51
|
Zhang R, Zhong L, Sun K, Liu J, Wang Q, Mao D, Fang G, Long F. A Study on Curcumol Influencing Proliferation and Apoptosis of Hepatocellular Carcinoma Cells through DJ-1/PTEN/PI3K/AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9912776. [PMID: 35647179 PMCID: PMC9142276 DOI: 10.1155/2022/9912776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Objective To study the mechanism of curcumol affecting the proliferation and apoptosis of liver cancer cells through the DJ-1/PTEN/PI3K/AKT pathway. Method HepG2 cells were cultured in vitro, treated with curcumol at concentrations of 10, 30, and 100 μg/mL, and DMSO was used as a control. The levels of cell proliferation and apoptosis were measured by CCK-8 and flow cytometry, respectively. RT-PCR and western blot were used to detect PTEN, p-AKT, DJ-1, and PI3K gene and protein expression changes. Result (1) Compared with the DMSO blank control group, the proliferation level of liver cancer cells in the 10 μg/mL curcumol group decreased, and the proportion of apoptosis increased (p <0.05). (2) Compared with the blank control group and the 10 and 30 μg/mL concentration groups, the proliferation level of liver cancer cells in the 100 μg/mL curcumol group was significantly reduced, and the proportion of cell apoptosis was significantly increased (p < 0.05). (3) Curcumol can significantly increase the expression of PTEN gene and protein in liver cancer cells and reduce the expression of DJ-1 and PI3K genes and protein in liver cancer cells (p < 0.05). Conclusion Curcumol can regulate DJ-1, PTEN, PI3K, and AKT signal transduction pathways, inhibit cell proliferation, and cause a significant increase in the proportion of cell apoptosis, and the pharmacodynamic effect of curcumol is dependent on the time and dose of action.
Collapse
Affiliation(s)
- Rongzhen Zhang
- Graduate School of Hunan University of Chinese Medicine, Hunan 410208, China
- Hepatology Department, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi 530023, China
| | - Lu Zhong
- Ruikang Clinical Faculty, Guangxi University of Chinese Medicine, Guangxi 530011, China
| | - Kewei Sun
- Hepatology Department, First Affiliated Hospital, Hunan University of Chinese Medicine, Hunan 10202, China
| | - Jiao Liu
- Graduate School, Guangxi University of Chinese Medicine, Guangxi 530001, China
| | - Qianna Wang
- Graduate School, Guangxi University of Chinese Medicine, Guangxi 530001, China
| | - Dewen Mao
- Hepatology Department, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi 530023, China
| | - Gang Fang
- Zhuang Medicine College, Guangxi University of Chinese Medicine, Guangxi 530001, China
| | - Fuli Long
- Hepatology Department, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi 530023, China
| |
Collapse
|
52
|
Farooq M, Simoes Eugénio M, Piquet-Pellorce C, Dion S, Raguenes-Nicol C, Santamaria K, Kara-Ali GH, Larcher T, Dimanche-Boitrel MT, Samson M, Le Seyec J. Receptor-interacting protein kinase-1 ablation in liver parenchymal cells promotes liver fibrosis in murine NASH without affecting other symptoms. J Mol Med (Berl) 2022; 100:1027-1038. [PMID: 35476028 DOI: 10.1007/s00109-022-02192-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a chronic liver disease that emerged in industrialized countries, can further progress into liver fibrosis, cirrhosis, and hepatocellular carcinoma. In the next decade, NASH is predicted to become the leading cause of liver transplantation, the only current interventional therapeutic option. Hepatocyte death, triggered by different death ligands, plays key role in its progression. Previously, we showed that the receptor-interacting protein kinase-1 (RIPK1) in hepatocytes exhibits a protective role in ligand-induced death. Now, to decipher the role of RIPK1 in NASH, Ripk1LPC-KO mice, deficient for RIPK1 only in liver parenchymal cells, and their wild-type littermates (Ripk1fl/fl) were fed for 3, 5, or 12 weeks with high-fat high-cholesterol diet (HFHCD). The main clinical signs of NASH were analyzed to compare the pathophysiological state established in mice. Most of the symptoms evolved similarly whatever the genotype, whether it was the increase in liver to body weight ratio, the steatosis grade or the worsening of liver damage revealed by serum transaminase levels. In parallel, inflammation markers followed the same kinetics with significant equivalent inductions of cytokines (hepatic mRNA levels and blood cytokine concentrations) and a main peak of hepatic infiltration of immune cells at 3 weeks of HFHCD. Despite this identical inflammatory response, more hepatic fibrosis was significantly evidenced at week 12 in Ripk1LPC-KO mice. This coincided with over-induced rates of transcripts of genes implied in fibrosis development (Tgfb1, Tgfbi, Timp1, and Timp2) in Ripk1LPC-KO animals. In conclusion, our results show that RIPK1 in hepatocyte limits the progression of liver fibrosis during NASH.
Collapse
Affiliation(s)
- Muhammad Farooq
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences, Jhang, Lahore, Pakistan
| | - Mélanie Simoes Eugénio
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Claire Piquet-Pellorce
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sarah Dion
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Céline Raguenes-Nicol
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Kathleen Santamaria
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Ghania Hounana Kara-Ali
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | | | - Marie-Thérèse Dimanche-Boitrel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Jacques Le Seyec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
53
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
54
|
Rucker AJ, Chan FKM. Tumor-intrinsic and immune modulatory roles of receptor-interacting protein kinases. Trends Biochem Sci 2022; 47:342-351. [PMID: 34998669 PMCID: PMC8917977 DOI: 10.1016/j.tibs.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are signaling adaptors that critically regulate cell death and inflammation. Tumors have adapted to subvert RIPK-dependent cell death, suggesting that these processes have key roles in tumor regulation. Moreover, RIPK-driven cancer cell death might bolster durable antitumor immunity. By contrast, there are examples in which RIPKs induce inflammation and aid tumor progression. Furthermore, the RIPKs can exert their effects on tumor growth through regulating the activity of immune effectors in the tumor microenvironment, thus highlighting the context-dependent roles of RIPKs. Here, we review recent advances in the regulation of RIPK activity in tumors and immune cells and how these processes coordinate with each other to control tumorigenesis.
Collapse
Affiliation(s)
- A Justin Rucker
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA.
| |
Collapse
|
55
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
56
|
Ghallab A, Myllys M, Friebel A, Duda J, Edlund K, Halilbasic E, Vucur M, Hobloss Z, Brackhagen L, Begher-Tibbe B, Hassan R, Burke M, Genc E, Frohwein LJ, Hofmann U, Holland CH, González D, Keller M, Seddek AL, Abbas T, Mohammed ESI, Teufel A, Itzel T, Metzler S, Marchan R, Cadenas C, Watzl C, Nitsche MA, Kappenberg F, Luedde T, Longerich T, Rahnenführer J, Hoehme S, Trauner M, Hengstler JG. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021; 10:cells10102516. [PMID: 34685496 PMCID: PMC8533774 DOI: 10.3390/cells10102516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Julia Duda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Michael Burke
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | - Erhan Genc
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | | | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany;
| | - Christian H. Holland
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Magdalena Keller
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Elsayed S. I. Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Andreas Teufel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Timo Itzel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Sarah Metzler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany;
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| |
Collapse
|
57
|
JNK signaling prevents biliary cyst formation through a CASPASE-8-dependent function of RIPK1 during aging. Proc Natl Acad Sci U S A 2021; 118:2007194118. [PMID: 33798093 PMCID: PMC8000530 DOI: 10.1073/pnas.2007194118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
JNK signaling has been studied intensively in models of liver physiology and disease, but previous studies had focused on young mice. However, it had not been recognized that JNK plays a fundamental role in maintaining liver homeostasis and preventing the formation of biliary cysts in aging mice. These observations call for caution in all long-term pharmacological inhibition strategies targeting the JNK pathway. Finally, our results provide evidence of a molecular link between JNK and the cell-death mediator RIPK1. The specific overexpression of RIPK1 in cysts of a subset of patients with polycystic liver disease suggests that RIPK1 might be mechanistically involved in the pathogenesis of human biliary cysts. The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.
Collapse
|
58
|
Koschel J, Nishanth G, Just S, Harit K, Kröger A, Deckert M, Naumann M, Schlüter D. OTUB1 prevents lethal hepatocyte necroptosis through stabilization of c-IAP1 during murine liver inflammation. Cell Death Differ 2021; 28:2257-2275. [PMID: 33712742 PMCID: PMC8257688 DOI: 10.1038/s41418-021-00752-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
In bacterial and sterile inflammation of the liver, hepatocyte apoptosis is, in contrast to necroptosis, a common feature. The molecular mechanisms preventing hepatocyte necroptosis and the potential consequences of hepatocyte necroptosis are largely unknown. Apoptosis and necroptosis are critically regulated by the ubiquitination of signaling molecules but especially the regulatory function of deubiquitinating enzymes (DUBs) is imperfectly defined. Here, we addressed the role of the DUB OTU domain aldehyde binding-1 (OTUB1) in hepatocyte cell death upon both infection with the hepatocyte-infecting bacterium Listeria monocytogenes (Lm) and D-Galactosamine (DGal)/Tumor necrosis factor (TNF)-induced sterile inflammation. Combined in vivo and in vitro experiments comprising mice lacking OTUB1 specifically in liver parenchymal cells (OTUB1LPC-KO) and human OTUB1-deficient HepG2 cells revealed that OTUB1 prevented hepatocyte necroptosis but not apoptosis upon infection with Lm and DGal/TNF challenge. Lm-induced necroptosis in OTUB1LPC-KO mice resulted in increased alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) release and rapid lethality. Treatment with the receptor-interacting serine/threonine-protein kinase (RIPK) 1 inhibitor necrostatin-1s and deletion of the pseudokinase mixed lineage kinase domain-like protein (MLKL) prevented liver damage and death of infected OTUB1LPC-KO mice. Mechanistically, OTUB1 reduced K48-linked polyubiquitination of the cellular inhibitor of apoptosis 1 (c-IAP1), thereby diminishing its degradation. In the absence of OTUB1, c-IAP1 degradation resulted in reduced K63-linked polyubiquitination and increased phosphorylation of RIPK1, RIPK1/RIPK3 necrosome formation, MLKL-phosphorylation and hepatocyte death. Additionally, OTUB1-deficiency induced RIPK1-dependent extracellular-signal-regulated kinase (ERK) activation and TNF production in Lm-infected hepatocytes. Collectively, these findings identify OTUB1 as a novel regulator of hepatocyte-intrinsic necroptosis and a critical factor for survival of bacterial hepatitis and TNF challenge.
Collapse
Affiliation(s)
- Josephin Koschel
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Sissy Just
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Innate Immunity and Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
59
|
Luo S, Gan L, Luo Y, Zhang Z, Li L, Wang H, Li T, Chen Q, Huang Y, He J, Zhong L, Liu X, Wu P, Wang Y, Zhao Y, Zhang Z. Application of Molecular Nanoprobes in the Analysis of Differentially Expressed Genes and Prognostic Models of Primary Hepatocellular Carcinoma. J Biomed Nanotechnol 2021; 17:1020-1033. [PMID: 34167617 DOI: 10.1166/jbn.2021.3098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Analyzing hub genes related to tumorigenesis based on biological big data has recently become a hotspot in biomedicine. Nanoprobes, nanobodies and theranostic molecules targeting hub genes delivered by nanocarriers have been widely applied in tumor theranostics. Hepatocellular carcinoma (HCC) is one of the most common cancers, with a poor prognosis and high mortality. Identifying hub genes according to the gene expression levels and constructing prognostic signatures related to the onset and outcome of HCC will be of great significance. In this study, the expression profiles of HCC and normal tissue were obtained from the GEO database and analyzed by GEO₂R to identify DEGs. GO terms and KEGG pathways were enriched in DAVID software. The STRING database was consulted to find protein-protein interactions between proteins encoded by the DEGs, which were visualized by Cytoscape. Then, overall survival associated with the hub genes was calculated by the Kaplan-Meier plotter online tool, and verification of the results was carried out on TCGA samples and their corresponding clinical information. A total of 603 DEGs were obtained, of which 479 were upregulated and 124 were downregulated. PPI networks including 603 DEGs and 18 clusters were constructed, of which 7 clusters with MCODE score ≥3 and nodes ≥5 were selected. The 5 genes with the highest degrees of connectivity were identified as hub genes, and a prognostic model was constructed. The expression and prognostic potential of this model was validated on TCGA clinical data. In conclusion, a five-gene signature (TOP2A, PCNA, AURKA, CDC20, CCNB2) overexpressed inHCC was identified, and a prognostic model was constructed. This gene signature may act as a prognostic model for HCC and provide potential targets of nanotechnology.
Collapse
Affiliation(s)
- Shuang Luo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Lu Gan
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Yiqun Luo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Zhikun Zhang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Lan Li
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Huixue Wang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Tong Li
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Qiaoying Chen
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Yong Huang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Jian He
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Liping Zhong
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Xiuli Liu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Pan Wu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Yong Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yongxiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Zhenghan Zhang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
60
|
Bhaskar BV, Rammohan A, Babu TM, Zheng GY, Chen W, Rajendra W, Zyryanov GV, Gu W. Molecular insight into isoform specific inhibition of PI3K-α and PKC-η with dietary agents through an ensemble pharmacophore and docking studies. Sci Rep 2021; 11:12150. [PMID: 34108504 PMCID: PMC8190100 DOI: 10.1038/s41598-021-90287-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dietary compounds play an important role in the prevention and treatment of many cancers, although their specific molecular mechanism is not yet known. In the present study, thirty dietary agents were analyzed on nine drug targets through in silico studies. However, nine dietary scaffolds, such as silibinin, flavopiridol, oleandrin, ursolic acid, α-boswellic acid, β-boswellic acid, triterpenoid, guggulsterone, and oleanolic acid potentially bound to the cavity of PI3K-α, PKC-η, H-Ras, and Ras with the highest binding energy. Particularly, the compounds silibinin and flavopiridol have been shown to have broad spectrum anticancer activity. Interestingly, flavopiridol was embedded in the pockets of PI3K-α and PKC-η as bound crystal inhibitors in two different conformations and showed significant interactions with ATP binding pocket residues. However, complex-based pharmacophore modeling achieved two vital pharmacophoric features namely, two H-bond acceptors for PI3K-α, while three are hydrophobic, one cat-donor and one H-bond donor and acceptor for PKC-η, respectively. The database screening with the ChemBridge core library explored potential hits on a valid pharmacophore query. Therefore, to optimize perspective lead compounds from the hits, which were subjected to various constraints such as docking, MM/GBVI, Lipinski rule of five, ADMET and toxicity properties. Henceforth, the top ligands were sorted out and examined for vital interactions with key residues, arguably the top three promising lead compounds for PI3K-α, while seven for PKC-η, exhibiting binding energy from - 11.5 to - 8.5 kcal mol-1. Therefore, these scaffolds could be helpful in the development of novel class of effective anticancer agents.
Collapse
Affiliation(s)
- Baki Vijaya Bhaskar
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China.
| | - Aluru Rammohan
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Ekaterinburg, 620002, Russia
| | | | - Gui Yu Zheng
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - Weibin Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - Wudayagiri Rajendra
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Ekaterinburg, 620002, Russia
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
61
|
Zhang J, Jin T, Aksentijevich I, Zhou Q. RIPK1-Associated Inborn Errors of Innate Immunity. Front Immunol 2021; 12:676946. [PMID: 34163478 PMCID: PMC8215710 DOI: 10.3389/fimmu.2021.676946] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
RIPK1 (receptor-interacting serine/threonine-protein kinase 1) is a key molecule for mediating apoptosis, necroptosis, and inflammatory pathways downstream of death receptors (DRs) and pattern recognition receptors (PRRs). RIPK1 functions are regulated by multiple post-translational modifications (PTMs), including ubiquitination, phosphorylation, and the caspase-8-mediated cleavage. Dysregulation of these modifications leads to an immune deficiency or a hyperinflammatory disease in humans. Over the last decades, numerous studies on the RIPK1 function in model organisms have provided insights into the molecular mechanisms of RIPK1 role in the maintenance of immune homeostasis. However, the physiological role of RIPK1 in the regulation of cell survival and cell death signaling in humans remained elusive. Recently, RIPK1 loss-of-function (LoF) mutations and cleavage-deficient mutations have been identified in humans. This review discusses the molecular pathogenesis of RIPK1-deficiency and cleavage-resistant RIPK1 induced autoinflammatory (CRIA) disorders and summarizes the clinical manifestations of respective diseases to help with the identification of new patients.
Collapse
Affiliation(s)
- Jiahui Zhang
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Taijie Jin
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Qing Zhou
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
62
|
Zhu G, Wang F, Li H, Zhang X, Wu Q, Liu Y, Qian M, Guo S, Yang Y, Xue X, Sun F, Qiao Y, Pan Q. N-Myristoylation by NMT1 Is POTEE-Dependent to Stimulate Liver Tumorigenesis via Differentially Regulating Ubiquitination of Targets. Front Oncol 2021; 11:681366. [PMID: 34136404 PMCID: PMC8201403 DOI: 10.3389/fonc.2021.681366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background A tremendous amount of studies have suggested that post-translational modifications (PTMs) play pivotal roles during tumorigenesis. Compared to other PTMs, lipid modification is less studied. Recently, N-myristoylation, one type of lipid modification, has been paid attention to the field of cancer. However, whether and how N-myristoylation exerts its roles in liver tumorigenesis still remains unclear. Methods Parallel reaction monitoring (PRM) was conducted to evaluate the expression of protein modification enzymes in paired tissues. Liver conditionally knocking NMT1 out mice model was used to assess the critical roles of N-myristoylation during liver tumorigenesis. Proteomics isobaric tags for relative and absolute quantification (iTraq) was performed to identify proteins that changed while NMT1 was knocked down. The click chemistry assay was used to evaluate the N-myristoylation levels of proteins. Results Here, N-myristolyation and its enzyme NMT1, but not NMT2, were found to be critical in liver cancer. Two categories of proteins, i.e., N-myristolyation down-regulated proteins (NDP, including LXN, RPL29, and FAU) and N-myristolyation up-regulated proteins (NUP, including AHSG, ALB, and TF), were revealed negatively and positively regulated by NMT1, respectively. Both NDP and NUP could be N-myristolyated by NMT1 indispensable of POTEE. However, N-myristolyation decreased and increased stability of NDP and NUP, respectively. Mechanistically, NDP-specific binding protein RPL7A facilitated HIST1H4H, which has ubiquitin E3 ligase function, to ubiquitinate NDP. By contrast, NUP-specific binding protein HBB prevented NUP from ubiquitination by HIST1H4H. Notably, function of RPL7A and HBB was all NMT1-dependent. Moreover, NDP suppressed while NUP stimulated transformative phenotypes. Clinically, higher levels of NMT1 and NUP with lower levels of NDP had worse prognostic outcome. Conclusion Collectively, N-myristolyation by NMT1 suppresses anti-tumorigenic NDP, whereas it stimulates pro-tumorigenic NUP by interfering their ubiquitination to finally result in a pro-tumorigenic outcome in liver cancer. Targeting N-myristolyation and NMT1 might be helpful to treat liver cancer.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Haojie Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Mingping Qian
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yueyue Yang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
63
|
Zhang L, Guo W, Yu J, Li C, Li M, Chai D, Wang W, Deng W. Receptor-interacting protein in malignant digestive neoplasms. J Cancer 2021; 12:4362-4371. [PMID: 34093836 PMCID: PMC8176420 DOI: 10.7150/jca.57076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
A deep and comprehensive understanding of factors that contribute to cancer initiation, progression, and evolution is of essential importance. Among them, the serine/threonine and tyrosine kinase-like kinases, also known as receptor interacting proteins (RIPs) or receptor interacting protein kinases (RIPKs), is emerging as important tumor-related proteins due to its complex regulation of cell survival, apoptosis, and necrosis. In this review, we mainly review the relevance of RIP to various malignant digestive neoplasms, including esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, gallbladder cancer, cholangiocarcinoma, and pancreatic cancer. Consecutive research on RIPs and its relationship with malignant digestive neoplasms is required, as it ultimately conduces to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| |
Collapse
|
64
|
Yin Z, Chen W, Yin J, Sun J, Xie Q, Wu M, Zeng F, Ren H. RIPK1 is a negative mediator in Aquaporin 1-driven triple-negative breast carcinoma progression and metastasis. NPJ Breast Cancer 2021; 7:53. [PMID: 33980862 PMCID: PMC8115349 DOI: 10.1038/s41523-021-00261-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
The triple-negative breast carcinoma (TNBC) is the most aggressive subtype of breast cancer. In TNBC, Aquaporin 1 (AQP1), a water-transporting transmembrane protein, is aberrantly enriched in cytoplasm and causes tumor cell death evasion. However, the carcinogenetic bioactivities of cytoplasmic AQP1 cannot be attributed to the canonical "osmotic engine model". In the present study, the receptor-interacting protein kinase 1 (RIPK1), a cell death regulator, was identified to negatively mediate AQP1-driven TNBC progression and metastasis. AQP1 overabundance and RIPK1 depletion occurred in TNBC, which were correlated with aggressive oncological features and poor prognosis. AQP1 bound with RIPK1, resulting in the inhibition of RIPK1/RIPK3/MLKL-mediated necroptosis and RIPK1/caspase-8/caspase-3-mediated apoptosis. Genetic inhibition of RIPK1 significantly exacerbated the pro-tumor effect of AQP1, while ectopic expression of RIPK1 notably blunted AQP1 signaling. Mechanistically, AQP1 binds to the D324 site of RIPK1, and facilitates RIPK1 cleavage and inactivation by excessively activating the caspase-8/RIPK1 negative feedback loop. RIPK1D324K overexpression significantly prevented RIPK1 cleavage and weakened the aggressiveness of AQP1-enriched TNBC cells. Overall, our findings clarify the underlying mechanism of cytoplasmic AQP1-driven TNBC progression and metastasis, in which RIPK1 exerts an essential role as a negative mediator and exhibits the potential as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Zhuming Yin
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Wenlin Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jian Yin
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Jingyan Sun
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Qianrong Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.
| | - Huiwen Ren
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
65
|
Abstract
Cells use mitophagy to remove dysfunctional or excess mitochondria, frequently in response to imposed stresses, such as hypoxia and nutrient deprivation. Mitochondrial cargo receptors (MCR) induced by these stresses target mitochondria to autophagosomes through interaction with members of the LC3/GABARAP family. There are a growing number of these MCRs, including BNIP3, BNIP3L, FUNDC1, Bcl2-L-13, FKBP8, Prohibitin-2, and others, in addition to mitochondrial protein targets of PINK1/Parkin phospho-ubiquitination. There is also an emerging link between mitochondrial lipid signaling and mitophagy where ceramide, sphingosine-1-phosphate, and cardiolipin have all been shown to promote mitophagy. Here, we review the upstream signaling mechanisms that regulate mitophagy, including components of the mitochondrial fission machinery, AMPK, ATF4, FoxOs, Sirtuins, and mtDNA release, and address the significance of these pathways for stress responses in tumorigenesis and metastasis. In particular, we focus on how mitophagy modulators intersect with cell cycle control and survival pathways in cancer, including following ECM detachment and during cell migration and metastasis. Finally, we interrogate how mitophagy affects tissue atrophy during cancer cachexia and therapy responses in the clinic.
Collapse
Affiliation(s)
- Logan P Poole
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL, 60637, USA
- The Committee on Cancer Biology, The University of Chicago, Chicago, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL, 60637, USA.
- The Committee on Cancer Biology, The University of Chicago, Chicago, USA.
| |
Collapse
|
66
|
Han H, Lin T, Fang Z, Zhou G. RBM23 Drives Hepatocellular Carcinoma by Activating NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697476. [PMID: 33791378 PMCID: PMC7994101 DOI: 10.1155/2021/6697476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and angiogenesis has been proven to be significantly involved in its progression. However, the molecular mechanism underlying HCC angiogenesis has not been well researched. In this study, RNA Binding Motif Protein 23 (RBM23) was identified as a novel proangiogenic factor in HCC cell lines and tissues. MATERIALS AND METHODS Firstly, we analyzed the correlation of clinical specimens. In HCC tissues, the levels of RBM23 and microvessel density (MVD) showed a strong positive correlation. Furthermore, data from related cytology experiments showed that the knockdown of RBM23 expression in HCC cells significantly inhibited the tube formation by the human vascular endothelial cells in vitro. The mechanism of this phenomenon was found to be through increasing the mRNA of p65 and enhanced the nuclear accumulation of p65. Consequently, RBM23 activated the NF-κB signaling pathway and promoted expression of the proangiogenic cytokines selectively. Results and Conclusion. In summary, this study revealed that RBM23 promotes the angiogenesis properties of HCC via the NF-κB signaling pathway. It may, therefore, be a potential therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Ziyi Fang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| |
Collapse
|
67
|
Li X, Dong G, Xiong H, Diao H. A narrative review of the role of necroptosis in liver disease: a double-edged sword. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:422. [PMID: 33842643 PMCID: PMC8033311 DOI: 10.21037/atm-20-5162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic liver injuries lead to hepatocyte death and turnover. When injuries become chronic, continuous cell death and transformation lead to chronic inflammation, fibrosis, cirrhosis, and eventually carcinoma. A therapeutic strategy of great significance for liver disease is to control hepatocyte death in acute and chronic injuries. This strategy prevents hepatocytes from causing liver failure and inhibits both secondary inflammation and fibrosis. Both apoptosis and necrosis have been proven to occur in the liver, but the role of necroptosis in liver diseases is controversial. Necroptosis, which has features of necrosis and apoptosis, is a regulatory process that occurs in some cell types when caspases are inhibited. The signaling pathway of necroptosis is characterized by the activation of receptor-interacting proteins kinase (RIPK) and mixed lineage kinase domain-like (MLKL). Necroptosis is associated with a variety of inflammatory diseases and has been the focus of research in recent years. The incidence of necroptosis in liver tissues has been studied recently in several liver injury models, but the results of the studies are not consistent. The purpose of this review is to summarize the published data on the involvement of necroptosis in liver injury, focusing on the controversies, issues remaining to be discussed, and potential therapeutic applications in this area.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
68
|
Ye Y, Ye F, Li X, Yang Q, Zhou J, Xu W, Aschner M, Lu R, Miao S. 3,3'-diindolylmethane exerts antiproliferation and apoptosis induction by TRAF2-p38 axis in gastric cancer. Anticancer Drugs 2021; 32:189-202. [PMID: 33315588 PMCID: PMC7790923 DOI: 10.1097/cad.0000000000000997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,3'-diindolylmethane (DIM), an active phytochemical derivative extracted from cruciferous vegetables, possesses anticancer effects. However, the underlying anticancer mechanism of DIM in gastric cancer remains unknown. Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), one of the signal transduction proteins, plays critical role in proliferation and apoptosis of human gastric cancer cells, but there are still lack of practical pharmacological modulators for potential clinical application. Here, we further explored the role of TRAF2 in inhibiting cell proliferation and inducing apoptosis by DIM in human gastric cancer BGC-823 and SGC-7901 cells. After treating BGC-823 and SGC-7901 cells with DIM for 24 h, cell proliferation, apoptosis and TRAF2-related protein were measured. Our findings showed that DIM inhibited the expressions of TRAF2, activated p-p38 and its downstream protein p-p53, which were paralleled with DIM-triggered cells proliferation, inhibition and apoptosis induction. These effects of DIM were reversed by TRAF2 overexpression or p38 mitogen-activated protein kinase (MAPK)-specific inhibitor (SB203580). Taken together, our data suggest that regulating TRAF2/p38 MAPK signaling pathway is essential for inhibiting gastric cancer proliferation and inducing apoptosis by DIM. These findings broaden the understanding of the pharmacological mechanism of DIM's action as a new modulator of TRAF2, and provide a new therapeutic target for human gastric cancer.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fen Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qi Yang
- Department of Pathology, Zhenjiang First People's Hospital, Zhenjiang 212002, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University School of Medicine, Kunshan, Suzhou, Jiangsu 215132, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang 212001, China
| |
Collapse
|
69
|
Zhang Y, Du J, Duan X, Peng W, Lv L, Chen Z, Zhang Y. RIPK1 contributes to cisplatin-induced apoptosis of esophageal squamous cell carcinoma cells via activation of JNK pathway. Life Sci 2021; 269:119064. [PMID: 33460665 DOI: 10.1016/j.lfs.2021.119064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/09/2022]
Abstract
AIMS Previous studies have uncovered the function of receptor-interacting protein kinase 1 (RIPK1) to mediate both cell survival and death. Moreover, RIPK1 modulates apoptosis and necroptosis depending on its activity, phosphorylation or ubiquitylation status. Many studies have explained the role or mechanism of RIPK1 in necroptosis. However, the role of RIPK1 has not been elucidated fully in human esophageal squamous cell carcinoma (ESCC) cells. MATERIALS AND METHODS The protein and mRNA expression levels of RIPK1 in a panel of ESCC cell lines by Western blot and real-time quantitative reverse transcription PCR (qRT-PCR) were analyzed. MTS assay was used to examine cellular proliferation, flow cytometric analysis to detect apoptosis, mitochondrial membrane potential and reactive oxygen species production. ESCC cells with either inhibitor or overexpressed RIPK1were analyzed to determine cell proliferation, colony formation and apoptosis. Flow cytometry and western blotting assays were used to explore the underlying mechanism. KEY FINDINGS In our study, RIPK1 expression was found to contribute significantly to cisplatin-induced apoptosis in the human ESCC cells. The reduced RIPK1 expression promoted cells proliferation and overexpressed RIPK1 facilitated cell apoptosis. Mechanistic investigations have revealed that the inhibition of proliferation for RIPK1 in ESCC cells was regulated via activation of c-Jun NH2-terminal kinase signaling. Additionally, damages were observed in the mitochondrial membrane, depletion of ATP and increased generation in reactive oxygen species. SIGNIFICANCE Our findings verified the evidence that RIPK1 can promote cell death in ESCC cells, with potential implications for activating c-Jun NH2-terminal kinase pathway as a novel approach to the disease.
Collapse
Affiliation(s)
- Yuliu Zhang
- Department of Thoracic Surgery, Dingyuan County General Hospital of Chuzhou City in Anhui, Anhui 233200, China
| | - Jianping Du
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
| | - Wei Peng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
| | - Lei Lv
- Anhui Provincial Cancer Hospital, West Branch of the First Afliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Zhiyu Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - Yumei Zhang
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China. Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| |
Collapse
|
70
|
Deciphering Antitumor Mechanism of Pien Tze Huang in Mice of Hepatocellular Carcinoma Based on Proteomics. J Immunol Res 2020; 2020:4876251. [PMID: 33344655 PMCID: PMC7728492 DOI: 10.1155/2020/4876251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
The Chinese formula Pien Tze Huang (PZH) has been used to treat hepatocellular carcinoma (HCC) and showed positive clinical effects. However, the antitumor mechanism of PZH in HCC remains unclear. In this study, HCC xenograft Balb/c mice were treated with PZH; then, proteomics detection and Ingenuity Pathway Analysis (IPA) were used to analyze the differentiated phosphorylated proteins in tumor tissues. The results indicated that PZH could inhibit tumor weight by 50.76%. Eighty-four upregulated and 11 downregulated phosphorylated proteins were identified in PZH-treated mice. Twenty signaling pathways were associated with inflammation (including the IL-6 and TNFR1/2 pathways), cancer growth (including the p53 and FAK pathways), and the cell cycle (including the G2/M and G1/S checkpoint regulation pathways). Moreover, TNF-α, IL-6, and several typical differentially expressed phosphorylated proteins (such as p-CCNB1, p-FOXO3, and p-STAT3) in tumor tissues, tumor cell viability, and cell cycle arrest assay in vitro further verify the results of IPA. These results revealed that PZH achieved antitumor activity in HCC; the underlying mechanisms of which were mainly through regulating the inflammation-associated cytokine secretion, cancer growth pathways, and induction of G2/M arrest. These data provided the potential molecular basis for PZH to act as a therapeutic drug or a supplement to chemotherapy drugs for human HCC in the future.
Collapse
|
71
|
Tan Y, Sementino E, Cheung M, Peri S, Menges CW, Kukuyan AM, Zhang T, Khazak V, Fox LA, Ross EA, Ramanathan S, Jhanwar SC, Flores RM, Balachandran S, Testa JR. Somatic Epigenetic Silencing of RIPK3 Inactivates Necroptosis and Contributes to Chemoresistance in Malignant Mesothelioma. Clin Cancer Res 2020; 27:1200-1213. [PMID: 33203643 DOI: 10.1158/1078-0432.ccr-18-3683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Receptor-interacting protein kinase 3 (RIPK3) phosphorylates effector molecule MLKL to trigger necroptosis. Although RIPK3 loss is seen in several human cancers, its role in malignant mesothelioma is unknown. This study aimed to determine whether RIPK3 functions as a potential tumor suppressor to limit development of malignant mesothelioma. EXPERIMENTAL DESIGN RIPK3 expression was examined in 66 malignant mesothelioma tumors and cell lines. Promoter methylation and DNMT1 siRNA studies were performed to assess the mode of RIPK3 silencing in RIPK3-deficient malignant mesothelioma cells. Restoration of RIPK3 expression in RIPK3-negative malignant mesothelioma cells, either by treatment with 5-aza-2'-deoxycytidine or lentiviral expression of cDNA, was performed to assess effects on cell viability, necrosis, and chemosensitization. RESULTS Loss of RIPK3 expression was observed in 42/66 (63%) primary malignant mesotheliomas and malignant mesothelioma cell lines, and RT-PCR analysis demonstrated that downregulation occurs at the transcriptional level, consistent with epigenetic silencing. RIPK3-negative malignant mesothelioma cells treated with 5-aza-2'-deoxycytidine resulted in reexpression of RIPK3 and chemosensitization. Ectopic expression of RIPK3 also resulted in chemosensitization and led to necroptosis, the latter demonstrated by phosphorylation of downstream target MLKL and confirmed by rescue experiments. Mining of RIPK3 expression and survival outcomes among patients with malignant mesothelioma available from The Cancer Genome Atlas repository revealed that promoter methylation of RIPK3 is associated with reduced RIPK3 expression and poor prognosis. CONCLUSIONS These data suggest that RIPK3 acts as a tumor suppressor in malignant mesothelioma by triggering necroptosis and that epigenetic silencing of RIPK3 by DNA methylation impairs necroptosis and contributes to chemoresistance and poor survival in this incurable disease.
Collapse
Affiliation(s)
- Yinfei Tan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eleonora Sementino
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Craig W Menges
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Lauren A Fox
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suresh Ramanathan
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Raja M Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
72
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
73
|
Li Z, Zhou Y, Zhang L, Jia K, Wang S, Wang M, Li N, Yu Y, Cao X, Hou J. microRNA-199a-3p inhibits hepatic apoptosis and hepatocarcinogenesis by targeting PDCD4. Oncogenesis 2020; 9:95. [PMID: 33099584 PMCID: PMC7585580 DOI: 10.1038/s41389-020-00282-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatic apoptosis and the initiated liver inflammation play the initial roles in inflammation-induced hepatocarcinogenesis. Molecular mechanisms underlying the regulation of hepatocyte apoptosis and their roles in hepatocarcinogenesis have attracted much attention. A set of microRNAs (miRNAs) have been determined to be dysregulated in hepatocellular carcinoma (HCC) and participated in cancer progression, however, the roles of these dysregulated miRNAs in carcinogenesis are still poorly understood. We previously analyzed the dysregulated miRNAs in HCC using high-throughput sequencing, and found that miR-199a/b-3p was abundantly expressed in human normal liver while markedly decreased in HCC, which promotes HCC progression. Whether miR-199a/b-3p participates in HCC carcinogenesis is still unknown up to now. Hence, we focused on the role and mechanism of miR-199a/b-3p in hepatocarcinogenesis in this study. Hepatic miR-199a/b-3p was determined to be expressed by miR-199a-2 gene in mice, and we constructed miR-199a-2 knockout and hepatocyte-specific miR-199a-2 knockout mice. Diethylnitrosamine (DEN)-induced hepatocarcinogenesis were markedly increased by hepatocyte-specific miR-199a-3p knockout, which is mediated by the enhanced hepatocyte apoptosis and hepatic injury by DEN administration. In acetaminophen (APAP)-induced acute hepatic injury model, hepatocyte-specific miR-199a-3p knockout also aggravated hepatic apoptosis. By proteomic screening and reporter gene validation, we identified and verified that hepatic programed cell death 4 (PDCD4), which promotes apoptosis, was directly targeted by miR-199a-3p. Furthermore, we confirmed that miR-199a-3p-suppressed hepatocyte apoptosis and hepatic injury by targeting and suppressing PDCD4. Thus, hepatic miR-199a-3p inhibits hepatocyte apoptosis and hepatocarcinogenesis, and decreased miR-199a-3p in hepatocytes may aggravate hepatic injury and HCC development.
Collapse
Affiliation(s)
- Zhenyang Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Liyuan Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Kaiwei Jia
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Suyuan Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Mu Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|
74
|
Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, Unno M, Sasano H, Jitkaew S. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal 2020; 18:161. [PMID: 33036630 PMCID: PMC7545934 DOI: 10.1186/s12964-020-00661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) ligand which activates TLR3 signaling induces both cancer cell death and activates anti-tumor immunity. However, TLR3 signaling can also harbor pro-tumorigenic consequences. Therefore, we examined the status of TLR3 in cholangiocarcinoma (CCA) cases to better understand TLR3 signaling and explore the potential therapeutic target in CCA. METHODS The expression of TLR3 and receptor-interacting protein kinase 1 (RIPK1) in primary CCA tissues was assayed by Immunohistochemical staining and their associations with clinicopathological characteristics and survival data were evaluated. The effects of TLR3 ligand, Poly(I:C) and Smac mimetic, an IAP antagonist on CCA cell death and invasion were determined by cell death detection methods and Transwell invasion assay, respectively. Both genetic and pharmacological inhibition of RIPK1, RIPK3 and MLKL and inhibitors targeting NF-κB and MAPK signaling were used to investigate the underlying mechanisms. RESULTS TLR3 was significantly higher expressed in tumor than adjacent normal tissues. We demonstrated in a panel of CCA cell lines that TLR3 was frequently expressed in CCA cell lines, but was not detected in a nontumor cholangiocyte. Subsequent in vitro study demonstrated that Poly(I:C) specifically induced CCA cell death, but only when cIAPs were removed by Smac mimetic. Cell death was also switched from apoptosis to necroptosis when caspases were inhibited in CCA cells-expressing RIPK3. In addition, RIPK1 was required for Poly(I:C) and Smac mimetic-induced apoptosis and necroptosis. Of particular interest, high TLR3 or low RIPK1 status in CCA patients was associated with more invasiveness. In vitro invasion demonstrated that Poly(I:C)-induced invasion through NF-κB and MAPK signaling. Furthermore, the loss of RIPK1 enhanced Poly(I:C)-induced invasion and ERK activation in vitro. Smac mimetic also reversed Poly(I:C)-induced invasion, partly mediated by RIPK1. Finally, a subgroup of patients with high TLR3 and high RIPK1 had a trend toward longer disease-free survival (p = 0.078, 28.0 months and 10.9 months). CONCLUSION RIPK1 plays a pivotal role in TLR3 ligand, Poly(I:C)-induced cell death when cIAPs activity was inhibited and loss of RIPK1 enhanced Poly(I:C)-induced invasion which was partially reversed by Smac mimetic. Our results suggested that TLR3 ligand in combination with Smac mimetic could provide therapeutic benefits to the patients with CCA. Video abstract.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Swati Choksi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892 USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi 98-8075 Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
75
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
76
|
Zhou T, Huang WK, Xu QY, Zhou X, Shao LQ, Song B. Nec-1 attenuates inflammation and cytotoxicity induced by high glucose on THP-1 derived macrophages through RIP1. Arch Oral Biol 2020; 118:104858. [PMID: 32805637 DOI: 10.1016/j.archoralbio.2020.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This research aimed to study whether necrostain-1 (Nec-1) could alleviate inflammatory injury induced by high glucose upon THP-1 derived macrophages through RIP1. DESIGN Firstly, THP-1 derived macrophages were incubated with 5.5 mM glucose (normal glucose, NG), 25 mM glucose (high glucose, HG), and mannitol as the high osmotic pressure group (5.5 mM glucose+19.5 mM mannitol) for 24, 48, and 72 h respectively. TNF-α, IL-1β, IL-6, and IL-8 levels were measured by ELISA. Secondly, macrophages were exposed to NG, HG, or HG plus 5 μM necrostatin-1 (Nec-1) for 72 h. mRNA expression of inflammatory cytokine was measured by RT-PCR, and protein levels of inflammatory cytokines and LDH leakage were determined by ELISA. RIP1 expression was determined by RT-PCR and WB. Thirdly, macrophages were transfected with si-RIP1 or negative control (si-NC). Wild type and RIP1-silenced macrophages were incubated with NG or HG, and TNF-α, IL-1β, IL-6, IL-8, and LDH levels were measured again by ELISA. RESULTS 1) TNF-α, IL-1β, IL-6, and IL-8 levels were elevated in the HG group, as compared with that the NG group. Inflammation remained unchanged in the mannitol group. 2) Inflammatory response and LDH levels in the HG plus Nec-1 group were remarkably lower than in the HG group. 3) Inflammatory injury in the si-NC group was more severe than in the si-RIP1 group. CONCLUSIONS Current results indicated that Nec-1 could alleviate HG-caused inflammatory injury on THP-1 derived macrophages by regulating RIP1. These findings could help cast light on the relationships between diabetes and periodontitis.
Collapse
Affiliation(s)
- Ting Zhou
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Wei-Kun Huang
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Qiu-Yan Xu
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Xue Zhou
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Long-Quan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
77
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
78
|
Yang S, Yu F, Lin M, Sun L, Wei J, Lai C, Cai L, Hu Z, He F. Single-nucleotide polymorphism rs17548629 in RIPK1 gene may be associated with lung cancer in a young and middle-aged Han Chinese population. Cancer Cell Int 2020; 20:143. [PMID: 32368189 PMCID: PMC7191703 DOI: 10.1186/s12935-020-01215-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background Genetic biomarkers of lung cancer (LC) susceptibility may provide a basis for treatment and prevention. This study analyzed an association between SNPs (single nucleotide polymorphisms) in the complementary region of the 3′-UTR (3′ untranslated region) of microRNAs of the gene RIPK1 (receptor-interacting serine/threonine-protein kinase 1) and LC among an adult Han Chinese population aged younger than 60 years. Also explored the effect of regulation of the RIPK1 gene via rs17548629 and microRNA-1197 on the occurrence of LC. Methods RIPK1 variants (rs17548629, rs77736895) were determined in a population of 571 adults (younger than 60 years) with LC, and 609 gender- and age-matched healthy individuals. Bioinformatics methods predicted the microRNAs bound to rs17548629. Dual luciferase reporter assay was performed to confirm the presence of both rs17548629 and the predicted microRNA. Results A mutation (T) of rs17548629 was associated with an increased risk for LC in this population under the codominant and recessive genetic models. The risk of lung adenocarcinoma in rs17548629 mutant carriers was 1.769-fold higher than that of the wildtype. In vitro, the luciferase activity of co-transfected mutant psiCHECK2-RIPK1 and microRNA-1197 mimics was less than that of the group transfected with microRNA-1197 mimics only. Factorial analysis indicated interactions between microRNA-1197 mimics and genotypes of rs17548629. Conclusion A mutation (T) of rs17548629 may increase the risk of LC/lung adenocarcinoma in adult Han populations younger than 60 years. When carrying the T allele, rs17548629 may be the target of hsa-miR-1197. This mutation may affect transcriptional level of the RIPK1, thereby promoting the occurrence of LC.
Collapse
Affiliation(s)
- Shimin Yang
- 1Clinical Medicine (Five-Year), Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Fanglin Yu
- 2Experiment Center, School of Public Health, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Mingyan Lin
- 3Department of Epidemiology, School of Public Health, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Linyi Sun
- 1Clinical Medicine (Five-Year), Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Junjie Wei
- 1Clinical Medicine (Five-Year), Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Cheng Lai
- 1Clinical Medicine (Five-Year), Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Lin Cai
- 3Department of Epidemiology, School of Public Health, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China.,4Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Zhijian Hu
- 3Department of Epidemiology, School of Public Health, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| | - Fei He
- 3Department of Epidemiology, School of Public Health, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China.,5Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China.,6Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122 Fujian People's Republic of China
| |
Collapse
|
79
|
Yuan Z, Yuan Z, Hasnat M, Zhang H, Liang P, Sun L, Jiang Z, Zhang L. A new perspective of triptolide-associated hepatotoxicity: the relevance of NF- κ B and NF- κ B-mediated cellular FLICE-inhibitory protein. Acta Pharm Sin B 2020; 10:861-877. [PMID: 32528833 PMCID: PMC7280150 DOI: 10.1016/j.apsb.2020.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Previously, we proposed a new perspective of triptolide (TP)-associated hepatotoxicity: liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, the mechanisms for TP/LPS-induced hepatotoxicity remained elusive. The present study aimed to clarify the role of LPS in TP/LPS-induced hepatotoxicity and the mechanism by which TP induces liver hypersensitivity upon LPS stimulation. TNF-α inhibitor, etanercept, was injected intraperitoneally into mice to investigate whether induction of TNF-α by LPS participated in the liver injury induced by TP/LPS co-treatment. Mice and hepatocytes pretreated with TP were stimulated with recombinant TNF-α to assess the function of TNF-α in TP/LPS co-treatment. Additionally, time-dependent NF-κB activation and NF-κB-mediated pro-survival signals were measured in vivo and in vitro. Finally, overexpression of cellular FLICE-inhibitory protein (FLIP), the most potent NF-κB-mediated pro-survival protein, was measured in vivo and in vitro to assess its function in TP/LPS-induced hepatotoxicity. Etanercept counteracted the toxic reactions induced by TP/LPS. TP-treatment sensitized mice and hepatocytes to TNF-α, revealing the role of TNF-α in TP/LPS-induced hepatotoxicity. Mechanistic studies revealed that TP inhibited NF-κB dependent pro-survival signals, especially FLIP, induced by LPS/TNF-α. Moreover, overexpression of FLIP alleviated TP/LPS-induced hepatotoxicity in vivo and TP/TNF-α-induced apoptosis in vitro. Mice and hepatocytes treated with TP were sensitive to TNF-α, which was released from LPS-stimulated immune cells. These and other results show that the TP-induced inhibition of NF-κB-dependent transcriptional activity and FLIP production are responsible for liver hypersensitivity.
Collapse
Key Words
- CIAPs, cellular inhibitor of apoptosis proteins
- Etan, etanercept
- FADD, FAS-associated protein with death domain
- FLIP
- FLIP, cellular FLICE-inhibitory protein
- IκB-α, NF-κB inhibitor alpha
- LDH, lactate dehydrogenase
- LPS
- LPS, lipopolysaccharide
- MLKL, mixed lineage kinase domain like pseudokinase
- MPO, myeloperoxidase
- NF-κB
- PAS, periodic acid-schiff
- RIPK1/3, receptor-interacting protein kinase 1/3
- TNF-R1, tumor necrosis factor receptor type 1
- TNF-α
- TNFAIP3, TNF-α-induced protein 3
- TP, triptolide
- TRADD, TNF receptor-associated death domain
- TRAF2, TNF receptor-associated factor 2
- Triptolide
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
Affiliation(s)
- Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Muhammad Hasnat
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haoran Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Peishi Liang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 21009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
80
|
Sun X, Wang T, Huang B, Ruan G, Xu A. RIPK1 regulates the survival of human melanocytes upon endoplasmic reticulum stress. Exp Ther Med 2020; 19:3239-3246. [PMID: 32266019 PMCID: PMC7132262 DOI: 10.3892/etm.2020.8575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vitiligo is a common congenital or acquired disfiguring skin disorder. At present, endoplasmic reticulum (ER) stress has been identified to serve a critical role in the pathogenesis of vitiligo. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a protein serine/threonine kinase. The specific molecular mechanism of RIPK1 in human melanocytes upon ER stress remains to be determined. In the present study, RIPK1 was significantly downregulated in tunicamycin (TM)-induced ER stressed-human melanocytes. Subsequently, to explore the role of RIPK1 in ER stress-induced human melanocytes, human melanocytes were transfected with control or RIPK1 plasmids for 24 h and then treated with 3 µM TM for 48 h. Reverse transcription-quantitative PCR and western blot analysis indicated that the expression levels of protein kinase R-like endoplasmic reticulum kinase, eukaryotic translation initiation factor 2 subunit 1 and CCAAT-enhancer-binding protein homologous protein were significantly increased in the TM-treated group compared with the controls. In addition, the effect of high RIPK1 expression on ER stress-induced human melanocyte survival was studied. The present results indicated that TM inhibited cell viability and promoted apoptosis in human primary epidermal melanocytes. Western blot analysis demonstrated that the expression of Bax and caspase-3 was upregulated and the expression of Bcl-2 was downregulated in TM-treated human melanocytes. The effects of TM on human melanocytes were reversed by RIPK1 overexpression. Therefore, RIPK1 overexpression may have an effect on the PI3K/AKT/mTOR signaling pathway in human melanocytes under ER stress. The results of the current study demonstrated that RIPK1 could protect human melanocytes from cell damage induced by ER stress by regulating the PI3K/AKT/mTOR and ER stress signaling pathways, thereby serving a protective role in the occurrence and development of vitiligo.
Collapse
Affiliation(s)
- Xuecheng Sun
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Wang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Huang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Gaobo Ruan
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Aie Xu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
81
|
Liu Y, Liu K, Huang Y, Sun M, Tian Q, Zhang S, Qin Y. TRIM25 Promotes TNF-α-Induced NF-κB Activation through Potentiating the K63-Linked Ubiquitination of TRAF2. THE JOURNAL OF IMMUNOLOGY 2020; 204:1499-1507. [PMID: 32024699 DOI: 10.4049/jimmunol.1900482] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
As an important effector in response to various intracellular or extracellular stimuli, the NF-κB family extensively participates in a wide spectrum of biological events, and its dysregulation may result in many pathological conditions, such as microbial infection, tumor progression, and neurodegenerative disorders. Previous investigations showed that multiple types of ubiquitination play critical roles in the modulation of the NF-κB signaling pathway, yet the molecular mechanisms are still poorly understood. In the current study, we identified TRIM25, an E3 ubiquitin ligase, as a novel positive regulator in mediating NF-κB activation in human embryonic kidney 293T (HEK293T), HeLa cells, THP-1 cells, and PBMCs. The expression of TRIM25 promoted TNF-α-induced NF-κB signaling, whereas the knockdown had the opposite effect. Furthermore, TRIM25 interacted with TRAF2 and enhanced the K63-linked polyubiquitin chains attached to TRAF2. Moreover, TRIM25 bridged the interaction of TRAF2 and TAK1 or IKKβ. To our knowledge, our study has identified a previously unrecognized role for TRIM25 in the regulation of NF-κB activation by enhancing the K63-linked ubiquitination of TRAF2.
Collapse
Affiliation(s)
- Yuchun Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; and
| | - Kunpeng Liu
- Guangdong Provincial Key Laboratory of Liver Disease, Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yingqi Huang
- Guangdong Provincial Key Laboratory of Liver Disease, Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Meng Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; and
| | - Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; and
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; and
| | - Yunfei Qin
- Guangdong Provincial Key Laboratory of Liver Disease, Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
82
|
Hirsova P, Bohm F, Dohnalkova E, Nozickova B, Heikenwalder M, Gores GJ, Weber A. Hepatocyte apoptosis is tumor promoting in murine nonalcoholic steatohepatitis. Cell Death Dis 2020; 11:80. [PMID: 32015322 PMCID: PMC6997423 DOI: 10.1038/s41419-020-2283-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease is the most common chronic liver disease and may progress to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The molecular determinants of this pathogenic progression, however, remain largely undefined. Since liver tumorigenesis is driven by apoptosis, we examined the effect of overt hepatocyte apoptosis in a mouse model of NASH using mice lacking myeloid cell leukemia 1 (Mcl1), a pro-survival member of the BCL-2 protein family. Hepatocyte-specific Mcl1 knockout (Mcl1∆hep) mice and control littermates were fed chow or FFC (high saturated fat, fructose, and cholesterol) diet, which induces NASH, for 4 and 10 months. Thereafter, liver injury, inflammation, fibrosis, and tumor development were evaluated biochemically and histologically. Mcl1∆hep mice fed with the FFC diet for 4 months displayed a marked increase in liver injury, hepatocyte apoptosis, hepatocyte proliferation, macrophage-associated liver inflammation, and pericellular fibrosis in contrast to chow-fed Mcl1∆hep and FFC diet-fed Mcl1-expressing littermates. After 10 months of feeding, 78% of FFC diet-fed Mcl1∆hep mice developed liver tumors compared to 38% of chow-fed mice of the same genotype. Tumors in FFC diet-fed Mcl1∆hep mice were characterized by cytologic atypia, altered liver architecture, immunopositivity for glutamine synthetase, and histologically qualified as HCC. In conclusion, this study provides evidence that excessive hepatocyte apoptosis exacerbates the NASH phenotype with enhancement of tumorigenesis in mice.
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. .,Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Friederike Bohm
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Ester Dohnalkova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Barbora Nozickova
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland.,Institute of Molecular Cancer Research (IMCR), University Zurich, Zurich, Switzerland
| |
Collapse
|
83
|
He H, Wu Z, Li S, Chen K, Wang D, Zou H, Chen H, Li Y, Liu Z, Qu C. TRAF7 enhances ubiquitin-degradation of KLF4 to promote hepatocellular carcinoma progression. Cancer Lett 2020; 469:380-389. [PMID: 31730901 DOI: 10.1016/j.canlet.2019.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023]
Abstract
The tumor necrosis factor receptor-associated factor 7 (TRAF7) is a component of the tumor necrosis factor alpha (TNF-α)/nuclear factor kappa B (NF-κB) pathway and is a putative E3-ubiquitin ligase. Based on importance of chronic inflammation in hepatocellular carcinoma (HCC), we investigated the biological effects and the molecular mechanisms of deregulated TRAF7 signaling in HCC. Our results showed that high TRAF7 expression in HCC samples was inversely associated with Krüppel-like factor 4 (KLF4) expression and the prognosis of HCC patients. TRAF7 could degrade KLF4 protein through ubiquitin by interacting with its N-terminus. The up-regulation of TRAF7 promoted HCC cell migration and invasion in vivo and in vitro, and TRAF7 knockdown had the opposite effects. Restoration of KLF4 abrogated the motility promotion induced by TRAF7. TRAF7 promotes HCC cell motility through inducing KLF4 protein turnover.
Collapse
Affiliation(s)
- Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sheng Li
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Kun Chen
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongmei Wang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haojing Zou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
84
|
Vucur M, Luedde T. Life is fragile: FMRP controls cell death in liver disease. Gut 2020; 69:2-3. [PMID: 31554707 DOI: 10.1136/gutjnl-2019-319534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Mihael Vucur
- Division of Gastroenterology, Hepatology and GI Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and GI Oncology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
85
|
Marquardt JU, Edlich F. Predisposition to Apoptosis in Hepatocellular Carcinoma: From Mechanistic Insights to Therapeutic Strategies. Front Oncol 2019; 9:1421. [PMID: 31921676 PMCID: PMC6923252 DOI: 10.3389/fonc.2019.01421] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most rapidly evolving cancers in the Western world. The majority of HCCs develop on the basis of a chronic inflammatory liver damage that predisposes liver cancer development and leads to deregulation of multiple cellular signaling pathways. The resulting dysbalance between uncontrolled proliferation and impaired predisposition to cell death with consecutive failure to clear inflammatory damage is a key driver of malignant transformation. Therefore, resistance to death signaling accompanied by metabolic changes as well as failed immunological clearance of damaged pre-neoplastic hepatocytes are considered hallmarks of hepatocarcinogenesis. Hereby, the underlying liver disease, the type of liver damage and individual predisposition to apoptosis determines the natural course of the disease as well as the therapeutic response. Here, we will review common and individual aspects of cell death pathways in hepatocarcinogenesis with a particular emphasis on regulatory networks and key molecular alterations. We will further delineate the potential of targeting cell death-related signaling as a viable therapeutic strategy to improve the outcome of HCC patients.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Medicine, Lichtenberg Research Group, University Mainz, Mainz, Germany
| | - Frank Edlich
- Heisenberg Research Group "Regulation von Bcl-2-Proteinen Durch Konformationelle Flexibilität," Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
86
|
Sun X, Wang T, Huang B, Ruan G, Xu A. ΜicroRNA‑421 participates in vitiligo development through regulating human melanocyte survival by targeting receptor‑interacting serine/threonine kinase 1. Mol Med Rep 2019; 21:858-866. [PMID: 31974624 PMCID: PMC6947834 DOI: 10.3892/mmr.2019.10878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Vitiligo is a common localized or generalized skin pigmentation disorder. Endoplasmic reticulum (ER) stress may be implicated in the development of vitiligo. microRNA-421 (miR-421) has been reported to be dysregulated in various human tumors. However, there is no report to date on the role of miR-421 in vitiligo development. The present study demonstrated that 3 µM tunicamycin (TM) increased the expression of the ER stress-related proteins protein kinase RNA-like endoplasmic reticulum kinase (PERK), α subunit of eukaryotic translation initiation factor 2 (eIF2α) and C/EBP homologous protein (CHOP) in human primary epidermal melanocytes. Moreover, TM suppressed melanocyte viability and induced apoptosis. Reverse transcription-quantitative PCR analysis demonstrated that TM promoted miR-421 expression in human melanocytes. Next, TargetScan and dual luciferase reporter gene assay indicated that receptor-interacting serine/threonine kinase 1 (RIPK1) was a direct target of miR-421. RIPK1 expression was significantly downregulated in TM-induced human melanocytes. Subsequently, the effect of miR-421 downregulation on the damage of human melanocytes induced by ER stress was investigated. Human melanocytes were transfected with inhibitor control, miR-421 inhibitor, miR-421 inhibitor + control-short hairpin (sh)RNA, or miR-421 inhibitor + RIPK1-shRNA for 24 h and then treated with TM (3 µM) for 48 h. TM was found to upregulate PERK, eIF2α and CHOP protein expression in human melanocytes, which was reduced by an miR-421 inhibitor. In addition, the miR-421 inhibitor increased viability and reduced apoptosis in TM-treated melanocytes. Furthermore, all these effects of the miR-421 inhibitor on TM-induced human melanocytes were reversed by RIPK1-shRNA. Further analyses revealed that the miR-421 inhibitor activated the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway in TM-induced human melanocytes. These data collectively suggest that miR-421 may serve as a new treatment target in vitiligo development.
Collapse
Affiliation(s)
- Xuecheng Sun
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Wang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Huang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Gaobo Ruan
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Aie Xu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
87
|
Li CZ, Lin YX, Huang TC, Pan JY, Wang GX. Receptor-Interacting Protein Kinase 1 Promotes Cholangiocarcinoma Proliferation And Lymphangiogenesis Through The Activation Protein 1 Pathway. Onco Targets Ther 2019; 12:9029-9040. [PMID: 31806991 PMCID: PMC6830363 DOI: 10.2147/ott.s215276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Receptor-interacting protein kinase 1 (RIPK1) is an important upstream regulator of multiple cell signaling pathways including inflammatory signals. RIPK1 is reported to be closely associated with the prognostic implications of cancer, especially epithelial tumors. But its role in proliferation and lymphangiogenesis in cholangiocarcinoma (CCA) remains unclear and requires further investigation. PATIENTS AND METHODS Expression of RIPK1 in human CCA tissues and CCA cell lines (QBC939, HUH28 and CCPL-1) was measured using qPCR, immunoblotting and immunohistochemistry. Silencing of RIPK1 was achieved by transduction of CCA cells via lentiviral plasmids (LV3-H1/GFP&Puro) encapsulating RIPK1 shRNA (LV-shRIPK1) or negative control shRNA (LV-shNC), and puromycin was used to select stable colonies. Proliferation and lymphangiogenesis were assessed in vitro by CCK-8 and matrigel-based tube formation assays, respectively. Activity of the activation protein-1 (AP-1) was evaluated by double-luciferase reporter gene assay. Protein expression of JNK, P38MAPK, ERK1/2, AP-1, P-AP-1, E-cadherin, N-cadherin and vascular endothelial growth factor-C (VEGF-C) was measured by immunoblotting or ELISA. An orthotopic CCA model in null mice was generated by transplanting QBC939 LV-shRIPK1, LV-shNC and control cells to further evaluate the role of RIPK1 on lymphangiogenesis in vivo. Immunohistochemistry was utilized to evaluate the expression of RIPK1 and VEGF-C, and tumor lymphatic vessels in the CCA model mice. RESULTS Upregulated expression of RIPK1 in CCA tissues was closely related to tumor size, lymph node metastasis and poor prognosis. RIPK1 promoted proliferation and lymphangiogenesis in CCA cells, and regulated the activation of JNK and P38MAPK-mediated AP-1/VEGF-C pathway. Finally, in vivo animal experiments in the orthotopic CCA mouse model further confirmed the function of RIPK1 in lymphangiogenesis. CONCLUSION This is the first report demonstrating the role of RIPK1 in proliferation and lymphangiogenesis through the MAPK (JNK and P38MAPK)- AP-1 pathway in CCA.
Collapse
Affiliation(s)
- Cheng-Zong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| | - Yu-Xiang Lin
- Department of Surgery Ward 6, The Second Affiliated Hospital of Fujian Medical University (Licheng District), Quanzhou36200, People’s Republic of China
| | - Tian-Cong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| | - Jun-Yong Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| | - Gao-Xiong Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| |
Collapse
|
88
|
Czauderna C, Castven D, Mahn FL, Marquardt JU. Context-Dependent Role of NF-κB Signaling in Primary Liver Cancer-from Tumor Development to Therapeutic Implications. Cancers (Basel) 2019; 11:cancers11081053. [PMID: 31349670 PMCID: PMC6721782 DOI: 10.3390/cancers11081053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory cell death is a major risk factor for the development of diverse cancers including liver cancer. Herein, disruption of the hepatic microenvironment as well as the immune cell composition are major determinants of malignant transformation and progression in hepatocellular carcinomas (HCC). Considerable research efforts have focused on the identification of predisposing factors that promote induction of an oncogenic field effect within the inflammatory liver microenvironment. Among the most prominent factors involved in this so-called inflammation-fibrosis-cancer axis is the NF-κB pathway. The dominant role of this pathway for malignant transformation and progression in HCC is well documented. Pathway activation is significantly linked to poor prognostic traits as well as stemness characteristics, which places modulation of NF-κB signaling in the focus of therapeutic interventions. However, it is well recognized that the mechanistic importance of the pathway for HCC is highly context and cell type dependent. While constitutive pathway activation in an inflammatory etiological background can significantly promote HCC development and progression, absence of NF-κB signaling in differentiated liver cells also significantly enhances liver cancer development. Thus, therapeutic targeting of NF-κB as well as associated family members may not only exert beneficial effects but also negatively impact viability of healthy hepatocytes and/or cholangiocytes, respectively. The review presented here aims to decipher the complexity and paradoxical functions of NF-κB signaling in primary liver and non-parenchymal cells, as well as the induced molecular alterations that drive HCC development and progression with a particular focus on (immune-) therapeutic interventions.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Darko Castven
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Friederike L Mahn
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
| |
Collapse
|
89
|
An NF-kappaB- and IKK-Independent Function of NEMO Prevents Hepatocarcinogenesis by Suppressing Compensatory Liver Regeneration. Cancers (Basel) 2019; 11:cancers11070999. [PMID: 31319593 PMCID: PMC6678501 DOI: 10.3390/cancers11070999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The I-κB-Kinase (IKK) complex represents a central signaling nexus in the TNF-dependent activation of the pro-inflammatory NF-κB pathway. However, recent studies suggested that the distinct IKK subunits (IKKα, IKKβ, and NEMO) might withhold additional NF-κB-independent functions in inflammation and cancer. Here, we generated mice lacking all three IKK subunits in liver parenchymal cells (LPC) (IKKα/β/NEMOLPC-KO) and compared their phenotype with mice lacking both catalytic subunits (IKKα/βLPC-KO), allowing to functionally dissect putative I-κB-Kinase-independent functions of the regulatory subunit NEMO. We show that the additional deletion of NEMO rescues IKKα/βLPC-KO mice from lethal cholestasis and biliary ductopenia by triggering LPC apoptosis and inducing a strong compensatory proliferation of LPC including cholangiocytes. Beyond this beneficial effect, we show that increased hepatocyte cell-death and compensatory proliferation inhibit the activation of LPC-necroptosis but trigger spontaneous hepatocarcinogenesis in IKKα/β/NEMOLPC-KO mice. Collectively, our data show that free NEMO molecules unbound to the catalytic IKK subunits control LPC programmed cell death pathways and proliferation, cholestasis and hepatocarcinogenesis independently of an IKK-related function. These findings support the idea of different functional levels at which NEMO controls inflammation and cancer in the liver.
Collapse
|
90
|
Hao S, Li S, Wang J, Zhao L, Yan Y, Wu T, Zhang J, Wang C. C-Phycocyanin Suppresses the In Vitro Proliferation and Migration of Non-Small-Cell Lung Cancer Cells through Reduction of RIPK1/NF-κB Activity. Mar Drugs 2019; 17:E362. [PMID: 31216707 PMCID: PMC6627888 DOI: 10.3390/md17060362] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Phycocyanin, derived from Spirulina platensis, is a type of natural antineoplastic marine protein. It is known that phycocyanin exerts anticancer effects on non-small-cell lung cancer (NSCLC) cells, but its underlying mechanism has not been elucidated. Herein, the antitumor function and regulatory mechanism of phycocyanin were investigated in three NSCLC cell lines for the first time: H358, H1650, and LTEP-a2. Cell phenotype experiments suggested that phycocyanin could suppress the survival rate, proliferation, colony formation, and migration abilities, as well as induce apoptosis of NSCLC cells. Subsequently, transcriptome analysis revealed that receptor-interacting serine/threonine-protein kinase 1 (RIPK1) was significantly down-regulated by phycocyanin in the LTEP-a2 cell, which was further validated by qRT-PCR and Western blot analysis in two other cell lines. Interestingly, similar to phycocyanin-treated assays, siRNA knockdown of RIPK1 expression also resulted in growth and migration inhibition of NSCLC cells. Moreover, the activity of NF-κB signaling was also suppressed after silencing RIPK1 expression, indicating that phycocyanin exerted anti-proliferative and anti-migratory function through down-regulating RIPK1/NF-κB activity in NSCLC cells. This study proposes a mechanism of action for phycocyanin involving both NSCLC apoptosis and down regulation of NSCLC genes.
Collapse
Affiliation(s)
- Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tingting Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiawen Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
91
|
Mossanen JC, Kohlhepp M, Wehr A, Krenkel O, Liepelt A, Roeth AA, Möckel D, Heymann F, Lammers T, Gassler N, Hermann J, Jankowski J, Neumann UP, Luedde T, Trautwein C, Tacke F. CXCR6 Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and CD4 + T-Cell-Dependent Control of Senescence. Gastroenterology 2019; 156:1877-1889.e4. [PMID: 30710528 DOI: 10.1053/j.gastro.2019.01.247] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Inflammation in the liver provokes fibrosis, but inflammation is also important for tumor surveillance. Inhibitors of chemokine pathways, such as CXCL16 and CXCR6 regulation of lymphocyte trafficking, are being tested as antifibrotic agents, but their effects on the development of hepatocellular carcinoma (HCC) are unclear. We assessed the roles of CXCR6-dependent immune mechanisms in hepatocarcinogenesis. METHODS C57BL/6J wild-type (WT) mice and CXCR6-deficient mice (Cxcr6eGfp/eGfp) were given injections of diethylnitrosamine (DEN) to induce liver cancer and α-galactosylceramide to activate natural killer T (NKT) cells. We also performed studies in mice with conditional, hepatocyte-specific deletion of NEMO, which develop inflammation-associated liver tumors (NemoLPC-KO and NemoLPC-KOCxcr6eGfp/eGfp mice). We collected liver tissues from patients with cirrhosis (n = 43), HCC (n = 35), and neither of these diseases (control individuals, n = 25). Human and mouse liver tissues were analyzed by histology, immunohistochemistry, flow cytometry, RNA expression arrays (from sorted hepatic lymphocytes), and matrix-assisted laser desorption/ionization imaging. Bone marrow was transferred from Cxcr6eGfp/eGfp or WT mice to irradiated C57BL/6J mice, and spleen and liver cells were analyzed by flow cytometry. CD4+ T cells or NKT cells were isolated from the spleen and liver of CD45.1+ WT mice and transferred into CXCR6-deficient mice after DEN injection. RESULTS After DEN injection, CXCR6-deficient mice had a significantly higher tumor burden than WT mice and increased tumor progression, characterized by reduced intrahepatic numbers of invariant NKT and CD4+ T cells that express tumor necrosis factor and interferon gamma. Livers of NemoLPC-KOCxcr6eGfp/eGfp mice had significantly more senescent hepatocytes than livers of NemoLPC-KO mice. In studies of bone-marrow chimeras, adoptive cell transfer experiments, and analyses of NemoLPC-KO mice, we found that NKT and CD4 T cells promote the removal of senescent hepatocytes to prevent hepatocarcinogenesis, and that this process required CXCR6. Injection of WT with α-galactosylceramide increased removal of senescent hepatocytes by NKT cells. We observed peritumoral accumulation of CXCR6-associated lymphocytes in human HCC, which appeared reduced compared with cirrhosis tissues. CONCLUSIONS In studies of mice with liver tumors, we found that CXCR6 mediated NKT-cell and CD4+ T-cell removal of senescent hepatocytes. Antifibrotic strategies to reduce CXCR6 activity in liver, or to reduce inflammation or modulate the immune response, should be tested for their effects on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jana C Mossanen
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Intensive Care, RWTH-University Hospital Aachen, Aachen, Germany
| | - Marlene Kohlhepp
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Alexander Wehr
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany
| | - Oliver Krenkel
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Anke Liepelt
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Anjali A Roeth
- Department of General, Visceral and Transplantation Surgery, RWTH-University Hospital Aachen, Aachen, Germany
| | - Diana Möckel
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH-University Hospital Aachen, Aachen, Germany
| | - Felix Heymann
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH-University Hospital Aachen, Aachen, Germany
| | - Nikolaus Gassler
- Institute of Pathology, Clinical Center Braunschweig, Braunschweig, Germany
| | - Juliane Hermann
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH-University Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany.
| |
Collapse
|
92
|
Krishna-Subramanian S, Singer S, Armaka M, Banales JM, Holzer K, Schirmacher P, Walczak H, Kollias G, Pasparakis M, Kondylis V. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ 2019; 26:2710-2726. [PMID: 30988397 DOI: 10.1038/s41418-019-0330-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte apoptosis is intrinsically linked to chronic liver disease and hepatocarcinogenesis. Conversely, necroptosis of hepatocytes and other liver cell types and its relevance for liver disease is debated. Using liver parenchymal cell (LPC)-specific TGF-beta-activated kinase 1 (TAK1)-deficient (TAK1LPC-KO) mice, which exhibit spontaneous hepatocellular and biliary damage, hepatitis, and early hepatocarcinogenesis, we have investigated the contribution of apoptosis and necroptosis in hepatocyte and cholangiocyte death and their impact on liver disease progression. Here, we provide in vivo evidence showing that TAK1-deficient cholangiocytes undergo spontaneous necroptosis induced primarily by TNFR1 and dependent on RIPK1 kinase activity, RIPK3, and NEMO. In contrast, TAK1-deficient hepatocytes die by FADD-dependent apoptosis, which is not significantly inhibited by LPC-specific RIPK1 deficiency, inhibition of RIPK1 kinase activity, RIPK3 deficiency or combined LPC-specific deletion of TNFR1, TRAILR, and Fas. Accordingly, normal mouse cholangiocytes can undergo necroptosis, while primary hepatocytes are resistant to it and die exclusively by apoptosis upon treatment with cell death-inducing stimuli in vitro, likely due to the differential expression of RIPK3. Interestingly, the genetic modifications that conferred protection from biliary damage also prevented the spontaneous lethality that was often observed in TAK1LPC-KO mice. In the presence of chronic hepatocyte apoptosis, preventing biliary damage delayed but did not avert hepatocarcinogenesis. On the contrary, inhibition of hepatocyte apoptosis fully prevented liver tumorigenesis even in mice with extensive biliary damage. Altogether, our results suggest that using RIPK1 kinase activity inhibitors could be therapeutically useful for cholestatic liver disease patients.
Collapse
Affiliation(s)
- Santosh Krishna-Subramanian
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Marietta Armaka
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Kerstin Holzer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Vangelis Kondylis
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
93
|
Perilipin 5 and Lipocalin 2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11030385. [PMID: 30893876 PMCID: PMC6468921 DOI: 10.3390/cancers11030385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers worldwide. Therefore, current global research focuses on molecular tools for early diagnosis of HCC, which can lead to effective treatment at an early stage. Perilipin 5 (PLIN5) has been studied as one of the main proteins of the perilipin family, whose role is to maintain lipid homeostasis by inhibiting lipolysis. In this study, we show for the first time that PLIN5 is strongly expressed in tumors of human patients with HCC as well as in mouse livers, in which HCC was genetically or experimentally induced by treatment with the genotoxic agent diethylnitrosamine. Moreover, the secreted acute phase glycoprotein Lipocalin 2 (LCN2) established as a biomarker of acute kidney injury, is also proven to indicate liver injury with upregulated expression in numerous cases of hepatic damage, including steatohepatitis. LCN2 has been studied in various cancers, and it has been assigned roles in multiple cellular processes such as the suppression of the invasion of HCC cells and their metastatic abilities. The presence of this protein in blood and urine, in combination with the presence of α-Fetoprotein (AFP), is hypothesized to serve as a biomarker of early stages of HCC. In the current study, we show in humans and mice that LCN2 is secreted into the serum from liver cancer tissue. We also show that AFP-positive hepatocytes represent the main source for the massive expression of LCN2 in tumoral tissue. Thus, the strong presence of PLIN5 and LCN2 in HCC and understanding their roles could establish them as markers for diagnosis or as treatment targets against HCC.
Collapse
|
94
|
Zhuang R, Zhang X, Lu D, Wang J, Zhuo J, Wei X, Ling Q, Xie H, Zheng S, Xu X. lncRNA DRHC inhibits proliferation and invasion in hepatocellular carcinoma via c-Myb-regulated MEK/ERK signaling. Mol Carcinog 2019; 58:366-375. [PMID: 30362626 DOI: 10.1002/mc.22934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in hepatocellular carcinoma (HCC). Here, we reported a novel lncRNA, CTC-505O3 (lncRNA DRHC), that was downregulated in HCC and its low expression was associated with dismal survival. Gain-of-function studies indicated that it inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in HCC cell lines in vitro. lncRNA DRHC also inhibited tumorigenicity in vivo. In mechanistic experiments, GO analysis based on NGS indicated that MAPK signaling was most affected. The result was confirmed by Western blot and this effect was abolished either by MEK1/2 specific inhibitor Trametinib or ERK1/2 inhibitor SCH772984. In addition, differences in proliferation and invasion were abrogated by Trametinib. Moreover, we found that lncRNA DRHC interacted with MYBBP1A and modulated MEK/ERK signaling via c-Myb. Taken together, our findings indicate that the lncRNA DRHC play a key role in HCC progression and may serve as a novel therapeutic target.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- DNA-Binding Proteins
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Kinase 1/genetics
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/genetics
- MAP Kinase Kinase 2/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasm Invasiveness
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- Prognosis
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- RNA, Long Noncoding/genetics
- RNA-Binding Proteins
- Signal Transduction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Runzhou Zhuang
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xuanyu Zhang
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Di Lu
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Jianguo Wang
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Jianyong Zhuo
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xuyong Wei
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Qi Ling
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao Xu
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
95
|
Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR, Hugo C, Becker JU, Linkermann A. The pathological features of regulated necrosis. J Pathol 2019; 247:697-707. [PMID: 30714148 DOI: 10.1002/path.5248] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/13/2022]
Abstract
Necrosis of a cell is defined by the loss of its plasma membrane integrity. Morphologically, necrosis occurs in several forms such as coagulative necrosis, colliquative necrosis, caseating necrosis, fibrinoid necrosis, and others. Biochemically, necrosis was demonstrated to represent a number of genetically determined signalling pathways. These include (i) kinase-mediated necroptosis, which depends on receptor interacting protein kinase 3 (RIPK3)-mediated phosphorylation of the pseudokinase mixed lineage kinase domain like (MLKL); (ii) gasdermin-mediated necrosis downstream of inflammasomes, also referred to as pyroptosis; and (iii) an iron-catalysed mechanism of highly specific lipid peroxidation named ferroptosis. Given the molecular understanding of the nature of these pathways, specific antibodies may allow direct detection of regulated necrosis and correlation with morphological features. Necroptosis can be specifically detected by immunohistochemistry and immunofluorescence employing antibodies to phosphorylated MLKL. Likewise, it is possible to generate cleavage-specific antibodies against epitopes in gasdermin protein family members. In ferroptosis, however, specific detection requires quantification of oxidative lipids by mass spectrometry (oxylipidomics). Together with classical cell death markers, such as TUNEL staining and detection of cleaved caspase-3 in apoptotic cells, the extension of the arsenal of necrosis markers will allow pathological detection of specific molecular pathways rather than isolated morphological descriptions. These novel pieces of information will be extraordinarily helpful for clinicians as inhibitors of necroptosis (necrostatins), ferroptosis (ferrostatins), and inflammasomes have emerged in clinical trials. Anatomical pathologists should embrace these novel ancillary tests and the concepts behind them and test their impact on diagnostic precision, prognostication, and the prediction of response to the upcoming anti-necrotic therapies. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
96
|
Abstract
Hepatocellular carcinoma (HCC) is associated with chronic inflammation and fibrosis arising from different etiologies, including hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases. The inflammatory cytokines tumor necrosis factor-α and interleukin-6 and their downstream targets nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 drive inflammation-associated HCC. Further, while adaptive immunity promotes immune surveillance to eradicate early HCC, adaptive immune cells, such as CD8+ T cells, Th17 cells, and B cells, can also stimulate HCC development. Thus, the role of the hepatic immune system in HCC development is a highly complex topic. This review highlights the role of cytokine signals, NF-κB, JNK, innate and adaptive immunity, and hepatic stellate cells in HCC and discusses whether these pathways could be therapeutic targets. The authors will also discuss cholangiocarcinoma and liver metastasis because biliary inflammation and tumor-associated stroma are essential for cholangiocarcinoma development and because primary tumor-derived inflammatory mediators promote the formation of a "premetastasis niche" in the liver.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - So Yeon Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
97
|
Liepelt A, Wehr A, Kohlhepp M, Mossanen JC, Kreggenwinkel K, Denecke B, Costa IG, Luedde T, Trautwein C, Tacke F. CXCR6 protects from inflammation and fibrosis in NEMOLPC-KO mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:391-402. [DOI: 10.1016/j.bbadis.2018.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
|
98
|
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| | - Tom Luedde
- Department of Medicine III, Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
99
|
Roy S, Hooiveld GJ, Seehawer M, Caruso S, Heinzmann F, Schneider AT, Frank AK, Cardenas DV, Sonntag R, Luedde M, Trautwein C, Stein I, Pikarsky E, Loosen S, Tacke F, Ringelhan M, Avsaroglu SK, Goga A, Buendia MA, Vucur M, Heikenwalder M, Zucman-Rossi J, Zender L, Roderburg C, Luedde T. microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis. Gastroenterology 2018; 155:1951-1966.e26. [PMID: 30165047 PMCID: PMC6279541 DOI: 10.1053/j.gastro.2018.08.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS We performed an integrated analysis to identify microRNAs (miRNAs) and messenger RNAs (mRNAs) with altered expression in liver tumors from 3 mouse models of hepatocellular carcinoma (HCC) and human tumor tissues. METHODS We analyzed miRNA and mRNA expression profiles of liver tissues from mice with diethylnitrosamine-induced hepatocarcinogenesis, conditional expression of lymphotoxin alpha and lymphotoxin beta, or inducible expression of a Myc transgene (Tet-O-Myc mice), as well as male C57BL/6 mice (controls). miRNA mimics were expressed and miRNAs and mRNAs were knocked down in human (Huh7, Hep3B, JHH2) hepatoma cell lines; cells were analyzed for viability, proliferation, apoptosis, migration, and invasion. Cells were grown as xenograft tumors in nude mice and analyzed. We combined in silico target gene prediction with mRNA profiles from all 3 mouse models. We quantified miRNA levels in 146 fresh-frozen tissues from patients (125 HCCs, 17 matched nontumor tissues, and 4 liver samples from patients without cancer) and published human data sets and tested correlations with patient survival times using Kaplan-Meier curves and the log-rank test. Levels of NUSAP1 mRNA were quantified in 237 HCCs and 5 nontumor liver samples using the TaqMan assay. RESULTS Levels of the miRNA 193a-5p (MIR193A-5p) were reduced in liver tumors from all 3 mouse tumor models and in human HCC samples, compared with nontumor liver tissues. Expression of a MIR193A-5p mimic in hepatoma cells reduced proliferation, survival, migration, and invasion and their growth as xenograft tumors in nude mice. We found nucleolar and spindle-associated protein 1 (NUSAP1) to be a target of MIR193A-5p; HCC cells and tissues with low levels of MIR193A-5p had increased expression of NUSAP1. Increased levels of NUSAP1 in HCC samples correlated with shorter survival times of patients. Knockdown of NUSAP1 in Huh7 cells reduced proliferation, survival, migration, and growth as xenograft tumors in nude mice. Hydrodynamic tail-vein injections of a small hairpin RNA against NUSAP1 reduced growth of Akt1-Myc-induced tumors in mice. CONCLUSIONS MIR193A-5p appears to prevent liver tumorigenesis by reducing levels of NUSAP1. Levels of MIR193A-5p are reduced in mouse and human HCC cells and tissues, leading to increased levels of NUSAP1, associated with shorter survival times of patients. Integrated analyses of miRNAs and mRNAs in tumors from mouse models can lead to identification of therapeutic targets in humans. The currently reported miRNA and mRNA profiling data have been submitted to the Gene Expression Omnibus (super-series accession number GSE102418).
Collapse
Affiliation(s)
- Sanchari Roy
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology,Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Guido J. Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Marco Seehawer
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Stefano Caruso
- Inserm UMR-1162, Functional Genomics of Solid Tumors, University Paris Descartes, University University Paris Diderot, University Paris 13, Labex Immuno-Oncology, Paris, France
| | - Florian Heinzmann
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | - Anna K. Frank
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | | | - Roland Sonntag
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Mark Luedde
- Department of Cardiology, University Hospital Kiel, 25105 Kiel, Germany
| | | | - Ilan Stein
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Sven Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Marc Ringelhan
- Technische Universität München, Ismaningerstr. 22, 81675 München
| | - Seda Kilinc Avsaroglu
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0452
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0452
| | - Marie-Annick Buendia
- Inserm Unit U1193, University Paris-Sud, Paul Brousse Hospital, Villejuif, France
| | - Mihael Vucur
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Germany
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Functional Genomics of Solid Tumors, University Paris Descartes, University University Paris Diderot, University Paris 13, Labex Immuno-Oncology, Paris, France
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany,Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, Aachen Germany; Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany.
| |
Collapse
|
100
|
Kondylis V, Pasparakis M. RIP Kinases in Liver Cell Death, Inflammation and Cancer. Trends Mol Med 2018; 25:47-63. [PMID: 30455045 DOI: 10.1016/j.molmed.2018.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Cell death is intrinsically linked to inflammatory liver disease and cancer development. Recent genetic studies have suggested that receptor-interacting protein kinase (RIPK)1 is implicated in liver disease pathogenesis by regulating caspase-dependent hepatocyte apoptosis induced by tumor necrosis factor (TNF) or other stimuli. In contrast, the contribution of caspase-independent RIPK3/mixed lineage kinase like (MLKL)-mediated hepatocyte necroptosis remains debatable. Hepatocyte apoptosis depends on the balance between RIPK1 prosurvival scaffolding functions and its kinase-activity-mediated proapoptotic function. Several regulatory steps promote the prosurvival role of RIPK1, including phosphorylation and ubiquitination of RIPK1 itself and other molecules involved in RIPK1 signaling. Pharmacological inhibition of liver damage by targeting RIPK1 signaling emerges as a potential therapeutic strategy to prevent chronic liver inflammation and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, D-50931, Cologne, Germany.
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, D-50931, Cologne, Germany.
| |
Collapse
|