51
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
52
|
Audesse AJ, Dhakal S, Hassell LA, Gardell Z, Nemtsova Y, Webb AE. FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet 2019; 15:e1008097. [PMID: 30973875 PMCID: PMC6478346 DOI: 10.1371/journal.pgen.1008097] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 04/23/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
Maintenance of a healthy proteome is essential for cellular homeostasis and loss of proteostasis is associated with tissue dysfunction and neurodegenerative disease. The mechanisms that support proteostasis in healthy cells and how they become defective during aging or in disease states are not fully understood. Here, we investigate the transcriptional programs that are essential for neural stem and progenitor cell (NSPC) function and uncover a program of autophagy genes under the control of the transcription factor FOXO3. Using genomic approaches, we observe that FOXO3 directly binds a network of target genes in adult NSPCs that are involved in autophagy, and find that FOXO3 functionally regulates induction of autophagy in these cells. Interestingly, in the absence of FOXO activity, aggregates accumulate in NSPCs, and this effect is reversed by TOR (target of rapamycin) inhibition. Surprisingly, enhancing FOXO3 causes nucleation of protein aggregates, but does not increase their degradation. The work presented here identifies a genomic network under the direct control of a key transcriptional regulator of aging that is critical for maintaining a healthy mammalian stem cell pool to support lifelong neurogenesis.
Collapse
Affiliation(s)
- Amanda J. Audesse
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, United States of America
| | - Shleshma Dhakal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Lexi-Amber Hassell
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Zachary Gardell
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Yuliya Nemtsova
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
53
|
Benayoun BA, Pollina EA, Singh PP, Mahmoudi S, Harel I, Casey KM, Dulken BW, Kundaje A, Brunet A. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res 2019; 29:697-709. [PMID: 30858345 PMCID: PMC6442391 DOI: 10.1101/gr.240093.118] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by the functional decline of tissues. However, a systematic study of epigenomic and transcriptomic changes across tissues during aging is missing. Here, we generated chromatin maps and transcriptomes from four tissues and one cell type from young, middle-aged, and old mice—yielding 143 high-quality data sets. We focused on chromatin marks linked to gene expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and machine-learning analysis showed that specific epigenomic states could predict transcriptional changes during aging. Analysis of data sets from all tissues identified recurrent age-related chromatin and transcriptional changes in key processes, including the up-regulation of immune system response pathways such as the interferon response. The up-regulation of the interferon response pathway with age was accompanied by increased transcription and chromatin remodeling at specific endogenous retroviral sequences. Pathways misregulated during mouse aging across tissues, notably innate immune pathways, were also misregulated with aging in other vertebrate species—African turquoise killifish, rat, and humans—indicating common signatures of age across species. To date, our data set represents the largest multitissue epigenomic and transcriptomic data set for vertebrate aging. This resource identifies chromatin and transcriptional states that are characteristic of young tissues, which could be leveraged to restore aspects of youthful functionality to old tissues.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elizabeth A Pollina
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Salah Mahmoudi
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Itamar Harel
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ben W Dulken
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
54
|
Banerjee S, Zhu H, Tang M, Feng WC, Wu X, Xie H. Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem Cells. Front Genet 2019; 9:731. [PMID: 30697231 PMCID: PMC6341026 DOI: 10.3389/fgene.2018.00731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/22/2018] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is a complex process involving the interplay between transcription factors and chromatin states. Significant progress has been made toward understanding the impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription factors binding combinatorially in different chromatin states to enable selective regulation of gene expression remains an interesting research area. We introduce a nonparametric Bayesian clustering method for inhomogeneous Poisson processes to detect heterogeneous binding patterns of multiple proteins including transcription factors to form regulatory modules in different chromatin states. We applied this approach on ChIP-seq data for mouse neural stem cells containing 21 proteins and observed different groups or modules of proteins clustered within different chromatin states. These chromatin-state-specific regulatory modules were found to have significant influence on gene expression. We also observed different motif preferences for certain TFs between different chromatin states. Our results reveal a degree of interdependency between chromatin states and combinatorial binding of proteins in the complex transcriptional regulatory process. The software package is available on Github at - https://github.com/BSharmi/DPM-LGCP.
Collapse
Affiliation(s)
- Sharmi Banerjee
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Hongxiao Zhu
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Man Tang
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Wu-Chun Feng
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Xiaowei Wu
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
55
|
The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death Differ 2018; 26:1813-1831. [PMID: 30538287 PMCID: PMC6748080 DOI: 10.1038/s41418-018-0248-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/03/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
Achaete-scute homolog 1 gene (ASCL1) is a gene classifier for the proneural (PN) transcriptional subgroup of glioblastoma (GBM) that has a relevant role in the neuronal-like differentiation of GBM cancer stem cells (CSCs) through the activation of a PN gene signature. Besides prototypical ASCL1 PN target genes, the molecular effectors mediating ASCL1 function in regulating GBM differentiation and, most relevantly, subgroup specification are currently unknown. Here we report that ASCL1 not only promotes the acquisition of a PN phenotype in CSCs by inducing a glial-to-neuronal lineage switch but also concomitantly represses mesenchymal (MES) features by directly downregulating the expression of N-Myc downstream-regulated gene 1 (NDRG1), which we propose as a novel gene classifier of MES GBMs. Increasing the expression of ASCL1 in PN CSCs results in suppression of self-renewal, promotion of differentiation and, most significantly, decrease in tumorigenesis, which is also reproduced by NDRG1 silencing. Conversely, both abrogation of ASCL1 expression in PN CSCs and enforcement of NDRG1 expression in either PN or MES CSCs induce proneural-to-mesenchymal transition (PMT) and enhanced mesenchymal features. Surprisingly, ASCL1 overexpression in MES CSCs increases malignant features and gives rise to a neuroendocrine-like secretory phenotype. Altogether, our results propose that the fine interplay between ASCL1 and its target NDRG1 might serve as potential subgroup-specific targetable vulnerability in GBM; enhancing ASCL1 expression in PN GBMs might reduce tumorigenesis, whereas repressing NDRG1 expression might be actionable to hamper the malignancy of GBM belonging to the MES subgroup.
Collapse
|
56
|
McLaughlin CN, Broihier HT. Keeping Neurons Young and Foxy: FoxOs Promote Neuronal Plasticity. Trends Genet 2018; 34:65-78. [PMID: 29102406 DOI: 10.1016/j.tig.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Any adult who has tried to take up the piano or learn a new language is faced with the sobering realization that acquiring such skills is more challenging as an adult than as a child. Neuronal plasticity, or the malleability of brain circuits, declines with age. Young neurons tend to be more adaptable and can alter the size and strength of their connections more readily than can old neurons. Myriad circuit- and synapse-level mechanisms that shape plasticity have been identified. Yet, molecular mechanisms setting the overall competence of young neurons for distinct forms of plasticity remain largely obscure. Recent studies indicate evolutionarily conserved roles for FoxO proteins in establishing the capacity for cell-fate, morphological, and synaptic plasticity in neurons.
Collapse
Affiliation(s)
- Colleen N McLaughlin
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
57
|
Kim TJ, Kwon HS, Kang M, Leem HH, Lee KH, Kim DY. The Antitumor Natural Compound Falcarindiol Disrupts Neural Stem Cell Homeostasis by Suppressing Notch Pathway. Int J Mol Sci 2018; 19:ijms19113432. [PMID: 30388862 PMCID: PMC6274977 DOI: 10.3390/ijms19113432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) are undifferentiated, multi-potent cells that can give rise to functional neurons and glial cells. The disruption in NSC homeostasis and/or the impaired neurogenesis lead to diverse neurological diseases, including depression, dementia, and neurodegenerative disorders. Falcarindiol (FAD) is a polyacetylene found in many plants, and FAD shows the cytotoxicity against breast cancers and colon cancers. However, there is no research on the consequence of FAD treatment in normal stem cells. Here, we suggest that FAD has anticancer roles against glioblastoma cells by inducing the differentiation of glioblastoma stem-like cells, as well as activating apoptosis pathway in glioblastoma cells. On the other hand, we also show that FAD has detrimental effects by disrupting the maintenance of normal NSCs and altering the balance between self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.
| | - Hyun-Sook Kwon
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongsangbuk-do 38540, Korea.
| | - Mingyu Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.
| | - Hyun Hee Leem
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongsangbuk-do 38540, Korea.
| | - Kyung-Ha Lee
- Department of Cosmetic Science and Technology, College of Bio-industry, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea.
| |
Collapse
|
58
|
Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR, Ruvkun G, Riedel CG. DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun 2018; 9:4400. [PMID: 30353013 PMCID: PMC6199276 DOI: 10.1038/s41467-018-06624-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 08/24/2018] [Indexed: 01/07/2023] Open
Abstract
The ability to perceive and respond to harmful conditions is crucial for the survival of any organism. The transcription factor DAF-16/FOXO is central to these responses, relaying distress signals into the expression of stress resistance and longevity promoting genes. However, its sufficiency in fulfilling this complex task has remained unclear. Using C. elegans, we show that DAF-16 does not function alone but as part of a transcriptional regulatory module, together with the transcription factor HLH-30/TFEB. Under harmful conditions, both transcription factors translocate into the nucleus, where they often form a complex, co-occupy target promoters, and co-regulate many target genes. Interestingly though, their synergy is stimulus-dependent: They rely on each other, functioning in the same pathway, to promote longevity or resistance to oxidative stress, but they elicit heat stress responses independently, and they even oppose each other during dauer formation. We propose that this module of DAF-16 and HLH-30 acts by combinatorial gene regulation to relay distress signals into the expression of specific target gene sets, ensuring optimal survival under each given threat.
Collapse
Affiliation(s)
- Xin-Xuan Lin
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
- European Research Institute for the Biology of Ageing, University of Groningen, Antonius Deusinglaan, 1, 9713AV, Groningen, The Netherlands
| | - Ilke Sen
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
- European Research Institute for the Biology of Ageing, University of Groningen, Antonius Deusinglaan, 1, 9713AV, Groningen, The Netherlands
| | - Georges E Janssens
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
| | - Xin Zhou
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
| | - Bryan R Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Daniel Edgar
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/ Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), C/ Dr. Aiguader, 80, 08003, Barcelona, Spain
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Christian G Riedel
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden.
- European Research Institute for the Biology of Ageing, University of Groningen, Antonius Deusinglaan, 1, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
59
|
Schäffner I, Minakaki G, Khan MA, Balta EA, Schlötzer-Schrehardt U, Schwarz TJ, Beckervordersandforth R, Winner B, Webb AE, DePinho RA, Paik J, Wurst W, Klucken J, Lie DC. FoxO Function Is Essential for Maintenance of Autophagic Flux and Neuronal Morphogenesis in Adult Neurogenesis. Neuron 2018; 99:1188-1203.e6. [PMID: 30197237 PMCID: PMC6186958 DOI: 10.1016/j.neuron.2018.08.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/05/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved catabolic pathway with emerging functions in mammalian neurodevelopment and human neurodevelopmental diseases. The mechanisms controlling autophagy in neuronal development are not fully understood. Here, we found that conditional deletion of the Forkhead Box O transcription factors FoxO1, FoxO3, and FoxO4 strongly impaired autophagic flux in developing neurons of the adult mouse hippocampus. Moreover, FoxO deficiency led to altered dendritic morphology, increased spine density, and aberrant spine positioning in adult-generated neurons. Strikingly, pharmacological induction of autophagy was sufficient to correct abnormal dendrite and spine development of FoxO-deficient neurons. Collectively, these findings reveal a novel link between FoxO transcription factors, autophagic flux, and maturation of developing neurons.
Collapse
Affiliation(s)
- Iris Schäffner
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - M Amir Khan
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München-Weihenstephan, 85764 Neuherberg/Munich, Germany
| | - Elli-Anna Balta
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tobias J Schwarz
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München-Weihenstephan, 85764 Neuherberg/Munich, Germany
| | | | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München-Weihenstephan, 85764 Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - D Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
60
|
Audesse AJ, Webb AE. Enhancing Lysosomal Activation Restores Neural Stem Cell Function During Aging. J Exp Neurosci 2018; 12:1179069518795874. [PMID: 30158826 PMCID: PMC6109844 DOI: 10.1177/1179069518795874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis supports cognitive and sensory functions in mammals and is significantly reduced with age. Quiescent neural stem cells are the source of new neurons in the adult brain and emerging evidence suggests that the failure of these cells to activate and re-enter the cell cycle is largely responsible for reduced neurogenesis in old animals. However, the molecular mechanisms supporting quiescence and activation in the adult and aged brain remain undefined. Recent work published by Leeman et al. in Science uncovers a novel role for lysosomes in supporting neural stem cell activation, and reveals that loss of lysosome function during aging contributes to reduced neural stem cell activity. Using a combination of transcriptomics and functional analysis, the authors show that quiescent and activated neural stem cells employ different branches of proteostasis networks, with quiescent stem cells particularly dependent on the lysosome-autophagy system. Excitingly, stimulation of lysosomal activity in the aged quiescent population significantly enhanced their ability to activate and increased the frequency of activated neural stem and progenitor cells within the neural stem cell niche. This work for the first time identifies lysosomal dysfunction as a cause of reduced neurogenesis during aging, and shows that enhancing lysosomal function is sufficient to restore healthy stem cell activity in the aged brain.
Collapse
Affiliation(s)
- Amanda J Audesse
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Center on the Biology of Aging, Brown University, Providence, RI, USA
| |
Collapse
|
61
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
62
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
63
|
Zhang S, Li M, Ji H, Fang Z. Landscape of transcriptional deregulation in lung cancer. BMC Genomics 2018; 19:435. [PMID: 29866045 PMCID: PMC5987572 DOI: 10.1186/s12864-018-4828-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lung cancer is a very heterogeneous disease that can be pathologically classified into different subtypes including small-cell lung carcinoma (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large-cell carcinoma (LCC). Although much progress has been made towards the oncogenic mechanism of each subtype, transcriptional circuits mediating the upstream signaling pathways and downstream functional consequences remain to be systematically studied. RESULTS Here we trained a one-class support vector machine (OC-SVM) model to establish a general transcription factor (TF) regulatory network containing 325 TFs and 18724 target genes. We then applied this network to lung cancer subtypes and identified those deregulated TFs and downstream targets. We found that the TP63/SOX2/DMRT3 module was specific to LUSC, corresponding to squamous epithelial differentiation and/or survival. Moreover, the LEF1/MSC module was specifically activated in LUAD and likely to confer epithelial-to-mesenchymal transition, known important for cancer malignant progression and metastasis. The proneural factor, ASCL1, was specifically up-regulated in SCLC which is known to have a neuroendocrine phenotype. Also, ID2 was differentially regulated between SCLC and LUSC, with its up-regulation in SCLC linking to energy supply for fast mitosis and its down-regulation in LUSC linking to the attenuation of immune response. We further described the landscape of TF regulation among the three major subtypes of lung cancer, highlighting their functional commonalities and specificities. CONCLUSIONS Our approach uncovered the landscape of transcriptional deregulation in lung cancer, and provided a useful resource of TF regulatory network for future studies.
Collapse
Affiliation(s)
- Shu Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
- State Key Laboratory of Cell Biology, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai, 200031 China
| | - Mingfa Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai, 200031 China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200120 China
| | - Zhaoyuan Fang
- State Key Laboratory of Cell Biology, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai, 200031 China
- Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031 China
| |
Collapse
|
64
|
Than-Trong E, Ortica-Gatti S, Mella S, Nepal C, Alunni A, Bally-Cuif L. Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signalling cascade in the vertebrate adult brain. Development 2018; 145:dev161034. [PMID: 29695612 PMCID: PMC6001379 DOI: 10.1242/dev.161034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
Neural stem cells (NSCs) in the adult vertebrate brain are found in a quiescent state and can preserve long-lasting progenitor potential (stemness). Whether and how these two properties are linked, and to what extent they can be independently controlled by NSC maintenance pathways, is unresolved. We have previously identified Notch3 signalling as a major quiescence-promoting pathway in adult NSCs of the zebrafish pallium. We now show that Notch3 also controls NSC stemness. Using parallel transcriptomic characterizations of notch3 mutant NSCs and adult NSC physiological states, we demonstrate that a set of potentially direct Notch3 target genes distinguishes quiescence and stemness control. As a proof of principle, we focus on one 'stemness' target, encoding the bHLH transcription factor Hey1, that has not yet been analysed in adult NSCs. We show that abrogation of Hey1 function in adult pallial NSCs in vivo, including quiescent NSCs, leads to their differentiation without affecting their proliferation state. These results demonstrate that quiescence and stemness are molecularly distinct outputs of Notch3 signalling, and identify Hey1 as a major Notch3 effector controlling NSC stemness in the vertebrate adult brain.
Collapse
Affiliation(s)
- Emmanuel Than-Trong
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sara Ortica-Gatti
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sébastien Mella
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Unit Stem Cells and Development, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
| | - Chirag Nepal
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alessandro Alunni
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
65
|
Abstract
The evolutionarily conserved FOXO family of transcription factors has emerged as a significant arbiter of neural cell fate and function in mammals. From the neural stem cell (NSC) state through mature neurons under both physiological and pathological conditions, they have been found to modulate neural cell survival, stress responses, lineage commitment, and neuronal signaling. Lineage-specific FOXO knockout mice have provided an invaluable tool for the dissection of FOXO biology in the nervous system. Within the NSC compartments of the brain, FOXOs are required for the maintenance of NSC quiescence and for the clearance of reactive oxygen species. Within mature neurons, FOXO transcriptional activity is essential for the prevention of age-dependent axonal degeneration. Acutely, FOXO3 has been found to cause axonal degeneration upon withdrawal of neurotrophic factors. In more active neural signaling, FOXO6 promotes increased dendritic spine density of hippocampal neurons and is required for the consolidation of memories. In addition to the central nervous system (CNS), FOXOs also influence the functionality of the peripheral nervous system (PNS). FOXO1 knockout within the PNS results in a reduction of sympathetic tone and decreased levels of brain-derived norepinephrine and lower energy expenditure. FOXO3 knockout mice have impaired hearing which may be due to defects in synapse localization within the ear. Given the scope of FOXO activities in both the CNS and PNS, it will be of interest to study FOXOs within the context of neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. From within the nervous system, FOXOs may also regulate important parameters such as whole-body metabolism, motor function, and catecholamine production, making FOXOs key players in physiologic homeostasis.
Collapse
Affiliation(s)
- Evan E Santo
- Weill Cornell Medicine, New York, NY, United States
| | - Jihye Paik
- Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
66
|
Abstract
Stem cells self-renew and differentiate to generate all tissues and cells in the body. Stem cell health promotes adaptive responses to tissue damage or loss and is essential for tissue regeneration with age. In the past decade, the evolutionarily conserved transcription factors FOXO with known functions in promoting healthy aging have emerged as key regulators of stem cell homeostasis in various tissues, including blood, neural, and muscle stem cells. Aberrant FOXO functions have been implicated in a variety of disorders including neurodegenerative, blood, cancer, and diabetes some of which are fostered by abnormal stem cell function. As discussed in this chapter, at least in some stem cells FOXO regulatory mechanisms and applied functions follow a complex set of rules distinct from that operating in progenitor cell populations and in cultured cell lines. Elucidating the exact nature of FOXO properties in stem cells will be critical for identifying and targeting aberrant FOXO-mediated mechanisms that promote stem cell-derived disease specifically with age.
Collapse
Affiliation(s)
- Raymond Liang
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Developmental and Stem Cell Biology, Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saghi Ghaffari
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
67
|
Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior. Rev Neurosci 2017; 29:1-20. [DOI: 10.1515/revneuro-2017-0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Abstract
The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.
Collapse
|
68
|
Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep 2017; 7:16369. [PMID: 29180716 PMCID: PMC5703730 DOI: 10.1038/s41598-017-16638-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
Transcriptional coordination is a vital process contributing to metabolic homeostasis. As one of the key nodes in the metabolic network, the forkhead transcription factor FOXO has been shown to interact with diverse transcription co-factors and integrate signals from multiple pathways to control metabolism, oxidative stress response, and cell cycle. Recently, insulin/FOXO signaling has been implicated in the regulation of insect development via the interaction with insect hormones, such as ecdysone and juvenile hormone. In this study, we identified an interaction between Drosophila FOXO (dFOXO) and the zinc finger transcription factor Kruppel homolog 1 (Kr-h1), one of the key players in juvenile hormone signaling. We found that Kr-h1 mutants show delayed larval development and altered lipid metabolism, in particular induced lipolysis upon starvation. Notably, Kr-h1 physically and genetically interacts with dFOXO in vitro and in vivo to regulate the transcriptional activation of insulin receptor (InR) and adipose lipase brummer (bmm). The transcriptional co-regulation by Kr-h1 and dFOXO may represent a broad mechanism by which Kruppel-like factors integrate with insulin signaling to maintain metabolic homeostasis and coordinate organism growth.
Collapse
|
69
|
Abstract
Forkhead box O (FOXO) transcription factors are central regulators of cellular homeostasis. FOXOs respond to a wide range of external stimuli, including growth factor signaling, oxidative stress, genotoxic stress, and nutrient deprivation. These signaling inputs regulate FOXOs through a number of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and methylation. Covalent modifications can affect localization, DNA binding, and interactions with other cofactors in the cell. FOXOs integrate the various modifications to regulate cell type-specific gene expression programs that are essential for metabolic homeostasis, redox balance, and the stress response. Together, these functions are critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis during development and to support healthy aging.
Collapse
|
70
|
Peng XL, So KK, He L, Zhao Y, Zhou J, Li Y, Yao M, Xu B, Zhang S, Yao H, Hu P, Sun H, Wang H. MyoD- and FoxO3-mediated hotspot interaction orchestrates super-enhancer activity during myogenic differentiation. Nucleic Acids Res 2017; 45:8785-8805. [PMID: 28575289 PMCID: PMC5587775 DOI: 10.1093/nar/gkx488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements enriching lineage specific key transcription factors (TFs) to form hotspots. A paucity of identification and functional dissection promoted us to investigate SEs during myoblast differentiation. ChIP-seq analysis of histone marks leads to the uncovering of SEs which remodel progressively during the course of differentiation. Further analyses of TF ChIP-seq enable the definition of SE hotspots co-bound by the master TF, MyoD and other TFs, among which we perform in-depth dissection for MyoD/FoxO3 interaction in driving the hotspots formation and SE activation. Furthermore, using Myogenin as a model locus, we elucidate the hierarchical and complex interactions among hotspots during the differentiation, demonstrating SE function is propelled by the physical and functional cooperation among hotspots. Finally, we show MyoD and FoxO3 are key in orchestrating the Myogenin hotspots interaction and activation. Altogether our results identify muscle-specific SEs and provide mechanistic insights into the functionality of SE.
Collapse
Affiliation(s)
- Xianlu L Peng
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Karl K So
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, China
| | - Bo Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
71
|
Abstract
Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan. Recent studies have shown that metabolism plays an important role in regulating epigenetic modifications and that this regulation dramatically affects the aging process. This review focuses on current knowledge regarding the mechanisms of stem cell aging, and the links between cellular metabolism and epigenetic regulation. In addition, we discuss how these interactions sense and respond to environmental stress in order to maintain stem cell homeostasis, and how environmental stimuli regulate stem cell function. Additionally, we highlight recent advances in the development of therapeutic strategies to rejuvenate dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Ruotong Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guang-Hui Liu
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
72
|
Abstract
During aging, the mechanisms that normally maintain health and stress resistance strikingly decline, resulting in decrepitude, frailty, and ultimately death. Exactly when and how this decline occurs is unknown. Changes in transcriptional networks and chromatin state lie at the heart of age-dependent decline. These epigenomic changes are not only observed during aging but also profoundly affect cellular function and stress resistance, thereby contributing to the progression of aging. We propose that the dysregulation of transcriptional and chromatin networks is a crucial component of aging. Understanding age-dependent epigenomic changes will yield key insights into how aging begins and progresses and should lead to the development of new therapeutics that delay or even reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Lauren N Booth
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
73
|
Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. J Neurosci 2017; 37:523-536. [PMID: 28100736 DOI: 10.1523/jneurosci.1075-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG-binding domain 1 (MBD1) belongs to a family of methyl-CpG-binding proteins that are epigenetic "readers" linking DNA methylation to transcriptional regulation. MBD1 is expressed in neural stem cells residing in the dentate gyrus of the adult hippocampus (aNSCs) and MBD1 deficiency leads to reduced neuronal differentiation, impaired neurogenesis, learning deficits, and autism-like behaviors in mice; however, the precise function of MBD1 in aNSCs remains unexplored. Here, we show that MBD1 is important for maintaining the integrity and stemness of NSCs, which is critical for their ability to generate neurons. MBD1 deficiency leads to the accumulation of undifferentiated NSCs and impaired transition into the neuronal lineage. Transcriptome analysis of neural stem and progenitor cells isolated directly from the dentate gyrus of MBD1 mutant (KO) and WT mice showed that gene sets related to cell differentiation, particularly astrocyte lineage genes, were upregulated in KO cells. We further demonstrated that, in NSCs, MBD1 binds and represses directly specific genes associated with differentiation. Our results suggest that MBD1 maintains the multipotency of NSCs by restraining the onset of differentiation genes and that untimely expression of these genes in MBD1-deficient stem cells may interfere with normal cell lineage commitment and cause the accumulation of undifferentiated cells. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation contributes to adult neurogenesis and the potential impact of its dysregulation. SIGNIFICANCE STATEMENT Adult neural stem cells (aNSCs) in the hippocampus self-renew and generate neurons throughout life. We show that methyl-CpG-binding domain 1 (MBD1), a DNA methylation "reader," is important for maintaining the integrity of NSCs, which is critical for their neurogenic potency. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation preserves the multipotency of stem cells for subsequent differentiation.
Collapse
|
74
|
Stancill JS, Cartailler JP, Clayton HW, O'Connor JT, Dickerson MT, Dadi PK, Osipovich AB, Jacobson DA, Magnuson MA. Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca 2+-Regulated Genes. Diabetes 2017; 66:2175-2187. [PMID: 28550109 PMCID: PMC5521870 DOI: 10.2337/db16-1355] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
We used mice lacking Abcc8, a key component of the β-cell KATP-channel, to analyze the effects of a sustained elevation in the intracellular Ca2+ concentration ([Ca2+]i) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking Abcc8 into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified Abcc8-/- β-cells confirmed an increase in Ppy gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca2+ signaling, the maintenance of β-cell identity, and cell adhesion. The expression of S100a6 and S100a4, two highly upregulated genes, is closely correlated with membrane depolarization, suggesting their use as markers for an increase in [Ca2+]i Moreover, a bioinformatics analysis predicts that many of the dysregulated genes are regulated by common transcription factors, one of which, Ascl1, was confirmed to be directly controlled by Ca2+ influx in β-cells. Interestingly, among the upregulated genes is Aldh1a3, a putative marker of β-cell dedifferentiation, and other genes associated with β-cell failure. Taken together, our results suggest that chronically elevated β-cell [Ca2+]i in Abcc8-/- islets contributes to the alteration of β-cell identity, islet cell numbers and morphology, and gene expression by disrupting a network of Ca2+-regulated genes.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | | | - Hannah W Clayton
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - James T O'Connor
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
75
|
Park NI, Guilhamon P, Desai K, McAdam RF, Langille E, O'Connor M, Lan X, Whetstone H, Coutinho FJ, Vanner RJ, Ling E, Prinos P, Lee L, Selvadurai H, Atwal G, Kushida M, Clarke ID, Voisin V, Cusimano MD, Bernstein M, Das S, Bader G, Arrowsmith CH, Angers S, Huang X, Lupien M, Dirks PB. ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells. Cell Stem Cell 2017; 21:209-224.e7. [PMID: 28712938 DOI: 10.1016/j.stem.2017.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/10/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Glioblastomas exhibit a hierarchical cellular organization, suggesting that they are driven by neoplastic stem cells that retain partial yet abnormal differentiation potential. Here, we show that a large subset of patient-derived glioblastoma stem cells (GSCs) express high levels of Achaete-scute homolog 1 (ASCL1), a proneural transcription factor involved in normal neurogenesis. ASCL1hi GSCs exhibit a latent capacity for terminal neuronal differentiation in response to inhibition of Notch signaling, whereas ASCL1lo GSCs do not. Increasing ASCL1 levels in ASCL1lo GSCs restores neuronal lineage potential, promotes terminal differentiation, and attenuates tumorigenicity. ASCL1 mediates these effects by functioning as a pioneer factor at closed chromatin, opening new sites to activate a neurogenic gene expression program. Directing GSCs toward terminal differentiation may provide therapeutic applications for a subset of GBM patients and strongly supports efforts to restore differentiation potential in GBM and other cancers.
Collapse
Affiliation(s)
- Nicole I Park
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kinjal Desai
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rochelle F McAdam
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ellen Langille
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Madlen O'Connor
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaoyang Lan
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Erick Ling
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hayden Selvadurai
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gurnit Atwal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ian D Clarke
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; OCAD University, Toronto, ON M5T 1W1, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Mark Bernstein
- Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Sunit Das
- Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Gary Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Xi Huang
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
76
|
Link W, Fernandez-Marcos PJ. FOXO transcription factors at the interface of metabolism and cancer. Int J Cancer 2017. [PMID: 28631330 DOI: 10.1002/ijc.30840] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes refers to a group of metabolic diseases characterized by impaired insulin signalling and high blood glucose. A growing body of epidemiological evidence links diabetes to several types of cancer but the underlying molecular mechanisms are poorly understood. The signalling cascade connecting insulin and FOXO proteins provides a compelling example for a conserved pathway at the interface between insulin signalling and cancer. FOXOs are transcription factors that orchestrate programs of gene expression known to control a variety of processes in response to cellular stress. Genes regulated by this family of proteins are involved in the regulation of cellular energy production, oxidative stress resistance and cell viability and proliferation. Accordingly, FOXO factors have been shown to play an important role in the suppression of tumour growth and in the regulation of metabolic homeostasis. There is emerging evidence that deregulation of FOXO factors might account for the association between insulin resistance-related metabolic disorders and cancer.
Collapse
Affiliation(s)
- Wolfgang Link
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, room 2.22, Faro, 8005-139, Portugal.,Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | | |
Collapse
|
77
|
Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis. Nat Commun 2017; 8:15903. [PMID: 28660881 PMCID: PMC5493768 DOI: 10.1038/ncomms15903] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence suggests that active DNA demethylation machinery plays important epigenetic roles in mammalian adult neurogenesis; however, the precise molecular mechanisms and critical functional players of DNA demethylation in this process remain largely unexplored. Ten–eleven translocation (Tet) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and its downstream derivatives. Here we show that 5hmC is elevated during the differentiation of adult neural stem cells (aNSCs), and Tet2 is primarily responsible for modulating 5hmC dynamics. Depletion of Tet2 leads to increased aNSC proliferation and reduced differentiation in vitro and in vivo. Genome-wide transcriptional analyses reveal important epigenetic roles of Tet2 in maintaining the transcriptome landscape related to neurogenesis. Mechanistically, transcription factor forkhead box O3 (Foxo3a) physically interacts with Tet2 and regulates the expression of genes related to aNSC proliferation. These data together establish an important role for the Tet2-Foxo3a axis in epigenetically regulating critical genes in aNSCs during adult neurogenesis. Epigenetic modifications, such as DNA methylation, play an important role in adult neurogenesis. Here the authors show that Tet2, which converts 5mC to 5hmC, interacts with the transcription factor Foxo3a and regulates critical genes related to the proliferation and differentiation of adult neural stem cells.
Collapse
|
78
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
79
|
Luo H, Chiang HH, Louw M, Susanto A, Chen D. Nutrient Sensing and the Oxidative Stress Response. Trends Endocrinol Metab 2017; 28:449-460. [PMID: 28314502 PMCID: PMC5438757 DOI: 10.1016/j.tem.2017.02.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 01/29/2023]
Abstract
The simplicity and effectiveness of calorie restriction (CR) in lifespan and healthspan extension have fascinated generations searching for the Fountain of Youth. CR reduces levels of oxidative stress and damage, which have been postulated in the free radical theory of aging as a major cause of aging and diseases of aging. This reduction has long been viewed as a result of passive slowing of metabolism. Recent advances in nutrient sensing have provided molecular insights into the oxidative stress response and suggest that CR triggers an active defense program involving a cascade of molecular regulators to reduce oxidative stress. Physiological studies have provided strong support for oxidative stress in the development of aging-associated conditions and diseases but have also revealed the surprising requirement for oxidative stress to support normal physiological functions and, in some contexts, even slow aging and prevent the progression of cancer. Deciphering the molecular mechanisms and physiological implications of the oxidative stress response during CR will increase our understanding of the basic biology of aging and pave the way for the design of CR mimetics to improve healthspan.
Collapse
Affiliation(s)
- Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hou-Hsien Chiang
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Makensie Louw
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Albert Susanto
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
80
|
Bulstrode H, Johnstone E, Marques-Torrejon MA, Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, Gangoso E, Gagrica S, Ender C, Fotaki V, Sproul D, Bertone P, Pollard SM. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 2017; 31:757-773. [PMID: 28465359 PMCID: PMC5435889 DOI: 10.1101/gad.293027.116] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets include cell cycle and epigenetic regulators (e.g., Foxo3, Plk1, Mycn, Dnmt1, Dnmt3b, and Tet3). Foxo3 is a critical repressed downstream effector that is controlled via a conserved FOXG1/SOX2-bound cis-regulatory element. Foxo3 loss, combined with exposure to the DNA methylation inhibitor 5-azacytidine, enforces astrocyte dedifferentiation. DNA methylation profiling in differentiating astrocytes identifies changes at multiple polycomb targets, including the promoter of Foxo3 In patient-derived GBM stem cells, CRISPR/Cas9 deletion of FOXG1 does not impact proliferation in vitro; however, upon transplantation in vivo, FOXG1-null cells display increased astrocyte differentiation and up-regulate FOXO3. In contrast, SOX2 ablation attenuates proliferation, and mutant cells cannot be expanded in vitro. Thus, FOXG1 and SOX2 operate in complementary but distinct roles to fuel unconstrained self-renewal in GBM stem cells via transcriptional control of core cell cycle and epigenetic regulators.
Collapse
Affiliation(s)
- Harry Bulstrode
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Ewan Johnstone
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Maria Angeles Marques-Torrejon
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Kirsty M Ferguson
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Raul Bardini Bressan
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Carla Blin
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Vivien Grant
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sabine Gogolok
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Ester Gangoso
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sladjana Gagrica
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Christine Ender
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Vassiliki Fotaki
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Duncan Sproul
- MRC Human Genetics Unit
- Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paul Bertone
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Steven M Pollard
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| |
Collapse
|
81
|
Oulhen N, Swartz SZ, Laird J, Mascaro A, Wessel GM. Transient translational quiescence in primordial germ cells. Development 2017; 144:1201-1210. [PMID: 28235822 PMCID: PMC5399625 DOI: 10.1242/dev.144170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/01/2017] [Indexed: 01/07/2023]
Abstract
Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here, we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin and L-homopropargylglycine Click-iT technologies, and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knockdown of translation of the RNA-binding protein Nanos2 by morpholino antisense oligonucleotides, or knockout of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial, increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - S Zachary Swartz
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Whitehead Institute for Biomedical Research, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Jessica Laird
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Alexandra Mascaro
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
82
|
An interaction network of mental disorder proteins in neural stem cells. Transl Psychiatry 2017; 7:e1082. [PMID: 28375211 PMCID: PMC5416693 DOI: 10.1038/tp.2017.52] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Mental disorders (MDs) such as intellectual disability (ID), autism spectrum disorders (ASD) and schizophrenia have a strong genetic component. Recently, many gene mutations associated with ID, ASD or schizophrenia have been identified by high-throughput sequencing. A substantial fraction of these mutations are in genes encoding transcriptional regulators. Transcriptional regulators associated with different MDs but acting in the same gene regulatory network provide information on the molecular relation between MDs. Physical interaction between transcriptional regulators is a strong predictor for their cooperation in gene regulation. Here, we biochemically purified transcriptional regulators from neural stem cells, identified their interaction partners by mass spectrometry and assembled a protein interaction network containing 206 proteins, including 68 proteins mutated in MD patients and 52 proteins significantly lacking coding variation in humans. Our network shows molecular connections between established MD proteins and provides a discovery tool for novel MD genes. Network proteins preferentially co-localize on the genome and cooperate in disease-relevant gene regulation. Our results suggest that the observed transcriptional regulators associated with ID, ASD or schizophrenia are part of a transcriptional network in neural stem cells. We find that more severe mutations in network proteins are associated with MDs that include lower intelligence quotient (IQ), suggesting that the level of disruption of a shared transcriptional network correlates with cognitive dysfunction.
Collapse
|
83
|
Brunet A, Rando TA. Interaction between epigenetic and metabolism in aging stem cells. Curr Opin Cell Biol 2017; 45:1-7. [PMID: 28129586 PMCID: PMC5482778 DOI: 10.1016/j.ceb.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/31/2016] [Indexed: 01/03/2023]
Abstract
Aging is accompanied by a decline in tissue function, regeneration, and repair. A large part of this decline is caused by the deterioration of tissue stem cell function. Understanding the mechanisms that drive stem cell aging and how to counteract them is a critical step for enhancing tissue repair and maintenance during aging. Emerging evidence indicates that epigenetic modifiers and metabolism regulators interact to impact lifespan, suggesting that this mechanism may also affect stem cell function with age. This review focuses on the interaction between chromatin and metabolism in the regulation of tissue stem cells during aging. We also discuss how these mechanisms integrate environmental stimuli such as nutrient stress to regulate stem cell function. Finally, this review examines new perspectives for regeneration, rejuvenation, and treatment of age-related decline of stem cell function.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, USA.
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
84
|
Abstract
The FOXO family of transcription factors plays a conserved role in longevity and tissue homeostasis across species. In the mammalian nervous system, emerging evidence has implicated FOXOs in cognitive performance, stem cell maintenance, regeneration, and protection against stress. Much of what we know about neuronal functions of FOXO emerged from recent studies in C. elegans. Similar to mammalian FOXO, the worm FOXO ortholog, called DAF-16, regulates learning and memory, regeneration, and stress resistance in neurons. Here, we discuss the current state of our knowledge of FOXO’s functions in neurons in mammals and invertebrates, and highlight areas where our understanding is limited. Defining the function of FOXO factors in the healthy, aged, and diseased brain may have important implications for improving healthspan and treating neurodegenerative disease.
Collapse
Affiliation(s)
- Sun Y Kim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
85
|
Abstract
In this review, Ng and Shyh-Chang review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. Advances in metabolomics have deepened our understanding of the roles that specific modes of metabolism play in programming stem cell fates. Here, we review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. The metabolic programming of stem cells represents a fine balance between the intrinsic needs of a cellular state and the constraints imposed by extrinsic conditions. A more complete understanding of these needs and constraints will afford us greater mastery over our control of stem cell fates.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore 138675
| |
Collapse
|
86
|
Bressan RB, Dewari PS, Kalantzaki M, Gangoso E, Matjusaitis M, Garcia-Diaz C, Blin C, Grant V, Bulstrode H, Gogolok S, Skarnes WC, Pollard SM. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development 2017; 144:635-648. [PMID: 28096221 PMCID: PMC5312033 DOI: 10.1242/dev.140855] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable - experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis.
Collapse
Affiliation(s)
| | - Pooran Singh Dewari
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Kalantzaki
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Ester Gangoso
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Mantas Matjusaitis
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Claudia Garcia-Diaz
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Carla Blin
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Vivien Grant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Bulstrode
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
87
|
Waclaw RR, Ehrman LA, Merchan-Sala P, Kohli V, Nardini D, Campbell K. Foxo1 is a downstream effector of Isl1 in direct pathway striatal projection neuron development within the embryonic mouse telencephalon. Mol Cell Neurosci 2017; 80:44-51. [PMID: 28213137 DOI: 10.1016/j.mcn.2017.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that the LIM-homeodomain transcription factor Isl1 is required for the survival and differentiation of direct pathway striatonigral neurons during embryonic development. The downstream effectors of Isl1 in these processes are presently unknown. We show here that Foxo1, a transcription factor that has been implicated in cell survival, is expressed in striatal projection neurons (SPNs) that derive from the Isl1 lineage (i.e. direct pathway SPNs). Moreover, Isl1 conditional knockouts (cKOs) show a severe loss of Foxo1 expression at E15.5 with a modest recovery by E18.5. Although Foxo1 is enriched in the direct pathway SPNs at embryonic stages, it is expressed in both direct and indirect pathway SPNs at postnatal time points as evidenced by co-localization with EGFP in both Drd1-EGFP and Drd2-EGFP BAC transgenic mice. Foxo1 was not detected in striatal interneurons as marked by the transcription factor Nkx2.1. Conditional knockout of Foxo1 using Dlx5/6-CIE mice results in reduced expression of the SPN marker Darpp-32, as well as in the direct pathway SPN markers Ebf1 and Zfp521 within the embryonic striatum at E15.5. However, this phenotype improves in the conditional mutants by E18.5. Interestingly, the Foxo family members, Foxo3 and Foxo6, remain expressed at late embryonic stages in the Foxo1 cKOs unlike the Isl1 cKOs where Foxo1/3/6 as well as the Foxo1/3 target Bach2 are all reduced. Taken together, these findings suggest that Foxo-regulated pathways are downstream of Isl1 in the survival and/or differentiation of direct pathway SPNs.
Collapse
Affiliation(s)
- R R Waclaw
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - L A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - P Merchan-Sala
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - V Kohli
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - D Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - K Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
88
|
Shining a light on early stress responses and late-onset disease vulnerability. Proc Natl Acad Sci U S A 2017; 114:2109-2111. [PMID: 28179564 DOI: 10.1073/pnas.1700323114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
89
|
Ware M, Hamdi-Rozé H, Le Friec J, David V, Dupé V. Regulation of downstream neuronal genes by proneural transcription factors during initial neurogenesis in the vertebrate brain. Neural Dev 2016; 11:22. [PMID: 27923395 PMCID: PMC5142277 DOI: 10.1186/s13064-016-0077-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Neurons arise in very specific regions of the neural tube, controlled by components of the Notch signalling pathway, proneural genes, and other bHLH transcription factors. How these specific neuronal areas in the brain are generated during development is just beginning to be elucidated. Notably, the critical role of proneural genes during differentiation of the neuronal populations that give rise to the early axon scaffold in the developing brain is not understood. The regulation of their downstream effectors remains poorly defined. RESULTS This study provides the first overview of the spatiotemporal expression of proneural genes in the neuronal populations of the early axon scaffold in both chick and mouse. Overexpression studies and mutant mice have identified a number of specific neuronal genes that are targets of proneural transcription factors in these neuronal populations. CONCLUSION Together, these results improve our understanding of the molecular mechanisms involved in differentiation of the first neuronal populations in the brain.
Collapse
Affiliation(s)
- Michelle Ware
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Present address: Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, CB2 3DY, Cambridge, UK
| | - Houda Hamdi-Rozé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
| | - Julien Le Friec
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France
| | - Véronique David
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
| | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
90
|
Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:640-658. [PMID: 27647730 PMCID: PMC5113677 DOI: 10.1002/wdev.248] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) reside in specialized niches in the adult mammalian brain. The ventricular-subventricular zone (V-SVZ), adjacent to the lateral ventricles, gives rise to olfactory bulb (OB) neurons, and some astrocytes and oligodendrocytes throughout life. In vitro assays have been widely used to retrospectively identify NSCs. However, cells that behave as stem cells in vitro do not reflect the identity, diversity, and behavior of NSCs in vivo. Novel tools including fluorescence activated cell sorting, lineage-tracing, and clonal analysis have uncovered multiple layers of adult V-SVZ NSC heterogeneity, including proliferation state and regional identity. In light of these findings, we reexamine the concept of adult NSCs, considering heterogeneity as a key parameter for analyzing their dynamics in vivo. V-SVZ NSCs form a mosaic of quiescent (qNSCs) and activated cells (aNSCs) that reside in regionally distinct microdomains, reflecting their regional embryonic origins, and give rise to specific subtypes of OB interneurons. Prospective purification and transcriptome analysis of qNSCs and aNSCs has illuminated their molecular and functional properties. qNSCs are slowly dividing, have slow kinetics of neurogenesis in vivo, can be recruited to regenerate the V-SVZ, and only rarely give rise to in vitro colonies. aNSCs are highly proliferative, undergo rapid clonal expansion of the neurogenic lineage in vivo, and readily form in vitro colonies. Key open questions remain about stem cell dynamics in vivo and the lineage relationship between qNSCs and aNSCs under homeostasis and regeneration, as well as context-dependent plasticity of regionally distinct adult NSCs under different external stimuli. WIREs Dev Biol 2016, 5:640-658. doi: 10.1002/wdev.248 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Codega
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
91
|
Webb AE, Kundaje A, Brunet A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 2016; 15:673-85. [PMID: 27061590 PMCID: PMC4933671 DOI: 10.1111/acel.12479] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/20/2022] Open
Abstract
FOXO transcription factors (FOXOs) are central regulators of lifespan across species, yet they also have cell‐specific functions, including adult stem cell homeostasis and immune function. Direct targets of FOXOs have been identified genome‐wide in several species and cell types. However, whether FOXO targets are specific to cell types and species or conserved across cell types and throughout evolution remains uncharacterized. Here, we perform a meta‐analysis of direct FOXO targets across tissues and organisms, using data from mammals as well as Caenorhabditis elegans and Drosophila. We show that FOXOs bind cell type‐specific targets, which have functions related to that particular cell. Interestingly, FOXOs also share targets across different tissues in mammals, and the function and even the identity of these shared mammalian targets are conserved in invertebrates. Evolutionarily conserved targets show enrichment for growth factor signaling, metabolism, stress resistance, and proteostasis, suggesting an ancestral, conserved role in the regulation of these processes. We also identify candidate cofactors at conserved FOXO targets that change in expression with age, including CREB and ETS family factors. This meta‐analysis provides insight into the evolution of the FOXO network and highlights downstream genes and cofactors that may be particularly important for FOXO's conserved function in adult homeostasis and longevity.
Collapse
Affiliation(s)
- Ashley E. Webb
- Department of Genetics Stanford University 300 Pasteur Drive Stanford CA 94305 USA
| | - Anshul Kundaje
- Department of Genetics Stanford University 300 Pasteur Drive Stanford CA 94305 USA
| | - Anne Brunet
- Department of Genetics Stanford University 300 Pasteur Drive Stanford CA 94305 USA
- Glenn Laboratories for the Biology of Aging at Stanford Stanford CA 94305 USA
| |
Collapse
|
92
|
Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, Girard L, Minna JD, Gazdar AF, Cobb MH, Johnson JE. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep 2016; 16:1259-1272. [PMID: 27452466 DOI: 10.1016/j.celrep.2016.06.081] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 04/25/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Small cell lung carcinoma (SCLC) is a high-grade pulmonary neuroendocrine tumor. The transcription factors ASCL1 and NEUROD1 play crucial roles in promoting malignant behavior and survival of human SCLC cell lines. Here, we find that ASCL1 and NEUROD1 identify heterogeneity in SCLC, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1, but not NEUROD1, is present in mouse pulmonary neuroendocrine cells, and only ASCL1 is required in vivo for tumor formation in mouse models of SCLC. ASCL1 targets oncogenic genes including MYCL1, RET, SOX2, and NFIB while NEUROD1 targets MYC. ASCL1 and NEUROD1 regulate different genes that commonly contribute to neuronal function. ASCL1 also regulates multiple genes in the NOTCH pathway including DLL3. Together, ASCL1 and NEUROD1 distinguish heterogeneity in SCLC with distinct genomic landscapes and distinct gene expression programs.
Collapse
Affiliation(s)
- Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trisha K Savage
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexander Augustyn
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jihan K Osborne
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luc Girard
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D Minna
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
93
|
Jahchan NS, Lim JS, Bola B, Morris K, Seitz G, Tran KQ, Xu L, Trapani F, Morrow CJ, Cristea S, Coles GL, Yang D, Vaka D, Kareta MS, George J, Mazur PK, Nguyen T, Anderson WC, Dylla SJ, Blackhall F, Peifer M, Dive C, Sage J. Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer. Cell Rep 2016; 16:644-56. [PMID: 27373157 PMCID: PMC4956576 DOI: 10.1016/j.celrep.2016.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/19/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine lung cancer characterized by fast growth, early dissemination, and rapid resistance to chemotherapy. We identified a population of long-term tumor-propagating cells (TPCs) in a mouse model of SCLC. This population, marked by high levels of EpCAM and CD24, is also prevalent in human primary SCLC tumors. Murine SCLC TPCs are numerous and highly proliferative but not intrinsically chemoresistant, indicating that not all clinical features of SCLC are linked to TPCs. SCLC TPCs possess a distinct transcriptional profile compared to non-TPCs, including elevated MYC activity. Genetic and pharmacological inhibition of MYC in SCLC cells to non-TPC levels inhibits long-term propagation but not short-term growth. These studies identify a highly tumorigenic population of SCLC cells in mouse models, cell lines, and patient tumors and a means to target them in this most fatal form of lung cancer.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Shan Lim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Becky Bola
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Karen Morris
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Garrett Seitz
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kim Q Tran
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francesca Trapani
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Christopher J Morrow
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Sandra Cristea
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael S Kareta
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie George
- Medical Faculty, Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Pawel K Mazur
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thuyen Nguyen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Fiona Blackhall
- Institute of Cancer Sciences, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin Peifer
- Medical Faculty, Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
94
|
FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 2016; 113:8514-9. [PMID: 27402759 DOI: 10.1073/pnas.1607079113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We and others have shown that embryonic and neonatal fibroblasts can be directly converted into induced neuronal (iN) cells with mature functional properties. Reprogramming of fibroblasts from adult and aged mice, however, has not yet been explored in detail. The ability to generate fully functional iN cells from aged organisms will be particularly important for in vitro modeling of diseases of old age. Here, we demonstrate production of functional iN cells from fibroblasts that were derived from mice close to the end of their lifespan. iN cells from aged mice had apparently normal active and passive neuronal membrane properties and formed abundant synaptic connections. The reprogramming efficiency gradually decreased with fibroblasts derived from embryonic and neonatal mice, but remained similar for fibroblasts from postnatal mice of all ages. Strikingly, overexpression of a transcription factor, forkhead box O3 (FoxO3), which is implicated in aging, blocked iN cell conversion of embryonic fibroblasts, whereas knockout or knockdown of FoxO3 increased the reprogramming efficiency of adult-derived but not of embryonic fibroblasts and also enhanced functional maturation of resulting iN cells. Hence, FoxO3 has a central role in the neuronal reprogramming susceptibility of cells, and the importance of FoxO3 appears to change during development.
Collapse
|
95
|
Induction of specific neuron types by overexpression of single transcription factors. In Vitro Cell Dev Biol Anim 2016; 52:961-973. [PMID: 27251161 DOI: 10.1007/s11626-016-0056-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.
Collapse
|
96
|
Affiliation(s)
- Jiyung Shin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
97
|
Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 2015; 99:527-37. [DOI: 10.1016/j.neuropharm.2015.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 01/26/2023]
|
98
|
DeCarolis NA, Kirby ED, Wyss-Coray T, Palmer TD. The Role of the Microenvironmental Niche in Declining Stem-Cell Functions Associated with Biological Aging. Cold Spring Harb Perspect Med 2015; 5:5/12/a025874. [PMID: 26627453 DOI: 10.1101/cshperspect.a025874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is strongly correlated with decreases in neurogenesis, the process by which neural stem and progenitor cells proliferate and differentiate into new neurons. In addition to stem-cell-intrinsic factors that change within the aging stem-cell pool, recent evidence emphasizes new roles for systemic and microenvironmental factors in modulating the neurogenic niche. This article focuses on new insights gained through the use of heterochronic parabiosis models, in which an old mouse and a young circulatory system are joined. By studying the brains of both young and old mice, researchers are beginning to uncover circulating proneurogenic "youthful" factors and "aging" factors that decrease stem-cell activity and neurogenesis. Ultimately, the identification of factors that influence stem-cell aging may lead to strategies that slow or even reverse age-related decreases in neural-stem-cell (NSC) function and neurogenesis.
Collapse
Affiliation(s)
- Nathan A DeCarolis
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Elizabeth D Kirby
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305 Center for Tissue Regeneration, Repair, and Restoration, Veterans Administration, Palo Alto Health Care Systems, Palo Alto, California 94304
| | - Theo D Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305 Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
99
|
Functional regulation of FoxO1 in neural stem cell differentiation. Cell Death Differ 2015; 22:2034-45. [PMID: 26470727 DOI: 10.1038/cdd.2015.123] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 11/08/2022] Open
Abstract
Forkhead transcription factor family O (FoxO) maintains adult stem cell reserves by supporting their long-term proliferative potential. MicroRNAs (miRs) regulate neuronal stem/progenitor cell (NSPC) proliferation and differentiation during neural development by controlling the expression of a specific set of target genes. In the neurogenic subventricular zone, FoxO1 is specifically expressed in NSPCs and is no longer detected during the transition to neuroblast stage, forming an inverse correlation with miR-9 expression. The 3'-untranslated region of FoxO1 contains a conserved target sequence of miR-9 and FoxO1 expression is coordinated in concert with miR-9 during neuronal differentiation. Our study demonstrates that FoxO1 contributes to NSPC fate decision through its cooperation with the Notch signaling pathway.
Collapse
|
100
|
Beckervordersandforth R, Zhang CL, Lie DC. Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018879. [PMID: 26430216 DOI: 10.1101/cshperspect.a018879] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult-generated dentate granule neurons have emerged as major contributors to hippocampal plasticity. New neurons are generated from neural stem cells through a complex sequence of proliferation, differentiation, and maturation steps. Development of the new neuron is dependent on the precise temporal activity of transcription factors, which coordinate the expression of stage-specific genetic programs. Here, we review current knowledge in transcription factor-mediated regulation of mammalian neural stem cells and neurogenesis and will discuss potential mechanisms of how transcription factor networks, on one hand, allow for precise execution of the developmental sequence and, on the other hand, allow for adaptation of the rate and timing of adult neurogenesis in response to complex stimuli. Understanding transcription factor-mediated control of neuronal development will provide new insights into the mechanisms underlying neurogenesis-dependent plasticity in health and disease.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|