51
|
Lin XM, Li S, Zhou C, Li RZ, Wang H, Luo W, Huang YS, Chen LK, Cai JL, Wang TX, Zhang QH, Cao H, Wu XP. Cisplatin induces chemoresistance through the PTGS2-mediated anti-apoptosis in gastric cancer. Int J Biochem Cell Biol 2019; 116:105610. [DOI: 10.1016/j.biocel.2019.105610] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
|
52
|
Rizk J, Kaplinsky J, Agerholm R, Kadekar D, Ivars F, Agace WW, Wong WWL, Szucs MJ, Myers SA, Carr SA, Waisman A, Bekiaris V. SMAC mimetics promote NIK-dependent inhibition of CD4 + T H17 cell differentiation. Sci Signal 2019; 12:eaaw3469. [PMID: 31455723 DOI: 10.1126/scisignal.aaw3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) are selective antagonists of the inhibitor of apoptosis proteins (IAPs), which activate noncanonical NF-κB signaling and promote tumor cell death. Through gene expression analysis, we found that treatment of CD4+ T cells with SMs during T helper 17 (TH17) cell differentiation disrupted the balance between two antagonistic transcription factor modules. Moreover, proteomics analysis revealed that SMs altered the abundance of proteins associated with cell cycle, mitochondrial activity, and the balance between canonical and noncanonical NF-κB signaling. Whereas SMs inhibited interleukin-17 (IL-17) production and ameliorated TH17 cell-driven inflammation, they stimulated IL-22 secretion. Mechanistically, SM-mediated activation of NF-κB-inducing kinase (NIK) and the transcription factors RelB and p52 directly suppressed Il17a expression and IL-17A protein production, as well as the expression of a number of other immune genes. Induction of IL-22 production correlated with the NIK-dependent reduction in cMAF protein abundance and the enhanced activity of the aryl hydrocarbon receptor. Last, SMs also increased IL-9 and IL-13 production and, under competing conditions, favored the differentiation of naïve CD4+ T cells into TH2 cells rather than TH17 cells. These results demonstrate that SMs shape the gene expression and protein profiles of TH17 cells and inhibit TH17 cell-driven autoimmunity.
Collapse
Affiliation(s)
- John Rizk
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Joseph Kaplinsky
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Fredrik Ivars
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - William W Agace
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Matthew J Szucs
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuel A Myers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, Mainz 55131, Germany
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
53
|
Yang JH, Chen WT, Lee MC, Fang WH, Hsu YJ, Chin-Lin, Chen HC, Chang HL, Chen CF, Tu MY, Kuo CW, Lin YH, Hsiao PJ, Su SL. Investigation of the variants at the binding site of inflammatory transcription factor NF-κB in patients with end-stage renal disease. BMC Nephrol 2019; 20:300. [PMID: 31382928 PMCID: PMC6683452 DOI: 10.1186/s12882-019-1471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background A chronic inflammatory state is a prominent feature in patients with end-stage renal disease (ESRD). Nuclear factor-kappa B (NF-κB) is a transcription factor that regulates the expression of genes involved in inflammation. Some genetic studies have demonstrated that the NF-κB genetic mutation could cause kidney injury and kidney disease progression. However, the association of a gene polymorphism in the transcription factor binding site of NF-κB with kidney disease is not clear. Methods We used the Taiwan Biobank database, the University of California, Santa Cruz, reference genome, and a chromatin immunoprecipitation sequencing database to find single nucleotide polymorphisms (SNPs) at potential binding sites of NF-κB. In addition, we performed a case–control study and genotyped 847 patients with ESRD and 846 healthy controls at Tri-Service General Hospital from 2015 to 2016. Furthermore, we used the ChIP assay to identify the binding activity of different genotypes and used Luciferase reporter assay to examine the function of the rs9395890 polymorphism. Result The results of biometric screening in the databases revealed 15 SNPs with the potential binding site of NF-κB. Genotype distributions of rs9395890 were significantly different in ESRD cases and healthy controls (P = 0.049). The ChIP assay revealed an approximately 1.49-fold enrichment of NF-κB of the variant type TT when compared to that of the wild-type GG in rs9395890 (P = 0.027; TT = 3.20 ± 0.16, GT = 2.81 ± 0.20, GG = 1.71 ± 0.18). The luciferase reporter assay showed that the NF-κB binding site activity in T allele was slightly higher than that in G allele, though it is not significant. Conclusions Our findings indicate that rs9395890 is associated with susceptibility to ESRD in Taiwan population. Electronic supplementary material The online version of this article (10.1186/s12882-019-1471-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Hwa Yang
- School of Public Health and Graduate institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 114, Taiwan, Republic of China.,Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Wei-Teing Chen
- Division of Chest Medicine, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China.,Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Meng-Chang Lee
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Chin-Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsiang-Cheng Chen
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsueh-Lu Chang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Fu Chen
- Department of Orthopedics, Taichung Armed Forces General Hospital, Taichung, Taiwan, Republic of China
| | - Min-Yu Tu
- Department of Orthopedics, Kaohsiung Armed Forces General Hospital, Gangshan Branch, Kaohsiung, Taiwan, Republic of China
| | - Chien-Wei Kuo
- Division of Nephrology Dialysis, Shih-Kang Clinic, New Taipei City, Taiwan, Republic of China
| | - Yuan-Hau Lin
- Division of Nephrology Dialysis, Yuan-Lin Clinic, Taipei, Taiwan, Republic of China
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China. .,Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan, Republic of China. .,Big Data Research Center, Fu-Jen Catholic University, Taipei, Taiwan, Republic of China. .,Department of Life Sciences, National Central University, Taoyuan City, Taiwan, Republic of China.
| | - Sui-Lung Su
- School of Public Health and Graduate institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 114, Taiwan, Republic of China. .,School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
54
|
Johnston AD, Simões-Pires CA, Thompson TV, Suzuki M, Greally JM. Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nat Commun 2019; 10:3472. [PMID: 31375681 PMCID: PMC6677801 DOI: 10.1038/s41467-019-11412-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
Functional variants in the genome are usually identified by their association with local gene expression, DNA methylation or chromatin states. DNA sequence motif analysis and chromatin immunoprecipitation studies have provided indirect support for the hypothesis that functional variants alter transcription factor binding to exert their effects. In this study, we provide direct evidence that functional variants can alter transcription factor binding. We identify a multifunctional variant within the TBC1D4 gene encoding a canonical NFκB binding site, and edited it using CRISPR-Cas9 to remove this site. We show that this editing reduces TBC1D4 expression, local chromatin accessibility and binding of the p65 component of NFκB. We then used CRISPR without genomic editing to guide p65 back to the edited locus, demonstrating that this re-targeting, occurring ~182 kb from the gene promoter, is enough to restore the function of the locus, supporting the central role of transcription factors mediating the effects of functional variants.
Collapse
Affiliation(s)
- Andrew D Johnston
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Claudia A Simões-Pires
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Taylor V Thompson
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John M Greally
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
55
|
Single-cell RNA sequencing of a European and an African lymphoblastoid cell line. Sci Data 2019; 6:112. [PMID: 31273215 PMCID: PMC6609777 DOI: 10.1038/s41597-019-0116-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023] Open
Abstract
In biomedical research, lymphoblastoid cell lines (LCLs), often established by in vitro infection of resting B cells with Epstein-Barr virus, are commonly used as surrogates for peripheral blood lymphocytes. Genomic and transcriptomic information on LCLs has been used to study the impact of genetic variation on gene expression in humans. Here we present single-cell RNA sequencing (scRNA-seq) data on GM12878 and GM18502—two LCLs derived from the blood of female donors of European and African ancestry, respectively. Cells from three samples (the two LCLs and a 1:1 mixture of the two) were prepared separately using a 10x Genomics Chromium Controller and deeply sequenced. The final dataset contained 7,045 cells from GM12878, 5,189 from GM18502, and 5,820 from the mixture, offering valuable information on single-cell gene expression in highly homogenous cell populations. This dataset is a suitable reference for population differentiation in gene expression at the single-cell level. Data from the mixture provide additional valuable information facilitating the development of statistical methods for data normalization and batch effect correction. Design Type(s) | transcription profiling design • strain comparison design | Measurement Type(s) | transcription profiling assay | Technology Type(s) | RNA sequencing | Factor Type(s) | ancestry status • sex | Sample Characteristic(s) | GM12878 cell • GM18502 cell • immortal human peripheral vein-derived B cell line cell |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
56
|
Wang C, Li D, Zhang L, Jiang S, Liang J, Narita Y, Hou I, Zhong Q, Zheng Z, Xiao H, Gewurz BE, Teng M, Zhao B. RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. J Virol 2019; 93:e00226-19. [PMID: 31019051 PMCID: PMC6580941 DOI: 10.1128/jvi.00226-19] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) infection of human primary resting B lymphocytes (RBLs) leads to the establishment of lymphoblastoid cell lines (LCLs) that can grow indefinitely in vitro EBV transforms RBLs through the expression of viral latency genes, and these genes alter host transcription programs. To globally measure the transcriptome changes during EBV transformation, primary human resting B lymphocytes (RBLs) were infected with B95.8 EBV for 0, 2, 4, 7, 14, 21, and 28 days, and poly(A) plus RNAs were analyzed by transcriptome sequencing (RNA-seq). Analyses of variance (ANOVAs) found 3,669 protein-coding genes that were differentially expressed (false-discovery rate [FDR] < 0.01). Ninety-four percent of LCL genes that are essential for LCL growth and survival were differentially expressed. Pathway analyses identified a significant enrichment of pathways involved in cell proliferation, DNA repair, metabolism, and antiviral responses. RNA-seq also identified long noncoding RNAs (lncRNAs) differentially expressed during EBV infection. Clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) and CRISPR activation (CRISPRa) found that CYTOR and NORAD lncRNAs were important for LCL growth. During EBV infection, type III EBV latency genes were expressed rapidly after infection. Immediately after LCL establishment, EBV lytic genes were also expressed in LCLs, and ∼4% of the LCLs express gp350. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) and POLR2A chromatin interaction analysis followed by paired-end tag sequencing (ChIA-PET) data linked EBV enhancers to 90% of EBV-regulated genes. Many genes were linked to enhancers occupied by multiple EBNAs or NF-κB subunits. Incorporating these assays, we generated a comprehensive EBV regulome in LCLs.IMPORTANCE Epstein-Barr virus (EBV) immortalization of resting B lymphocytes (RBLs) is a useful model system to study EBV oncogenesis. By incorporating transcriptome sequencing (RNA-seq), chromatin immune precipitation followed by deep sequencing (ChIP-seq), chromatin interaction analysis followed by paired-end tag sequencing (ChIA-PET), and genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen, we identified key pathways that EBV usurps to enable B cell growth and transformation. Multiple layers of regulation could be achieved by cooperations between multiple EBV transcription factors binding to the same enhancers. EBV manipulated the expression of most cell genes essential for lymphoblastoid cell line (LCL) growth and survival. In addition to proteins, long noncoding RNAs (lncRNAs) regulated by EBV also contributed to LCL growth and survival. The data presented in this paper not only allowed us to further define the molecular pathogenesis of EBV but also serve as a useful resource to the EBV research community.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Difei Li
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luyao Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sizun Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isabella Hou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Zhong
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zeguang Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haipeng Xiao
- Department of Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Wang Z, Potoyan DA, Wolynes PG. Stochastic resonances in a distributed genetic broadcasting system: the NF κB/I κB paradigm. J R Soc Interface 2019; 15:rsif.2017.0809. [PMID: 29343631 DOI: 10.1098/rsif.2017.0809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
Gene regulatory networks must relay information from extracellular signals to downstream genes in an efficient, timely and coherent manner. Many complex functional tasks such as the immune response require system-wide broadcasting of information not to one but to many genes carrying out distinct functions whose dynamical binding and unbinding characteristics are widely distributed. In such broadcasting networks, the intended target sites are also often dwarfed in number by the even more numerous non-functional binding sites. Taking the genetic regulatory network of NFκB as an exemplary system we explore the impact of having numerous distributed sites on the stochastic dynamics of oscillatory broadcasting genetic networks pointing out how resonances in binding cycles control the network's specificity and performance. We also show that active kinetic regulation of binding and unbinding through molecular stripping of DNA bound transcription factors can lead to a higher coherence of gene-co-expression and synchronous clearance.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Davit A Potoyan
- Department of Chemistry, Rice University, Houston, TX 77005, USA .,Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Peter G Wolynes
- Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| |
Collapse
|
58
|
Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019; 93:JVI.00238-19. [PMID: 30971472 PMCID: PMC6580952 DOI: 10.1128/jvi.00238-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.
Collapse
|
59
|
Chatterjee B, Roy P, Sarkar UA, Zhao M, Ratra Y, Singh A, Chawla M, De S, Gomes J, Sen R, Basak S. Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF. Front Immunol 2019; 10:997. [PMID: 31134075 PMCID: PMC6514058 DOI: 10.3389/fimmu.2019.00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 11/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
60
|
Afrasiabi A, Parnell GP, Fewings N, Schibeci SD, Basuki MA, Chandramohan R, Zhou Y, Taylor B, Brown DA, Swaminathan S, McKay FC, Stewart GJ, Booth DR. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Genome Med 2019; 11:26. [PMID: 31039804 PMCID: PMC6492329 DOI: 10.1186/s13073-019-0640-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genome wide association studies have identified > 200 susceptibility loci accounting for much of the heritability of multiple sclerosis (MS). Epstein-Barr virus (EBV), a memory B cell tropic virus, has been identified as necessary but not sufficient for development of MS. The molecular and immunological basis for this has not been established. Infected B cell proliferation is driven by signalling through the EBV produced cell surface protein LMP1, a homologue of the MS risk gene CD40. METHODS We have investigated transcriptomes of B cells and EBV-infected B cells at Latency III (LCLs) and identified MS risk genes with altered expression on infection and with expression levels associated with the MS risk genotype (LCLeQTLs). The association of LCLeQTL genomic burden with EBV phenotypes in vitro and in vivo was examined. The risk genotype effect on LCL proliferation with CD40 stimulation was assessed. RESULTS These LCLeQTL MS risk SNP:gene pairs (47 identified) were over-represented in genes dysregulated between B and LCLs (p < 1.53 × 10-4), and as target loci of the EBV transcription factor EBNA2 (p < 3.17 × 10-16). Overall genetic burden of LCLeQTLs was associated with some EBV phenotypes but not others. Stimulation of the CD40 pathway by CD40L reduced LCL proliferation (p < 0.001), dependent on CD40 and TRAF3 MS risk genotypes. Both CD40 and TRAF3 risk SNPs are in binding sites for the EBV transcription factor EBNA2, with expression of each correlated with EBNA2 expression dependent on genotype. CONCLUSIONS These data indicate targeting EBV may be of therapeutic benefit in MS.
Collapse
Affiliation(s)
- Ali Afrasiabi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Grant P Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Nicole Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Stephen D Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Monica A Basuki
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ramya Chandramohan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Yuan Zhou
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Bruce Taylor
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - David A Brown
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Sanjay Swaminathan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Fiona C McKay
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Graeme J Stewart
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
61
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
62
|
Extensive epigenetic and transcriptomic variability between genetically identical human B-lymphoblastoid cells with implications in pharmacogenomics research. Sci Rep 2019; 9:4889. [PMID: 30894562 PMCID: PMC6426863 DOI: 10.1038/s41598-019-40897-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Genotyped human B-lymphoblastoid cell lines (LCLs) are widely used models in mapping quantitative trait loci for chromatin features, gene expression, and drug response. The extent of genotype-independent functional genomic variability of the LCL model, although largely overlooked, may inform association study design. In this study, we use flow cytometry, chromatin immunoprecipitation sequencing and mRNA sequencing to study surface marker patterns, quantify genome-wide chromatin changes (H3K27ac) and transcriptome variability, respectively, among five isogenic LCLs derived from the same individual. Most of the studied LCLs were non-monoclonal and had mature B cell phenotypes. Strikingly, nearly one-fourth of active gene regulatory regions showed significantly variable H3K27ac levels, especially enhancers, among which several were classified as clustered enhancers. Large, contiguous genomic regions showed signs of coordinated activity change. Regulatory differences were mirrored by mRNA expression changes, preferentially affecting hundreds of genes involved in specialized cellular processes including immune and drug response pathways. Differential expression of DPYD, an enzyme involved in 5-fluorouracil (5-FU) catabolism, was associated with variable LCL growth inhibition mediated by 5-FU. The extent of genotype-independent functional genomic variability might highlight the need to revisit study design strategies for LCLs in pharmacogenomics.
Collapse
|
63
|
Kulemzin SV, Matvienko DA, Sabirov AH, Sokratyan AM, Chernikova DS, Belovezhets TN, Chikaev AN, Taranin AV, Gorchakov AA. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics 2019; 12:44. [PMID: 30871576 PMCID: PMC6417161 DOI: 10.1186/s12920-019-0489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. Methods Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. Results In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in “resting” non-activated cells. Conclusions Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences. Electronic supplementary material The online version of this article (10.1186/s12920-019-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A Matvienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Artur H Sabirov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Arpine M Sokratyan
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Daria S Chernikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
64
|
Polyomavirus T Antigen Induces APOBEC3B Expression Using an LXCXE-Dependent and TP53-Independent Mechanism. mBio 2019; 10:mBio.02690-18. [PMID: 30723127 PMCID: PMC6428753 DOI: 10.1128/mbio.02690-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3B is a single-stranded DNA cytosine deaminase with beneficial innate antiviral functions. However, misregulated APOBEC3B can also be detrimental by inflicting APOBEC signature C-to-T and C-to-G mutations in genomic DNA of multiple cancer types. Polyomavirus and papillomavirus oncoproteins induce APOBEC3B overexpression, perhaps to their own benefit, but little is known about the cellular mechanisms hijacked by these viruses to do so. Here we investigate the molecular mechanism of APOBEC3B upregulation by the polyomavirus large T antigen. First, we demonstrate that the upregulated APOBEC3B enzyme is strongly nuclear and partially localized to virus replication centers. Second, truncated T antigen (truncT) is sufficient for APOBEC3B upregulation, and the RB-interacting motif (LXCXE), but not the p53-binding domain, is required. Third, genetic knockdown of RB1 alone or in combination with RBL1 and/or RBL2 is insufficient to suppress truncT-mediated induction of APOBEC3B Fourth, CDK4/6 inhibition by palbociclib is also insufficient to suppress truncT-mediated induction of APOBEC3B Last, global gene expression analyses in a wide range of human cancers show significant associations between expression of APOBEC3B and other genes known to be regulated by the RB/E2F axis. These experiments combine to implicate the RB/E2F axis in promoting APOBEC3B transcription, yet they also suggest that the polyomavirus RB-binding motif has at least one additional function in addition to RB inactivation for triggering APOBEC3B upregulation in virus-infected cells.IMPORTANCE The APOBEC3B DNA cytosine deaminase is overexpressed in many different cancers and correlates with elevated frequencies of C-to-T and C-to-G mutations in 5'-TC motifs, oncogene activation, acquired drug resistance, and poor clinical outcomes. The mechanisms responsible for APOBEC3B overexpression are not fully understood. Here, we show that the polyomavirus truncated T antigen (truncT) triggers APOBEC3B overexpression through its RB-interacting motif, LXCXE, which in turn likely modulates the binding of E2F family transcription factors to promote APOBEC3B expression. This work strengthens the mechanistic linkage between active cell cycling, APOBEC3B overexpression, and cancer mutagenesis. Although this mutational mechanism damages cellular genomes, viruses may leverage it to promote evolution, immune escape, and pathogenesis. The cellular portion of the mechanism may also be relevant to nonviral cancers, where genetic mechanisms often activate the RB/E2F axis and APOBEC3B mutagenesis contributes to tumor evolution.
Collapse
|
65
|
Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, Mumbach MR, Ji AL, Kim DS, Cho SW, Zarnegar BJ, Greenleaf WJ, Chang HY, Khavari PA. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Cell 2018; 176:361-376.e17. [PMID: 30580963 DOI: 10.1016/j.cell.2018.11.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
Here, we present Perturb-ATAC, a method that combines multiplexed CRISPR interference or knockout with genome-wide chromatin accessibility profiling in single cells based on the simultaneous detection of CRISPR guide RNAs and open chromatin sites by assay of transposase-accessible chromatin with sequencing (ATAC-seq). We applied Perturb-ATAC to transcription factors (TFs), chromatin-modifying factors, and noncoding RNAs (ncRNAs) in ∼4,300 single cells, encompassing more than 63 genotype-phenotype relationships. Perturb-ATAC in human B lymphocytes uncovered regulators of chromatin accessibility, TF occupancy, and nucleosome positioning and identified a hierarchy of TFs that govern B cell state, variation, and disease-associated cis-regulatory elements. Perturb-ATAC in primary human epidermal cells revealed three sequential modules of cis-elements that specify keratinocyte fate. Combinatorial deletion of all pairs of these TFs uncovered their epistatic relationships and highlighted genomic co-localization as a basis for synergistic interactions. Thus, Perturb-ATAC is a powerful strategy to dissect gene regulatory networks in development and disease.
Collapse
Affiliation(s)
- Adam J Rubin
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin R Parker
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanyan Qi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Beijing Wu
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvin J Ong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell R Mumbach
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel S Kim
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung Woo Cho
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian J Zarnegar
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
66
|
Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, Kracht M, Schmitz ML. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB J 2018; 33:4188-4202. [PMID: 30526044 PMCID: PMC6404571 DOI: 10.1096/fj.201801638r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing evidence shows that many transcription factors execute important biologic functions independent from their DNA-binding capacity. The NF-κB p65 (RELA) subunit is a central regulator of innate immunity. Here, we investigated the relative functional contribution of p65 DNA-binding and dimerization in p65-deficient human and murine cells reconstituted with single amino acid mutants preventing either DNA-binding (p65 E/I) or dimerization (p65 FL/DD). DNA-binding of p65 was required for RelB-dependent stabilization of the NF-κB p100 protein. The antiapoptotic function of p65 and expression of the majority of TNF-α–induced genes were dependent on p65’s ability to bind DNA and to dimerize. Chromatin immunoprecipitation with massively parallel DNA sequencing experiments revealed that impaired DNA-binding and dimerization strongly diminish the chromatin association of p65. However, there were also p65-independent TNF-α–inducible genes and a subgroup of p65 binding sites still allowed some residual chromatin association of the mutants. These sites were enriched in activator protein 1 (AP-1) binding motifs and showed increased chromatin accessibility and basal transcription. This suggests a mechanism of assisted p65 chromatin association that can be in part facilitated by chromatin priming and cooperativity with other transcription factors such as AP-1.—Riedlinger, T., Liefke, R., Meier-Soelch, J., Jurida, L., Nist, A., Stiewe, T., Kracht, M., Schmitz, M. L. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Robert Liefke
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Philipps University Marburg, Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Liane Jurida
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Andrea Nist
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - M Lienhard Schmitz
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
67
|
Leung A, Trac C, Kato H, Costello KR, Chen Z, Natarajan R, Schones DE. LTRs activated by Epstein-Barr virus-induced transformation of B cells alter the transcriptome. Genome Res 2018; 28:1791-1798. [PMID: 30381291 PMCID: PMC6280761 DOI: 10.1101/gr.233585.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Endogenous retroviruses (ERVs) are ancient viral elements that have accumulated in the genome through retrotransposition events. Although they have lost their ability to transpose, many of the long terminal repeats (LTRs) that originally flanked full-length ERVs maintain the ability to regulate transcription. While these elements are typically repressed in somatic cells, they can function as transcriptional enhancers and promoters when this repression is lost. Epstein-Barr virus (EBV), which transforms primary B cells into continuously proliferating cells, is a tumor virus associated with lymphomas. We report here that transformation of primary B cells by EBV leads to genome-wide activation of LTR enhancers and promoters. The activation of LTRs coincides with local DNA hypomethylation and binding by transcription factors such as RUNX3, EBF1, and EBNA2. The set of activated LTRs is unique to transformed B cells compared with other cell lines known to have activated LTRs. Furthermore, we found that LTR activation impacts the B cell transcriptome by up-regulating transcripts driven by cryptic LTR promoters. These transcripts include genes important to oncogenesis of Hodgkin lymphoma and other cancers, such as HUWE1/HECTH9 These data suggest that the activation of LTRs by EBV-induced transformation is important to the pathology of EBV-associated cancers. Altogether, our results indicate that EBV-induced transformation of B cells alters endogenous retroviral element activity, thereby impacting host gene regulatory networks and oncogenic potential.
Collapse
Affiliation(s)
- Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Hiroyuki Kato
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| | - Zhaoxia Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
68
|
Pan C, Chen Y, Xu T, Wang J, Li D, Han X. Chronic exposure to microcystin-leucine-arginine promoted proliferation of prostate epithelial cells resulting in benign prostatic hyperplasia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1535-1545. [PMID: 30145517 DOI: 10.1016/j.envpol.2018.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-leucine-arginine (MC-LR), as a most common and deleterious variant among all structural analogues of Microcystins (MCs), can cause male reproductive dysfunction. However, its toxic effects on prostate in adult mice have not been invested in detail. In this study, we observed that MC-LR could enter prostate tissues and induce focal hyperplasia and prostate inflammation. Moreover, increased levels of prostate specific antigen (PSA) and prostate acid phosphatase (PAP) in serum of mice following chronic exposure to MC-LR were detected. We also examined increased expression of forkhead box protein M1 (FOXM1) and PSA in human prostate epithelial cells (RWPE-1) treated with MC-LR at low levels, and FOXM1 could regulate PSA expression. Furthermore, MC-LR also induced expression of CyclinD1 via FOXM1/Wnt/β-catenin signaling pathways in RWPE-1 cells, promoting proliferation of prostate epithelial cells, resulting in prostatic hyperplasia in vivo. As a foreign substance, MC-LR also induced immune reaction in RWPE-1 cells mediated by NF-κB pathway, promoting production of pro-inflammatory cytokines and chemokines. Collectively, these findings demonstrated that MC-LR may induce prostatic hyperplasia and prostatitis in mice following chronic low-dose exposure to MC-LR. This work may provide new perspectives in developing new diagnosis and treatment strategies for MC-LR-induced prostatic toxicity.
Collapse
Affiliation(s)
- Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Tianchi Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
69
|
Kalita CA, Brown CD, Freiman A, Isherwood J, Wen X, Pique-Regi R, Luca F. High-throughput characterization of genetic effects on DNA-protein binding and gene transcription. Genome Res 2018; 28:1701-1708. [PMID: 30254052 PMCID: PMC6211638 DOI: 10.1101/gr.237354.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
Many variants associated with complex traits are in noncoding regions and contribute to phenotypes by disrupting regulatory sequences. To characterize these variants, we developed a streamlined protocol for a high-throughput reporter assay, Biallelic Targeted STARR-seq (BiT-STARR-seq), that identifies allele-specific expression (ASE) while accounting for PCR duplicates through unique molecular identifiers. We tested 75,501 oligos (43,500 SNPs) and identified 2720 SNPs with significant ASE (FDR < 10%). To validate disruption of binding as one of the mechanisms underlying ASE, we developed a new high-throughput allele-specific binding assay for NFKB1. We identified 2684 SNPs with allele-specific binding (ASB) (FDR < 10%); 256 of these SNPs also had ASE (OR = 1.97, P-value = 0.0006). Of variants associated with complex traits, 1531 resulted in ASE, and 1662 showed ASB. For example, we characterized that the Crohn's disease risk variant for rs3810936 increases NFKB1 binding and results in altered gene expression.
Collapse
Affiliation(s)
- Cynthia A Kalita
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew Freiman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202, USA
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48202, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
70
|
Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol 2018; 32:15-23. [PMID: 30227386 DOI: 10.1016/j.coviro.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus that establishes lifelong infection in the majority of people worldwide. EBV uses epigenetic reprogramming to switch between multiple latency states in order to colonize the memory B-cell compartment and to then periodically undergo lytic reactivation upon plasma cell differentiation. This review focuses on recent advances in the understanding of epigenetic mechanisms that EBV uses to control its lifecycle and to subvert the growth and survival pathways that underly EBV-driven B-cell differentiation versus B-cell growth transformation, a hallmark of the first human tumor virus. These include the formation of viral super enhancers that drive expression of key host dependency factors, evasion of tumor suppressor responses, prevention of plasmablast differentiation, and regulation of the B-cell lytic switch.
Collapse
Affiliation(s)
- Thomas C Frost
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin E Gewurz
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA; Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
71
|
Zhao M, Joy J, Zhou W, De S, Wood WH, Becker KG, Ji H, Sen R. Transcriptional outcomes and kinetic patterning of gene expression in response to NF-κB activation. PLoS Biol 2018; 16:e2006347. [PMID: 30199532 PMCID: PMC6147668 DOI: 10.1371/journal.pbio.2006347] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/20/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022] Open
Abstract
Transcription factor nuclear factor kappa B (NF-κB) regulates cellular responses to environmental cues. Many stimuli induce NF-κB transiently, making time-dependent transcriptional outputs a fundamental feature of NF-κB activation. Here we show that NF-κB target genes have distinct kinetic patterns in activated B lymphoma cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. We also identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells. The nuclear factor kappa B (NF-κB) family of transcription factors regulates cellular responses to a wide variety of environmental cues. These could be extracellular stimuli that activate cell surface receptors, such as pathogens, or intracellular stress signals such as DNA damage or oxidative stress. In response to these triggers, NF-κB proteins accumulate in the cell nucleus, bind to specific DNA sequences in the genome, and thereby modulate gene transcription. Because of the diversity of signals that activate NF-κB and the ubiquity of this pathway in most cell types, cellular outcomes via NF-κB activation must be finely tuned to respond to the initiating stimulus. One mechanism by which NF-κB-dependent gene expression is regulated is by varying the duration of nuclear NF-κB; some signals lead to persistent nuclear NF-κB, while others lead to transient nuclear NF-κB. Consequently, time dependency of transcriptional responses is a unique signature of the initiating stimulus. Here we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in B lymphoma cells responding to a transient NF-κB-activating stimulus. By genetically manipulating NF-κB induction, we identified direct targets of RELA, a member of the NF-κB family, and provide evidence that kinetic patterns are established by a combination of factors that include the chromatin state of genes prior to cell activation and cofactors that work with RELA.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Supriyo De
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - William H. Wood
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
72
|
Jiang S, Zhou H, Liang J, Gerdt C, Wang C, Ke L, Schmidt SCS, Narita Y, Ma Y, Wang S, Colson T, Gewurz B, Li G, Kieff E, Zhao B. The Epstein-Barr Virus Regulome in Lymphoblastoid Cells. Cell Host Microbe 2018; 22:561-573.e4. [PMID: 29024646 DOI: 10.1016/j.chom.2017.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) transforms B cells to continuously proliferating lymphoblastoid cell lines (LCLs), which represent an experimental model for EBV-associated cancers. EBV nuclear antigens (EBNAs) and LMP1 are EBV transcriptional regulators that are essential for LCL establishment, proliferation, and survival. Starting with the 3D genome organization map of LCL, we constructed a comprehensive EBV regulome encompassing 1,992 viral/cellular genes and enhancers. Approximately 30% of genes essential for LCL growth were linked to EBV enhancers. Deleting EBNA2 sites significantly reduced their target gene expression. Additional EBV super-enhancer (ESE) targets included MCL1, IRF4, and EBF. MYC ESE looping to the transcriptional stat site of MYC was dependent on EBNAs. Deleting MYC ESEs greatly reduced MYC expression and LCL growth. EBNA3A/3C altered CDKN2A/B spatial organization to suppress senescence. EZH2 inhibition decreased the looping at the CDKN2A/B loci and reduced LCL growth. This study provides a comprehensive view of the spatial organization of chromatin during EBV-driven cellular transformation.
Collapse
Affiliation(s)
- Sizun Jiang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Liang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Gerdt
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chong Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Liangru Ke
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Stefanie C S Schmidt
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yohei Narita
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yijie Ma
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tyler Colson
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Gewurz
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, Syafruddin SE, Zaini MN, Richardson EK, Burge J, Warren AY, Stewart GD, Saeb-Parsy K, Samarajiwa SA, Vanharanta S. NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis. Cancer Discov 2018; 8:850-865. [PMID: 29875134 PMCID: PMC6031301 DOI: 10.1158/2159-8290.cd-17-1211] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
Collapse
Affiliation(s)
- Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Louise Harewood
- Cancer Research UK/Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Ioana Olan
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Erika Vojtasova
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Saiful E Syafruddin
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaa'cob Latiff, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - M Nazhif Zaini
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Emma K Richardson
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Johanna Burge
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
74
|
Borghini L, Lu J, Hibberd M, Davila S. Variation in Genome-Wide NF-κB RELA Binding Sites upon Microbial Stimuli and Identification of a Virus Response Profile. THE JOURNAL OF IMMUNOLOGY 2018; 201:1295-1305. [PMID: 29959281 DOI: 10.4049/jimmunol.1800246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
NF-κB transcription factors are master regulators of the innate immune response. Activated downstream of pathogen recognition receptors, they regulate the expression of genes to help fight infections as well as recruit the adaptive immune system. NF-κB responds to a wide variety of signals, but the processes by which stimulus specificity is attained remain unclear. In this article, we characterized the response of one NF-κB member, RELA, to four stimuli mimicking infection in human nasopharyngeal epithelial cells. Comparing genome-wide RELA binding, we observed stimulus-specific sites, although most sites overlapped across stimuli. Specifically, the response to poly I:C (mimicking viral dsRNA and signaling through TLR3) induced a distinct RELA profile, binding in the vicinity of antiviral genes and correlating with corresponding gene expression. This group of binding sites was also enriched in IFN regulatory factor motifs and showed overlapping with IFN regulatory factor binding sites. A novel NF-κB target, OASL, was further validated and showed TLR3-specific activation. This work showed that some RELA DNA binding sites varied in activation response following different stimulations and that interaction with more specialized factors could help achieve this stimulus-specific activity. Our data provide a genomic view of regulated host response to different pathogen stimuli.
Collapse
Affiliation(s)
- Lisa Borghini
- Department of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore; .,Department of Infectious Diseases, Genome Institute of Singapore, Singapore 138672, Singapore; and
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Program, National University of Singapore, Singapore 119077
| | - Martin Hibberd
- Department of Infectious Diseases, Genome Institute of Singapore, Singapore 138672, Singapore; and
| | - Sonia Davila
- Department of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore;
| |
Collapse
|
75
|
Robust imaging and gene delivery to study human lymphoblastoid cell lines. J Hum Genet 2018; 63:945-955. [DOI: 10.1038/s10038-018-0483-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
76
|
Ho MF, Lummertz da Rocha E, Zhang C, Ingle JN, Goss PE, Shepherd LE, Kubo M, Wang L, Li H, Weinshilboum RM. TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor κB p65: Single Nucleotide Polymorphism and Estrogen Dependence. J Pharmacol Exp Ther 2018; 365:700-710. [PMID: 29592948 PMCID: PMC5954488 DOI: 10.1124/jpet.118.247718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
T-cell leukemia 1A (TCL1A) single-nucleotide polymorphisms (SNPs) have been associated with aromatase inhibitor-induced musculoskeletal adverse events. We previously demonstrated that TCL1A is inducible by estradiol (E2) and plays a critical role in the regulation of cytokines, chemokines, and Toll-like receptors in a TCL1A SNP genotype and estrogen-dependent fashion. Furthermore, TCLIA SNP-dependent expression phenotypes can be "reversed" by exposure to selective estrogen receptor modulators such as 4-hydroxytamoxifen (4OH-TAM). The present study was designed to comprehensively characterize the role of TCL1A in transcriptional regulation across the genome by performing RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) assays with lymphoblastoid cell lines. RNA-seq identified 357 genes that were regulated in a TCL1A SNP- and E2-dependent fashion with expression patterns that were 4OH-TAM reversible. ChIP-seq for the same cells identified 57 TCL1A binding sites that could be regulated by E2 in a SNP-dependent fashion. Even more striking, nuclear factor-κB (NF-κB) p65 bound to those same DNA regions. In summary, TCL1A is a novel transcription factor with expression that is regulated in a SNP- and E2-dependent fashion-a pattern of expression that can be reversed by 4OH-TAM. Integrated RNA-seq and ChIP-seq results suggest that TCL1A also acts as a transcriptional coregulator with NF-κB p65, an important immune system transcription factor.
Collapse
Affiliation(s)
- Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Edroaldo Lummertz da Rocha
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Cheng Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - James N Ingle
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Paul E Goss
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Lois E Shepherd
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Michiaki Kubo
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Hu Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| |
Collapse
|
77
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
78
|
Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, Truffaux N, Weiss WA, Resnick AC, Bandopadhayay P, Ligon KL, DuBois SG, Mueller S, Chowdhury D, Haas-Kogan DA. Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Res 2018; 78:4007-4021. [PMID: 29760046 DOI: 10.1158/0008-5472.can-17-3691] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
Aberrant chromatin remodeling and activation of the PI3K pathway have been identified as important mediators of pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) pathogenesis. As inhibition of these pathways are promising therapeutic avenues and radiation is the only modality to prolong survival of patients with DIPG, we sought to explore radiosensitizing functions of such inhibition and to explore mechanisms of action of such agents. Here, we demonstrate that combined treatment with radiotherapy and CUDC-907, a novel first-in-class dual inhibitor of histone deacetylases (HDAC) and PI3K, evokes a potent cytotoxic response in pHGG and DIPG models. CUDC-907 modulated DNA damage response by inhibiting radiation-induced DNA repair pathways including homologous recombination and nonhomologous end joining. The radiosensitizing effects of CUDC-907 were mediated by decreased NFκB/Forkhead box M1 (FOXM1) recruitment to promoters of genes involved in the DNA damage response; exogenous expression of NFκB/FOXM1 protected from CUDC-907-induced cytotoxicity. Together, these findings reveal CUDC-907 as a novel radiosensitizer with potent antitumor activity in pHGG and DIPG and provide a preclinical rationale for the combination of CUDC-907 with radiotherapy as a novel therapeutic strategy against pHGG and DIPG. More globally, we have identified NFκB and FOXM1 and their downstream transcriptional elements as critical targets for new treatments for pHGG and DIPG.Significance: These findings describe the radiosensitizing effect of a novel agent in pediatric high-grade gliomas, addressing a critical unmet need of increasing the radiation sensitivity of these highly aggressive tumors. Cancer Res; 78(14); 4007-21. ©2018 AACR.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaodong Yang
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | | | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - John A Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kevin X Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jie Bian
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nathalene Truffaux
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Adam C Resnick
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
79
|
Mulero MC, Shahabi S, Ko MS, Schiffer JM, Huang DB, Wang VYF, Amaro RE, Huxford T, Ghosh G. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit. Biochemistry 2018; 57:2943-2957. [PMID: 29708732 DOI: 10.1021/acs.biochem.8b00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Jamie M Schiffer
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - De-Bin Huang
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences , University of Macau , Avenida da Universidade , Taipa , Macau SAR , China
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
80
|
Wang C, Zhou H, Xue Y, Liang J, Narita Y, Gerdt C, Zheng AY, Jiang R, Trudeau S, Peng CW, Gewurz BE, Zhao B. Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300. J Virol 2018; 92:e02155-17. [PMID: 29467311 PMCID: PMC5899200 DOI: 10.1128/jvi.02155-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen (EBNA) leader protein (EBNALP) is one of the first viral genes expressed upon B-cell infection. EBNALP is essential for EBV-mediated B-cell immortalization. EBNALP is thought to function primarily by coactivating EBNA2-mediated transcription. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) studies highlight that EBNALP frequently cooccupies DNA sites with host cell transcription factors (TFs), in particular, EP300, implicating a broader role in transcription regulation. In this study, we investigated the mechanisms of EBNALP transcription coactivation through EP300. EBNALP greatly enhanced EP300 transcription activation when EP300 was tethered to a promoter. EBNALP coimmunoprecipitated endogenous EP300 from lymphoblastoid cell lines (LCLs). EBNALP W repeat serine residues 34, 36, and 63 were required for EP300 association and coactivation. Deletion of the EP300 histone acetyltransferase (HAT) domain greatly reduced EBNALP coactivation and abolished the EBNALP association. An EP300 bromodomain inhibitor also abolished EBNALP coactivation and blocked the EP300 association with EBNALP. EBNALP sites cooccupied by EP300 had significantly higher ChIP-seq signals for sequence-specific TFs, including SPI1, RelA, EBF1, IRF4, BATF, and PAX5. EBNALP- and EP300-cooccurring sites also had much higher H3K4me1 and H3K27ac signals, indicative of activated enhancers. EBNALP-only sites had much higher signals for DNA looping factors, including CTCF and RAD21. EBNALP coactivated reporters under the control of NF-κB or SPI1. EP300 inhibition abolished EBNALP coactivation of these reporters. Clustered regularly interspaced short palindromic repeat interference targeting of EBNALP enhancer sites significantly reduced target gene expression, including that of EP300 itself. These data suggest a previously unrecognized mechanism by which EBNALP coactivates transcription through subverting of EP300 and thus affects the expression of LCL genes regulated by a broad range of host TFs.IMPORTANCE Epstein-Barr virus was the first human DNA tumor virus discovered over 50 years ago. EBV is causally linked to ∼200,000 human malignancies annually. These cancers include endemic Burkitt lymphoma, Hodgkin lymphoma, lymphoma/lymphoproliferative disease in transplant recipients or HIV-infected people, nasopharyngeal carcinoma, and ∼10% of gastric carcinoma cases. EBV-immortalized human B cells faithfully model key aspects of EBV lymphoproliferative diseases and are useful models of EBV oncogenesis. EBNALP is essential for EBV to transform B cells and transcriptionally coactivates EBNA2 by removing repressors from EBNA2-bound DNA sites. Here, we found that EBNALP can also modulate the activity of the key transcription activator EP300, an acetyltransferase that activates a broad range of transcription factors. Our data suggest that EBNALP regulates a much broader range of host genes than was previously appreciated. A small-molecule inhibitor of EP300 abolished EBNALP coactivation of multiple target genes. These findings suggest novel therapeutic approaches to control EBV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hufeng Zhou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xue
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Gerdt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Y Zheng
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Runsheng Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
81
|
Choi J, Lee K, Ingvarsdottir K, Bonasio R, Saraf A, Florens L, Washburn MP, Tadros S, Green MR, Busino L. Loss of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing the mRNA decay factor roquin2. Nat Cell Biol 2018; 20:586-596. [PMID: 29695787 PMCID: PMC5926793 DOI: 10.1038/s41556-018-0084-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Kelch-like protein 6 (KLHL6) is an uncharacterized gene mutated in diffuse large B-cell lymphoma (DLBCL). We report that KLHL6 assembles with CULLIN3 to form a functional CULLIN-Ring ubiquitin ligase. Mutations of KLHL6 inhibit its ligase activity by disrupting the interaction with CULLIN3. Loss of KLHL6 favors DLBCL growth and survival both in vitro and in xenograft models. We further established the mRNA decay factor Roquin2 as a substrate of KLHL6. Degradation of Roquin2 is dependent on B-cell receptor activation, and requires the integrity of the tyrosine 691 in Roquin2 that is essential for its interaction with KLHL6. A non-degradable Roquin2 (Y691F) mutant requires its RNA binding ability to phenocopy the effect of KLHL6 loss. Stabilization of Roquin2 promotes mRNA decay of the tumor suppressor and NF-κB pathway inhibitor, tumor necrosis factor-α-inducible gene 3 (TNFAIP3). Collectively, our findings uncover the tumor suppressing mechanism of KLHL6.
Collapse
Affiliation(s)
- Jaewoo Choi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyutae Lee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Ingvarsdottir
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita Saraf
- The Stowers Institute of Medical Research, Kansas City, MO, USA
| | | | - Michael P Washburn
- The Stowers Institute of Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Saber Tadros
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
82
|
Wu J, Wang Q, Dai W, Wang W, Yue M, Wang J. Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB. J Genet Genomics 2018; 45:193-203. [PMID: 29748061 DOI: 10.1016/j.jgg.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/01/2022]
Abstract
Nuclear factor κB (NF-κB) is a DNA-binding transcription factor. Characterizing its genomic binding sites is crucial for understanding its gene regulatory function and mechanism in cells. This study characterized the binding sites of NF-κB RelA/p65 in the tumor neurosis factor-α (TNFα) stimulated HeLa cells by a precise chromatin immunoprecipitation-sequencing (ChIP-seq). The results revealed that NF-κB binds nontraditional motifs (nt-motifs) containing conserved GGAA quadruplet. Moreover, nt-motifs mainly distribute in the peaks nearby centromeres that contain a larger number of repetitive elements such as satellite, simple repeats and short interspersed nuclear elements (SINEs). This intracellular binding pattern was then confirmed by the in vitro detection, indicating that NF-κB dimers can bind the nontraditional κB (nt-κB) sites with low affinity. However, this binding hardly activates transcription. This study thus deduced that NF-κB binding nt-motifs may realize functions other than gene regulation as NF-κB binding traditional motifs (t-motifs). To testify the deduction, many ChIP-seq data of other cell lines were then analyzed. The results indicate that NF-κB binding nt-motifs is also widely present in other cells. The ChIP-seq data analysis also revealed that nt-motifs more widely distribute in the peaks with low-fold enrichment. Importantly, it was also found that NF-κB binding nt-motifs is mainly present in the resting cells, whereas NF-κB binding t-motifs is mainly present in the stimulated cells. Astonishingly, no known function was enriched by the gene annotation of nt-motif peaks. Based on these results, this study proposed that the nt-κB sites that extensively distribute in larger numbers of repeat elements function as a nuclear reservoir of NF-κB. The nuclear NF-κB proteins stored at nt-κB sites in the resting cells may be recruited to the t-κB sites for regulating its target genes upon stimulation.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Qiao Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
83
|
Saxon JA, Yu H, Polosukhin VV, Stathopoulos GT, Gleaves LA, McLoed AG, Massion PP, Yull FE, Zhao Z, Blackwell TS. p52 expression enhances lung cancer progression. Sci Rep 2018; 8:6078. [PMID: 29666445 PMCID: PMC5904214 DOI: 10.1038/s41598-018-24488-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
While many studies have demonstrated that canonical NF-κB signaling is a central pathway in lung tumorigenesis, the role of non-canonical NF-κB signaling in lung cancer remains undefined. We observed frequent nuclear accumulation of the non-canonical NF-κB component p100/p52 in human lung adenocarcinoma. To investigate the impact of non-canonical NF-κB signaling on lung carcinogenesis, we employed transgenic mice with doxycycline-inducible expression of p52 in airway epithelial cells. p52 over-expression led to increased tumor number and progression after injection of the carcinogen urethane. Gene expression analysis of lungs from transgenic mice combined with in vitro studies suggested that p52 promotes proliferation of lung epithelial cells through regulation of cell cycle-associated genes. Using gene expression and patient information from The Cancer Genome Atlas (TCGA) database, we found that expression of p52-associated genes was increased in lung adenocarcinomas and correlated with reduced survival, even in early stage disease. Analysis of p52-associated gene expression in additional human lung adenocarcinoma datasets corroborated these findings. Together, these studies implicate the non-canonical NF-κB component p52 in lung carcinogenesis and suggest modulation of p52 activity and/or downstream mediators as new therapeutic targets.
Collapse
Affiliation(s)
- Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hui Yu
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilian University (LMU) and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, Munich, Bavaria, Germany
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 1 Asklepiou Str., 26504, Rio, Achaia, Greece
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pierre P Massion
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, 37232, USA
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zhongming Zhao
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Veterans Affairs Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
84
|
CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions. Viruses 2018; 10:v10020055. [PMID: 29385696 PMCID: PMC5850362 DOI: 10.3390/v10020055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.
Collapse
|
85
|
Wang Z, Potoyan DA, Wolynes PG. Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs). BMC SYSTEMS BIOLOGY 2018; 12:4. [PMID: 29382384 PMCID: PMC5791368 DOI: 10.1186/s12918-018-0525-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. RESULTS In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. CONCLUSIONS The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Genentech Inc. 350 DNA Way, South San Francisco, 94080, CA, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Department of Chemistry, Iowa State University, Ames, 50011, IA, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA. .,Department of Chemistry, Rice University, Houston, 77005, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, 77005, TX, USA.
| |
Collapse
|
86
|
Wang LW, Trudeau SJ, Wang C, Gerdt C, Jiang S, Bo Z, Gewurz BE. Modulating Gene Expression in Epstein-Barr Virus (EBV)-Positive B Cell Lines with CRISPRa and CRISPRi. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2018; 121:31.13.1-31.13.18. [PMID: 29337370 PMCID: PMC5774230 DOI: 10.1002/cpmb.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) transforms small resting primary B cells into large lymphoblastoid cells which are able to grow and survive in vitro indefinitely. These cells represent a model for oncogenesis. In this unit, variants of conventional clustered regularly interspaced short palindromic repeats (CRISPR), namely the CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) methods, are discussed in the context of gene regulation at genomic DNA promoter and enhancer elements. Lymphoblastoid B cell lines (LCLs) stably expressing nuclease-deficient Cas9 (dCas9)-VP64 (Cas9 associated with CRISPRa) or dCas9-KRAB (Cas9 associated with CRISPRi) are transduced with lentivirus that encodes a single guide RNA (sgRNA) that targets a specific gene locus. The ribonucleoprotein complex formed by the dCas9 molecule and its cognate sgRNA enables sequence-specific binding at a promoter or enhancer of interest to affect the expression of genes regulated by the targeted promoter or enhancer. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Liang Wei Wang
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Stephen J. Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chong Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Catherine Gerdt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sizun Jiang
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Zhao Bo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Benjamin E. Gewurz
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
87
|
FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension. J Mol Med (Berl) 2017; 96:223-235. [PMID: 29290032 DOI: 10.1007/s00109-017-1619-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive vascular remodeling disease characterized by a persistent elevation of pulmonary artery pressure, leading to right heart failure and premature death. Exaggerated proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key component of vascular remodeling. Despite major advances in the field, current therapies for PAH remain poorly effective in reversing the disease or significantly improving long-term survival. Because the transcription factor FOXM1 is necessary for PASMC proliferation during lung morphogenesis and its overexpression stimulates proliferation and evasion of apoptosis in cancer cells, we thus hypothesized that upregulation of FOXM1 in PAH-PASMCs promotes cell expansion and vascular remodeling. Our results showed that FOXM1 was markedly increased in distal pulmonary arteries and isolated PASMCs from PAH patients compared to controls as well as in two preclinical models. In vitro, we showed that miR-204 expression regulates FOXM1 levels and that inhibition of FOXM1 reduced cell proliferation and resistance to apoptosis through diminished DNA repair mechanisms and decreased expression of the pro-remodeling factor survivin. Accordingly, inhibition of FOXM1 with thiostrepton significantly improved established PAH in two rat models. Thus, we show for the first time that FOXM1 is implicated in PAH development and represents a new promising target. KEY MESSAGES FOXM1 is overexpressed in human PAH-PASMCs and PAH animal models. FOXM1 promotes PAH-PASMC proliferation and resistance to apoptosis. Pharmacological inhibition of FOXM1 improves established PAH in the MCT and Su/Hx rat models. FOXM1 may be a novel therapeutic target in PAH.
Collapse
|
88
|
Min X, Zeng W, Chen S, Chen N, Chen T, Jiang R. Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics 2017; 18:478. [PMID: 29219068 PMCID: PMC5773911 DOI: 10.1186/s12859-017-1878-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background With the rapid development of deep sequencing techniques in the recent years, enhancers have been systematically identified in such projects as FANTOM and ENCODE, forming genome-wide landscapes in a series of human cell lines. Nevertheless, experimental approaches are still costly and time consuming for large scale identification of enhancers across a variety of tissues under different disease status, making computational identification of enhancers indispensable. Results To facilitate the identification of enhancers, we propose a computational framework, named DeepEnhancer, to distinguish enhancers from background genomic sequences. Our method purely relies on DNA sequences to predict enhancers in an end-to-end manner by using a deep convolutional neural network (CNN). We train our deep learning model on permissive enhancers and then adopt a transfer learning strategy to fine-tune the model on enhancers specific to a cell line. Results demonstrate the effectiveness and efficiency of our method in the classification of enhancers against random sequences, exhibiting advantages of deep learning over traditional sequence-based classifiers. We then construct a variety of neural networks with different architectures and show the usefulness of such techniques as max-pooling and batch normalization in our method. To gain the interpretability of our approach, we further visualize convolutional kernels as sequence logos and successfully identify similar motifs in the JASPAR database. Conclusions DeepEnhancer enables the identification of novel enhancers using only DNA sequences via a highly accurate deep learning model. The proposed computational framework can also be applied to similar problems, thereby prompting the use of machine learning methods in life sciences.
Collapse
Affiliation(s)
- Xu Min
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Beijing, 100084, China.,Department of Computer Science and Technology, State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing, 100084, China
| | - Wanwen Zeng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Beijing, 100084, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Shengquan Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Beijing, 100084, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Ning Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Beijing, 100084, China.,Department of Computer Science and Technology, State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing, 100084, China
| | - Ting Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Beijing, 100084, China.,Department of Computer Science and Technology, State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing, 100084, China.,Program in Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Beijing, 100084, China. .,Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
89
|
Epstein-Barr Virus Induces Adhesion Receptor CD226 (DNAM-1) Expression during Primary B-Cell Transformation into Lymphoblastoid Cell Lines. mSphere 2017; 2:mSphere00305-17. [PMID: 29202043 PMCID: PMC5705804 DOI: 10.1128/msphere.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in "clumps," and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.
Collapse
|
90
|
MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-κB. Cell Rep 2017; 17:514-526. [PMID: 27705798 DOI: 10.1016/j.celrep.2016.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023] Open
Abstract
MyoD is a key regulator of skeletal myogenesis that directs contractile protein synthesis, but whether this transcription factor also regulates skeletal muscle metabolism has not been explored. In a genome-wide ChIP-seq analysis of skeletal muscle cells, we unexpectedly observed that MyoD directly binds to numerous metabolic genes, including those associated with mitochondrial biogenesis, fatty acid oxidation, and the electron transport chain. Results in cultured cells and adult skeletal muscle confirmed that MyoD regulates oxidative metabolism through multiple transcriptional targets, including PGC-1β, a master regulator of mitochondrial biogenesis. We find that PGC-1β expression is cooperatively regulated by MyoD and the alternative NF-κB signaling pathway. Bioinformatics evidence suggests that this cooperativity between MyoD and NF-κB extends to other metabolic genes as well. Together, these data identify MyoD as a regulator of the metabolic capacity of mature skeletal muscle to ensure that sufficient energy is available to support muscle contraction.
Collapse
|
91
|
Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins. Nat Commun 2017; 8:1537. [PMID: 29146913 PMCID: PMC5691083 DOI: 10.1038/s41467-017-00859-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/01/2017] [Indexed: 01/17/2023] Open
Abstract
Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5 is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to identify selective degradation of the signalling scaffold TRAF3. TRAF3 autophagy is driven by RAS and results in activation of the NF-κB family member RELB. We show that RELB represses TGFβ target promoters independently of DNA binding at NF-κB recognition sequences, instead binding with SMAD family member(s) at SMAD-response elements. Thus, autophagy antagonises TGFβ gene expression. Finally, autophagy-deficient A549 cells regain tumorigenicity upon SMAD4 knockdown. Thus, at least in this setting, a physiologic function for autophagic regulation of gene expression is tumour growth. Macroautophagy can regulate cell signalling and tumorigenesis but the molecular mechanisms are unclear. Here the authors show selective degradation of the signalling scaffold TRAF3 by autophagy and consequent activation of the NF-κB family member RELB regulate gene expression via antagonism of SMAD proteins.
Collapse
|
92
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
93
|
Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 2017; 25:114-132. [PMID: 29125603 PMCID: PMC5729532 DOI: 10.1038/cdd.2017.172] [Citation(s) in RCA: 471] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV. Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia. Importantly, when DREAM function is lost, CDK inhibitor drugs employed in cancer treatment such as Palbociclib, Abemaciclib and Ribociclib can compensate for defects in early steps in the pathway upstream from cyclin/CDK complexes. In summary, the p53–p21–DREAM–E2F/CHR pathway controls a plethora of cell cycle genes, can contribute to cell cycle arrest and is a target for cancer therapy.
Collapse
|
94
|
Abstract
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
95
|
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) is expressed in multiple human malignancies, including nasopharyngeal carcinoma and Hodgkin and immunosuppression-associated lymphomas. LMP1 mimics CD40 signaling to activate multiple growth and survival pathways, in particular, NF-κB. LMP1 has critical roles in Epstein-Barr virus (EBV)-driven B-cell transformation, and its expression causes fatal lymphoproliferative disease in immunosuppressed mice. Here, we review recent developments in studies of LMP1 signaling, LMP1-induced host dependency factors, mouse models of LMP1 lymphomagenesis, and anti-LMP1 immunotherapy approaches.
Collapse
Affiliation(s)
- Liang Wei Wang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Sizun Jiang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Benjamin E Gewurz
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
96
|
Baskin KK, Makarewich CA, DeLeon SM, Ye W, Chen B, Beetz N, Schrewe H, Bassel-Duby R, Olson EN. MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2017; 2:91920. [PMID: 28724790 DOI: 10.1172/jci.insight.91920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes and that MED12 and MEF2 co-occupy promoters of calcium-handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and that overexpression of both increases expression of calcium-handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium-handling genes, consequently mediating contractility in the mammalian heart.
Collapse
Affiliation(s)
| | | | | | | | - Beibei Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and.,Hamon Center for Regenerative Science and Medicine and.,Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N Olson
- Department of Molecular Biology and.,Hamon Center for Regenerative Science and Medicine and.,Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
97
|
Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2. Int J Biochem Cell Biol 2017; 89:157-170. [PMID: 28579529 DOI: 10.1016/j.biocel.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
It has been well-known that over activation of NF-κB has close relationship with hepatitis and hepatocellular carcinoma (HCC). However, the complete and exact underlying molecular pathways and mechanisms still remain not fully understood. By manipulating NF-κB activity with its recognized activator TNFα and using ChIP-seq and RNA-seq techniques, this study identified 699 NF-κB direct target genes (DTGs) in a widely used HCC cell line, HepG2, including 399 activated and 300 repressed genes. In these NF-κB DTGs, 216 genes (126 activated and 90 repressed genes) are among the current HCC gene signature. In comparison with NF-κB target genes identified in LPS-induced THP-1 and TNFα-induced HeLa cells, only limited numbers (24-46) of genes were shared by the two cell lines, indicating the HCC specificity of identified genes. Functional annotation revealed that NF-κB DTGs in HepG2 cell are mainly related with many typical NF-κB-related biological processes including immune system process, response to stress, response to stimulus, defense response, and cell death, and signaling pathways of MAPK, TNF, TGF-beta, Chemokine, NF-kappa B, and Toll-like receptor. Some NF-κB DTGs are also involved in Hepatitis C and B pathways. It was found that 82 NF-κB DTGs code secretory proteins, which include CCL2 and DKK1 that have already been used as HCC markers. Finally, the NF-κB DTGs were further confirmed by detecting the NF-κB binding and expression of 14 genes with ChIP-PCR and RT-PCR. This study thus provides a useful NF-κB DTG list for future studies of NF-κB-related molecular mechanisms and theranostic biomarkers of HCC.
Collapse
|
98
|
Jung J, Kim LJ, Wang X, Wu Q, Sanvoranart T, Hubert CG, Prager BC, Wallace LC, Jin X, Mack SC, Rich JN. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight 2017; 2:90019. [PMID: 28515364 DOI: 10.1172/jci.insight.90019] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 12/29/2022] Open
Abstract
Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma stem cells (GSCs). NNMT depletes S-adenosyl methionine (SAM), a methyl donor generated from methionine. GSCs contained lower levels of methionine, SAM, and nicotinamide, but they contained higher levels of oxidized nicotinamide adenine dinucleotide (NAD+) than differentiated tumor cells. In concordance with the poor prognosis associated with DNA hypomethylation in glioblastoma, depletion of methionine, a key upstream methyl group donor, shifted tumors toward a mesenchymal phenotype and accelerated tumor growth. Targeting NNMT expression reduced cellular proliferation, self-renewal, and in vivo tumor growth of mesenchymal GSCs. Supporting a mechanistic link between NNMT and DNA methylation, targeting NNMT reduced methyl donor availability, methionine levels, and unmethylated cytosine, with increased levels of DNA methyltransferases, DNMT1 and DNMT3A. Supporting the clinical significance of these findings, NNMT portended poor prognosis for glioblastoma patients. Collectively, our findings support NNMT as a GSC-specific therapeutic target in glioblastoma by disrupting oncogenic DNA hypomethylation.
Collapse
Affiliation(s)
- Jinkyu Jung
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine.,Medical Scientist Training Program, School of Medicine.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tanwarat Sanvoranart
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine.,Medical Scientist Training Program, School of Medicine.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lisa C Wallace
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine
| |
Collapse
|
99
|
Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ, Ashbaugh IY, Jiang S, Jiang C, Zhao B, Root DE, Doench JG, Gewurz BE. CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host Microbe 2017; 21:580-591.e7. [PMID: 28494239 PMCID: PMC8938989 DOI: 10.1016/j.chom.2017.04.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/10/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) causes endemic Burkitt lymphoma (BL) and immunosuppression-related lymphomas. These B cell malignancies arise by distinct transformation pathways and have divergent viral and host expression programs. To identify host dependency factors resulting from these EBV+, B cell-transformed cell states, we performed parallel genome-wide CRISPR/Cas9 loss-of-function screens in BL and lymphoblastoid cell lines (LCLs). These highlighted 57 BL and 87 LCL genes uniquely important for their growth and survival. LCL hits were enriched for EBV-induced genes, including viral super-enhancer targets. Our systematic approach uncovered key mechanisms by which EBV oncoproteins activate the PI3K/AKT pathway and evade tumor suppressor responses. LMP1-induced cFLIP was found to be critical for LCL defense against TNFα-mediated programmed cell death, whereas EBV-induced BATF/IRF4 were critical for BIM suppression and MYC induction in LCLs. Finally, EBV super-enhancer-targeted IRF2 protected LCLs against Blimp1-mediated tumor suppression. Our results identify viral transformation-driven synthetic lethal targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Walsh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Katharina Bernhardt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Camille W Ashbaugh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Y Ashbaugh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
100
|
Price AM, Dai J, Bazot Q, Patel L, Nikitin PA, Djavadian R, Winter PS, Salinas CA, Barry AP, Wood KC, Johannsen EC, Letai A, Allday MJ, Luftig MA. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. eLife 2017; 6. [PMID: 28425914 PMCID: PMC5425254 DOI: 10.7554/elife.22509] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis. DOI:http://dx.doi.org/10.7554/eLife.22509.001 Over 90% of adults around the world are infected with the Epstein-Barr virus. Like other closely related viruses, such as those that cause chicken pox and cold sores, an infection lasts for the rest of the person’s life, although the virus generally remains in a latent or dormant state. However, under certain conditions the latent viruses can cause cancers to develop; in fact, it is estimated that such infections are responsible for nearly 2% of all cancer deaths worldwide. One way that healthy human cells prevent cancer is by triggering their own death in a process called apoptosis. The Epstein-Barr virus can block apoptosis, therefore making the cells more likely to become cancerous. Previous research identified one protein in the Epstein-Barr virus that promotes cancer by preventing infected cells from dying as normal. However, even in the absence of this protein, Epstein-Barr virus-infected cells remain resistant to apoptosis. This suggests that the virus has another way of blocking cell death. Price et al. have now used a technique that stresses living cells in a way that reveals which proteins prevent apoptosis to study human cells infected with the Epstein-Barr virus. This revealed that soon after infection, the virus could force the human cell to produce MCL-1, a protein that prevents cell death. Later, the Epstein-Barr virus enlisted a second human protein called BFL-1, which makes the infected cell further resistant to apoptosis. Price et al. discovered that a protein in the Epstein-Barr virus called EBNA3A controls the production of the MCL-1 and BFL-1 proteins. In the future, developing therapies that target these proteins may lead to new treatments for cancers caused by the Epstein-Barr virus. Such treatments would be likely to have fewer side effects for patients than traditional chemotherapies. DOI:http://dx.doi.org/10.7554/eLife.22509.002
Collapse
Affiliation(s)
- Alexander M Price
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Quentin Bazot
- Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Luv Patel
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Pavel A Nikitin
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Reza Djavadian
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Peter S Winter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States.,Program in Genetics and Genomics, Duke University, Durham, United States
| | - Cristina A Salinas
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Ashley Perkins Barry
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Martin J Allday
- Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| |
Collapse
|