rescued several core hyperexcitability phenomena by targeting BKCa channels. Our results provide strong evidence pointing to the utility of BKCa channel openers for the treatment of the sensory hypersensitivity aspects of FXS.
Collapse
Affiliation(s)
- Yu Zhang
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Audrey Bonnan
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Guillaume Bony
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Isabelle Ferezou
- Laboratoire de Neurobiologie, ESPCI ParisTech CNRS UMR 7637, Paris, France
| | - Susanna Pietropaolo
- 1] University of Bordeaux, INCIA, Talence, France. [2] CNRS, INCIA, UMR 5287, Talence, France
| | - Melanie Ginger
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Nathalie Sans
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Jean Rossier
- Laboratoire de Neurobiologie, ESPCI ParisTech CNRS UMR 7637, Paris, France
| | - Ben Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Gwen LeMasson
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Andreas Frick
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| |
Collapse
|
100
|
Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 2014; 3:118-33. [PMID: 25606362 PMCID: PMC4298642 DOI: 10.5582/irdr.2014.01024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 11/05/2022] Open
Abstract
Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS.
Collapse
Affiliation(s)
- Tatiana M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
- Address correspondence to: Dr. Tatiana M. Kazdoba, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, Research II Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA. E-mail:
| | - Prescott T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jacqueline N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|