51
|
The role of glutamate oxaloacetate transaminases in sulfite biosynthesis and H 2S metabolism. Redox Biol 2020; 38:101800. [PMID: 33271457 PMCID: PMC7711302 DOI: 10.1016/j.redox.2020.101800] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency are two rare genetic disorders that are caused by impairment of the mitochondrial enzyme sulfite oxidase. Sulfite oxidase is catalyzing the terminal reaction of cellular cysteine catabolism, the oxidation of sulfite to sulfate. Absence of sulfite oxidase leads to the accumulation of sulfite, which has been identified as a cellular toxin. However, the molecular pathways leading to the production of sulfite are still not completely understood. In order to identify novel treatment options for both disorders, the understanding of cellular cysteine catabolism – and its alterations upon loss of sulfite oxidase – is of utmost importance. Here we applied a new detection method of sulfite in cellular extracts to dissect the contribution of cytosolic and mitochondrial glutamate oxaloacetate transaminase (GOT) in the transformation of cysteine sulfinic acid to sulfite and pyruvate. We found that the cytosolic isoform GOT1 is primarily responsible for the production of sulfite. Moreover, loss of sulfite oxidase activity results in the accumulation of sulfite, H2S and persulfidated cysteine and glutathione, which is consistent with an increase of SQR protein levels. Surprisingly, none of the known H2S-producing pathways were found to be upregulated under conditions of sulfite toxicity suggesting an alternative route of sulfite-induced shift from oxidative to H2S dependent cysteine catabolism. Cellular sulfite detection enables investigation of cysteine catabolism in cell extracts. Cytosolic glutamate oxaloacetate transaminase 1 is the primary source for cellular sulfite. Deficiency of sulfite oxidase leads to accumulation of H2S and persulfidated small molecules. Sulfite oxidase deficiency results in a downregulation of H2S synthesis and increased SQR expression.
Collapse
|
52
|
Cai L, Hu C, Yu S, Liu L, Yu X, Chen J, Liu X, Lin F, Zhang C, Li W, Yan X. Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer. BMC Cancer 2020; 20:1133. [PMID: 33228592 PMCID: PMC7686733 DOI: 10.1186/s12885-020-07598-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is one of the most common gynaecological cancers. The gene signature is believed to be reliable for predicting cancer patient survival. However, there is no relevant study on the relationship between the glycolysis-related gene (GRG) signature and overall survival (OS) of patients with CC. METHODS We extracted the mRNA expression profiles of 306 tumour and 13 normal tissues from the University of California Santa Cruz (UCSC) Database. Then, we screened out differentially expressed glycolysis-related genes (DEGRGs) among these mRNAs. All patients were randomly divided into training cohort and validation cohort according to the ratio of 7: 3. Next, univariate and multivariate Cox regression analyses were carried out to select the GRG with predictive ability for the prognosis of the training cohort. Additionally, risk score model was constructed and validated it in the validation cohort. RESULTS Six mRNAs were obtained that were associated with patient survival. The filtered mRNAs were classified into the protective type (GOT1) and the risk type (HSPA5, ANGPTL4, PFKM, IER3 and PFKFB4). Additionally, by constructing the prognostic risk score model, we found that the OS of the high-risk group was notably poorer, which showed good predictive ability both in training cohort and validation cohort. And the six-gene signature is a prognostic indicator independent of clinicopathological features. Through the verification of PCR, the results showed that compared with the normal cervial tissuses, the expression level of six mRNAs were significantly higher in the CC tissue, which was consistent with our findings. CONCLUSIONS We constructed a glycolysis-related six-gene signature to predict the prognosis of patients with CC using bioinformatics methods. We provide a thorough comprehension of the effect of glycolysis in patients with CC and provide new targets and ideas for individualized treatment.
Collapse
Affiliation(s)
- Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Chuan Hu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Xiaobo Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Xuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Fan Lin
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Cheng Zhang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China.
| |
Collapse
|
53
|
Rai V, Agrawal S. Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E8502. [PMID: 33198082 PMCID: PMC7697422 DOI: 10.3390/ijms21228502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA;
| |
Collapse
|
54
|
Zhang M, Zhang K, Wang J, Liu Y, Liu G, Jin W, Wu S, Zhao X. Immunoprecipitation and mass spectrometry define TET1 interactome during oligodendrocyte differentiation. Cell Biosci 2020; 10:110. [PMID: 32974003 PMCID: PMC7493855 DOI: 10.1186/s13578-020-00473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ten-eleven translocation (TET) proteins, encoding dioxygenase for DNA hydroxymethylation, are important players in nervous system development and disease. In addition to their proverbial enzymatic role, TET proteins also possess non-enzymatic activity and function in multiple protein-protein interaction networks, which remains largely unknown during oligodendrocyte differentiation. To identify partners of TET1 in the myelinating cells, we performed proteome-wide analysis using co-immunoprecipitation coupled to mass spectrometry (IP-MS) in purified oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs), respectively. Following a stringent selection of MS data based on identification reliability and protein enrichment, we identified a core set of 1211 partners that specifically interact with TET1 within OPCs and OLs. Analysis of the biological process and pathways associated with TET1-interacting proteins indicates a significant enrichment of proteins involved in regulation of cellular protein localization, cofactor metabolic process and regulation of catabolic process, et al. We further validated TET1 interactions with selected partners. Overall, this comprehensive analysis of the endogenous TET1 interactome during oligodendrocyte differentiation suggest its novel mechanism in regulating oligodendrocyte homeostasis and provide comprehensive insight into the molecular pathways associated with TET1.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Kaixiang Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Jian Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Yuming Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Guangxin Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Weilin Jin
- School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Xianghui Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| |
Collapse
|
55
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
56
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
57
|
Yamasaki A, Yanai K, Onishi H. Hypoxia and pancreatic ductal adenocarcinoma. Cancer Lett 2020; 484:9-15. [PMID: 32380129 DOI: 10.1016/j.canlet.2020.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Chemotherapy and immunotherapy for pancreatic ductal adenocarcinoma (PDAC) have limited success. One reason for this is thought to be the cancer microenvironment surrounding PDAC. Hypoxia is a feature of the cancer microenvironment. Under hypoxia, different various molecules and signaling pathways are activated compared with normoxia. To develop a new effective therapeutic strategy for PDAC, we need to target these hypoxic conditions to overcome PDAC. To inhibit the malignant phenotype, the cellular changes that occur under hypoxia should be elucidated. Various molecules and signaling that are activated by hypoxia may contribute to the induction of malignant phenotypes of PDAC such as proliferation, invasion, tumorigenesis, chemosensitivity, and autophagy. If we can develop therapeutic approaches to target one of these molecules or signaling pathways, we may proceed to the next therapeutic step of successfully treating refractory PDAC.
Collapse
Affiliation(s)
- Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Yanai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
58
|
Cheng Z, Dai Y, Zeng T, Liu Y, Cui L, Qian T, Si C, Huang W, Pang Y, Ye X, Shi J, Fu L. Upregulation of Glutamic-Oxaloacetic Transaminase 1 Predicts Poor Prognosis in Acute Myeloid Leukemia. Front Oncol 2020; 10:379. [PMID: 32266153 PMCID: PMC7105742 DOI: 10.3389/fonc.2020.00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the key features of acute myeloid leukemia (AML), a group of very aggressive myeloid malignancies, is their strikingly heterogenous outcomes. Accurate biomarkers are needed to improve prognostic assessment. Glutamate oxaloacetate transaminase 1 (GOT1) is essential for cell proliferation and apoptosis by regulating cell's metabolic dependency on glucose. It is unclear whether the expression level of GOT1 has clinical implications in AML. Therefore, we analyzed the data of 155 AML patients with GOT1 expression information from The Cancer Genome Atlas (TCGA) database. Among them, 84 patients were treated with chemotherapy alone, while 71 received allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both treatment groups, high GOT1 expression was associated with shorter event-free survival (EFS) and overall survival (OS) (all P < 0.05). Multivariate analysis identified several independent risk factors for both EFS and OS in the chemotherapy-only group, including high GOT1 expression, age ≥60 years, white blood cell count ≥15 × 109/L, bone marrow blasts ≥70%, and DNMT3A, RUNX1 or TP53 mutations (all P < 0.05); but in the allo-HSCT group, the only independent risk factor for survival was high GOT1 expression (P < 0.05 for both EFS and OS). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the genes related to GOT1 expression were mainly concentrated in “hematopoietic cell lineage” and “leukocyte transendothelial migration” signaling pathways. Collectively, GOT1 expression may be a useful prognostic indicator in AML, especially in patients who have undergone allo-HSCT.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tiansheng Zeng
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
59
|
Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020; 19:50. [PMID: 32122374 PMCID: PMC7053123 DOI: 10.1186/s12943-020-01169-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| |
Collapse
|
60
|
Integrated RNA and metabolite profiling of urine liquid biopsies for prostate cancer biomarker discovery. Sci Rep 2020; 10:3716. [PMID: 32111915 PMCID: PMC7048821 DOI: 10.1038/s41598-020-60616-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Sensitive and specific diagnostic and prognostic biomarkers for prostate cancer (PCa) are urgently needed. Urine samples are a non-invasive means to obtain abundant and readily accessible “liquid biopsies”. Herein we used urine liquid biopsies to identify and characterize a novel group of urine-enriched RNAs and metabolites in patients with PCa and normal individuals with or without benign prostatic disease. Differentially expressed RNAs were identified in urine samples by deep sequencing and metabolites in urine were measured by mass spectrometry. mRNA and metabolite profiles were distinct in patients with benign and malignant disease. Integrated analysis of urinary gene expression and metabolite signatures unveiled an aberrant glutamate metabolism and tricarboxylic acid (TCA) cycle node in prostate cancer-derived cells. Functional validation supported a role for glutamate metabolism and glutamate oxaloacetate transaminase 1 (GOT1)-dependent redox balance in PCa, which could be exploited for novel biomarkers and therapies. In this study, we discovered cancer-specific changes in urinary RNAs and metabolites, paving the way for the development of sensitive and specific urinary PCa diagnostic biomarkers either alone or in combination. Our methodology was based on single void urine samples (i.e., without prostatic massage). The integrated analysis of metabolomic and transcriptomic data from these liquid biopsies revealed a glutamate metabolism and tricarboxylic acid cycle node that was specific to prostate-derived cancer cells and cancer-specific metabolic changes in urine.
Collapse
|
61
|
Yoshida T, Yamasaki S, Kaneko O, Taoka N, Tomimoto Y, Namatame I, Yahata T, Kuromitsu S, Cantley LC, Lyssiotis CA. A covalent small molecule inhibitor of glutamate-oxaloacetate transaminase 1 impairs pancreatic cancer growth. Biochem Biophys Res Commun 2020; 522:633-638. [PMID: 31787239 PMCID: PMC6981064 DOI: 10.1016/j.bbrc.2019.11.130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Metabolic programs are rewired in cancer cells to support survival and tumor growth. Among these, recent studies have demonstrated that glutamate-oxaloacetate transaminase 1 (GOT1) plays key roles in maintaining redox homeostasis and proliferation of pancreatic ductal adenocarcinomas (PDA). This suggests that small molecule inhibitors of GOT1 could have utility for the treatment of PDA. However, the development of GOT1 inhibitors has been challenging, and no compound has yet demonstrated selectivity for GOT1-dependent cell metabolism or selective growth inhibition of PDA cell lines. In contrast, potent inhibitors that covalently bind to the transaminase cofactor pyridoxal-5'-phosphate (PLP), within the active site of the enzyme, have been reported for kynurenine aminotransferase (KAT) and gamma-aminobutyric acid aminotransferase (GABA-AT). Given the drug discovery successes with these transaminases, we aimed to identify PLP-dependent suicide substrate-type GOT1 inhibitors. Here, we demonstrate that PF-04859989, a known KAT2 inhibitor, has PLP-dependent inhibitory activity against GOT1 and shows selective growth inhibition of PDA cell lines.
Collapse
Affiliation(s)
- Tomohiro Yoshida
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Shingo Yamasaki
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Osamu Kaneko
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Naofumi Taoka
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Yusuke Tomimoto
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Ichiji Namatame
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Toshiko Yahata
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Sadao Kuromitsu
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
62
|
Ayres Pereira M, Chio IIC. Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes (Basel) 2019; 11:E6. [PMID: 31861620 PMCID: PMC7016631 DOI: 10.3390/genes11010006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely aggressive disease with a high metastatic potential. Most patients are diagnosed with metastatic disease, at which the five-year survival rate is only 3%. A better understanding of the mechanisms that drive metastasis is imperative for the development of better therapeutic interventions. Here, we take the reader through our current knowledge of the parameters that support metastatic progression in pancreatic ductal adenocarcinoma, and the experimental models that are at our disposal to study this process. We also describe the advantages and limitations of these models to study the different aspects of metastatic dissemination.
Collapse
Affiliation(s)
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
63
|
Metabolic Alterations in Pancreatic Cancer Progression. Cancers (Basel) 2019; 12:cancers12010002. [PMID: 31861288 PMCID: PMC7016676 DOI: 10.3390/cancers12010002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the USA. Pancreatic tumors are characterized by enhanced glycolytic metabolism promoted by a hypoxic tumor microenvironment and a resultant acidic milieu. The metabolic reprogramming allows cancer cells to survive hostile microenvironments. Through the analysis of the principal metabolic pathways, we identified the specific metabolites that are altered during pancreatic cancer progression in the spontaneous progression (KPC) mouse model. Genetically engineered mice exhibited metabolic alterations during PanINs formation, even before the tumor development. To account for other cells in the tumor microenvironment and to focus on metabolic adaptations concerning tumorigenic cells only, we compared the metabolic profile of KPC and orthotopic tumors with those obtained from KPC-tumor derived cell lines. We observed significant upregulation of glycolysis and the pentose phosphate pathway metabolites even at the early stages of pathogenesis. Other biosynthetic pathways also demonstrated a few common perturbations. While some of the metabolic changes in tumor cells are not detectable in orthotopic and spontaneous tumors, a significant number of tumor cell-intrinsic metabolic alterations are readily detectable in the animal models. Overall, we identified that metabolic alterations in precancerous lesions are maintained during cancer development and are largely mirrored by cancer cells in culture conditions.
Collapse
|
64
|
Wang Q, Zhang Q, Luan S, Yang K, Zheng M, Li K, Chen L, Li H. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem 2019; 93:103315. [DOI: 10.1016/j.bioorg.2019.103315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
|
65
|
Pirkkanen J, Tharmalingam S, Morais IH, Lam-Sidun D, Thome C, Zarnke AM, Benjamin LV, Losch AC, Borgmann AJ, Sinex HC, Mendonca MS, Boreham DR. Transcriptomic profiling of gamma ray induced mutants from the CGL1 human hybrid cell system reveals novel insights into the mechanisms of radiation-induced carcinogenesis. Free Radic Biol Med 2019; 145:300-311. [PMID: 31580949 DOI: 10.1016/j.freeradbiomed.2019.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Somatic cell hybrid systems generated by combining cancerous with non-cancerous cells provide useful model systems to study neoplastic transformation. Combined with recent advances in omics-based technologies, novel molecular signatures that drive radiation-induced carcinogenesis can be analyzed at an exceptional global level. METHODS Here, we present a complete whole-transcriptome analysis of gamma-induced mutants (GIM) and gamma irradiated control (CON) segregants isolated from the CGL1 (HeLa x normal fibroblast) human hybrid cell-system exposed to high doses of radiation. Using the Human Transcriptome Array 2.0 microarray technology and conservative discrimination parameters, we have elucidated 1067 differentially expressed genes (DEGs) between tumorigenic and non-tumorigenic cells. RESULTS Gene ontology enrichment analysis revealed that tumorigenic cells demonstrated shifts in extracellular matrix (ECM) and cellular adhesion profiles, dysregulation of cyclic AMP (cAMP) signaling, and alterations in nutrient transport and cellular energetics. Furthermore, putative upstream master regulator analysis demonstrated that loss of TGFβ1 signaling due to reduced SMAD3 expression is involved in radiation-induced carcinogenesis. CONCLUSIONS Taken together, this study presents novel insights into specific gene expression and pathway level differences that contribute to radiation-induced carcinogenesis in a human cell-based model. This global transcriptomic analysis and our published tumor suppressor gene deletion loci analyses will allow us to identify and functionally test candidate nexus upstream tumor suppressor genes that are deleted or silenced after exposure to radiation.
Collapse
Affiliation(s)
- Jake Pirkkanen
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | | | - Igor H Morais
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Daniel Lam-Sidun
- Northern Ontario School of Medicine, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Christopher Thome
- Northern Ontario School of Medicine, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Andrew M Zarnke
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Laura V Benjamin
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Adam C Losch
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Anthony J Borgmann
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Helen Chin Sinex
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Marc S Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Douglas R Boreham
- Northern Ontario School of Medicine, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada; Bruce Power, PO Box 1540, 177 Tie Rd, R.R. 2, Tiverton, Ontario, N0G 2T0, Canada.
| |
Collapse
|
66
|
Sun W, Luan S, Qi C, Tong Q, Yan S, Li H, Zhang Y. Aspulvinone O, a natural inhibitor of GOT1 suppresses pancreatic ductal adenocarcinoma cells growth by interfering glutamine metabolism. Cell Commun Signal 2019; 17:111. [PMID: 31470862 PMCID: PMC6717386 DOI: 10.1186/s12964-019-0425-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Distinctive from their normal counterparts, cancer cells exhibit unique metabolic dependencies on glutamine to fuel anabolic processes. Specifically, pancreatic ductal adenocarcinoma (PDAC) cells rely on an unconventional metabolic pathway catalyzed by aspartate transaminase 1 (GOT1) to rewire glutamine metabolism and support nicotinamide adenine dinucleotide phosphate (NADPH) production. Thus, the important role of GOT1 in energy metabolism and Reactive Oxygen Species (ROS) balance demonstrates that targeting GOT1 may serve as an important therapeutic target in PDAC. METHODS To assay the binding affinity between Aspulvinone O (AO) and GOT1 proteins, the virtual docking, microscale thermophoresis (MST), cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) methods were employed. GOT1 was silenced in several PDAC cell lines. The level of OCR and ECR were assayed by seahorse. To evaluate the in vivo anti-tumor efficacy of AO, the xenograft model was built in CB17/scid mouse. RESULTS Screening of an in-house natural compound library identified the AO as a novel inhibitor of GOT1 and repressed glutamine metabolism, which sensitizes PDAC cells to oxidative stress and suppresses cell proliferation. Virtual docking analysis suggested that AO could bind to the active site of GOT1 and form obvious hydrophobic interaction with Trp141 together with hydrogen bonds with Thr110 and Ser256. Further in vitro validation, including MST, CETSA and DARTS, further demonstrated the specific combining capacity of AO. We also show that the selective inhibition of GOT1 by AO significantly reduces proliferation of PDAC in vitro and in vivo. CONCLUSIONS Taken together, our findings identify AO as a potent bioactive inhibitor of GOT1 and a novel anti-tumour agent for PDAC therapy.
Collapse
Affiliation(s)
- Weiguang Sun
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanshan Luan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changxing Qi
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingyi Tong
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shan Yan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yonghui Zhang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
67
|
Gong X, Yang C, Hong Y, Chung ACK, Cai Z. PFOA and PFOS promote diabetic renal injury in vitro by impairing the metabolisms of amino acids and purines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:72-86. [PMID: 31029902 DOI: 10.1016/j.scitotenv.2019.04.208] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Environmental pollutants, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are common surfactants in various consumer products. Epidemiological studies have demonstrated the association of diabetic kidney diseases with PFOA and PFOS. However, mechanisms of metabolic alterations involved are still unclear. METHODS Considering their involvement of glomerular hemodynamics, rat mesangial cells (MCs) are used as an in vitro model of diabetic kidney diseases for exposure to PFOS/PFOA under diabetic condition. Non-targeted metabolomics studies based on liquid chromatography-high resolution mass spectrometry were conducted to determine how PFOA/PFOS promoted fibrotic and proinflammatory responses in the MCs under diabetic condition. RESULTS Exposure of PFOA/PFOS (10 μM) increased oxidative stress and the levels of fibrotic and proinflammatory markers in MCs under diabetic condition. We demonstrated for the first time that PFOA and PFOS altered amino acid biosynthesis, citrate cycle, and purine metabolism in MCs under diabetic condition. Compared with diabetic condition, the exposure of PFOA and PFOS under diabetic condition more significantly altered the levels of 13 intracellular metabolites, including L-tyrosine, L-phenylalanine, L-arginine, L-tryptophan, AMP, ADP, UMP, inosine, and hypoxanthine, which have been reported to be related to kidney injury. In addition, PFOA/PFOS treatment significantly altered the expression levels of key enzymes involved in these metabolisms. Treatment with L-tyrosine, L-phenylalanine, L-arginine, and L-tryptophan reduced the levels of fibrotic and inflammatory markers induced by PFOA/PFOS. CONCLUSION Our results suggest that under diabetic condition, exposure of PFOA or PFOS aggravated diabetic kidney injury in vitro by impairing metabolisms of amino acids and purines to induce more fibrosis and inflammation in MCs.
Collapse
Affiliation(s)
- Xun Gong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Arthur C K Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
68
|
Abstract
Metabolic reprograming is an established hallmark of cancer cells. Pancreatic cancer cells, by virtue of the underlying oncogenic drivers, demonstrate metabolic reprograming to sustain growth, invasiveness, and therapy resistance. The increased demands of the growing tumor cells alter the metabolic and signaling pathways to meet the growing nutrient requirements. Investigating the metabolic vulnerabilities of tumor cells can help in developing effective therapeutics to target pancreatic cancer. In this chapter, we explain in detail the methods to evaluate the metabolic changes occurring in the tumor. This includes the glucose/glutamine uptake assays and the measurement of reactive oxygen species, extracellular acidification rate, and oxygen consumption rate in the tumor cells. All these physiological assays help in understanding the metabolic nature of the tumor.
Collapse
|
69
|
Zhou ZH, Wang QL, Mao LH, Li XQ, Liu P, Song JW, Liu X, Xu F, Lei J, He S. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 2019; 18:511-522. [PMID: 30712429 PMCID: PMC6422493 DOI: 10.1080/15384101.2019.1578145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023] Open
Abstract
The acidic extracellular microenvironment, namely acidosis, is a biochemical hallmark of solid tumors. However, the tumorigenicity, metastatic potential, gene expression profile and chromatin accessibility of acidosis-adapted colorectal cancer cells remain unknown. The colorectal cancer cell SW620 was cultured in acidic medium (pH 6.5) for more than 3 months to be acidosis-adapted (SW620-AA). In comparison to parental cells, SW620-AA cells exhibit enhanced tumorigenicity and liver metastatic potential in vivo. Following mRNA and lncRNA expression profiling, we validated that OLMF1, NFIB, SMAD9, DGKB are upregulated, while SESN2, MAP1B, UTRN, PCDH19, IL18, LMO2, CNKSR3, GXYLT2 are downregulated in SW620-AA cells. The differentially expressed mRNAs were significantly enriched in DNA remodeling-associated pathways including HDACs deacetylate histones, SIRT1 pathway, DNA methylation, DNA bending complex, and RNA polymerase 1 chain elongation. Finally, chromatin accessibility evaluation by ATAC-sequencing revealed that the differentially opened peaks were enriched in pathways such as small cell lung cancer, pathways in cancer, ErbB signaling, endometrial cancer, and chronic myeloid leukemia, which were mainly distributed in intergenic regions and introns. These results suggest that the chromatin accessibility changes are correlated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, the 309 hospital of PLA, Beijing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Liu
- Department of Emergency, Chest Pain Center, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The 302nd hosptital of PLA, Beijing, China
| | - Xue Liu
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong, China
| | - Feng Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
70
|
Shukla SK, Mulder SE, Singh PK. Hypoxia-Mediated In Vivo Tumor Glucose Uptake Measurement and Analysis. Methods Mol Biol 2019; 1742:107-113. [PMID: 29330794 DOI: 10.1007/978-1-4939-7665-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most solid tumors are hypoxic in nature due to the limited supply of oxygen to internal tissues. Hypoxia plays an important role in metabolic adaptations of tumors that contribute significantly to cancer pathogenesis. Among the several metabolic alterations induced by hypoxia, hypoxia-mediated increased glucose uptake serves as the hallmark of metabolic reprogramming. Hypoxia-mediated stabilization of hypoxia-inducible factor-1 alpha (HIF-1α) transcription factor leads to altered expression of several glycolytic genes and glucose transporters, which results in increased glucose uptake by tumor cells. Here we describe an easy and simple way of measuring the hypoxia-mediated tumor glucose uptake in vivo. The method is based on fluorescent imaging probe, RediJect 2-DG, which is a nonradioactive fluorescent-tagged glucose molecule. We have discussed orthotopic tumor implantation of HIF-1α knockdown and control pancreatic cancer cells and glucose uptake measurement in vivo by using IVIS imaging system along with reagent preparations.
Collapse
Affiliation(s)
- Surendra K Shukla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott E Mulder
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
71
|
Hlouschek J, Ritter V, Wirsdörfer F, Klein D, Jendrossek V, Matschke J. Targeting SLC25A10 alleviates improved antioxidant capacity and associated radioresistance of cancer cells induced by chronic-cycling hypoxia. Cancer Lett 2018; 439:24-38. [PMID: 30205167 DOI: 10.1016/j.canlet.2018.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 01/17/2023]
Abstract
High tumor heterogeneity and increased therapy resistance acquired in a hypoxic tumor microenvironment remain major obstacles to successful radiotherapy. Others and we have shown that adaptation of cancer cells to cycling severe hypoxia and intermittent reoxygenation stress (chronic-cycling hypoxia) increases cellular antioxidant capacity thereby supporting resistance to chemotherapy and radiotherapy. Here we explored the involvement of antioxidant-associated mitochondrial transport-systems for maintenance of redox-homeostasis in adaptation to chronic-cycling hypoxia and associated radioresistance. Genetic or pharmacological inhibition of the mitochondrial dicarboxylate carrier (SLC25A10) or the oxoglutarate-carrier (SLC25A11) increased the cytotoxic effects of ionizing radiation (IR). But only targeting of SLC25A10 was effective in overcoming chronic-cycling hypoxia-induced enhanced death resistance in vitro and in vivo by disturbing increased antioxidant capacity. Furthermore, in silico analysis revealed that overexpression of SLC25A10 but not SLC25A11 is associated with reduced overall survival in lung- and breast-cancer patients. Our study reveals a role of SLC25A10 in supporting both, redox- and energy-homeostasis, ensuring radioresistance of cancer cells with tolerance to chronic-cycling hypoxia thereby proposing a novel strategy to overcome a mechanism of hypoxia-induced therapy resistance with potential clinical relevance regarding decreased patient survival.
Collapse
Affiliation(s)
- Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122, Essen, North Rhine-Westphalia, Germany
| | - Violetta Ritter
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122, Essen, North Rhine-Westphalia, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122, Essen, North Rhine-Westphalia, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122, Essen, North Rhine-Westphalia, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122, Essen, North Rhine-Westphalia, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122, Essen, North Rhine-Westphalia, Germany.
| |
Collapse
|
72
|
Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018; 13:e0201387. [PMID: 30067809 PMCID: PMC6070246 DOI: 10.1371/journal.pone.0201387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3'-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3'-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3'-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
73
|
Zhou X, Curbo S, Li F, Krishnan S, Karlsson A. Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose. BMC Cancer 2018; 18:559. [PMID: 29751795 PMCID: PMC5948873 DOI: 10.1186/s12885-018-4443-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glutamate oxaloacetate transaminase 1 (GOT1) regulates cellular metabolism through coordinating the utilization of carbohydrates and amino acids to meet nutrient requirements. KRAS mutated cancer cells were recently shown to rely on GOT1 to support long-term cell proliferation. The aim of the present study was to address the role of GOT1 in the metabolic adaption of cancer cells. METHODS GOT1-null and knockdown cell lines were established through CRISPR/Cas9 and shRNA techniques. The growth properties, colony formation ability, autophagy and selected gene expression profiles were analysed. Glucose deprivation decreased the viability of the GOT1-null cells and rescue experiments were conducted with selected intermediates. The redox NADH/NAD+ homeostasis as well as lactate secretion were determined. GOT1 expression levels and correlation with survival rates were analysed in selected tumor databases. RESULTS Inhibition of GOT1 sensitized the cancer cells to glucose deprivation, which was partially counteracted by oxaloacetate and phosphoenol pyruvate, metabolic intermediates downstream of GOT1. Moreover, GOT1-null cells accumulated NADH and displayed a decreased ratio of NADH/NAD+ with nutrient depletion. The relevance of GOT1 as a potential target in cancer therapy was supported by a lung adenocarcinoma RNA-seq data set as well as the GEO:GSE database of metastatic melanoma where GOT1 expression was increased. High levels of GOT1 were further linked to poor survival as analysed by the GEPIA web tool, in thyroid and breast carcinoma and in lung adenocarcinoma. CONCLUSIONS Our study suggests an important role of GOT1 to coordinate the glycolytic and the oxidative phosphorylation pathways in KRAS mutated cancer cells. GOT1 is crucial to provide oxaloacetate at low glucose levels, likely to maintain the redox homeostasis. Our data suggest GOT1 as a possible target in cancer therapy.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Sophie Curbo
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Fuqiang Li
- BGI-Shenzhen, Beishan Industrial Zone, 518083 Yantian District, Shenzhen, China
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
74
|
Biancur DE, Kimmelman AC. The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 2018; 1870:67-75. [PMID: 29702208 DOI: 10.1016/j.bbcan.2018.04.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive cancer that is highly refractory to the current standards of care. The difficulty in treating this disease is due to a number of different factors, including altered metabolism. In PDA, the metabolic rewiring favors anabolic reactions which supply the cancer cell with necessary cellular building blocks for unconstrained growth. Furthermore, PDA cells display high levels of basal autophagy and macropinocytosis. KRAS is the driving oncogene in PDA and many of the metabolic changes are downstream of its activation. Together, these unique pathways for nutrient utilization and acquisition result in metabolic plasticity enabling cells to rapidly adapt to nutrient and oxygen fluctuations. This remarkable adaptability has been implicated as a cause of the intense therapeutic resistance. In this review, we discuss metabolic pathways in PDA tumors and highlight how they contribute to the pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Douglas E Biancur
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York 10016, NY, United States
| | - Alec C Kimmelman
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York 10016, NY, United States.
| |
Collapse
|
75
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
76
|
Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv 2018; 36:583-602. [PMID: 29339119 DOI: 10.1016/j.biotechadv.2018.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The hallmarks of tumor tissue are not only genetic aberrations but also the presence of metabolic and oxidative stress as a result of hypoxia and lactic acidosis. The stress activates several prosurvival pathways including metabolic remodeling, autophagy, antioxidant response, mitohormesis, and glutaminolysis, whose upregulation in tumors is associated with a poor survival of patients, while their activation in healthy tissue with statins, metformin, physical activity, and natural compounds prevents carcinogenesis. This review emphasizes the dual role of stress response pathways in cancer and suggests the integrative understanding as a basis for the development of rational therapy targeting the stress response.
Collapse
|
77
|
Murthy D, Vernucci E, Goode G, Abrego J, Singh PK. Evaluating the Metabolic Impact of Hypoxia on Pancreatic Cancer Cells. Methods Mol Biol 2018; 1742:81-93. [PMID: 29330792 DOI: 10.1007/978-1-4939-7665-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxia is frequently observed in human cancers and induces global metabolic reprogramming that includes an increase in glucose uptake and glycolysis, alterations in NAD(P)H/NAD(P)+ and intracellular ATP levels, and increased utilization of glutamine as the major precursor for fatty acid synthesis. In this chapter, we describe in detail various physiological assays that have been adopted to study the metabolic shift propagated by exposure to hypoxic conditions in pancreatic cell culture model that includes glucose uptake, glutamine uptake, and lactate release by pancreatic cancer cell lines. We have also elaborated the assays to evaluate the ratio of NAD(P)H/NAD(P)+ and intracellular ATP estimation using the commercially available kit to assess the metabolic state of cancer cells.
Collapse
Affiliation(s)
- Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
78
|
Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, Grem J, Sasson AR, Singh PK. De Novo Lipid Synthesis Facilitates Gemcitabine Resistance through Endoplasmic Reticulum Stress in Pancreatic Cancer. Cancer Res 2017; 77:5503-5517. [PMID: 28811332 DOI: 10.1158/0008-5472.can-16-3062] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/15/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Pancreatic adenocarcinoma is moderately responsive to gemcitabine-based chemotherapy, the most widely used single-agent therapy for pancreatic cancer. Although the prognosis in pancreatic cancer remains grim in part due to poor response to therapy, previous attempts at identifying and targeting the resistance mechanisms have not been very successful. By leveraging The Cancer Genome Atlas dataset, we identified lipid metabolism as the metabolic pathway that most significantly correlated with poor gemcitabine response in pancreatic cancer patients. Furthermore, we investigated the relationship between alterations in lipogenesis pathway and gemcitabine resistance by utilizing tissues from the genetically engineered mouse model and human pancreatic cancer patients. We observed a significant increase in fatty acid synthase (FASN) expression with increasing disease progression in spontaneous pancreatic cancer mouse model, and a correlation of high FASN expression with poor survival in patients and poor gemcitabine responsiveness in cell lines. We observed a synergistic effect of FASN inhibitors with gemcitabine in pancreatic cancer cells in culture and orthotopic implantation models. Combination of gemcitabine and the FASN inhibitor orlistat significantly diminished stemness, in part due to induction of endoplasmic reticulum (ER) stress that resulted in apoptosis. Moreover, direct induction of ER stress with thapsigargin caused a similar decrease in stemness and showed synergistic activity with gemcitabine. Our in vivo studies with orthotopic implantation models demonstrated a robust increase in gemcitabine responsiveness upon inhibition of fatty acid biosynthesis with orlistat. Altogether, we demonstrate that fatty acid biosynthesis pathway manipulation can help overcome the gemcitabine resistance in pancreatic cancer by regulating ER stress and stemness. Cancer Res; 77(20); 5503-17. ©2017 AACR.
Collapse
Affiliation(s)
- Saber Tadros
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan J King
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Venugopal Gunda
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Enza Vernucci
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jaime Abrego
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lyudmyla Berim
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron R Sasson
- Division of Surgical Oncology, Department of Surgery, Stony Brook Cancer Center, Stony Brook, New York
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|